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Abstract

Recently, Wang (2016) introduced a random linear code based quantum resistant public key encryp-
tion scheme RLCE which is a variant of McEliece encryption scheme. In this paper, we introduce a
revised version of the RLCE encryption scheme. The revised RLCE schemes are more efficient than the
original RLCE scheme. Specifically, it is shown that RLCE schemes have smaller public key sizes com-
pared to binary Goppa code based McEliece encryption schemes for corresponding security levels. The
paper further proposes message padding schemes for RLCE to achieve IND-CCA2 security. Practical
RLCE parameters for the security levels of 128, 192, and 256 bits and for the quantum security levels of
80, 110, and 144 are recommended. The implementation of the RLCE encryption scheme and software
packages for analyzing the security strength of RLCE parameters are available at http://quantumca.org/.

Key words: Random linear codes; McEliece encryption scheme; linear code based encryption scheme;
message padding schemes; adaptive chosen ciphertext security.
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1 Introduction

Since McEliece encryption scheme [17] was introduced more than thirty years ago, it has withstood many
attacks and still remains unbroken for general cases. It has been considered as one of the candidates for
post-quantum cryptography since it is immune to existing quantum computer algorithm attacks. The origi-
nal McEliece cryptography system is based on binary Goppa codes. Several variants have been introduced
to replace Goppa codes in the McEliece encryption scheme though most of them have been broken. Up to
the writing of this paper, secure McEliece encryption schemes include MDPC/LDPC code based McEliece
encryption schemes [1, 18], Wang’s RLCE [24], and the original binary Goppa code based McEliece en-
cryption scheme. Though no essential attacks have been identified for Goppa code and MDPC/LDPC based
McEliece encryption schemes yet, the security of these schemes depends on certain structures of the under-
lying linear codes. The advantage of RLCE encryption scheme is that its security does not depends on any
specific structure of underlying linear codes, instead its security is believed to depend on the NP-hardness
of decoding random linear codes.

This paper proposes variants of the RLCE scheme with increased message communication bandwidth,
reduced public key size, and improved encryption and decryption performance. This paper also system-
atically analyzes the security of RLCE schemes and investigates the security requirements for the RLCE
scheme to have the smallest public key sizes. Practical message padding parameters for the RLCE scheme
to be secure against adaptive chosen ciphertext attacks (IND-CCA2) are proposed and experimental results
for different RLCE scheme parameter sizes are reported.

Unless specified otherwise, we will use q = pm where p = 2 or p is a prime. Our discussion will be
based on the field GF(q) through out this paper. Bold face letters such as a,b, e, f, g are used to denote
row or column vectors over GF(q). It should be clear from the context whether a specific bold face letter
represents a row vector or a column vector. Let k < n < q. The generalized Reed-Solomon code GRSk(x, y)
of dimension k is defined as

GRSk(x, y) =
{
(y0 p(x0), · · · , yn−1 p(xn−1)) : p(x) ∈ GF(q)[x], deg(p) < k

}
where x = (x0, · · · , xn−1) ∈ GF(q)n is an n-tuple of distinct elements and y = (y0, · · · , yn−1) ∈ GF(q)n is an
n-tuple of nonzero (not necessarily distinct) elements.

2 McEliece, Niederreiter, and RLCE Encryption schemes

For given parameters n, k and t, the McEliece scheme [17] chooses an (n, k, 2t + 1) linear Goppa code C.
Let Gs be the k × n generator matrix for the code C. Select a random dense k × k non-singular matrix S and
a random n × n permutation matrix P. Then the public key is G = S GsP and the private key is Gs. The
following is a description of encryption and decryption processes.

Mc.Enc(G,m, e). For a message m ∈ {0, 1}k, choose a random vector e ∈ {0, 1}n of weight t and compute the
cipher text c = mG + e

Mc.Dec(S ,Gs, P, c). For a received ciphertext c, first compute c′ = cP−1 = mS G. Next use an error-
correction algorithm to recover m′ = mS and compute the message m as m = m′S −1.

For given parameters n, k, and t, the Niederreiter’s scheme [19] chooses an (n, k, 2t + 1) linear code C.
Let Hs be an (n − k) × n parity check matrix of C. Select a random (n − k) × (n − k) non-singular matrix S
and a random n × n permutation matrix P. Then the public key is H = S HsP and the private key is S ,Hs, P.
The encryption and decryption processes are as follows.

Nied.Enc(H,m). For a message m ∈ GF(q)n of weight t, compute the cipher text c = mHT of length n − k.
3



Nied.Dec(S ,Hs, P, c). For a received ciphertext c = mPT HT
s S T , compute c(S T )−1 = mPT HT

s . Use an
error-correction algorithm to recover m′ = mPT and compute the message m = m′(PT )−1.

It is well known that McElience’s scheme and Niederreiter’s scheme are equivalent. Let Gs and Hs be
the generator matrix and parity check matrix of an (n, k, 2t + 1) linear code C respectively. Let G be the
public key of the corresponding McEliece encryption scheme. From G, one calculates a full rank (n− k)× n
matrix H such that GHT = 0. It is straightforward to verify that H is a public key for the Niederreiter scheme
with corresponding parity check matrix Hs. For a McEliece’s scheme ciphertext c = mG + e, we have

cHT = mGHT + eHT = eHT .

Thus if one can break Niederreiter’s scheme then one can break McEliece’s scheme. On the other hand,
from a given Niederreiter public key H, one can compute a full rank k × n matrix G such that GHT = 0.
It is straightforward to verify that G is a public key for the McEliece scheme with corresponding generator
matrix Gs. For a ciphertext c = mHT , one solves the equation c = aHT to obtain a vector a ∈ GF(q)n. By
the fact that (a −m)HT = 0, there exists a vector r ∈ GF(q)n−k such that a −m = rG. That is, a = rG + m.
This shows that if one can break McEliece scheme, then one can break Niederreiter scheme.

The protocol for the RLCE Encryption scheme by Wang [24] consists of the following three processes:
RLCE.KeySetup, RLCE.Enc, and RLCE.Dec.

RLCE.KeySetup(n, k, d, t, r). Let n, k, d, t > 0, and r ≥ 1 be given parameters such that n−k+1 ≥ d ≥ 2t +1.
Let Gs = [g0, · · · , gn−1] be a k × n generator matrix for an [n, k, d] linear code such that there is an efficient
decoding algorithm to correct at least t errors for this linear code given by Gs.

1. Let C0,C1, · · · ,Cn−1 ∈ GF(q)k×r be k × r matrices drawn uniformly at random and let

G1 = [g0,C0, g1,C1 · · · , gn−1,Cn−1] (1)

be the k × n(r + 1) matrix obtained by inserting the random matrices Ci into Gs.

2. Let A0, · · · , An−1 ∈ GF(q)(r+1)×(r+1) be non-singular (r + 1) × (r + 1) matrices chosen uniformly at
random and let A = diag[A0, · · · , An−1] be an n(r + 1) × n(r + 1) non-singular matrix.

3. Let S be a random dense k× k non-singular matrix and P be an n(r + 1)× n(r + 1) permutation matrix.

4. The public key is the k × n(r + 1) matrix G = S G1AP and the private key is (S ,Gs, P, A).

RLCE.Enc(G,m, e). For a row vector message m ∈ GF(q)k, choose a random row vector e = [e0, . . . , en(r+1)−1] ∈
GF(q)n(r+1) such that the Hamming weight of e is at most t. The cipher text is c = mG + e.

RLCE.Dec(S ,Gs, P, A, c). For a received cipher text c = [c0, . . . , cn(r+1)−1], compute

cP−1A−1 = mS G1 + eP−1A−1 = [c′0, . . . , c
′
n(r+1)−1]

where A−1 = diag[A−1, · · · , A−1
n−1]. Let c′ = [c′0, c

′
r+1, · · · , c

′
(n−1)(r+1)] be the row vector of length n selected

from the length n(r + 1) row vector cP−1A−1. Then c′ = mS Gs + e′ for some error vector e′ ∈ GF(q)n. Let
e′′ = eP−1 = [e′′0 , · · · , e

′′
n(r+1)−1] and e′′i = [e′′i(r+1), . . . , e

′′
i(r+1)+r] be a sub-vector of e′′ for i ≤ n − 1. Then

e′[i] is the first element of e′′i A−1
i . Thus e′[i] , 0 only if e′′i is non-zero. Since there are at most t non-zero

sub-vectors e′′i , the Hamming weight of e′ ∈ GF(q)n is at most t. Using the efficient decoding algorithm,
one can compute m′ = mS and m = m′S −1. Finally, calculate the Hamming weight wt = wt(c −mG). If
wt ≤ t then output m as the decrypted plaintext. Otherwise, output error.
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3 The dual RLCE scheme

It is straightforward to show that McEliece encryption scheme is equivalent to Niederreiter encryption
scheme. That is, for each McEliece encryption scheme public key, one can derive a Niederreiter encryption
scheme public key and, for each Niederreiter encryption scheme public key, one can derive a McEliece
encryption scheme public key. One can break the McEliece encryption scheme (respectively the Nieder-
reiter encryption scheme) if and only if one can break the corresponding Niederreiter encryption scheme
(respectively, the McEliece encryption scheme). In this section, we show that a similar equivalent result
may not hold for RLCE schemes. We first try to give a natural candidate construction of Niederreiter RLCE
scheme and show it is challenging (or infeasible) to design an efficient decryption algorithm. Thus it is not
clear whether there exists an efficient equivalent Niederreiter RLCE encryption scheme corresponding to the
McEliece RLCE encryption scheme.

RLCEdual.KeySetup(n, k, d, t, r). For an (n, k, 2t + 1) linear code C, let Hs = [h0, · · · ,hn−1] be an (n− k)× n
parity check matrix of C. The keys are generated using the following steps.

1. Let C0,C1, · · · ,Cn−1 ∈ GF(q)(n−k)×r be (n − k) × r matrices drawn uniformly at random and let

H1 = [h0,C0, g1,C1 · · · ,hn−1,Cn−1] (2)

be the (n − k) × n(r + 1) matrix obtained by inserting the random matrices Ci into Hs.

2. Let A0, · · · , An−1 ∈ GF(q)(r+1)×(r+1) be non-singular (r + 1) × (r + 1) matrices chosen uniformly at
random and let A = diag[A0, · · · , An−1] be an n(r + 1) × n(r + 1) non-singular matrix.

3. Let S be a random dense (n−k)×(n−k) non-singular matrix and P be an n(r+1)×n(r+1) permutation
matrix.

4. The public key is the (n − k) × n(r + 1) matrix H = S H1AP and the private key is (S ,Hs, P, A).

RLCEdual.Enc(H,m). For a row message m ∈ GF(q)n(r+1) of weight t, compute the ciphertext c = mHT .

Candidate decryption algorithms? For a received ciphertext c = mHT , we have c(S T )−1 = mPT AT HT
1 .

Since each non-zero element in m can be converted to at most (t+1)-nonzero elements in mPT AT , the weight
of mPT AT is at most (r + 1)t. Thus we can decrypt the ciphertext c only if we had an efficient (r + 1)t-error-
correcting algorithm for the code defined by the parity check matrix H1. Since the matrices C0,C1, · · · ,Cn−1
are selected at random, it is unknown whether there is an efficient error correcting algorithm for the code
defined by the parity check matrix H1. In the following, we describe a natural candidate algorithm for
decrypting the ciphertext and show that this algorithm will not work. Let Gs = [g0, · · · , gn−1] be the k × n
generator matrix for the linear code C such that GsHT

s = 0. Furthermore, let D0,D1, · · · ,Dn−1 be k × r
matrices, such that D0CT

0 + D1CT
1 + · · ·+ Dn−1CT

n−1 = 0 (for example, one may take D0 = D1 = · · · = Dn−1 =

0). Let G1 = [g0,D0, · · · , gn−1,Dn−1], and G = G1(AT )−1(PT )−1. Then

GHT = G1(AT )−1(PT )−1PT AT HT
1 S T = G1HT

1 = 0.

For a received ciphertext c with c(S T )−1 = mPT AT HT
1 , one can find a vector a ∈ GF(q)n(r+1) such that

c(S T )−1 = aHT . Then we have (a − mPT AT )HT = 0. Since the space spanned by the rows of H is
of dimension n − k, the orthogonal space to the space spanned by the rows of H is of dimension nt + k.
However, the space spanned by the rows of G only has dimension k. Thus only with a negligible probability,
the vector a −mPT AT is in the code space generated by the rows of G. In other words, the above candidate
decryption algorithm will succeed only with a negligible probability.

The arguments in the preceding paragraph show that it is hard to design an equivalent Niederreiter-type
encryption scheme for RLCE scheme. This provides certain evidence for the robustness of RLCE scheme.
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4 Revised encryption scheme RLCE

In this section, we introduce a revised RLCE scheme to improve the message bandwidth and to reduce the
public key size. The main difference between the revised scheme and the original scheme in [24] is that
the revised scheme only inserts w < n random columns after randomly selected number of columns in the
generator matrix. Specifically the revised RLCE scheme proceeds as follows.

RLCE.KeySetup(n, k, d, t,w). Let n, k, d, t > 0, and w ∈ {1, · · · , n} be given parameters such that n − k + 1 ≥
d ≥ 2t + 1. Let Gs be a k × n generator matrix for an [n, k, d] linear code C such that there is an efficient
decoding algorithm to correct at least t errors for this linear code given by Gs. Let P1 be a randomly chosen
n × n permutation matrix and GsP1 = [g0, · · · , gn−1].

1. Let r0, r1, · · · , rw−1 ∈ GF(q)k be column vectors drawn uniformly at random and let

G1 = [g0, · · · , gn−w, r0, · · · , gn−1, rw−1] (3)

be the k × (n + w) matrix obtained by inserting column vectors ri into Gs.

2. Let A0 =

(
a0,00 a0,01
a0,10 a0,11

)
, · · · , Aw−1 =

(
aw−1,00 aw−1,01
aw−1,10 aw−1,11

)
∈ GF(q)2×2 be non-singular 2 × 2 ma-

trices chosen uniformly at random such that ai,00ai,01ai,10ai,11 , 0 for all i = 0, · · · ,w − 1. Let
A = diag[1, · · · , 1, A0, · · · , Aw−1] be an (n + w) × (n + w) non-singular matrix.

3. Let S be a random dense k× k non-singular matrix and P2 be an (n + w)× (n + w) permutation matrix.

4. The public key is the k × (n + w) matrix G = S G1AP2 and the private key is (S ,Gs, P1, P2, A).

RLCE.Enc(G,m, e). For a row vector message m ∈ GF(q)k, choose a random row vector e = [e0, . . . , en+w−1] ∈
GF(q)n+w such that the Hamming weight of e is at most t. The cipher text is c = mG + e.

RLCE.Dec(S ,Gs, P1, P2, A, c). For a received cipher text c = [c0, . . . , cn+w−1], compute

cP−1
2 A−1 = mS G1 + eP−1

2 A−1 = [c′0, . . . , c
′
n+w−1].

Let c′ = [c′0, c
′
1, · · · , c

′
n−w, c

′
n−w+2, · · · , c

′
n+w−2] be the row vector of length n selected from the length n + w

row vector cP−1
2 A−1. Then c′P−1

1 = mS Gs + e′ for some error vector e′ ∈ GF(q)n where the Hamming
weight of e′ ∈ GF(q)n is at most t. Using an efficient decoding algorithm, one can recover mS Gs from
c′P−1

1 . Let D be a k × k inverse matrix of S G′s where G′s is the first k columns of Gs. Then m = c1D where
c1 is the first k elements of mS Gs. Finally, calculate the Hamming weight wt = wt(c −mG). If wt ≤ t then
output m as the decrypted plaintext. Otherwise, output error.

Remark. If w = n, then the revised RLCE scheme is the same as the original RLCE scheme with r = 1. If
the (n + w) × (n + w) matrix A is taken as the identity matrix I(n+w)×(n+w), then the revised RLCE scheme is
the same as the Wieschebrink’s encryption scheme [26].

5 Systematic RLCE encryption scheme

To reduce RLCE scheme public key sizes, one can use a semantic secure message encoding approach (e.g.,
an IND-CCA2 padding scheme) so that the public key can be stored in a systematic matrix. For a McEliece
encryption scheme over GF(q), one needs to store k(n− k) elements from GF(q) for a systematic public key
matrix instead of nk elements from GF(q) for a non-systematic generator matrix public key.
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In a systematic RLCE encryption scheme, the decryption could be done more efficiently. In the RLCE
decryption process, one recovers mS Gs from c′P−1

1 = mS Gs + e′ first. Let mS GsP1 = (d0, · · · , dn−1) and
cd = (d′0, · · · , d

′
n+w) = (d0, d1, · · · , dn−w,⊥, dn−w+1,⊥, · · · , dn−1,⊥)P2 be a length n + w vector. For each i < k

such that d′i = d j for some j < n − w, we have mi = d j. Let

IR = {i : mi is recovered via mS Gs} and ĪR = {0, · · · , k − 1} \ IR.

Assume that |ĪR|= u. It suffices to recover the remaining u message symbols mi with i ∈ ĪR. In the following
paragraphs, we present three approaches to recover these message symbols.

5.1 Decoding algorithm 0 for systematic RLCE encryption scheme

In the first approach, one recovers mS from mS Gs first. Then one multiplies m′ with the corresponding u
columns S ĪR

of the matrix S −1 to get mi with i ∈ ĪR.

5.2 Decoding algorithm 1 for systematic RLCE encryption scheme

Instead of recovering mS first, one may use public key to recover the remaining message symbols from
mS Gs direcrtly. Let i0, · · · , iu−1 ≥ k be indices such that for each i j, we have d′i j

= di for some i < n − w.
The remaining message symbols with indices in ĪR could be recovered by solving the linear equation system

m
[
gi0 , · · · , giu−1

]
= [d′i0 , · · · , d

′
iu−1

]

where gi0 , · · · , giu−1 are the corresponding columns in the public key. Let P be a permutation matrix so that
the recovered message symbols mi (i ∈ IR) are the first k − u elements in mP. That is,

mPP−1 [
gi0 , · · · , giu−1

]
= (mIR ,mĪR

)P−1 [
gi0 , · · · , giu−1

]
= [d′i0 , · · · , d

′
iu−1

]

where mIR is the list of message symbols with indices in IR. Let

P−1 [
gi0 , · · · , giu−1

]
=

(
V
W

)
where V is a (k − u) × u matrix and W is a u × u matrix. Then we have

mĪR
W = [d′i0 , · · · , d

′
iu−1

] −mIRV.

Furthermore, one may pre-compute the inverse of W and include W−1 in the private key. Then one can
recover the remaining message symbols

mĪR
=

(
[d′i0 , · · · , d

′
iu−1

] −mIRV
)

W−1.

5.3 Decoding algorithm 2 for systematic RLCE encryption scheme

In practice, one may use a larger IR. Recall that in the RLCE decryption process, one recovers mS Gs from
c′P−1

1 = mS Gs + e′ first. Let e′P1 = (e0, · · · , en−1) and

ec = (e′0, · · · , e
′
n+w) = (e0, e1, · · · , en−w, ēn−w, en−w+1, ēn−w+1, · · · , en−1, ēn−1)P2

7



be a length n + w vector. For each en−w+i0 = 0 (0 ≤ i0 < w), if e′i = en−w+i0 or e′i = ēn−w+i0 for some i < k,
then with high probability, we have mi = ci since matrices Ai do not contain zero elements. Thus mi might
be recovered as ci. Let

Ia
R = IR ∪ {i < k : e′i = en−w+i0 or e′i = ēn−w+i0 for some i0 < w with en−w+i0 = 0}

and Īa
R = {0, · · · , k− 1} \ Ia

R. Using the same algorithm as in Section 5.2 with (IR, ĪR) replaced by (Ia
R, Ī

a
R), one

can then recover message symbols with indices in Īa
R. With a small probability, the message recovered via

(Ia
R, Ī

a
R) might be incorrect. If this happens, one restarts the decoding process using the pair (IR, ĪR).

5.4 Defeating side-channel attacks

The decoding algorithm 2 described in Section 5.3 might be vulnerable to side-channel attacks. The attacker
may generate ciphertexts with appropriately chosen error locations and watch whether the decoding time is
significantly long (which means that the message recovered via (Ia

R, Ī
a
R) might be incorrect). This information

may be used to recover part of the private permutation P2. If such kind of attacks needs to be defeated, then
one should not use the decoding algorithm 2 described in Section 5.3.

For the decoding algorithms 0 and 1, the value u is dependent on the choice of the private permutation
P2. Though the leakage of the size of u is not sufficient for the adversary to recover P2 or to carry out other
attacks against RLCE scheme, this kind of side-channel information leakage could be easily defeated. Table
1 lists the values of u0 such that, for each scheme, the value of u is smaller than u0 for 90% of the choices
of P2 where the RLCE ID is the scheme ID described in Table 3. Thus one can select P2 in such a way that
u is smaller than the given u0 of Table 1. Furthermore, during the decoding process, one can use dummy
computations so that the decoding time is the same as the decoding time for u = u0.

Table 1: The value u0 for RLCE schemes

RLCE ID 0 1 2 3 4 5 6
u0 200 123 303 190 482 309 7

6 Security analysis

Loidreau and Sendrier [16] pointed out some weak keys for binary Goppa code based McEliece schemes and
similar weak keys for RLCE schemes should not be used. For an RLCE scheme ciphertext c of a message
m, one can obtain a valid ciphertext for a message m + m′ by letting c′ = c + m′G without knowing the
message m. This kind of attacks could be defeated by using IND-CCA2-secure message padding schemes
which will be discussed in this paper. Faugere, Otmani, Perret, and Tillich [9] developed an algebraic attack
against quasi-cyclic and dyadic structure based compact variants of McEliece encryption scheme. Wang [24]
showed that the algebraic attacks will not work against the RLCE encryption scheme. A straightforward
modification of the analysis in [24] can be used to show that the algebraic attacks will not work against
the revised RLCE scheme either. In the following sections, we carry out heuristic security analyses on the
revised RLCE scheme.

6.1 Classical and quantum Information-Set Decoding

Information-set decoding (ISD) is one of the most important message recovery attacks on McEliece encryp-
tion schemes. The state-of-the-art ISD attack for non-binary McEliece scheme is the one presented in Peters
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[20], which is an improved version of Stern’s algorithm [23]. Peters’s attack [20] also integrated analysis
techniques for ISD attacks on binary McEliece scheme discussed in [3]. For the RLCE encryption scheme,
the ISD attack is based on the number of columns in the public key G instead of the number of columns in
the private key Gs. The cost of ISD attack on an [n, k, t; w]-RLCE scheme is equivalent to the cost of ISD
attack on an [n + w, k; t]-McEliece scheme.

For the naive ISD, one first uniformly selects k columns from the public key and checks whether it is
invertible. If it is invertible, one multiplies the inverse with the corresponding ciphertext values in these
coordinates that correspond to the k columns of the public key. If these coordinates contain no errors in the
ciphertext, one recovers the plain text. To be conservative, we may assume that randomly selected k columns
from the public key is invertible. For each k × k matrix inversion, Strassen algorithm takes O(k2.807) field
operations (though Coppersmith-Winograd algorithm takes O(k2.376) field operations in theory, it may not
be practical for the matrices involved in RLCE encryption schemes). In a summary, the naive information-
set decoding algorithm takes approximately 2κ

′
c steps to find k-error free coordinates where, by Sterling’s

approximation,

κ′c = log2


(
n+w

k

) (
k2.807 + k2

)(
n+w−t

k

)  ' (n + w)I
(

k
n + w

)
− (n + w − t)I

(
k

n + w − t

)
+ log2

(
k2.807 + k2

)
(4)

and I(x) = −x log2(x) − (1 − x) log2(1 − x) is the binary entropy of x. There are several improved ISD
algorithms in the literature. These improved ISD algorithms allow a small number of error positions within
the selected k ciphertext values or select k + δ columns of the public key matrix for a small number δ > 0
or both. Peters provided a script [20]1 to calculate the security strength of a McEliece encryption scheme
using the improved ISD algorithms. For the security strength 128 ≤ κc ≤ 256, our experiment shows that
generally we have κ′c − 10 ≤ κc ≤ κ

′
c − 4.

An RLCE scheme is said to have quantum security level κq if the expected running time (or circuit depth)
to decrypt an RLCE ciphertext using Grover’s algorithm based ISD is 2κq . For a function f : {0, 1}l → {0, 1}
with the property that there is an x0 ∈ {0, 1}l such that f (x0) = 1 and f (x) = 0 for all x , x0, Grover’s
algorithm finds the value x0 using π

4

√
2l Grover iterations and O(l) qubits. Specifically, Grover’s algorithm

converts the function f to a reversible circuit C f and calculates

|x〉
C f
−→ (−1) f (x)|x〉

in each of the Grover iterations, where |x〉 is an l-qubit register. Thus the total steps for Grover’s algorithm
is bounded by π|C f |

4

√
2l.

For the RLCE scheme, quantum ISD could be carried out similarly as in Bernstein’s [2]. One first
uniformly selects k columns from the public key and checks whether it is invertible. If it is invertible,
one multiplies the inverse with the ciphertext. If these coordinates contain no errors in the ciphertext, one
recovers the plain text. Though Grover’s algorithm requires that the function f evaluate to 1 on only one of
the inputs, there are several approaches (see, e.g., Grassl et al [10]) to cope with cases that f evaluates to 1
on multiple inputs.

For randomly selected k columns from a RLCE encryption scheme public key, the probability that

the ciphertext contains no errors in these positions is (n+w−t
k )

(n+w
k ) . Thus the quantum ISD algorithm requires√(

n + w
k

)
/

(
n + w − t

k

)
Grover iterations. For each Grover iteration, the function f needs to carry out the

following computations:
1available from https://christianepeters.wordpress.com/publications/tools/.
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1. Compute the inverse of a k×k sub-matrix Gsub of the public key and multiply it with the corresponding
entries within the ciphertext. This takes O

(
k2.807 + k2

)
field operations if Strassen algorithm is used.

2. Check that the selected k positions contain no errors in the ciphertext. This can be done with one of
the following methods:

(a) Multiply the recovered message with the public key and compare the differences from the ci-
phertext. This takes O((n + w)k) field operations.

(b) Use the redundancy within message padding scheme to determine whether the recovered mes-
sage has the correct padding information. The cost for this operation depends on the padding
scheme.

It is expensive for circuits to use look-up tables for field multiplications. Using Karatsuba algorithm, Kepley
and Steinwandt [15] constructed a field element multiplication circuit with gate counts of 7 · (log2 q)1.585. In
a summary, the above function f for the RLCE quantum ISD algorithm could be evaluated using a reversible
circuit C f with O

(
7
(
(n + w)k + k2.807 + k2

)
(log2 q)1.585

)
gates. To be conservative, we may assume that a

randomly selected k-columns sub-matrix from the public key is invertible. Thus Grover’s quantum algorithm
requires approximately

7
(
(n + w)k + k2.807 + k2

)
(log2 q)1.585

√√√√ (
n+w

k

)(
n+w−t

k

) (5)

steps for the simple ISD algorithm against RLCE encryption scheme. Advanced quantum ISD techniques
may be developed based on improved ISD algorithms. However our analysis shows that the reduction on the
quantum security is marginal. The reader is also referred to a recent report [14] for an analysis of quantum
ISD based on improved ISD algorithms. For each of the recommended schemes in Table 3, the row (κ′c, κq) in
Table 2 shows the security strength under the classical ISD and classical quantum ISD attacks. For example,
the RLCE scheme with ID = 1 in Table 3 has 139-bits security strength under classical ISD attacks and
89-bits security strength under quantum ISD attacks.

Table 2: Security strength for RLCE schemes in Table 3

Scheme ID (κc, κq) 0 (128,80) 1 (128,80) 2 (192,110) 3 (192,110) 4 (256,144) 5 (256,144)
(κ′c, κq) (139, 90) (139, 89) (205, 124) (206, 124) (269, 156) (269,156)
(κs

c, κ
s
q) (135, 86) (135,85) (202,120) (202,120) (266,154) (266,153)

(κS tern
c , κS tern

q ) (130, 80) (131, 80) (195, 113) (195, 113) (257, 145) (256,144)
insecure cipher prob. (7, 2−76) (7, 2−76) (11, 2−117) (11, 2−117) (14, 2−167) (14, 2−165)

κS S ⊥ 4429 ⊥ 7328 ⊥ 11127
(κ f

n,k,w, κ
f
q ) ⊥ (128, 85) ⊥ (210, 127) ⊥ (260, 153)

known non-rand. pos. 459 301 741 506 772 576

Scheme ID (κc, κq) 7 (128,80) 8 (128,80) 9 (192,110) 10 (192,110) 11 (256,144) 12 (256,144)
(κ′c, κq) (139, 90) (140, 40) (207, 125) (206, 124) (268, 155) (269,156)
(κs

c, κ
s
q) (136, 86) (136,86) (202,120) (201,119) (266,153) (267,153)

(κS tern
c , κS tern

q ) (130, 80) (132, 81) (196, 114) (195, 113) (256, 144) (257,144)
insecure cipher prob. (7, 2−76) (7, 2−77) (11, 2−117) (11, 2−117) (14, 2−166) (14, 2−166)

κS S ⊥ 4300 ⊥ 7147 ⊥ 10099
(κ f

n,k,w, κ
f
q ) ⊥ (138, 90) ⊥ (193, 119) ⊥ (288, 167)

known non-rand. pos. 454 304 766 500 671 478
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6.2 Improved Information Set Decoding

In this section, we briefly review Stern’s algorithm [23]. Let the k × (n + w) matrix G be the public key and

c be an RLCE scheme ciphertext. Let Ge =

(
c
G

)
be a (k + 1) × (n + w) matrix. Stern’s algorithm will find

the minimal weight code e that is generated by Ge. It is straightforward to show that e is the error vector for
the ciphertext c. Stern’s information set decoding algorithm for finding the vector e is as follows.

1. Select two small numbers p < k/2 and l < n + w − k.

2. Select k columns gi1 , · · · , gik from Ge and l columns g j1 , · · · , g jl from the remaining n + w− k columns
of Ge where 0 ≤ i1, · · · , ik, j1, · · · , jl ≤ n + w−1 are distinct numbers. It is expected that the ciphertext
c contains 2p errors within the locations i1, · · · , ik and no errors within the positions j1, · · · , jl.

3. Let Pi1,···,ik , j1,···, jl be a (n + w) × (n + w) permutation matrix so that

GePi1,···,ik , j1,···, jl = (gi1 , · · · , gik , g j1 , · · · , g jl ,Gr),

where Gr is a (k + 1) × (n + w − k − l) matrix.

4. Compute the echelon format

GE = E(GePi1,···,ik , j1,···, jl) = S GePi1,···,ik , j1,···, jl = (I, L,Gr)

where S is a (k + 1) × (k + 1) matrix.

5. Find random vectors u, v ∈ GF(q)(k+1)/2 of weight p such that (u, v)L = 0. If no such u, v found, go
to Step 2.

6. If (u, v)L = 0, then check whether (u, v)Gr has weight t − 2p. If it does not have weight t − 2p, go to
Step 2.

7. If (u, v)Gr has weight t − 2p, then e = (u, v)GEP−1
i1,···,ik , j1,···, jl

is the error vector for the ciphertext c.

It is noted that if we take p = l = 0, then Stern’s algorithm is the naive ISD algorithm that we have
discussed in the preceding section. For the convenience of analysis, we assume that pl > 0 in the following
discussion. The algorithm takes approximately

S I =

(
n+w
bk/2c

)(
n+w−bk/2c

k−bk/2c

)(
n+w−k

l

)(
n+w−t
bk/2c−p

)(
t
p

)(
n+w−t−bk/2c−p

k−bk/2c−p

)(
t−p

p

)(
n+w−t−k+2p

l

) (6)

iterations. For each iteration, Step 4 takes (2n+2w−k)k2 field operations, and Step 5 takes 2
(
k/2
p

)
(q−1)pl(k+1)

field operations. For each iteration, Step 6 runs
(
k/2
p

)2
(q − 1)2p−l times approximately and each runs takes

(n − k − l)(k + 1) field operations. In a summary, Stern’s ISD takes approximately 2κc steps to find the error
vector e where,

κc = min
p,l

log2

S I

(2n + 2w − k)k2 + 2
(
k/2
p

)
(q − 1)pl(k + 1) +

(
k/2
p

)2

(q − 1)2p−l(n − k − l)(k + 1)


 .

(7)
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Our experiments show that for RLCE schemes that we have interest in, the equation (7) is always achieved
with p = 1 and l = 3. For quantum version of Stern’s ISD algorithm, the Grover’s algorithm could be used
to reduce the iteration steps to

√
S I . Thus the quantum security level under Stern attacks is approximately

κq = min
p,l

log2

√S I

(2n + 2w − k)k2 + 2
(
k/2
p

)
(q − 1)pl(k + 1) +

(
k/2
p

)2

(q − 1)2p−l(n − k − l)(k + 1)


 .
(8)

In order to speed up Stern’s algorithm, Peters [20] considers the following improvement:

1. For each iteration, one does not randomly selects k columns from Ge in Step 2. Instead, one reuses
k − c columns from the previous iteration where c is a fixed constant.

2. For a small finite field, fix a parameter r > 1 for certain pre-computation of row sums. This will not
provide any benefit for a large field size such as those used in RLCE schemes.

3. For a small finite field, fix a parameter m > 1 such that one can use m error-free sets of size l. This
will not provide any benefit for a large field size such as those used in RLCE schemes.

Our experiments show that for κc ≤ 200, Peters’s improved version in [20] is at most 8 times fast than
Stern’s algorithm discussed in this section. That is, we generally have κc − 3 ≤ κPeter

c ≤ κc where κPeter
c

is the κc obtained from Peter’s improved algorithm. For κc ≥ 250, our experiments show that Peter’s
improved version has the same performance as Stern’s algorithm discussed in this section. Furthermore, our
experiments show that the optimal values for p, l in Peter’s improved algorithm on all RLCE schemes are
p = 1 and l = 3 also.

6.3 Information Set Decoding for systematic RLCE schemes

Canteaut and Sendrier [6] discussed a known-partial-plaintext-attack against McEliece encryption scheme
where c = mG + e. Let l, r be two positive integers such that k = l + r. Assume that m = [ml,mr] and

G =

[
Gl

Gr

]
. Then we have

c = mG + e = [ml,mr]
[

Gl

Gr

]
+ e = mlGl + mrGr + e. (9)

Thus if one knows the value of ml, the identity (9) becomes c−mlGl = mrGr + e which could be much easy
to decode than the original code-word c since r < k. Though this attack against RLCE could be defeated by
using appropriate message padding for IND-CCA2-security that will be discussed in Section 7, this attack
can be integrated into information set decoding to design more efficient attacks against systematic RLCE
schemes.

For the ISD against a systematic RLCE scheme, one uniformly selects k = k1 + k2 columns from the
public key where k1 columns are from the first k columns of the public key. Instead of multiplying the
inverse of the selected k columns with the corresponding ciphertext values in these coordinates, one uses
the corresponding ciphertext values for the selected k1 columns within the first k columns of the public key
to determine k1 entries of the plaintext. Using these “recovered” k1 entries of the plaintext, one calculates
a new ciphertext c′ with k2 unknown plaintext entries as in the known-partial-plaintext-attack. Next one
uses the inverse of the k2 × k2 matrix to recover the remaining k2 entries of the plaintext. In a summary, for
each guessed k columns, one needs k1k2 field multiplications to compute the new ciphertext c′, needs k2.807

2
field multiplications to compute the matrix inverse, and additional k2

2 steps to compute the remaining k2
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entries of the plaintext. If one selects the k columns uniformly at random, then the expected values for k1, k2

are k1 = k2

n+w and k2 =
k(n+w−k)

n+w respectively. Thus the above information-set decoding algorithm against
systematic RLCE scheme takes approximately 2κ

s
c steps to find k-error free coordinates where,

κs
c = log2


(
n+w

k

) (
k3(n+w−k)

(n+w)2 +
(

k(n+w−k)
n+w

)2.807
+

(
k(n+w−k)

n+w

)2
)

(
n+w−t

k

)
 . (10)

Similarly, Grover’s quantum algorithm based on the above ISD against systematic RLCE requires approxi-
mately

7

k3(n + w − k)
(n + w)2 +

(
k(n + w − k)

n + w

)2.807

+

(
k(n + w − k)

n + w

)2 (log2 q)1.585

√√√√ (
n+w

k

)(
n+w−t

k

) (11)

steps for the simple ISD algorithm against RLCE encryption scheme. For each of the recommended schemes
in Table 3, the row (κs

c, κ
s
q) in Table 2 shows the security strength under the ISD and quantum ISD attacks

against systematic RLCE schemes. For example, the RLCE scheme with ID = 1 in Table 3 has 135-bits
security strength under ISD attacks and 85-bits security strength under quantum ISD attacks.

6.4 Insecure ciphertexts for systematic RLCE schemes

For a systematic RLCE encryption scheme, if a small number of errors were added to the first k components
of the ciphertext, one may be able to exhaustively search these errors and recover the message. Given a
ciphertext c with l errors within the first k components (note that the adversary does not know this value l),
the adversary starts from i = 1, randomly select k− i positions within the ciphertext, take these values as the
uncorrupted message values, guess the remaining i values for the message. If these k − i positions contain
no errors, the adversary can use the redundant information within the padding scheme to check whether the
guessed message is correct. Under the condition that there are l errors within the first k components of the
ciphertext, the probability for this attack to be successful is bounded by

γl = max
l≤i≤t


(
k−l
k−i

)
qi
(
k
i

)


For each i ≤ l, the probability that there are at most l errors in the first k components of the ciphertext is
bounded by

El =

∑
i≤l

(
k
i

)(
n+w−k

t−i

)(
n+w

t

) .

The RLCE scheme encryption process produces an insecure ciphertext in case that the ciphertext contains at
most l errors within the first k components of the ciphertext and γl > 2−κc where κc is the security parameter.

In order to avoid producing insecure ciphertexts, RLCE encryption process should repeatedly encrypt
the message until it produces a ciphertext with at least l errors in the first k components such that γl ≤ 2−κc .
If the error locations are chosen uniformly at random, then the RLCE scheme encryption process produces
an insecure ciphertext with the probability of at most

max
{
El : l ≤ t, γl > 2−κc

}
(12)

This probability is negligible for security parameters that we are interested in. Thus the RLCE scheme
needs to repeat the encryption process for a second time only with a negligible probability. For each of the
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recommended schemes in Table 3, the row “insecure cipher prob.” in Table 2 shows the number of errors
that should be contained in the first k components of a secure ciphertext and the probability that a ciphertext
is insecure. An an example, for the RLCE scheme with ID = 1 in Table 3, the first k components of an
insecure ciphertext contain 7 or less errors and the probability for this to happen is smaller than 2−76.

6.5 Sidelnikov-Shestakov’s attack

Niederreiter’s scheme [19] replaces the binary Goppa codes in McEliece scheme by GRS codes. Sidelnikov
and Shestakov [22] broke Niederreiter’s scheme by recovering an equivalent private key (x′, y′) from a public
key G for the code GRSk(x, y). For the given public key G, one computes the echelon form E(G) = [I|G′]
using Gaussian elimination.

E(G) =


1 0 · · · 0 b0,k · · · b0,n−1
0 1 · · · 0 b1,k · · · b1,n−1
...

...
. . .

...
...

. . .
...

0 0 · · · 1 bk−1,k · · · bk−1,n−1

 (13)

Assume the ith row code-word bi of E(G) encodes a message pi(x) = a0 + a1x + · · · + ak−1xk−1. Then

y0 pi(x0) = 0, · · · , yi pi(xi) = 1, · · · , yn−1 pi(xn−1) = bi,n−1 (14)

Since the only non-zero elements are bi,i, bi,k, · · · , bi,n−1, pi can be written as

pi(x) = ci ·

k∏
j=1, j,i

(x − x j) (15)

for some ci , 0. By the fact that GRSk(x, y) = GRSk(ax + b, cy) for all a, b, c ∈ GF(q) with ab , 0, we
may assume that x0 = 0 and x1 = 1. In the following, we try to recover x2, · · · , xn−1. Using equation (15),
one can divide the row entries in (13) by the corresponding nonzero entries in another row to get several
equations. For example, if we divide entries in row i0 by corresponding nonzero entries in row i1, we get

bi0, j

bi1, j
=

y j pi0(x j)
y j pi1(x j)

=
ci0(x j − xi1)
ci1(x j − xi0)

(16)

for j = k, · · · , n − 1. First, by taking i0 = 0 and i1 = 1, equation (16) could be used to recover xk, · · · , xn−1
by guessing the value of c0

c1
which is possible when q is small. By letting i0 = 0 and i1 = 2, · · · , k − 1

respectively, equation (16) could be used to recover xi1 . Sidelnikov and Shestakov [22] showed that the
values of y can then be recovered by solving a linear equation system based on x0, · · · , xn−1.

In the RLCE scheme, 2w columns of the public key matrix G are randomized. In case that the filtration
attack in the next Section can identify the n − w non-randomized columns, one can permute the columns of
G to obtain a new matrix GN such that the first n − w columns are the non-randomized columns. Then one
can compute an echelon form E(GN) for GN . Since the last 2w columns are randomized, they could not be
used to establish any of the equations in Sidelnikov and Shestakov attack. We distinguish the following two
cases:

1. If w ≥ n− k, then one cannot establish enough equations within (14) to obtain the equation (15). Thus
no equations in (16) could be established and Sidelnikov and Shestakov attack could not continue.
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2. If n− k > w, equations (16) may only be used to recover the values of x0, · · · , xn−w−1. If it has a negli-
gible probability for one to guess the remaining values xn−w, · · · , xn−1, then Sidelnikov and Shestakov
attack will not be successful. The probability for one to guess the remaining values xn−w, · · · , xn−1
correctly is bounded by 1/

(
q−n+w+1

w

)
w!.

Thus for a security parameter κc, the RLCE parameters should be chosen in such a way that

w ≥ n − k or
(
q − n + w + 1

w

)
w!≥ 2κc . (17)

For RLCE schemes that we are interested in, we generally have w ≥ n − k or
(
q−n+w+1

w

)
w!>

√
2κc . For

each of the recommended schemes in Table 3, the row κS S in Table 2 shows the security strength under the
Sidelnikov-Shestakov attack. For example, the RLCE scheme with ID = 1 in Table 3 has 4429-bits security
strength under the above Sidelnikov-Shestakov attack.

6.6 Known non-randomized column attack

In this section, we consider the security of RLCE schemes when the positions of non-randomized n − w
GRS columns are known to the adversary. In this scenario, the adversary has two ways to attack the RLCE
scheme. In the first approach, the adversary may guess the remaining w columns of the GRS generator
matrix. The probability for this attack to be successful is shown in (17) which is very small compared against
the security parameters. Alternatively, the adversary may use Sidelnikov-Shestakov attack to calculate a
private key for the punctured [n−w, k] GRSk code consisting of the non-randomized GRS columns and then
list-decode the punctured [n − w, k] GRSk code. We first review some results for GRS list-decoding. The
error distance of a received word y ∈ GF(q)n to a code C is defined as ∆(y,C) = min{wt(y − x) : x ∈ C}.
For a vector y ∈ GF(q)n, y’s Hamming ball of radius r is B(y; r) = {y′ : wt(y − y′) ≤ r}. For an MDS
[n, k, d] code C and a vector y ∈ GF(q)n, B(y; r) contains at most one code-word from C if r ≤ d/2. If
d/2 < r ≤ n −

√
n(k − 1), B(y; r) ∩ C contains at most polynomial many elements and the list-decoding

algorithm by Guruswami and Sudan [11] can be used to efficiently output all elements in B(y; r) ∩ C. If the
radius is stretched further, B(y; r) ∩ C may contain exponentially many code-words.

For an RLCE ciphertext c, let c′ be the punctured ciphertext of length n − w by restricting c to the
punctured [n − w, k] GRSk code. In case that there are at most n − w −

√
(n − w)(k − 1) errors in c′, one

can decode the shortened [n − w, k] GRSk code using the list-decoding algorithm by Guruswami and Sudan
[11]. Note that the probability for c′ to contain at most n − w −

√
(n − w)(k − 1) errors is bounded by the

hyper-geometric cumulative distribution function

PKn,w,t =

∑n−w−
√

(n−w)(k−1)
i=0

(
n−w

i

)(
2w
t−i

)(
n+w

t

) (18)

That is, with probability PKn,w,t the encryption process produces a ciphertext that could be list-decoded
using the [n−w, k] GRSk code. Thus the parameters should be chosen in such a way that Pn,w,t is negligible
(e.g., Pn,w,t ≤ 2κc) or the encryption process should repeatedly encrypt the message until it produces a
ciphertext with at least n − w −

√
(n − w)(k − 1) + 1 errors corresponding to the known non-randomized

columns. Justesen and Hoholdt [13] showed the following theorem.

Theorem 6.1 (Justesen and Hoholdt [13]) For an [n, k] Reed-Solomon code C and an integer δ < n− k, the
expected size of B(u; δ) ∩ C is

(
n

n−δ

)
/qn−δ−k for randomly chosen u ∈ GF(q)n.
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By theorem 6.1, we may further require that the RLCE scheme repeatedly encrypt the message until it
produces a ciphertext such that the size of B(u; δ) ∩ C is large than 2κc , where δ is the number of errors that
the ciphertext c′ contains.

In order to avoid the attacks that we mentioned in this section, it is recommended that the encryption
process should produce a ciphertext that avoids these attacks if the positions of non-randomized columns
are publicly known. Alternatively, we may recommend that one select RLCE parameters in such a way that
it is computationally infeasible to identify non-randomized columns from the public key.

6.7 Filtration attacks

Couvreur et al. [7] designed a filtration technique to attack GRS code based McEliece scheme. For two codes
C1 and C2 of length n, the star product code C1 ∗C2 is the vector space spanned by a ∗ b for all pairs (a,b) ∈
C1 × C2 where a ∗ b = [a0b0, a1b1, · · · , an−1bn−1]. For the square code C2 = C ∗ C of C, we have dimC2 ≤

min
{
n,

(
dimC+1

2

)}
. For an [n, k] GRS code C, let a,b ∈ GRSk(x, y) where a = (y0 p1(x0), · · · , yn−1 p1(xn−1))

and b = (y0 p2(x0), · · · , yn−1 p2(xn−1)). Then a ∗ b = (y2
0 p1(x0)p2(x0), · · · , y2

n−1 p1(xn−1)p2(xn−1)). Thus
GRSk(x, y)2 ⊆ GRS2k−1(x, y ∗ y) where we assume 2k − 1 ≤ n. This property has been used in [7] to
recover non-random columns in a Wieschebrink scheme’s public key [26].

Let G be the public key for an (n, k, d, t,w) RLCE encryption scheme based on a GRS code. Let C be
the code generated by the rows of G. Let D1 be the code with a generator matrix D1 obtained from G by
replacing the randomized 2w columns with all-zero columns and letD2 be the code with a generator matrix
D2 obtained from G by replacing the n−w non-randomized columns with zero columns. Since C ⊂ D1 +D2
and the pair (D1,D2) is an orthogonal pair, we have C2 ⊂ D2

1 +D2
2. It follows that

2k − 1 ≤ dimC2 ≤ min{2k − 1, n − w} + 2w (19)

where we assume that 2w ≤ k2. In the following discussion, we assume that the 2w randomized columns in
D2 behave like random columns in the filtration attacks. We first consider the simple case of k ≥ n − w. In
this case, we have dimC2 = D2

1 +D2
2 = n − w +D2

2 = n + w. Furthermore, for any code C′ of length n′

that is obtained from C using code puncturing and code shortening, we have dimC′2 = n′. Thus filtration
techniques could not be used to recover any non-randomized columns in D1.

Next we consider the case for k < n − w. For this case, we distinguish two sub-cases: n − w ≥ 2k and
n − w < 2k. For the case n − w ≥ 2k, let Ci be the punctured C code at position i. We distinguish the
following two cases:

• Column i of G is a randomized column: the expected dimension for C2
i is 2k + 2w − 2.

• Column i of G is a non-randomized column: the expected dimension for C2
i is 2k + 2w − 1.

This shows that if n−w ≥ 2k, then the filtration techniques could be used to identify the randomized columns
within the public key G. Thus it is recommended to have n − w < 2k for RLCE scheme.

Now we consider the case of k < n − w < 2k. In order to carry out filtration attacks, we need to shorten
the code C at certain locations. Assume that we shorten l < k − 1 columns from G. Among the l = l1 + l2
columns, l1 columns are non-randomized columns from D1 and l2 columns are randomized columns from
D2. Then the shortened code has dimension

dl,l1 = min
{
(k − l)2,min

{
2(k − l1) − 1, n − w − l1, (k − l)2

}
+ min

{
2w − l2, (k − l)2

}}
. (20)

A necessary condition for the filtration attack to be observable is that, after the shortening of the l1 columns
in D1, the following condition is satisfied

dl,l1 = 2(k − l1) − 1 + min
{
2w − l2, (k − l)2

}
. (21)
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Thus for a given l, the probability for the filtration attack to be successful is bounded by the probability∑l
l1=max{0,l−2w} λ(dl,l1)

(
n−w

l1

)(
2w
l−l1

)(
n+w

l

)
where λ(dl,l1) = 1 if (21) holds and λ(dl,l1) = 0 otherwise. For a given l, one randomly selects l columns
from G and shortens G from these locations. This process takes O(kl(n + w)) field operations. Then one
calculates the dimension of the shortened code to see whether the equation (21) is achieved which takes
O((k − l)4(n + w − l)) field operations. In a summary, the expected time for one to carry out the filtration
attack for a given l is

PFn,k,w,l =

(
n+w

l

) (
O(kl(n + w)) + O((k − l)4(n + w − l))

)
∑l

l1=max{0,l−2w} λ(dl,l1)
(
n−w

l1

)(
2w
l−l1

)
Let

κ
f
n,k,w = log2 min

{
PFn,k,w,l : 2k − n + w ≤ l ≤ k − 2

}
. (22)

Then in order to guarantee that the RLCE scheme is secure against filtration attacks, the parameters should
be chosen in such a way that “n − w ≤ k” or “n − w < 2k and κc ≤ κ

f
n,k,w”.

Filtration attacks could be combined with Grover’s quantum search algorithm. The quantum Filtration
attacks works in the same way as the filtration attack that we have discussed in the preceding paragraph
except that one uses Grover’s quantum computer to select l columns from the public key G. A similar
analysis as in the Section 6.1 shows that, under quantum filtration attacks, the RLCE scheme has quantum
security level κ f

q where

κ
f
q = log2 min

2k−n+w≤l≤k−2


7 · (log2 q)1.585 ·

(
O(kl(n + w)) + O((k − l)4(n + w − l))

) √(
n + w

l

)
√√√ l∑

l1=max{0,l−2w}

λ(dl,l1)
(
n − w

l1

)(
2w

l − l1

)

. (23)

For each of the recommended schemes in Table 3, the row (κ f
n,k,w, κ

f
q ) in Table 2 shows the security

strength under the filtration attack and quantum filtration attacks. For example, the RLCE scheme with
ID = 1 in Table 3 has 128-bits security strength under filtration attacks and 85-bits security strength under
quantum filtration attacks.

6.8 Filtration with brute-force attack

In addition to the filtration attacks that we have discussed in the preceding section, the adversary may
carry out a filtration attack by exhaustively searching some GRS columns. That is, the adversary randomly
selects u ≤ w pairs of columns from the public key G with the hope that u columns of the underlying GRS
code generator matrix could be reconstructed using exhaustive search. The probability that the u pairs are
correctly selected so that u columns of the underlying GRS code generator matrix could be exhaustively

searched from these u pairs is bounded by (w
u)

(n+w
2u ) . For each pair (xi, yi) of columns, one randomly selects two

elements ai, bi ∈ GF(q) and computes a column vector aixi+biyi. In case that the u pairs of column selection
is correct, then the probability that these calculated u column vectors are correct GRS code generator matrix
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columns is bounded by 1
q2u . In a summary, one can obtain u columns of GRS code generator matrix from

the public key with a probability (w
u)

q2u(n+w
2u ) .

Assume that one has correctly guessed u columns of the GRS code generator matrix and k < n − w + u.
Similar to the discussion in the preceding section, we can distinguish two cases: n − w + u ≥ 2k and
n−w + u < 2k. In case that n−w + u ≥ 2k, the filtration attack could be carried out straightforwardly. Thus
it is recommended to have n < 2k so that n − w + u ≤ n < 2k. In the following, we consider the case that
n − w + u < 2k. Let G′ be the k × (n + w − u) matrix consisting of the guessed u columns and the remaining
n − 2u columns of the public key. Randomly select l < k − 1 columns from the non-guessed columns of
G′ and shorten G′ from these locations. Among the l = l1 + l2 columns, l1 columns are non-randomized
columns and l2 columns are from randomized columns. Then the shortened code has dimension

d′l,l1 = min
{
(k − l)2,min

{
2(k − l1) − 1, n − w + u − l1, (k − l)2

}
+ min

{
2(w − u) − l2, (k − l)2

}}
. (24)

A necessary condition for the filtration attack to be observable is that, after the shortening of the l1 columns
in G′, the following conditions are satisfied

d′l,l1 = 2(k − l1) − 1 + min
{
2(w − u) − l2, (k − l)2

}
. (25)

Thus for a given l, the probability for the filtration attack to be successful is bounded by the probability∑l
l1=max{0,l−2(w−u)} λ(d′l,l1)

(
n−w

l1

)(
2w−2u

l−l1

)(
n+w−2u

l

)
where λ(d′l,l1) = 1 if (25) holds and λ(d′l,l1) = 0 otherwise. A similar discussion as in the preceding section
shows that the expected time for one to carry out the filtration attack for a given l and u is

PFn,k,w,l,u =
q2u

(
n+w
2u

)(
n+w−2u

l

) (
O(kl(n + w − 2u)) + O((k − l)4(n + w − 2u − l))

)(
w
u

)∑l
l1=max{0,l−2(w−u)} λ(dl,l1)

(
n−w

l1

)(
2w−2u

l−l1

)
Let

κ
f b
n,k,w = log2 min

{
PFn,k,w,l,u : 2k − n + w − u ≤ l ≤ k − u − 2, 0 ≤ u ≤ w

}
. (26)

Then in order to guarantee that the RLCE scheme is secure against filtration attacks, the parameters should
be chosen in such a way that κc ≤ κ

f b
n,k,w. Similarly, filtration attacks with brute-force could be combined

with Grover’s quantum search algorithm and, under quantum filtration attacks with brute-force, the RLCE
scheme has quantum security level κ f b

q as

log2 min
l,u


7 · (log2 q)1.585 · q2u ·

(
O(kl(n + w − 2u)) + O((k − l)4(n + w − 2u − l))

) √(
n + w

2u

)(
n + w − 2u

l

)
√√√(

w
u

) l∑
l1=max{0,l−2(w−u)}

λ(dl,l1)
(
n − w

l1

)(
2w − 2u

l − l1

)

.

(27)
Our experiments show that the values (κ f b

n,k,w, κ
f b
q ) always equal (κ f

n,k,w, κ
f
q ) with u = 0. That is, there is

no improvement by using the exhaustive search for filtration attacks.
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6.9 Known non-randomized column attack revisited

In Section 6.6, we showed that if n − w > k and the positions of non-randomized columns are known to
the adversary, then the adversary can decrypt ciphertexts that contains a small number of errors within the
punctuated [n − w, k] GRSk code. In this section, we calculate the maximum number of non-randomized
column positions that could be published so that the adversary still cannot recover the underlying GRSk

code. Assume that the adversary knows l positions of non-randomized columns within the public key G.
The adversary can carry out the following attacks.

1. randomly selects u ≤ w pairs of columns from the remaining n+w−l columns of the public key matrix
G with the hope that u columns of the underlying GRS code generator matrix could be reconstructed
using an exhaustive search.

2. randomly selects l1 ≤ n − w − l columns from the remaining n + w − l − 2u columns of the public
key matrix G with the hope that these l1 columns are non-randomized columns of the underlying GRS
code generator matrix.

The probability that the u pairs are correctly selected so that u columns of the underlying GRS code generator
matrix could be exhaustively searched from these u pairs and that these l1 columns are non-randomized
columns is bounded by

Pl1,u =

(
w
u

)(
n−w−l

l1

)(
n+w−l

2u

)(
n+w−l−2u

l1

) .
A similar analysis as in Section 6.8 can be used to show that the probability for the adversary to obtain
additional u + l1 columns of GRS code generator matrix using the above process is bounded by

Pl1 ,u

q2u . For
each guessed u + l1 columns for the underlying GRS code, the adversary can test whether the guessed u + l1
columns are correct by mounting the following filtration attack in case that l + u + l1 ≥ k + 2:

1. Use the l + u + l1 columns to form an [l + u + l1, k] GRSk code C1.

2. Shorten the GRSk code C1 in k − 2 positions to obtain an [l + u + l1 − k + 2, 2] GRS2 code C2. Note
that this process takes O((l + u + l1 − k + 2)2) steps.

3. Compute the dimension of the square code C2
2. If the dimension of the square code is less than 4, then

with high probability that these u columns are actual columns of the the underlying GRS code.

Thus in order to achieve κc bit security, the maximum number l ≤ k + 1 of publicly known positions for the
non-randomized GRS columns should satisfy the following condition.

κc ≤ log2 min
{

q2u(l + u + l1 − k + 2)2

Pl1,u
: l1 ≤ min{n − w − l, k + 2 − l}, k − l + 2 − l1 ≤ u ≤ w

}
. (28)

6.10 Filtration attacks with partially known non-randomized columns

In Section 6.9, we showed the maximum number of non-randomized column positions that one can re-
lease while still keeping the RLCE scheme secure (though there is no need to release the positions of non-
randomized columns in practice) under an exhaustive search and a filtration attack on a dimension 2 code. In
this section, we calculate the maximum number of non-randomized column positions that could be released
under general filtration attacks.

Assume that the positions of u columns of the underlying GRS code generator matrix is known and
k < n − w < 2k. Randomly select l < k − 1 columns from the unknown positions of the public key G and
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shorten G from these locations. Among the l = l1 + l2 columns, l1 columns are non-randomized columns
and l2 columns are from randomized columns. Then the shortened code has dimension

d′l,l1 = min
{
(k − l)2,min

{
2(k − l1) − 1, n − w − l1, (k − l)2

}
+ min

{
2w − l2, (k − l)2

}}
. (29)

A necessary condition for the filtration attack to be observable is that, after the shortening of the l1 columns
in G, the following conditions are satisfied

d′l,l1 = 2(k − l1) − 1 + min
{
2w − l2, (k − l)2

}
. (30)

Thus for a given l, the probability for the filtration attack to be successful is bounded by the probability∑l
l1=max{0,l−2w} λ(d′l,l1)

(
n−w−u

l1

)(
2w
l−l1

)(
n+w−u

l

)
where λ(d′l,l1) = 1 if (30) holds and λ(d′l,l1) = 0 otherwise. Thus the expected time for one to carry out the
filtration attack with u-known non-random positions is

PKFn,k,w,l,u =

(
O(kl(n + w)) + O((k − l)4(n + w − l))

) (
n+w−u

l

)
∑l

l1=max{0,l−2w} λ(d′l,l1)
(
n−w−u

l1

)(
2w
l−l1

)
Thus in order to achieve κc bit security, the maximum number u ≤ k + 1 of publicly known positions for the
non-randomized GRS columns should satisfy the following condition.

κc ≤ log2 min
{
PKFn,k,w,l,u : 2k − n + w ≤ l ≤ k − 2, 0 ≤ u ≤ k

}
. (31)

For each of the recommended schemes in Table 3, the row “known non-rand. col.” in Table 2 shows
the maximum number of non-randomized column positions that could be made public to the adversary in
the public key under the conditions (28) and (31). As an example, for the RLCE scheme with ID = 1 in
Table 3, the adversary can learn at most 301 columns of non-randomized GRS columns within the public
key. In other words, if the adversary learns the positions of more than 301 non-randomized GRS columns,
the security strength of the scheme will be less than 128-bits.

6.11 Related message attack, reaction attack, and side channel attacks

Berson [4] discussed the following related message attack. Assume that c1 = m1G + e1, c2 = m2G + e2, and
that the adversary knows the relation between m1 and m2. For example, assume that m = m1 + m2 and that
the adversary knows the value of m. Then we have c1 + c2 − mG = e1 + e2. Since e1 and e1 are different
and both of them have low weight t, it could be easy for the adversary to recover both e1 and e1 by trying
all combinations. Even if one cannot enumerate all combinations to recover either e1 or e1, one can use
the 0 entries within e1 + e2 as a hint to speed up the information set decoding algorithm for recovering m1
from c1 = m1G + e1. A special case of this attack is the attack on two ciphertexts of the identical message
encrypted using different error vectors. The related-message-attack could be defeated using appropriate
message padding for IND-CCA2 security that will be discussed in Section 7.

Hall et al [12] discussed the following reaction attack. Assume that an McEliece decryption oracle
outputs an error message each time when the given ciphertext contains too many errors to decrypt. For a
given ciphertext c, the adversary first randomly selects positions to add errors until the decryption oracle
complains. That is, the adversary first obtains a ciphertext c′ that contains maximum errors that the decryp-
tion oracle could handle. Then the adversary selects a random position i and add errors to this position. If
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the decryption oracle could decrypt the resulting ciphertext, it means that c′ contains error at this position.
Otherwise, this position is error-free. The adversary continues this process until she obtains k error-free
positions for the ciphertext c. These error-free positions could be used to recover the plaintext message for
the ciphertext c. The reaction-attack could be defeated using appropriate message padding for IND-CCA2
security that will be discussed in Section 7.

Message padding schemes for IND-CCA2 security in Section 7 could be used to defeat the reaction
attack. However, for a ciphertext that contains too many errors to decrypt and for a ciphertext with padding
errors that decrypt successfully, the decryption oracle normally uses different amount of times. Thus an ad-
versary may introduce errors in some positions of the ciphertext and observe the amount of time used for the
decryption oracle to report errors. This will allow the adversary to distinguish whether the original cipher-
text contains errors in these positions or not. The observed results could be used as in the reaction attack to
recover the plaintext. In order to defeat such kind of reaction-attack based side-channel attacks, appropriate
delays should be introduced in a decryption process of padded RLCE schemes so that the decryption process
takes the same amount of times to report errors for padding errors and for decoding errors.

7 Message encoding and IND-CCA2 security

We mentioned several attacks on RLCE schemes in the preceding section. To avoid these attacks, it is
necessary to use message padding schemes so that the encryption scheme is secure against adaptive chosen
ciphertext attacks (IND-CCA2). In the following subsections, we present message padding schemes to make
McEliece encryption scheme secure against adaptive chosen ciphertext attacks.

7.1 Message bandwidth

We first analyze the amount of information that could be encoded within each ciphertext. Let (n, k, t,w) be
the parameters where the public key is of dimension k × (n + w) and GF(2m) is the underlying finite field.
There are three approaches to encode messages within the ciphertext.

1. basicEncoding: Encode information within the vector m ∈ GF(q)k and the ciphertext is c = mG + e.
In this case, we can encode mLen = mk bits information within each ciphertext.

2. mediumEncoding: In addition to basicEncoding, further information is encoded in the non-zero
entries of e. That is, let ei1 , · · · , eit ∈ GF(q) \ {0} be the non-zero elements within e and encode further
information within ei1 , · · · , eit . In this case, we can encode mLen = m(k + t) bits information within
each ciphertext. Strictly speaking, the information that could be encoded is less than 2m(k+t) since ei j

cannot be zeros. That is, one can only encode information symbols (x1, · · · , xk+t) ∈ GF(q)k+t with
xk+1 · xk+1 · · · xk−t , 0.

3. advancedEncoding: In addition to mediumEncoding, further information is encoded within the
locations of non-zero entries within e. Since there are

(
n+w

t

)
candidates for the choice of non-zero

entries within e, we can encode mLen = m(k + t)+
⌊
log2

(
n+w

t

)⌋
bits information within each ciphertext.

It should be noted that for advancedEncoding, the adversary knows that the encoded locations within
the interval

[
2blog2 (n+w

t )c,
(
n+w

t

)]
will not be the error location candidates.

The basicEncoding approach is straightforward. For the mediumEncoding, after one recovers the vector
m, one needs to compute mG − c to obtain the values of ei1 , · · · , eit . For the advancedEncoding approach,
we need to compute an invertible function

ϕ : Wn+w,t ↔

{
i : 1 ≤ i ≤

(
n + w

t

)}
(32)
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where Wn+w,t ( GF(2)n+w is the set of all (n + w)-bit binary string of weight t. For the invertible function ϕ
in (32), one may use the enumerative source encoding construction in Cover [8]:

ϕ : Wn+w,t ←→

[
0,

(
n + w

t

)]
where ϕ(i1, · · · , it) =

(
it−1

t

)
+ · · · +

(
i1−1

1

)
and 0 ≤ i1 < i2 < · · · < it < n + w are the positions of ones.

7.2 RLCE message padding schemes RLCEspad and RLCEpad

In this section, we assume that the message bandwidth is mLen-bits for each ciphertext. We present two
efficient padding schemes for the RLCE encryption scheme. Our padding schemes are adapted from the
well analyzed Optimal Asymmetric Encryption Padding (OAEP) for RSA/Rabin encryption schemes and
its variants OAEP+ [21] and SAEP+ [5]. The first simple padding scheme RLCEspad is a one-round Feistel
network that is similar to SAEP+. RLCEspad could be used to encrypt short messages (e.g., mLen/4-bits)
and is sufficient for applications such as symmetric key transportation using the RLCE public key encryption
scheme. The second padding scheme RLCEpad is a two-round Feistel network that is similar to OAEP+.
RLCEpad could be used to encrypt messages that are almost as long as mLen-bits.

We assume that messages are binary strings. After padding, they will be converted to field elements
and/or other information in the RLCE scheme (e.g., the information contained in the error vector e if medi-
umEncoding or advancedEncoding is used). For a RLCE setup process RLCE.KeySetup(n, k, d, t,w), let the
k × (n + w) matrix G be a public key and (S ,Gs, P1, P2, A) be a corresponding private key. Assume that
RLCE is over the finite field GF(2m). The RLCEspad proceeds as follows.

RLCEspad(mLen, k1, k2, k3): Let k1, k2, k3 be parameters such that k1 + k2 + k3 =
⌈
mLen

8

⌉
, k1 + k2 < k3, and

8k1 ≤ mLen/4. Let ν = 8(k1 + k2 + k3) − mLen. Let H1 be a random oracle that takes any-length inputs and
outputs k2-bytes and let H2 be a random oracle that takes any-length inputs and outputs (k1 + k2)-bytes. Let
m ∈ {0, 1}8k1 be a message to be encrypted, r0 ∈ {0, 1}8k3−ν be a randomly selected sequence, and r = r0||0ν.
We distinguish the following three cases:

• basicEncoding: Select a random e ∈ GF(q)n+w of weight t and set

y = ((m||H1(m, r, e)) ⊕ H2(r, e)) ||r. (33)

Convert y to an element y1 ∈ GF(q)k. Let the ciphertext be c = y1G + e.

• mediumEncoding: Select random 0 ≤ l0 < l1 < · · · < lt−1 ≤ n + w − 1 and let e0 = l0||l1 · · · ||lt−1 ∈

{0, 1}16t. Set
y = ((m||H1(m, r, e0)) ⊕ H2(r, e0)) ||r. (34)

Convert y to an element (y1, e1) ∈ GF(q)k+t where y1 ∈ GF(q)k and e1 ∈ GF(q)t. Let e ∈ GF(q)n+w

such that e[li] = e1[i] for 0 ≤ i < t and e[ j] = 0 for j , li. Let the ciphertext be c = y1G + e.

• advancedEncoding: Set y = ((m||H1(m, r)) ⊕ H2(r)) ||r. Convert y to an element y1 ∈ GF(q)k and a
vector e ∈ GF(q)n+w of weight t. Let the ciphertext be c = y1G + e.

The mediumEncoding based RLCEspad is shown graphically in Figure 1.
Assuming the hardness of decoding RLCE ciphertexts, a similar proof as in [5] could be used to show

that RLCE-RLCEspad scheme is secure against IND-CCA2 attacks. As an example with κc = 128 bits secu-
rity RLCE scheme (630, 470, 80) over GF(210) in Table 3, we use k1 = k2 = 171-bytes for mediumEncoding
and k1 = k2 = 183-bytes for advancedEncoding. Thus, we can encrypt k1 = 171-bytes of information for
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Figure 1: mediumEncoding based RLCEspad
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mediumEncoding and k1 = 183-bytes of information for advancedEncoding per RLCE-RLCEspad cipher-
text.

Our next padding scheme RLCEpad is based on OAEP+ and proceeds as follows.

RLCEpad(mLen, k1, k2, k3, t): Let k1, k2, k3 be parameters such that k1 + k2 + k3 =
⌈
mLen

8

⌉
and ν = 8(k1 + k2 +

k3) − mLen. Let H1,H2, and H3 be random oracles that take arbitrary-length binary input strings and output
k2-bytes, (k1 + k2)-bytes, and k3-bytes strings respectively. Let m ∈ {0, 1}8k1 be a message to be padded and
r = r0||0ν where r0 ∈ {0, 1}8k3−ν is a randomly selected binary string. Then the padding process proceeds as
follows:

• basicEncoding: Select a random e ∈ GF(q)n+w,t of weight t and set

y = ((m||H1(m, r, e)) ⊕ H2(r, e)) ||r ⊕ H3(((m||H1(m, r, e)) ⊕ H2(r, e))) (35)

Convert y to an element y1 ∈ GF(q)k. Let the ciphertext be c = y1G + e.

• mediumEncoding: Select random 0 ≤ l0 < l1 < · · · < lt−1 ≤ n + w − 1 and let e0 = l0||l1 · · · ||lt−1 ∈

{0, 1}16t. Note that one may use r to compute e0. Set

y = ((m||H1(m, r, e0)) ⊕ H2(r, e0)) ||(r ⊕ H3((m||H1(m, r, e0)) ⊕ H2(r, e0))) (36)

Convert y to an element (y1, e1) ∈ GF(q)k+t where y1 ∈ GF(q)k and e1 ∈ GF(q)t. Let e ∈ GF(q)n+w

such that e[li] = e1[i] for 0 ≤ i < t and e[ j] = 0 for j , li. Outputs (y1, e).

• advancedEncoding: Set

y = ((m||H1(m, r)) ⊕ H2(r)) ||r ⊕ H3(((m||H1(m, r)) ⊕ H2(r))) (37)

Convert y to an element y1 ∈ GF(q)k and a vector e ∈ GF(q)n+w of weight t. Let the ciphertext be
c = y1G + e.

The mediumEncoding based RLCEspad is shown graphically in Figure 2.
Shoup [21, Theorem 3] showed the following result for OAEP+: “If the underlying trapdoor permu-

tation scheme is one way, then OAEP+ is secure against adaptive chosen ciphertext attack in the random
oracle model”. Our padding scheme RLCEpad is identical to OAEP+ with the following exceptions: In
OAEP+, the function H2 outputs a string of k1-bytes which is ⊕-ed with m. In RLCEpad, the function H2
outputs a string of (k1 + k2)-bytes which is ⊕-ed with m||H2(r, e0). Since H1,H2,H3 are random oracles,
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Figure 2: mediumEncoding based RLCEpad
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this revision requires no change in the security proof of [21, Theorem 3]. Thus, assuming the hardness of
decoding RLCE ciphertexts, the proof in [21, Theorem 3] could be used to show that RLCE-RLCEpad is
secure against IND-CCA2 attacks. The proof in [21] shows that the adversary A’s advantage is bounded by

InvAdv(A′) +
(qH1 + qD)

28k3
+

(qD + 1)qH2

28k2
(38)

where qD is the maximum number of decryption oracle queries, qH1 , qH2 , and qH3 are the maximum number
of queries made by A to the oracles H1,H2 and H3 respectively, and InvAdv(A′) is the success probability
that a particular adversary A′ has in breaking the one-way trapdoor permutation scheme. Furthermore, the
time and space requirements of A′ are related to those of A as follows:

T (A′) = O
(
T (A) + qH2qH3T f + (qH1 + qH2 + qH3 + qD)mLen

)
S (A′) = O

(
S (A) + (qH1 + qH2 + qH3)mLen

)
where T f is the time required to compute the one-way permutation f and space is measured in bits of storage.

The selection of RLCEpad parameters k1, k2, k3 in Table 3 is based on the above reduction proof and
bounds. As an example, for 128-bit secure RLCE scheme (532, 376, 78), we use k2 = k3 = 32-bytes. Thus,
we can encrypt k1 = 504-bytes of information.
Remark 1: In RLCE encryption scheme, either error positions e0 or error vector e is used in the RLCEs-
pad/RLCEpad process and the message recipient needs to have the exact e0 or e for message decoding. In
case that the randomly generated error values contain zero field elements, the corresponding error positions
will be unavailable for the recipient. To avoid this potential issue, the message encryption process needs to
guarantee that error values should never be zero. A simple approach to address this challenge is that, when
calculated error values (using the given random value r) contain zero field elements, one revises the random
value r to a new value and tries the padding approach again. This process continues until all error values are
non-zero.
Remark 2: In our scheme, we use k1 + k2 + k3 =

⌈
mLen

8

⌉
. Alternatively, one may use k1 + k2 + k3 =

⌊
mLen

8

⌋
and adjust the schemes correspondingly.

8 Recommended parameters

In Section 6, we carried out security analysis on the RLCE schemes. Based on these analysis, RLCE pa-
rameters for various security strength are recommended in Table 3. In particular, the recommendation takes
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Table 3: Padding parameters: bE for basicEncoding, mE for mediumEncoding and aE for advancedEncoding

ID κc κq LD n k t w m sk cipher pk mLen
RLCEspad RLCEpad

k1(k2) k3 k1 k2(k3)

0 128 80 ⊥ 630 470 80 160 10 310116 988 188001
bE 4700 146 296 524 32
mE 5500 171 346 624 32

192029 aE 5869 183 368 670 32

1 128 80 ⊥ 532 376 78 96 10 179946 785 118441
bE 3760 117 236 406 32
mE 4540 141 286 504 32

121666 aE 4875 152 306 546 32

2 192 110 ⊥ 1000 764 118 236 10 747393 1545 450761
bE 7640 238 479 859 48
mE 8820 275 553 1007 48

457073 aE 9377 293 587 1077 48

3 192 110 ⊥ 846 618 114 144 10 440008 1238 287371
bE 6180 193 387 677 48
mE 7320 228 459 819 48

292461 aE 7825 244 491 883 48

4 256 144 ⊥ 1360 800 280 560 11 1773271 2640 1232001
bE 8800 275 550 980 60
mE 11880 371 743 1365 60

1241971 aE 13025 407 815 1509 60

5 256 144 ⊥ 1160 700 230 311 11 1048176 2023 742089
bE 7700 240 483 843 60
mE 10230 319 641 1159 60

749801 aE 11145 348 698 1274 60

6 22 22 ⊥ 40 20 10 5 10 1059 57 626
bE 200 6 13 17 4
mE 300 9 20 30 4

859 aE 331 10 22 34 4

7 128 80 (13,6663,14) 612 466 76 146 10 284636 948 170091
bE 4660 145 293 519 32
mE 5420 169 340 614 32

173961 aE 5771 180 362 658 32

8 128 80 (9,3767,10) 520 380 73 87 10 166998 759 107826
bE 3800 118 239 411 32
mE 4530 141 285 503 32

110948 aE 4847 151 304 542 32

9 192 110 (11,9317,12) 1000 790 108 210 10 703371 1513 414751
bE 7900 246 496 892 48
mE 8980 280 563 1027 48

420946 aE 9500 296 596 1092 48

10 192 110 (8,5358,9) 828 620 107 128 10 401724 1195 260401
bE 6200 193 389 679 48
mE 7270 227 455 813 48

265324 aE 7748 242 485 873 48

11 256 144 (26,23350,34) 1200 700 280 500 11 1382314 2338 926501
bE 7700 240 483 843 60
mE 10780 336 676 1228 60

971326 aE 11872 371 742 1364 60

12 256 144 (62,49149,82) 1050 590 262 330 11 888230 1898 640889
bE 6460 202 408 692 60
mE 9372 292 588 1052 60

648100 aE 10334 322 648 1172 60

13 24 24 (3, 68,4) 40 20 11 5 10 1059 57 626
bE 200 6 13 13 6
mE 310 9 21 27 6

859 aE 343 10 23 31 6

14 25 25 (10, 262,14) 40 20 12 5 10 1059 57 626
bE 200 6 13 13 6
mE 320 10 20 28 6

859 aE 354 11 23 33 6

into account of the conditions for avoiding improved classical and quantum information set decoding, the
conditions for avoiding Sidelnikov-Shestakov attacks, the conditions for filtration attacks (with or without
brute force), the cost of recovering McEliece encryption scheme secret keys from the public keys, and the
cost of recovering plaintext messages from ciphertexts. In Table 3, κc denotes the conventional security
strength and κq denotes the quantum security strength. For example, κc = 128 means an equivalent security
of AES-128. The recommended parameters is based on any underlying MDS linear code (e.g., GRS code)
over GF(q) where q = 2dlog2 ne. For GRS codes, the BCH-style construction requires n = q − 1. However,
GRS codes could be shortened to length n < q − 1 codes by interpreting the unused q − 1 − n information
symbols as zeros.

In Table 3, the schemes with ID = 0, 1, 2, 3, 4, 5, 6 are for MDS codes with t = n−k
2 . The schemes

with ID = 7, 8, 9, 10, 11, 12, 13, 14 are for MDS codes with t > n−k
2 . The schemes with ID = 6, 13, 14

are for testing purpose only. The schemes with ID ≥ 7 require a list-decoding algorithm for the RLCE
decryption process and have relatively smaller public key sizes. The column LD of Table 3 contains list-
decoding parameters. For example, the scheme ID = 7 has LD parameter (13, 6663, 14) which means
that the interpolation process of the list decoding uses a zero multiplicity 13 and constructs a polynomial
Q(x, y) with a maximum x-degree of 6663 and a maximum y-degree of 14. List-decoding helps to reduce
the public key size. For example, for 128-bit security, the scheme 1 without list-decoding has a public key of
118441 bytes and the scheme 8 with list-decoding has a public key of 107826 bytes. However, list decoding
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is extremely slow. For Kötter’s iterative interpolation based list-decoding, it takes 1851 seconds (around
31 minutes) to decrypt a ciphertext for scheme 8 on a MacBook Pro with 2.9 GHz Intel Core i7 though
it only takes 0.004884 seconds to decrypt a ciphertext for scheme 1 of the same security strength on the
same machine. Note that it takes 0.034844 seconds to list-decrypt a ciphertext for the testing scheme 13 on
the same MacBook Pro machine. For schemes in Table 3, the security strength under each specific attack
discussed in this paper is listed in Table 2.

The following is a comparison of the parameters in Table 3 against binary Goppa code based McEliece
encryption scheme parameters from [3]. Note that for RLCE encryption schemes over GF(q), the systematic
generator matrix public key is k(n + w − k) log q bits.

1. For the security strength 128, binary Goppa code uses n = 2960, k = 2288, t = 57 and the public key
size is 188KB while RLCE has a public key size of 118001 bytes (that is, 115KB).

2. For the security strength 192, binary Goppa code uses n = 4624, k = 3468, t = 97 and the public key
size is 490KB while RLCE has a public key size of 287371 bytes (that is, 280KB).

3. For the security strength 256, binary Goppa code uses n = 6624, k = 5129, t = 117 and the public key
size is 900KB while RLCE has a public key size of 742089 bytes (that is, 724KB).

Table 3 also lists the message bandwidth and message padding scheme parameters for the recommended
schemes. In case that ν = 8(k1 + k2 + k3)− mLeni > 0, the last ν-bits of the k3-bytes random seed r should be
set to zero and the last ν-bit of the encoded string y is discarded. For RLCEspad with ν > 0, the encoding
and decoding process are straightforward. For RLCEpad with ν > 0, the decoding process produces an
encoded string y with last ν-bits missing. After using H3 to hash the first part of y resulting in k3-bytes hash
output, one discards the last ν-bits from the hash output and ⊕ the remaining (8k3 − ν)-bits with the second
half of y to obtain the (8k3 − ν)-bits of r without the ν-bits zero trailer. In the column for sk, the first row is
the private key size for RLCE scheme with decoding algorithm 1 and 3. The second row is the private key
size for RLCE scheme with decoding algorithm 2.

9 Performance evaluation

9.1 Time cost

Table 4 lists the performance results for RLCE encryption scheme with decoding algorithm 0 on a MacBook
Pro with 2.9 GHz Intel Core i7 and MacOS Sierra. The first column contains the encryption scheme ID from
Table 3. The second column contains the time needed for a public/private key pair generation. The third
two-column group contains the time needed for one plaintext encryption. The fourth two-column group
contains the time needed for one ciphertext decryption.

Table 4: Running times for RLCE with Decoding Algorithm 0 (in milliseconds)

ID key encryption decryption
RLCEspad RLCEpad RLCEspad RLCEpad

0 311.375 0.566 0.539 1.754 1.718
1 151.834 0.378 0.360 1.385 1.345
2 1151.206 1.229 1.166 3.474 3.432
3 637.988 0.814 0.776 2.717 2.676
4 2745.302 2.832 2.765 14.171 13.853
5 1587.330 2.216 1.745 9.324 9.383
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Table 5 lists the performance results for RLCE encryption scheme with decoding algorithm 1 and pre-
computation of the matrix W−1 (see Section 5.2 for details). It was tested with MacOS Sierra on a MacBook
Pro with 2.9 GHz Intel Core i7. The pre-computation time for W−1 is included in the key generation process.

Table 5: Running times for RLCE with Decoding Algorithm 1 (in milliseconds)

ID key encryption decryption
RLCEspad RLCEpad RLCEspad RLCEpad

0 340.616 0.565 0.538 1.574 1.509
1 161.504 0.378 0.372 1.221 1.181
2 1253.926 1.255 1.166 3.034 2.937
3 667.239 0.815 0.791 2.396 2.340
4 3215.791 2.836 2.796 13.092 12.925
5 1678.032 2.242 1.763 8.560 8.572

Table 6 lists the performance results for RLCE encryption scheme with decoding algorithm 2. It was
tested with MacOS Sierra on a MacBook Pro with 2.9 GHz Intel Core i7.

Table 6: Running times for RLCE with Decoding Algorithm 2 (in milliseconds)

ID key encryption decryption
RLCEspad RLCEpad RLCEspad RLCEpad

0 314.711 0.570 0.533 1.832 1.417
1 154.143 0.385 0.360 1.095 1.133
2 1169.991 1.267 1.176 3.199 2.946
3 635.208 0.814 0.788 2.547 2.300
4 2747.790 2.882 3.278 19.859 19.163
5 1561.936 2.263 1.772 10.939 10.932

For the list-decoding based RLCE encryption scheme, we only tested scheme with ID=7. For RLCE
scheme 7, the key generation time is approximately 0.516495 seconds, the encryption time is approximately
0.001598 seconds, and the decryption time is approximately 1865 seconds (that is, approximately 31 min-
utes).

9.2 CPU cycles

Table 7 lists the CPU cycles for RLCE encryption scheme with decoding algorithms 0, 1, and 2 respectively.
It was tested with MacOS Sierra on a MacBook Pro with 2.9 GHz Intel Core i7. The first column contains
the encryption scheme ID from Table 3. The second column contains the padding scheme ID where 0 is for
RLCEspad-mediumEncoding, 1 is for RLCEpad-mediumEncoding, 2 is for RLCEspad-basicEncoding, and
3 is for RLCEpad-basicEncoding. The third column group contains CPU cycles for a public/private key pair
generation with algorithm 0, 1, and 2 respectively. The fourth column contains CPU cycles for encrypting a
plaintext. The fifth column group contains CPU cycles for decrypting a ciphertext with algorithm 0, 1, and
2 respectively.

9.3 Memory requirements

Table 8 lists the memory requirements for RLCE encryption scheme with decoding algorithms 0, 1, and 2
respectively. It was tested on a Amazon AWS cloud computer running Ubuntu 16.10 with Intel(R) Xeon(R)
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Table 7: RLCE CPU cycles

ID key generation encryption decryption
algorithm 0 algorithm 1 algorithm 2 algorithm 0 algorithm 1 algorithm 2

0 0 965601110 11077817663 933934514 605316 5005712 5542671 5234518
0 1 934514130 1011071617 933987433 1805010 5355784 4646941 4162641
0 2 905419375 1011384425 930692646 1647873 6030799 4315597 5273153
0 3 916456332 1027954991 919679402 1502708 4724183 4457827 4079080
1 0 447781824 474300568 452928596 1099797 3936598 4559158 3330758
1 1 454712789 465481183 451876423 1040629 3765661 3589491 3308529
1 2 440842214 472911996 460746862 1072426 3930516 3594353 3328138
1 3 445231426 484260798 445410359 990231 3722669 3539037 3369610
2 0 3481345844 3778948523 3503531149 3488662 10061600 8946359 9563820
2 1 3450091135 3829675407 3501563776 3331234 9794176 8668186 8966646
2 2 3455930364 3896012515 3484052736 3461628 10119659 9733856 8816277
2 3 3478119945 3991809655 3557466677 3827084 9928669 9617728 8926914
3 0 1867717927 089254043 1876262340 2491667 8149425 7307906 7412701
3 1 1865554282 1962533052 1885644975 2361787 8048040 7160709 6993236
3 2 1847405744 1952723585 1876279636 2355121 9107857 6782841 6708294
3 3 1849732098 1962033778 1876339342 2339344 7832494 6987142 7166795
4 0 8114178839 9545637831 8332547491 8361371 39084326 38060629 57070221
4 1 8108201681 9612380645 8186025651 8184051 39099009 36705481 53669412
4 2 8081815282 9605949548 8138963149 8506474 40063190 38216918 59542579
4 3 8091168939 9590945573 8165136802 9428383 41171497 36879770 59958433
5 0 4696770782 5085862230 4722940209 6903975 26618836 24660121 30604712
5 1 4682712937 5057459034 4763826045 5362174 28191447 24174369 29967843
5 2 4706366223 5079303736 4741589960 5542775 26372021 24171293 31348693
5 3 4738340942 5046201517 4728263914 5474734 26915440 25084556 32945876

CPU E5-2630L v2 @ 2.40GHz. The first column is the RLCE scheme ID. The second column shows
whether a finite field multiplication table is generated or not. These data shows that for schemes over
GF(210) (that is, schemes 0, 1, 2, 3 for 128-bit and 192-bit security), there is around 2MB difference for the
RAM requirement with a multiplication table and without a multiplication table. For schemes over GF(211)
(that is, schemes 4, 5 for 256-bit security), there is around 7MB difference for the RAM requirement with
multiplication table and without multiplication table. In practice, it is convenient to deploy hardware based
multiplication tables.

9.4 Performance comparison with OpenSSL RSA

Table 9 shows the comparison of the RLCE performance against OpenSSL RSA performance. Both RSA
and RLCE were tested with a MacOS Sierra on a MacBook Pro with 2.9 GHz Intel Core i7.

10 Conclusions

In this paper, we presented techniques for designing general random linear code based public encryption
schemes using any linear code. The proposed scheme generally has smaller public key sizes compared to
binary Goppa code based McEliece encryption schemes. Furthermore, the proposed schemes could use
any linear codes such as GRS code, LDPC code, Turbo code, or Polar code. Heuristics and experiments
encourage us to think that the proposed schemes are immune against existing attacks on linear code based
encryption schemes such as Sidelnikov-Shestakov attack, filtration attacks, and algebraic attacks. For an
implementation of RLCE over GRS codes, Wang [25] has a complete review and comparison on related
algorithms.
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Table 8: RLCE peak memory usage (bytes)

ID Mul. Table key generation encryption decryption
algorithm 0 algorithm 1 algorithm 2 algorithm 0 algorithm 1 algorithm 2

0 N 2,536,672 2,536,704 2,317,680 798,288 1,335,160 1,335,280 825,048
0 Y 4,648,624 4,648,656 4,447,144 2,437,320 2,832,216 2,856,584 2,629,128
1 N 1,571,912 1,571,944 1,467,064 507,632 779,616 779,616 525,920
1 Y 3,668,920 3,668,952 3,588,240 2,326,736 2,464,984 2,609,160 2,506,840
2 N 6,178,712 6,178,744 5,687,016 1,906,576 3,178,568 3,178,688 1,947,088
2 Y 8,287,280 8,287,312 7,803,048 2,865,400 3,443,432 3,825,112 3,144,688
3 N 3,896,376 3,896,408 3,657,112 1,222,944 1,881,600 1,881,728 1,250,864
3 Y 5,997,968 5,998,000 5,764,680 2,605,112 3,116,736 3,119,496 2,871,984
4 N 11,561,320 11,561,352 10,775,384 4,829,968 7,010,248 7,010,368 4,912,640
4 Y 19,975,008 19,975,040 19,223,704 10,258,112 12,227,368 12,227,384 11,433,720
5 N 7,345,376 7,345,408 6,909,152 2,920,256 4,152,096 4,152,096 2,971,680
5 Y 15,713,624 15,713,656 15,268,544 9,547,848 10,970,216 10,970,232 10,522,168

Table 9: Comparisson of RLCE and RSA performance (milliseconds)

κc RSA modulus key setup encryption decryption
RSA RLCE RSA RLCE RSA RLCE

128 3072 433.607 151.834 0.135540 0.360 6.576281 1.345
192 7680 9346.846 637.988 0.672769 0.776 75.075443 2.676
256 15360 80790.751 1587.330 2.498523 1.745 560.225740 9.383
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