
Design of Lightweight Linear Diffusion Layers
from Near-MDS Matrices

Chaoyun Li1 and Qingju Wang1,2,3∗

1 imec-COSIC, Dept. Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
chaoyun.li@esat.kuleuven.be

2 DTU Compute, Technical University of Denmark, Lyngby, Denmark
3 Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai,

China
quwang@dtu.dk

Abstract. Near-MDS matrices provide better trade-offs between security and efficiency
compared to constructions based on MDS matrices, which are favored for hardware-
oriented designs. We present new designs of lightweight linear diffusion layers by
constructing lightweight near-MDS matrices. Firstly generic n×n near-MDS circulant
matrices are found for 5 ≤ n ≤ 9. Secondly , the implementation cost of instantiations
of the generic near-MDS matrices is examined. Surprisingly, for n = 7, 8, it turns out
that some proposed near-MDS circulant matrices of order n have the lowest XOR
count among all near-MDS matrices of the same order. Further, for n = 5, 6, we
present near-MDS matrices of order n having the lowest XOR count as well. The
proposed matrices, together with previous construction of order less than five, lead to
solutions of n×n near-MDS matrices with the lowest XOR count over finite fields F2m

for 2 ≤ n ≤ 8 and 4 ≤ m ≤ 2048. Moreover, we present some involutory near-MDS
matrices of order 8 constructed from Hadamard matrices. Lastly, the security of the
proposed linear layers is studied by calculating lower bounds on the number of active
S-boxes. It is shown that our linear layers with a well-chosen nonlinear layer can
provide sufficient security against differential and linear cryptanalysis.
Keywords: lightweight cryptography · diffusion layer · near-MDS matrix · branch
number

1 Introduction
Symmetric-key cryptographic primitives including block ciphers, stream ciphers and hash
functions, form the backbone of secure communication in modern society. Confusion and
diffusion introduced by Shannon [Sha49] are widely used twin fundamental principles in the
design of symmetric-key primitives. Most modern block ciphers and hash functions have
well-designed confusion and diffusion layers. Among many design methods, substitution-
permutation networks (SPN) have been popular in the design of block ciphers and hash
functions. The best understood structure of an SPN round function consists of a brick
layer of local nonlinear permutations (usually S-boxes) followed by a multiplication with
a diffusion matrix over a finite field (linear diffusion). Diffusion layers play an crucial
role in providing resistance against the two most powerful statistical attacks: differential
cryptanalysis [BS91] and linear cryptanalysis [Mat94].

In 1994, Vaudenay [Vau95] proposes multipermutations as perfect diffusion layers. It is
worth noting that the linear multipermutations are exactly Maximum Distance Separable
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(MDS) matrices, which are defined from MDS codes [MS77]. AES [DR02], the most
prominent example of an SPN, uses an MDS matrix in the MixColumns operation together
with the ShiftRows operation to achieve diffusion. In the context of the wide-trail strategy,
the branch number of a linear diffusion layer is defined to bound the probabilities of the
best differential and linear trails. Furthermore, linear diffusion layers based on MDS
matrices have been shown to provide optimal diffusion properties in the wide-trail strategy
for any AES-like ciphers [DR02].

The development of ubiquitous computing such as the Internet of Things (IoT) brings
new security requirements to the fore. This leads to the research area of lightweight
cryptography. Recently, the study on lightweight diffusion matrices have been the focus of
attention. Many constructions of lightweight MDS and involutory MDS matrices have been
proposed [BKL16, CJK15, GR15, JV04, KPPY14, LW16, LS16, SDMO12, SS16, SKOP15].
Note that any element of an MDS matrix over a finite field must be nonzero. Thus MDS
matrices are very dense and hence costly in hardware implementation. To further reduce
the hardware cost, Guo et al. [GPP11, GPPR11] proposed a novel design approach of
recursive (or serial) MDS matrices, which have a substantially lower hardware area at
the cost of additional clock cycles [KPPY14, SKOP15]. Notable examples include the
block cipher LED [GPPR11] that has low area in hardware and the hardware-oriented
lightweight hash function PHOTON [GPP11] which has been standardized in ISO/IEC
29192-5:2016.

However, MDS and recursive MDS matrices might not offer an optimal trade-off
between security and efficiency. Near-MDS have sub-optimal branch numbers while they
require less area than MDS matrices and they do not need additional clock cycles. Indeed,
some diffusion layers constructed from near-MDS matrices outperform those based on
MDS or recursive MDS matrices in terms of the FOAM framework proposed by Khoo
et al. [KPPY14]. Recently, near-MDS matrices have been adopted in some lightweight
block ciphers, including PRINCE [BCG+12], FIDES [BBK+13], PRIDE [ADK+14], Midori
[BBI+15] and MANTIS [BJK+16]. On the one hand, low-power, low-energy or low-latency
lightweight symmetric-key primitives is becoming increasingly important, and near-MDS
matrices are widely used in the design of dedicated lightweight block ciphers. On the
other hand, there is insufficient research on the construction and security properties of
near-MDS matrices. These motivate us to present novel results on linear diffusion layers
constructed from near-MDS matrices.

Related work. First, we briefly introduce some previous work on the construction of
lightweight (involutory) MDS matrices. Recursive MDS matrices are an important class of
lightweight MDS matrices. The main idea of recursive MDS matrices is to represent an
MDS matrix as a power of a very sparse matrix such as a companion matrix. In this way,
the MDS matrix can be implemented by iterating the sparse matrix many times. Following
this idea, much work has been done to further reduce the hardware cost and improve
the performance of recursive MDS matrices [SDMS12, WWW13, AF13, Ber13, AF15].
Another common way is to generate efficient MDS matrices from some special types
of matrices. Circulant matrices and their variants such as left-circulant matrices are
popular candidates for lightweight MDS matrices [JV04, GR15, LS16, LW16, BKL16].
Involutory MDS matrices are useful in SPN structures as the same circuit can be used for
both encryption and decryption. Many lightweight involutory MDS matrices have been
constructed from Hadamard [SKOP15, LW16], Cauchy [YMT97, CJK15], Vandermonde
[SDMO12] and left-circulant matrices [LS16]. More detailed surveys on the construction
of lightweight (involutory) MDS matrices are given in [LS16, BKL16].

Next, we recall some pioneering work about near-MDS matrices which is the main focus
of this paper. In 2008, Choy and Khoo [CK08] define the almost-MDS matrices as diffusion
matrices attaining a suboptimal differential branch number. In [KPPY14] Khoo et al.
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adopt the term almost-MDS matrices to denote diffusion matrices with both suboptimal
differential and linear branch numbers. Notice that the almost-MDS matrices in [CK08]
match the almost MDS codes introduced in [dB96], whereas the almost-MDS matrices
in [KPPY14] correspond to near-MDS codes proposed in [DL95]. To link the matrices
and the corresponding linear codes, the matrices yielding both suboptimal differential
and linear branch numbers are called near-MDS matrices in this paper (more details in
Sect. 2.1). Indeed, the theoretical results on near-MDS codes [DL95] form the basis of
study on near-MDS matrices. In particular, the characterization of near-MDS matrices
shown in [VR06] will play an important role in the present paper.

Almost-MDS {0, 1}-matrices of order less than or equal to four have been proposed
in [CK08]. Note that these almost-MDS matrices in [CK08] are symmetric and hence
near-MDS matrices. Then near-MDS {0, 1}-matrices of order less than or equal to four are
obtained. Further, it is shown that the {0, 1}-matrices of order larger than four cannot be
almost MDS and hence cannot be near-MDS [CK08]. In practice, the {0, 1}-matrix of order
four has been widely employed by many block ciphers including PRINCE [BCG+12], FIDES
[BBK+13], PRIDE [ADK+14], Midori [BBI+15] and MANTIS [BJK+16]. In [KPPY14],
some instances of near-MDS matrices of order 4 and 8 over F24 and F28 are presented.

Our contributions. The main purpose of this paper is to construct lightweight near-MDS
matrices. Recall that near-MDS matrices of order less than five have been investigated
in [CK08], hence we will focus on the matrices of order larger than four. For 5 ≤ n ≤ 9,
we present generic constructions of near-MDS matrices of order n over F2m , where m is a
positive integer. Our work gives an answer to an open problem proposed by Daemen and
Rijmen [DR09] and Dodunekov [Dod09] in 2008. To our end, we first propose an algorithm
for checking the near-MDS property of a matrix and generating the near-MDS conditions
for a near-MDS matrix. Circulant matrices are introduced to reduce the search space. By
computer search, we obtain some generic n× n near-MDS circulant matrices with optimal
parameters for 5 ≤ n ≤ 9.

To illustrate the efficiency of our generic constructions, some instantiations of the
generic near-MDS matrices over F24 and F28 and their XOR count are provided. A
comparison shows that the XOR count of near-MDS matrices proposed in this paper
can be around 65% of the XOR count of the best known lightweight MDS matrices
constructed in [BKL16, LS16]. Based on experimental results, for n ≥ 8, we also show
some nonexistence results on near-MDS matrices with a small number of distinct entries.
This demonstrates that generic near-MDS matrices of order larger than eight have more
complicated forms.

We further investigate the total XOR count of the constructed near-MDS matrices in
comparison with all other near-MDS matrices over finite fields. First, the exact value of the
maximum occurrences of entries 0 and 1 are presented. Based on these results, for n = 7, 8,
it turns out that some instantiations of generic near-MDS circulant matrices of order n
proposed in Sect. 3 have the lowest XOR count among all near-MDS matrices of the same
order. Similarly, for n = 5, 6, we present some near-MDS matrices of order n having the
lowest XOR count. Note that most previous diffusion matrices are optimal among some
subclasses rather than the whole space of the matrices with prescribed diffusion properties.
It is worth noticing that the near-MDS matrices in Sect. 4 are global optimal solutions,
that is, they have the lowest XOR count among all near-MDS matrices of the same order.
Indeed, for 2 ≤ n ≤ 4, it is readily seen that the near-MDS matrices in [CK08] are global
optimal solutions since they are composed of 0 and 1 with maximum occurrences. Thus,
for 2 ≤ n ≤ 8 the global optimal solution for n× n near-MDS matrices are obtained over
finite fields F2m for 4 ≤ m ≤ 2048.

We present some results on involutory near-MDS matrices in Sect. 5. First, involutory
near-MDS of order 2, 3, 4 are summarized. Then for n > 4 we show that there is no
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circulant involutory near-MDS matrix over finite fields. Next, the Hadamard matrices
over finite fields are introduced and their properties are presented. This leads to our
constructions of involutory near-MDS matrices of order 8 from Hadamard matrices.

To exploit near-MDS matrices in the design of linear layers, it is important to investigate
the security properties of near-MDS matrices. Following the common strategy, we provide
lower bounds on the number of differential and linear active S-boxes for SPN structures
using near-MDS matrices and ShiftRows as diffusion layer. Our results indicate that the
linear layers based on near-MDS matrices can provide sufficient security against differential
and linear cryptanalysis.

The remainder of this paper is organized as follows. Section 2 introduces some basic
concepts and results on near-MDS matrices. In Sect. 3, some generic near-MDS matrices
and their instantiations are presented. In Sect. 4, we give some near-MDS matrices with the
lowest XOR count among all near-MDS matrices of the same order. Results on involutory
near-MDS are given in Sect. 5. A primary security analysis on near-MDS based linear
layers are provided in Sect. 6. The final section concludes the paper.

2 Preliminaries
This section presents some background and results on linear diffusion layers, based on
which we introduce the definition of near-MDS matrices. We also recall the notion of XOR
count to measure the lightweight property of a diffusion matrix.

2.1 Linear diffusion layers
Most block ciphers and hash functions based on substitution-permutation network (SPN)
structures have two layers in each round: the S-Box layer and the linear diffusion layer.
The S-Box layer is usually composed of several (not necessarily identical) S-boxes, while
the linear diffusion layer is implemented by using matrices over finite fields.

Let F2 = {0, 1}, and we denote by F2m a finite extension of F2 and Fn2m the n-
dimensional vector space over F2m , where m and n are positive integers. Indeed, for any
linear mapping λ over Fn2m , there exists a matrix M such that λ(v) = M · v. Hereafter,
we represent a linear diffusion layer by a diffusion matrix.

Given a vector v = (v0, v1, · · · , vn−1)T ∈ Fn2m , its bundle weight wtb(v) is equal to the
number of non-zero components of v. The branch numbers of a diffusion matrix can be
defined in terms of the bundle weight of vectors.

Definition 1. ([Dae95, DR02]) Let M be an n×n matrix over F2m . Then the differential
branch number of an n× n matrix M over F2m is defined as

Bd(M) = min
v 6=0
{wtb(v) + wtb(Mv)} ,

and the linear branch number of M over F2m is defined as

Bl(M) = min
v6=0

{
wtb(v) + wtb(MTv)

}
.

Recall that the branch number can be characterized by the minimum distance of linear
codes.

Lemma 1. ([DR02]) Let M be an n× n matrix over F2m . Suppose that C is a [2n, n]-
linear code over F2m with generator matrix (In|MT), where In is the identity matrix of
order n. Then the differential branch number of M equals the minimum distance of C, i.e.,
Bd(M) = d(C). Moreover, we have Bl(M) = d(C⊥), where C⊥ is the dual code of C.
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Let C be an [n, k]-linear code. We call C an maximum distance separable (MDS) code
if the Singleton bound is attained, i.e., d(C) = n − k + 1 [MS77]. An n × n matrix M
is called an MDS matrix if the linear code CM with generator matrix (In|MT) is MDS.
An MDS matrix M attains the upper bounds of the branch numbers simultaneously, i.e.,
Bd(M) = Bl(M) = d(CM ) = n+ 1 [DR02].

In this paper, we focus on the diffusion matrices which attain the largest branch numbers
among non-MDS matrices. Now the definition of a near-MDS matrix can naturally be
given in terms of branch numbers.

Definition 2. An n× n matrix M is called a near-MDS matrix if Bd(M) = Bl(M) = n.

In [DL95], an [n, k] near-MDS code C is defined by the conditions d(C) = n − k and
d(C⊥) = k. Then by Lemma 1, for an n × n matrix M with Bd(M) = Bl(M) = n, the
matrix [I|MT ] is exactly a generator matrix of a [2n, n, n] near-MDS code. This leads to
the following characterization of a near-MDS matrix.

Lemma 2. ([VR06]) Let M be a non-MDS matrix of order n, where n is a positive integer
with n ≥ 2. Then M is near-MDS if and only if for any 1 ≤ g ≤ n− 1 each g × (g + 1)
and (g + 1)× g submatrix of M has at least one g × g non-singular submatrix.

We conclude this section with a useful property of branch numbers which will be used
in the sequel.

Lemma 3. ([LS16]) For any permutation matrices P1 and P2, the two matrices M and
P1MP2 have the same differential and linear branch numbers.

2.2 XOR count
The hardware implementation efficiency of operations is typically measured by the area
required. Note that the diffusion matrix can be implemented only with XOR gates, and
this leads to the following definition.

Definition 3. ([KPPY14, SKOP15]) The XOR count of an element α ∈ F2m is the number
of XOR operations required to implement the multiplication of α with an arbitrary element
β ∈ F2m .

Given a basis of F2m , the multiplication by α can be represented by multiplication with
a binary matrix A of order m. An obvious upper bound of the XOR count of α is
the number of ones in A minus m, and this bound is defined as the exact XOR count
in [KPPY14, SKOP15]. It turns out that this bound can be improved in some cases
[JPS15, BKL16]. Now we recall the definition of XOR count in terms of the matrices.

Definition 4. ([BKL16]) An invertible matrix A has XOR count t, denoted by wt⊕(A) = t,
if t is the minimal number such that A can be written as

A = P

t∏
k=1

(I + Eik,jk
) ,

where ik 6= jk for all k, P is a permutation matrix and Eik,jk
is a matrix over F2 with all

entries zero except the (ik, jk)-entry.

Following Definition 4, Beierle et al. [BKL16] further consider the problem of optimizing
the XOR count of a given element in finite fields. For α ∈ F2m , m(x) is the minimal
polynomial of α if m(α) = 0 and α is not a root of any nonzero polynomial in F2[x] of
lower degree. With the above definitions, some results are shown below.

Lemma 4. ([BKL16]) Let α ∈ F∗2m . Then we have:
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(i) wt⊕(α) = 0 if and only if α = 1 while wt⊕(α) = 1 if and only if the minimal
polynomial m(x) of α is a trinomial of degree m;

(ii) wt⊕(α) = wt⊕(α−1);

(iii) wt⊕(α±k) ≤ k · wt⊕(α) for k ≥ 1.

By Lemma 4(i), if there is no irreducible trinomial of degree m, then wt⊕(α) ≥ 2 for
any α ∈ F∗2m . Indeed, in these cases, there exists some β ∈ F∗2m and a basis B of F2m such
that wt⊕(α) = 2 for all m ≤ 2048 [BKL16]. Notice that there does not exist an irreducible
trinomial of degree m if 8|m [Swa62]. Hence wt⊕(α) = 2 is optimal in F28 , which will be
used in the sequel.

3 Lightweight near-MDS circulant matrices
This section presents constructions of near-MDS circulant matrices over F2m , where m is a
positive integer. We propose an algorithm for checking the near-MDS property of a matrix
and generating the near-MDS conditions for a near-MDS matrix. Circulant matrices
are introduced to reduce the search space. By computer search, we obtain some generic
near-MDS circulant matrices with optimal parameters. We also show some nonexistence
results on near-MDS matrices with a small number of distinct entries. Finally, some
instantiations of the generic near-MDS matrices and their XOR count are provided.

3.1 Approach to constructing generic near-MDS matrices
This section presents our main approach to constructing near-MDS matrices over F2m ,
where m is a positive integer. An algorithm is proposed to check the near-MDS property
of a candidate matrix and generate the near-MDS conditions if the matrix is near-MDS.

Main approach. To construct generic near-MDS matrices, the entries of the candidate
matrices are supposed to be in the quotient field of F2[x]. Specifically, we suppose that the
matrix contains 0 and nonzero entries in 〈x〉, where 〈x〉 = {xk | k ∈ Z}. Based on Lemma 2,
we propose an algorithm for checking the near-MDS property and generating the near-MDS
conditions via polynomials in F2[x]. Then one can substitute the indeterminate x with
any α ∈ F2m satisfying all the conditions for the matrices to be near-MDS. Consequently,
lightweight near-MDS can be obtained by choosing the element α as light as possible.

Checking the near-MDS property. By Lemma 2, a non-MDS matrix M is near-MDS
if and only if for any 1 ≤ g ≤ n − 1 each g × (g + 1) and (g + 1) × g submatrix of M
has at least one g × g non-singular submatrix. Then, to check the near-MDS property,
one needs to compute the determinants of all the g × g submatrices of a given g × (g + 1)
or (g + 1) × g submatrix of M . For the matrix composed of entries in 〈x〉, it is readily
seen that the determinant of any submatrix is a quotient of two polynomials in F2[x].
Furthermore, the determinant of any submatrix is nonzero if and only if the numerator of
the determinant is nonzero. Hence, for simplicity, we will consider the numerator of the
determinant rather than the determinant itself.

After obtaining the numerators of the determinants of all g × g submatrices, it suffices
to further check if there is at least one nonzero numerator. We introduce a result to simplify
the process. Denote by gcd(f(x), g(x)) the greatest common divisor of two polynomials
f(x), g(x) over F2[x]. By convention, let gcd(f(x), 0) = f(x). Let n > 1, we denote

gcd(f1(x), f2(x), · · · , fn(x)) = gcd(f1(x), gcd(f2(x), · · · , gcd(fn−1(x), fn(x)) · · · )).

Then the following lemma holds.
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Lemma 5. Let f1(x), f2(x), · · · , fk(x) be k polynomials in F2[x], where k is a positive inte-
ger. Then there exists at least one nonzero fi(x) if and only if gcd(f1(x), f2(x), · · · , fk(x)) 6=
0.

Proof. It is equivalent to prove that f1(x) = f2(x) = · · · = fk(x) = 0 if and only if
gcd(f1(x), f2(x), · · · , fk(x)) = 0, which is trivial.

For any given g× (g+1) or (g+1)×g submatrix of M , Lemma 5 implies that it suffices
to check the greatest common divisor of the numerators of the determinants of all g × g
submatrices. If the greatest common divisor is nonzero, one can decompose the nonzero
greatest common divisor into irreducible factors and collect the factors in a condition set
S. Otherwise, the matrix is not near-MDS. The procedure is described in Algorithm 1.

Suppose that for the matrix M the condition set S is output by Algorithm 1. By
substituting x with α ∈ F2m , the concrete matrix M(α) is near-MDS if and only if α is
not a root of any polynomial in the set S.

Algorithm 1 Check near-MDS property and generate near-MDS conditions
Input: an n× n matrix M with entries in {0} ∪ 〈x〉
Output: a condition set S if M is near-MDS and ⊥ otherwise

1: S ← ∅
2: for g ∈ [1, n− 1] do . n is the order of M
3: for all g × (g + 1) and (g + 1)× g submatrix A of M do
4: f(x)← 0, T ← ∅
5: for all g × g submatrices B of A do . there are (g + 1) submatrices
6: Compute the numerator p(x) of the fraction det(B)
7: f(x)← gcd(f(x), p(x)) . Compute the greatest common divisor
8: if f(x) = 0 then
9: return ⊥ . M is not near-MDS

10: else
11: Compute the set T of the irreducible factors of f(x)
12: S ← S ∪ T
13: return S

It should be pointed out that the main approach has been adopted in constructing
recursive MDS matrices [WWW13, SDMS12, AF13]. In these works, the authors investigate
matrices with entries of the form

∑
i aiL

i, and deduce the MDS conditions by polynomials
in L, where L is a sparse nonsingular m×m binary matrix and ai ∈ F2. Recently, this
method was exploited by Beierle et al. in [BKL16] to generate generic lightweight MDS
matrices with entries in finite fields. These previous works motivate our approach to
producing generic near-MDS matrices over finite fields. In this section, by Lemmas 2 and
5, Algorithm 1 are proposed to check the near-MDS property of a matrix and generate the
near-MDS conditions for a near-MDS matrix.

3.2 Generic near-MDS circulant matrices
We describe the strategy for searching near-MDS circulant matrices. Some generic near-
MDS circulant matrices with optimal parameters are shown. We also present some
nonexistence results on near-MDS matrices with a small number of distinct entries.

Circulant matrices. Circulant matrices are widely adopted in the design of diffusion
matrices. Following this approach, we will focus on circulant matrices in this section. First,
the definition of a circulant matrix is recalled.
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Definition 5. An n × n matrix M is circulant if its rows are generated by successive
cyclic shifts of its first row. That is, there exist n elements a0, a1, · · · , an−1 such that the
(i, j)-entry of M can be represented by M [i, j] = a(j−i) modn. We denote the matrix M by
circ(a0, a1, · · · , an−1).

The fact that each row of a circulant matrix is a cyclic shift of the first row enables one
reuse the multiplication circuit to save implementation cost [KPPY14, LS16, SKOP15].
To construct the lightest diffusion matrices, it is natural to consider the circulant matrix
with lightest field elements. It seems that the {0, 1}-matrices are the best candidates.
Choy and Khoo [CK08] proved the following results on {0, 1}-matrices over finite fields.

Lemma 6. ([CK08]) Let n be a positive integer. For n = 2, 3, 4, the n × n circulant
matrices

circ(0, 1, · · · , 1) =


0 1 · · · 1
1 0 · · · 1
...

...
. . .

...
1 1 · · · 0


are near-MDS matrices over any finite field. For n > 4, any {0, 1}-matrices of order n
cannot be near-MDS.

It is readily seen that the matrices proposed in Lemma 6 are optimal near-MDS
matrices in terms of XOR count. The 4 × 4 matrix circ(0, 1, 1, 1) has been adopted in
several lightweight block ciphers such as PRINCE [BCG+12], FIDES [BBK+13], PRIDE
[ADK+14] and Midori [BBI+15], and MANTIS [BJK+16].

For n ≥ 5, the nonexistence of near-MDS {0, 1}-matrices leads to the study of circulant
matrices with three or more distinct elements such as matrices with entries in the set
{0, 1, γ}, where γ ∈ F2m \{0, 1}. We use the criteria for efficient diffusion matrices proposed
by Junod and Vaudenay [JV04] to maximize the occurrences of 0 and 1. Let g = 1 in
Lemma 2, then there is at most one 0 in each row and each column of M . Hence, the
following result can be obtained.

Proposition 1. Suppose that n ≥ 5 and circ(a0, a1, · · · , an−1) is near-MDS. Let Nδ be
the number of δ in the multiset {a0, a1, · · · , an−1}. Then, we have

N0 ≤ 1 .

Moreover, if N0 = 1, then N1 ≤ n− 2.

Search strategy. Our main idea is to reduce the search space and explore the most
efficient matrices first. By Proposition 1, we always assume that N0 = 1. Lemma 3
indicates that the branch numbers of a circulant matrix are preserved by rotation of the
first row. Hence, we will focus on circulant matrices of the form

circ(0, a1, a2, · · · , an−1) , (1)

where ai ∈ 〈x〉 for 1 ≤ i ≤ n − 1 and 〈x〉 = {xk | k ∈ Z}. To explore the most efficient
matrices first, we restrict the nonzero entries ai’s of the circulant matrices to elements in
the set {1, x, x−1} ⊆ 〈x〉.

We first exhaustively search the matrices with maximal N1. Note that the XOR count
of x and x−1 are identical, hence they will be treated equally. More specifically, N1 is
initialized as n− 2 and Nx +Nx−1 as 1. For any candidate matrix, we apply Algorithm
1 to check the near-MDS property and generate the condition set (cf. Algorithm 1) if it
is near-MDS. If no near-MDS matrix is found, then Nx +Nx−1 is increased by one and
N1 decreased by one. This exhaustive search process continues until all near-MDS with
optimal parameters are found.
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Table 1: Optimal parameters with maximum N1 and minimum Nx +Nx−1

n N0 N1 Nx Nx−1 Number of Matrices
5 1 3 1 - 4
6 1 3 2 - 5

1 3 1 1 18
7 1 4 1 1 12
8 1 4 1 2 8

1 4 2 1 8
9 1 2 2 4 6

1 2 4 2 6

Experimental results. We present some experimental results on near-MDS matrices of
order n for 5 ≤ n ≤ 9. In Table 1, the parameters N0, N1, Nx, Nx−1 with maximum N1 and
minimum Nx +Nx−1 are listed. We also show some good matrices and the corresponding
near-MDS conditions in Table 2. A concrete near-MDS matrix is obtained by substituting
x with α ∈ F2m such that α is not a root of any polynomial listed in the Conditions column
of Table 2. Moreover, the determinants of the constructed matrices are given. For the
complete list, see Table 9 in Appendix B.

For n = 7, we also find near-MDS matrices consisting of three distinct elements 0, 1, x
with N1 = 3 and Nx = 3. For instance, the matrix circ(0, x, x, 1, x, 1, 1) is near-MDS under
the following conditions

x, x+ 1, x2 + x+ 1, x3 + x+ 1, x3 + x2 + 1 .

However, for 8 ≤ n ≤ 10, experimental results 0, 1, x do not suffice to construct near-MDS
circulant matrices of order n. Indeed, this fact holds for all n ≥ 8 and we summarize it in
the following theorem, the proof of which is given in Appendix A.

Theorem 1. For any n ≥ 8, there is no near-MDS circulant matrix with three distinct
entries 0, 1, x, where x ∈ F2m \ {0, 1}.

It is worth noting that Theorem 1 partially generalizes the results of Lemma 6. Further,
we pose the following conjecture based on experimental results.

Conjecture 1. For any n ≥ 10, there is no near-MDS circulant matrix with four distinct
entries 0, 1, x, x−1, where x ∈ F2m \ {0, 1}.

3.3 Instantiations of generic near-MDS matrices
Considering the cryptographic applications of diffusion matrices, we focus on F2m with
m = 4 and 8. It is readily seen that the discussion in this section also applies to any other
m. For 5 ≤ n ≤ 8, we list in Table 3 some n × n near-MDS matrices over F24 and F28

from the generic matrices proposed in Table 2. The minimal polynomial of the nonzero
elements of each matrix and XOR count of the first row are also presented.

We first explain how to choose the minimal polynomial of α in the case that n = 5.
According to Table 2, the matrix circ(0, α, 1, 1, 1) is near-MDS if and only if α is not a
root of any of the following polynomials:

x, x+ 1, x2 + x+ 1.

This implies that the minimal polynomial of α can be any irreducible polynomial except
for the above three polynomials. For m = 4, one can take the minimal polynomial as
x4 + x + 1 or x4 + x3 + 1 since wt⊕(α) is minimal, i.e., wt⊕(α) = 1 in these cases (see
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Table 2: Examples of generic near-MDS circulant matrices of order 5 ≤ n ≤ 9

n Coefficients of the first row Conditions to be near-MDS Determinants

5 (0, x, 1, 1, 1)
x

x5 + x3 + x+ 1x+ 1
x2 + x+ 1

6 (0, x, 1, 1, 1, x)
x x4

x+ 1
x2 + x+ 1

7 (0, x, 1, x−1, 1, 1, 1)

x
x+ 1 x7 + x5 + x−1+
x2 + x+ 1 x−3 + x−5 + x−7

x3 + x+ 1
x3 + x2 + 1
x4 + x3 + x2 + x+ 1

8 (0, x, 1, x, x−1, 1, 1, 1)

x

x−8

x+ 1
x2 + x+ 1
x3 + x+ 1
x3 + x2 + 1
x4 + x3 + x2 + x+ 1
x5 + x4 + x3 + x2 + 1

9 (0, x, x−1, x, x, x−1, 1, 1, x)

x

0

x+ 1
x2 + x+ 1
x3 + x+ 1
x3 + x2 + 1
x4 + x+ 1
x4 + x3 + 1
x4 + x3 + x2 + x+ 1
x5 + x2 + 1
x5 + x3 + 1
x5 + x3 + x2 + x+ 1
x5 + x4 + x2 + x+ 1
x5 + x4 + x3 + x+ 1
x5 + x4 + x3 + x2 + 1
x6 + x5 + x4 + x2 + 1
x7 + x4 + x3 + x2 + 1
x7 + x6 + x4 + x+ 1
x12 + x11 + x10 + x9+
x8 + x7 + x6 + x2 + 1

Table 3 in [BKL16]). Further, to make the matrix nonsingular, x4 + x+ 1 is selected as
the minimal polynomial of α since

det(circ(0, α, 1, 1, 1)) = α5 + α3 + α+ 1 = (α+ 1)(α4 + α3 + 1).

For m = 8, as shown in Sect. 2.2, wt⊕(α) = 2 is best possible. One of the polynomials
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Table 3: Near-MDS circulant matrices of order 5 ≤ n ≤ 8 over finite field F24 and F28

Finite fields n First row Minimal polynomial of α XOR counts

5 (0, α, 1, 1, 1) x4 + x+ 1 1 + 3× 4 = 13
F24 6 (0, α, 1, 1, 1, α) x4 + x+ 1 2 + 4× 4 = 18

7 (0, α, 1, α−1, 1, 1, 1) x4 + x+ 1 2 + 5× 4 = 22
8 (0, α, 1, α, α−1, 1, 1, 1) x4 + x+ 1 3 + 6× 4 = 27
5 (0, α, 1, 1, 1) x8 + x4 + x3 + x+ 1 2 + 3× 8 = 26

F28 6 (0, α, 1, 1, 1, α) x8 + x4 + x3 + x+ 1 4 + 4× 8 = 36
7 (0, α, 1, α−1, 1, 1, 1) x8 + x4 + x3 + x+ 1 4 + 5× 8 = 44
8 (0, α, 1, α, α−1, 1, 1, 1) x8 + x4 + x3 + x+ 1 6 + 6× 8 = 54

Table 4: Comparison of XOR counts of near-MDS circulant matrices and known (non-
involutory) MDS matrices of order 5 ≤ n ≤ 8 over F24 and F28

F24 F28

n
Near-MDS MDS Near-MDS MDS
Table 3 [LS16] Table 3 [BKL16]

5 13 20 26 40
6 18 32 36 54
7 - - 44 64
8 - - 54 82

attaining the minimal XOR count is x8 + x4 + x3 + x+ 1 (see Table 7 in [BKL16]). In this
way, two efficient near-MDS matrices over F24 and F28 are constructed respectively from
one generic near-MDS matrix in Table 2. The other matrices in Table 3 are generated in
the same manner.

To compute the XOR count of a circulant matrix, it is convenient to only consider the
XOR count of the first row [KPPY14, LS16, BKL16]. For an n × n circulant matrix A
over F2m , the XOR count of the first row is

(c0 + c1 + · · ·+ cn−1) + (z − 1)m,

where ci is the XOR count of the i-th entry in the row, z is the number of nonzero elements
in the row. For instance, the XOR count of the first row of the matrix circ(0, α, 1, 1, 1) is
1 + 3× 4 = 13 since wt⊕(α) = 1 and wt⊕(0) = wt⊕(1) = 0.

Table 4 compares the efficiency of near-MDS matrices proposed in this paper with the
best known lightweight MDS matrices constructed in [BKL16, LS16]. It is readily seen
that the XOR counts of near-MDS matrices can be around 65% of the XOR counts of
MDS ones of the same order. However, since the near-MDS matrices have slower diffusion
than the MDS ones, a fair comparison should be carried out within a framework combining
the security properties and implementation cost. A notable attempt in this direction is
the new comparison metric figure of adversarial merit (FOAM) proposed by Khoo et al.
in [KPPY14].

4 Near-MDS matrices with the lowest XOR count
It is not easy to define an optimal near-MDS matrix in terms of implementation cost, since
the cost of the matrix largely depends on the implementation technologies. Among many
criteria for efficient diffusion matrices, the XOR count of the matrix is a major feature in
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various implementation methods [KPPY14, LS16, BKL16]. In this section, we concentrate
on the total XOR count of near-MDS matrices over finite fields. First, the exact
value of the maximum occurrences of special entries 0 and 1 are provided. Based on these
results, one can prove that for n = 7, 8 the instantiations of generic near-MDS matrices
in Sect. 3 have the lowest XOR count among all near-MDS matrices of the same order.
Moreover, for n = 5, 6, we also present some near-MDS matrices of order n having the
lowest XOR count.

Let M be a near-MDS matrix of order n over F2m . Denote by v0(M) the number of
entries in M equal to 0 and v1(M) the number of entries in M equal to 1. Let vn0 be the
maximum value of v0(M) for all M . Similarly, let vn1 denote the maximum value of v1(M)
for all M . Then, Proposition 1 and the results in Table 1 together show the following
result on vn0 for 5 ≤ n ≤ 8.

Lemma 7. Let M be a near-MDS matrix of order n. Then we have vn0 = n for 5 ≤ n ≤ 8.

Now we can present the upper bounds on vn1 .

Proposition 2. Let M be a near-MDS matrix of order n. For 5 ≤ n ≤ 8, the upper
bounds of vn1 are shown in Table 5.

Table 5: The upper bounds of vn1 for near-MDS matrix M of order n with 5 ≤ n ≤ 8

n 5 6 7 8
Upper bounds of vn1 16 21 28 32

Proof. We only prove the case that n = 8 since the other cases can be proved in the
same manner. Suppose that M is a near-MDS matrix of order 8. Let k be the maximum
occurrence of the entry 1 in a row of M . To derive the upper bound, we discuss five cases
in terms of the value of k.
Case 1. Suppose that k = 8 and the first row has eight ones. We claim that there are at
most two ones in any other row of M . Otherwise, assume that there are at least three
ones in some row i with i 6= 1. For instance, M can be written as

1 1 1 1 1 1 1 1
...

...
...

...
...

...
...

...
∗ 1 ∗ ∗ 1 1 ∗ ∗
...

...
...

...
...

...
...

...

 .

It is easy to verify that M has a submatrix(
1 1 1
1 1 1

)
.

Then by Lemma 2, M is not near-MDS, which is a contradiction. Thus, the claim is
correct and we have v1(M) ≤ k + 2(n− 1) = 22 .
Case 2. Assume that k = 7 and the first row contains seven ones. It follows from Lemma 3
that the near-MDS property is preserved under the permutation of columns ofM . Without
loss of generality, we can always assume that the first row is (∗1111111). Then we can
claim that there are at most three ones in any other row of M . Otherwise, assume that
there are at least four ones in some row i with i 6= 1. This implies that there are at least
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three ones among the last four entries in row i, as shown below
∗ 1 1 1 1 1 1 1
...

...
...

...
...

...
...

...
∗ ∗ 1 ∗ 1 1 1 ∗
...

...
...

...
...

...
...

...

 .

Similarly, we can derive a contradiction, which indicates the claim is correct. Hence, we
have v1(M) ≤ k + 3(n− 1) = 28 .
Case 3. Let k = 6 and the first row contains six ones. Without loss of generality, we
assume that the first row is (∗ ∗ 111111). The remaining seven rows are partitioned into
two blocks A and B, as shown below(

∗∗ 1 1 1 1 1 1
A B

)
.

Similar to Case 1, there are at most two ones in each row of B. Note that the 2× 7 block
A cannot contain a submatrix of the form 1 1

1 1
1 1

 .

This implies that the block A contains at most nine ones. Thus, we have v1(M) ≤
k + 2(n− 1) + 9 = 29 .
Case 4. Let k = 5 and the first row contains five 1. Without loss of generality, we assume
that the first row is (∗ ∗ ∗11111). The remaining rows are partitioned into two blocks, as
shown below (

∗ ∗ ∗ 1 1 1 1 1
C D

)
.

Similar to Case 1, there are at most two 1’s in each row of D. Since M is near-MDS, the
3× 7 block C cannot contain a submatrix having one of the two forms:

(
1 1 1
1 1 1

)  1 1
1 1
1 1

 .

By considering the maximum occurrence of 1 in a row of C, one can deduce that C contains
at most 13 ones. Then we have v1(M) ≤ k + 2(n− 1) + 13 = 32 for k = 5.
Case 5. For k ≤ 4, we have v1(M) ≤ kn ≤ 32.

By combining the above five cases, we have v1(M) ≤ 32 for any M . This gives
v8

1 ≤ 32.

The explicit near-MDS matrices shown in Table 1 give lower bounds for vn1 . These
together with Proposition 2 yield the following result.

Corollary 1. We have v7
1 = 28 and v8

1 = 32.

By Corollary 1, one can show that the instantiations of the generic near-MDS matrices
proposed in Sect. 3.2 are optimal in terms of XOR counts.

Theorem 2. Let C be the set of generic near-MDS matrices proposed in Sect. 3.2. For
n = 7, 8 and m ≥ 4, if α is a lightest element in F2m and α satisfies the near-MDS
conditions, then the respective instantiations of the matrices in C have the lowest XOR
count among all near-MDS matrices of the same order.
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Proof. Let M be a near-MDS matrix of order n. The XOR count of the matrix M can be
written as

(n(n− 1)− v0(M))m+
∑
β 6=0,1

wt⊕(β) ,

where the sum is over all entries of M not equal to 0 or 1. It follows that

(n(n− 1)− v0(M))m+
∑

β 6=0,1
wt⊕(β) ≥ (n(n− 1)− vn0 )m

+(n2 − vn0 − vn1 ) min
γ 6=0,1

wt⊕(γ) .

The lower bound holds if and only if M satisfies the following conditions:

1. both vn0 and vn1 are attained

2. any entry of M not equal to 0 or 1 has the lowest XOR count, i.e., min
γ 6=0,1

wt⊕(γ) .

For n = 7, 8, it is easy to see that each instantiation of a matrix in C of order n satisfies the
first condition. If α is a lightest element in F2m , then so is α−1 by Lemma 4(ii). Note that
α and α−1 are the only entries of M not equal to 0 or 1. This leads to the second condition.
Hence, the respective instantiations of the matrices in C achieve the lower bound of XOR
count and have the lowest XOR count among all near-MDS matrices of the same order.
Thus, the theorem is proved.

By Theorem 2, for near-MDS matrices of order 7 and 8, the minimum XOR count can
be achieved by circulant matrices. As circulant matrices have many desirable properties
such as efficient serial implementations [LS16], it is interesting to study the existence of
near-MDS circulant matrices attaining minimum XOR count for other orders. However, as
shown by subsequent results, circulant matrices of order 5 and 6 cannot achieve minimum
XOR count. For n = 5 and 6, we give further results on n× n near-MDS matrices with
maximum occurrences of entries 0 and 1. Some experimental results are presented.

To determine v5
1 and v6

1 , by Proposition 2, it suffices to study the existence of the
near-MDS matrix achieving the upper bound in Table 5. We performed an exhaustive
search for near-MDS matrices of order 5 and 6 satisfying the following conditions:

• entries from {0, 1, x}

• v1(M) taken as the upper bound in Table 5

• v0(M) = n and the main diagonal consists of zeros

Experimental results give an affirmative answer to the existence of generic near-MDS
matrices of order 5 and 6 satisfying both v0(M) = n and the value v1(M) attains the
upper bound in Table 5. For instance, the following 5× 5 matrix

0 α 1 1 1
1 0 α 1 1
1 1 0 α 1
α 1 1 0 1
1 1 1 1 0

 (2)

is near-MDS for any α 6= 0, 1 while the 6× 6 matrix
0 α α 1 1 1
1 0 1 α 1 1
1 1 0 1 α 1
1 1 α 0 1 α
1 α 1 1 0 α
α 1 1 1 1 0

 (3)
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is near-MDS for any α 6= 0, 1 and α2 +α+ 1 6= 0. This implies v5
1 = 16 and v6

1 = 21. Since
v1(M) must be a multiple of the order of M if M is circulant, circulant matrices of order
5 and 6 cannot achieve v5

1 and v6
1 respectively. Hence, they cannot attain minimum XOR

count. The following corollary summarizes the above results.

Corollary 2. We have v5
1 = 16 and v6

1 = 21. Moreover, circulant matrices of order 5 and
6 cannot attain minimum XOR count.

Consequently, one can show following result similarly to Theorem 2.

Theorem 3. For n = 5, 6 and m ≥ 3, if α is a lightest element in F2m and α satisfies the
near-MDS conditions, then the generic near-MDS matrices of order n given by (2) and (3)
have instantiations with the lowest XOR count among all near-MDS matrices of the same
order over F2m .

Lightest elements in F2m . With the aid of Theorems 2 and 3, the problem of constructing
near-MDS matrices with lowest XOR count over F2m can be reduced to choosing α as the
lightest element in F2m . Recall that the only restriction on α is that it cannot be a root of
any polynomial in the corresponding condition set. Now we give a primary analysis of the
existence of lightest α satisfying the near-MDS conditions.

Suppose that m ≥ 4. If there exists an irreducible trinomial of degree m, then by
Lemma 4 (i) the lightest α is obtained by taking its minimal polynomial as the irreducible
trinomial. For example, there is irreducible trinomial of degree m for m ≤ 7. However,
there exist no irreducible trinomial of degree m for certain m, such as m = 8. In this case,
we recall the following fact (more details can be found in Sect. 3.2 of [BKL16]).

Fact 1. ([BKL16]) For all m ≤ 2048 for which no irreducible trinomial of degree m exists,
there is γ ∈ F2m having the optimal XOR count, i.e., wt⊕(γ) = 2. Moreover, the minimal
polynomial of γ is irreducible pentanomial of degree m.

It is readily seen that the lightest element γ in Fact 1 satisfies the near-MDS conditions
over F2m for 8 ≤ m ≤ 2048. For 4 ≤ m ≤ 7, one can verify that there exists an α such that
wt⊕(α) = 1 and α satisfies the near-MDS conditions. This leads to the following result.

Corollary 3. Let m be a positive integer with 4 ≤ m ≤ 2048. For n = 5, 6, the generic
near-MDS matrices of order n given by (2) and (3) have instantiations with lowest XOR
count over F2m . For n = 7, 8, the matrices of order n in Table 2 have instantiations with
lowest XOR count over F2m .

Notice that the condition set only excludes a small number of elements in a large field
F2m when m > 2048. So it seems that the lightest α satisfying the near-MDS conditions
exists for all m > 2048. Further study of the existence of α for m > 2048 is left as an open
problem.

Discussions. A long-standing problem in the study of lightweight diffusion matrices over
finite fields is to find the global optimal solutions, i.e., matrices of a given order with
prescribed branch numbers and lowest XOR count. Very recently, Sarkar and Syed in
[SS16] propose 4× 4 MDS matrices with lowest XOR count over F24 and F28 . However,
the construction of global optimal solutions for MDS matrices with other parameters
remains an open problem [JV04, BKL16]. Junod and Vaudenay in [JV04] present some
exact values of the maximum occurrences of 1 in an MDS matrix. However, maximum
occurrence of 1 does not directly ensure the lowest XOR count property. Recently, Beierle
et al. in [BKL16] characterize elements in finite fields with lowest XOR count. Some very
efficient MDS matrices are proposed based on these optimal elements. However, it is still
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unknown whether these local optimal solutions can lead to global optimal solutions for
MDS matrices.

This section shows that local optimal solutions can lead to global optimal solutions
for near-MDS matrices. By Theorems 2 and 3, the near-MDS matrices with lowest XOR
count are constructed with the lightest elements in the finite filed. Moreover, the explicit
near-MDS matrices can be generated systematically from generic matrices rather than by
an ad hoc method for a specific finite field. This also enables one to find global optimal
solutions for near-MDS matrices over a large number of fields.

It is worth noticing that for 2 ≤ n ≤ 4, the near-MDS matrices given in Lemma 6 are
global optimal solutions over any finite field since they are composed of 0 and 1 and attain
vn0 and vn1 simultaneously. This together with Corollary 3 shows that for 2 ≤ n ≤ 8 the
n×n near-MDS matrices with lowest XOR count are obtained over F2m with 4 ≤ m ≤ 2048.

5 Involutory near-MDS matrices
This section presents some results on involutory near-MDS matrices. First, we summarize
involutory near-MDS of order 2, 3 and 4. Then for n > 4 we give a nonexistence result
of circulant involutory near-MDS matrices. Hence, the Hadamard matrices over finite
fields are introduced and their properties are provided. This allows us to find involutory
near-MDS Hadamard matrices of order 8.

Cases n = 2, 3 and 4. It is easy to verify that the near-MDS matrices of order 2 and
4 given in Lemma 6 are involutory. However, for n = 3 the matrix circ(0, 1, 1) is not
involutory. Furthermore, direct computation show that a {0, 1}-matrix of order 3 cannot
be involutory.

To construct generic near-MDS matrices of order 3, we performed an exhaustive search
for matrices with elements in the set {0, 1, x, x−1, x2, 1+x}. Our experimental results show
that there is no 3× 3 generic near-MDS matrices composed of elements {0, 1, x, x−1, x2}.
Indeed, there are 12 generic involutory near-MDS with entries in {0, 1, x, 1 + x}. For
instance, the following matrix  0 1 1

α 1 + α α
1 + α 1 + α α


is involutory near-MDS for any α 6= 0, 1. Consequently, for n = 2, 3 and 4, we list some
lightweight involutory near-MDS matrices of order n in Table 6.

Table 6: Involutory near-MDS matrices of order less than or equal to 4

n Entries Set Examples #Matrices References

2 {0, 1} circ(0, 1) 4 [CK08]

3 {0, 1, α, 1 + α}
α 6= 0, 1

( 0 1 1
α 1 + α α

1 + α 1 + α α

)
12 This section

4 {0, 1} circ(0, 1, 1, 1) 10 [CK08, BKL16]

When n > 4, we have the following result analogous to the fact that there is no circulant
involutory MDS matrix over finite fields [GR15].

Proposition 3. For n > 4, any n× n circulant involutory matrices over F2m cannot be
near-MDS.
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Proof. Consider the case n = 2k, where k > 2. Let M = cicr(a0, a1, · · · , a2k−1) be a
(2k) × (2k) circulant involutory matrix over F2m . Then M2 = In. Direct computation
shows that M2 = circ(a2

0 + a2
k, 0, a2

1 + a2
k+1, 0, · · · , a2

k−1 + a2
2k−1, 0). This implies that

a0 + ak = 1 and ai = ak+i for 1 ≤ i ≤ k − 1. Thus, the sum of the 0-th and k-th columns
of M is (1, 0, · · · , 1, 0, · · · , 0)T. That is , Bd(M) ≤ 4 < n. Therefore, M is not near-MDS.

For n = 2k+1 we haveM2 = circ(a2
0, a

2
k+1, a

2
1, a

2
k+1, · · · , a2

2k, a
2
k). It follows that a0 = 1

and ai = 0 for 1 ≤ i ≤ 2k. Thus, M is not near-MDS.

Proposition 3 inspires us to study other matrices than circulant matrices for n > 4.

Hadamard matrices. The definition of a Hadamard matrix is recalled below.

Definition 6. Let n be a power of 2. An n× n matrix H is Hadamard if there exist n
elements h0, h1, · · · , hn−1 such that the (i, j)-entry of H can be represented by H[i, j] =
hi⊕j . We denote the matrix H by had(h0, h1, · · · , hn−1).

Analogously to circulant matrices, each row of a Hadamard matrix is a permutation of the
first row. This allows one to implement the matrix efficiently [KPPY14, LS16, SKOP15].
The other desirable property is that it is easy to construct involutory matrices from
Hadamard matrices.

Lemma 8. ([SKOP15]) An n× n Hadamard matrix H = had(h0, h1, · · · , hn−1) is invo-
lutory, i.e., H2 = In if and only if h0 + h1 + · · ·+ hn−1 = 1.

By Lemma 2, a non-MDS matrix M is near-MDS if and only if for any 1 ≤ g ≤ n− 1
each g × (g + 1) and (g + 1) × g submatrix of M has at least one g × g non-singular
submatrix. Note that a Hadamard matrix is symmetric, i.e., H = HT. This implies that
there is a one-to-one corresponding between the g × (g + 1) submatrices of a Hadamard
matrix H and the (g + 1)× g submatrices of H. Hence we have the following corollary.

Corollary 4. Let H be a non-MDS Hadamard matrix of order n, where n is a positive
integer with n ≥ 2. Then H is near-MDS if and only if for any 1 ≤ g ≤ n − 1 each
g × (g + 1) (or (g + 1)× g) submatrix of H has at least one g × g non-singular submatrix.

Corollary 4 halves the number of operations in checking the near-MDS property
for Hadamard matrices. Consequently, Hadamard matrices are good candidates for
constructing involutory near-MDS matrices.

Involutory near-MDS Hadamard matrices of order 8. Since we focus on the case n > 4
and the order of a Hadamard matrix is a power of 2, it is natural to consider the case
n = 8. Similar to the search strategy in Sect. 3.1, we limit the entries of the Hadamard
matrix to elements in the set {0, 1, x, x−1, x2}. For had(h0, h1, · · · , hn−1), let Nδ be the
number of times δ occurs in the multiset {h0, h1, · · · , hn−1}. Lemma 8 implies that

N1 +Nxx+Nx−1x−1 +Nx2x2 = 1 (mod 2) . (4)

We also have a trivial counting formula

N0 +N1 +Nx +Nx−1 +Nx2 = 8 . (5)

We perform an exhaustive search for Hadamard matrices with parameters satisfying
Eqs. (4) and (5). Experimental results show that any Hadamard matrix with four or
less distinct entries from {0, 1, x, x−1, x2} cannot be an involutory near-MDS matrix.
Indeed, there are 2688 involutory near-MDS matrices from Hadamard matrices with five
distinct entries 0, 1, x, x−1, x2. Moreover, each of the matrices satisfies N0 = N1 = 1 and
Nx = Nx−1 = Nx2 = 2.
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To further analyze the properties of the involutory near-MDS matrices, the equivalence
classes of Hadamard matrices are recalled from [SKOP15]. Let H = had(h0, h1, · · · , hn−1)
and denote Hσ = had(hσ(0), hσ(1), · · · , hσ(n−1)), where σ is an index permutation. Two
Hadamard matrices H and Hσ are equivalent if σ(i) = i⊕α for α = 0, 1, · · · , n− 1 or σ is
a linear permutation with respect to the XOR operation, i.e., σ(i⊕ j) = σ(i)⊕ σ(j). This
equivalent relation divides the set of Hadamard matrices into equivalence classes.

By Lemma 3 and Theorem 3 in [SKOP15], the following lemma holds.

Lemma 9. ([SKOP15]) Let s be a positive integer. Given the index set {0, 1, · · · , 2s − 1},
there are exactly 2s

∏s−1
i=0 (2s − 2i) distinct index permutations generated by composition

of linear permutations with respect to XOR operation and permutations having the form
σ(i) = i⊕ α.

By Lemma 9 there are exactly 23∏2
i=0(23 − 2i) = 1344 permutations for n = 8. We

compute the equivalence classes of the 2688 involutory near-MDS Hadamard matrices
with five distinct entries 0, 1, x, x−1, x2. The experimental results are summarized in the
following fact.

Fact 2. The 2688 involutory near-MDS Hadamard matrices with five distinct entries
0, 1, x, x−1, x2 can be classified into two different equivalence classes. Two representatives
of the equivalence classes are

had(0, x2, x−1, x2, x−1, x, x, 1) and had(0, x2, x−1, x−1, x2, x, x, 1).

Moreover, each equivalence is exactly the set of matrices obtained by applying the 1344
permutations to the corresponding representative.

The representatives of the equivalence classes and the corresponding condition sets are
listed in Table 7.

Table 7: Involutory near-MDS Hadamard matrices of order 8

Represntatives Conditions to be near-MDS Size of Equivalence Classes

had(0, x2, x−1, x2, x−1, x, x, 1)

x

1344

x+ 1
x2 + x+ 1
x3 + x+ 1
x3 + x2 + 1
x4 + x+ 1

x5 + x4 + x2 + x+ 1

had(0, x2, x−1, x−1, x2, x, x, 1)

x

1344

x+ 1
x2 + x+ 1
x3 + x+ 1
x3 + x2 + 1
x4 + x+ 1

x4 + x3 + x2 + x+ 1
x5 + x3 + 1

Example 1. By taking the minimal polynomial of α as x4 + x3 + 1 and x8 + x4 + x3 +
x+ 1, the matrix had(1, α, α, α2, 0, α2, α−1, α−1) is involutory near-MDS over F24 and F28 ,
respectively. The XOR count is 32 in F24 and 64 in F28 .
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Table 8: The minimum number of active S-boxes for SPN structures with ShiftRows and
near-MDS matrices of order n

n
# Rounds

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

4 0 4 7 16 17 20 23 32 33 36 39 48 49 52 55 64
5 0 5 9 25 26 30 34 50 51 55 59 75 76 80 84 102
6 0 6 11 36 37 42 47 72 73 78 83 108 109 114 119 144
7 0 7 13 49 50 56 62 98 99 105 111 147 148 154 160 196
8 0 8 15 64 65 72 79 128 129 136 143 192 193 200 207 256

6 Security analysis
This section provides a primary analysis on the security property of near-MDS matrices.
It is well known that resistance against linear and differential cryptanalysis is a standard
design criterion for new designs. For the AES [Dae95, DR02], provable security against
linear and differential cryptanalysis follows from the wide trail design strategy. We apply a
similar proof strategy: after proving a lower bound on the number of active S-boxes for both
differential and linear cryptanalysis, we use the maximum differential/linear probability
of the S-boxes to derive an upper bound for the probability of the best characteristic.
As is commonly done, the probability of the differential/linear hull is estimated by the
probability of the best characteristic. Therefore the main task is to calculate the minimum
number of active S-boxes.

In this section we consider S-boxes with optimal cryptographic properties. We define a
linear layer by combining our near-MDS matrices of order n with the ShiftRows operation
of AES, i.e., the word in row i and column j (0 ≤ i, j ≤ n− 1) cyclically moves to position
(j − i) mod n.

By applying the technique based on Mixed-Integer Linear Programming (MILP)
[MWGP11], we obtain lower bounds on the number of differential and linear active
S-boxes for SPN structures. The results are shown in Table 8. As described above, given
a well-chosen S-box with maximum differential/linear probability, one can immediately
compute the upper bounds for any differential/linear characteristics. From those, it shows
that our linear layers can provide sufficient security against differential/linear cryptanalysis.

We note that the lower bounds also allow to evaluate the efficiency of matrices as well.
For example, by specifying the nonlinear layers (e.g. S-boxes) and hardware architectures,
one can compute the FOAM values of the primitives based on near-MDS matrices. Hence,
our work will be useful for future design of lightweight ciphers based on near-MDS matrices.

Banik et al. in [BBI+15] show that the ShiftRows operation from AES is not always
the best choice when near-MDS matrices are chosen in the MixColumns. It is an open
problem to investigate how to design an efficient shuffle/permutation to speed up the
diffusion with a near-MDS matrix.

7 Conclusion
This paper presents new designs of lightweight linear diffusion layer from lightweight
near-MDS matrices. For 5 ≤ n ≤ 9, some generic n× n near-MDS circulant matrices are
found. The implementation cost of instantiations of the generic near-MDS matrices is
also considered. This allows us to propose some near-MDS matrices of order n having
the lowest XOR count among all near-MDS matrices of the same order, where 5 ≤ n ≤ 8.
Further, we provide some results on involutory near-MDS matrices of small orders and
propose involutory near-MDS Hadamard matrices of order 8. Finally, we give a primary
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analysis of the security of the proposed linear layers.
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A Proof of Theorem 1
Before presenting the proof we introduce some definitions of strings from [CLRS09]. A
string over a finite set S is a sequence of elements of S. In the proof we focus on strings
over set {1, x}. A substring s′ of a string s is an ordered sequence of consecutive elements
of s. Define a run of a string to be the maximal string of consecutive identical elements
[MS77]. We call a string and a run of length k a k-string and a k-run respectively. For
instance, the 8-string 11xxx1xx has four runs: 11, xxx, 1, xx.

Proof. Lemma 6 implies that there is no near-MDS circulant matrix with only two entries
0, 1 or 0, x. So we now assume that N1Nx > 0. Note that N0 can be 0 or 1 by Proposition 1.
We first consider the case N0 = 1. As stated in Sect. 3.2, one only needs to consider the
circulant matrices of the form circ(0, a1, a2, · · · , an−1).

To prove the result, it suffices to consider the strings of length three, i.e., aiajak
with 1 ≤ i, j, k ≤ n− 1. A matched pair of strings ai1ai2ai3 and aj1aj2aj3 satisfies the
following two conditions:

1. there exists an integer k such that jl − il ≡ k ( modn) and k 6≡ 0 ( modn) for
l = 1, 2, 3;

2. ai1ai2ai3 = aj1aj2aj3 as strings over {1, x}.

Indeed, the existence of a matched pair yields that the matrix circ(0, a1, a2, · · · , an−1) has
the 2× 3 submatrix (

ai1 ai2 ai3
aj1 aj2 aj3

)
=
(
ai1 ai2 ai3
ai1 ai2 ai3

)
with three singular 2× 2 submatrices. Then, by taking g = 2 in Lemma 2, we conclude
that the matrix circ(0, a1, a2, · · · , an−1) is not near-MDS. Hence, to prove the theorem,
we aim to find the matched pairs of the (n− 1)-string s = a1a2 · · · an−1. One can divide
the proof into four different cases in terms of the length of the longest runs (LLR) of s
denoted by LLR(s).
Case 1. LLR(s) ≥ 4. In this case, there exists some i such that aiai+1ai+2ai+3 = aaaa
for a ∈ {1, x}. Hence, aiai+1ai+2 = ai+1ai+2ai+3 = aaa, as required.
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Case 2. LLR(s) = 3. Suppose that aiai+1ai+2 = aaa. If there is another run with length
greater than or equal to two, i.e., ajaj+1 = bb, then we have aiai+1aj = ai+1ai+2aj+1 = aab,
as desired. Otherwise, all remaining runs are 1-runs. According to the position of the
3-run aaa in s, s contains at least one of the following five substrings:

ababaaa babaaab abaaaba baaabab aaababa .

Direct verifications show that there is at least one matched pair.
Case 3. LLR(s) = 2. The proof of this case can be split into four subcases.
Subcase 3.1 There are at least three distinct 2-runs. Suppose that aiai+1, ajaj+1 and
akak+1 are 2-runs. Then ai = ai+1, aj = aj+1, and ak = ak+1. This leads to a matched
pair aiajak and ai+1aj+1ak+1.
Subcase 3.2 There are exactly two 2-runs aa and bb with a 6= b. Note that all remaining
runs are of length 1. It is readily seen that there can be 0, 2 or at least 4 elements between
aa and bb in s.

First, suppose that there are at least four elements between aa and bb. This yields the
substrings ababa or babab of s. Thus, a matched pair occurs.

Secondly, if there are exactly two elements between aa and bb, i.e., s has the sub-
string aababb (resp. bbabaa), then s contains the substrings baababb or aababba (resp.
abbabaa or bbabaab). In these cases, it is easy to find a matched pair. For instance, let
aiai+1ai+2ai+3ai+4ai+5ai+6 = baababb, then we have aiai+1ai+3 = ai+3ai+4ai+6 = bab.

Finally, we suppose that bbaa or aabb is a substring of s. It suffices to consider aabb. In
terms of the position of aabb in s, s contains at least one of the following four substrings:

aabbaba babaabb baabbab abaabba .

For the latter two substrings, it is easy to find a matched pair while a verification of the
first two substrings can be done by considering n = 8 and n ≥ 9. We omit the details here.
Subcase 3.3 There are exactly two aa runs. The relative position of two aa runs in s
implies that s contains at least one of the following four substrings:

aabaab baabaa aababaa babab .

It is obvious that there is at least one matched pair.
Subcase 3.4 There are exactly one 2-run aa. Concerning the position of aa in s, it follows
that s contains at least one of the following five substrings:

aababab baababa babaaba bababaa babab .

Direct verifications show that there is at least one matched pair.
The four subcases together yield Case 3.

Case 4. LLR(s) = 1. It follows that one can always find the substring x1x1x. Thus, in
this case, at least one matched pair exists.

Note that LLR(s) ≥ 1. Then the above four cases combine to give the result when
N1Nx > 0 and N0 = 1. The case that N0 = 0, N1Nx > 0 can be proved in the same
manner. Therefore, the theorem is proved.

B Tables
In Table 9, we provide a list of generic near-MDS circulant matrices of order 5 ≤ n ≤ 9
over the finite field F2m . Based on a generic matrix, one can obtain a concrete near-MDS
matrix by substituting x with α ∈ F2m such that α is not a root of any polynomial in the
corresponding condition set which is given in Table 10. The determinants of the generic
matrices are given as well.
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Note that A and AT have exactly the same properties, including near-MDS property,
determinant and XOR count. So we only list the matrix A when A 6= AT. For instance,
both circ(0, x, 1, 1, 1) and circ(0, 1, 1, 1, x) are near-MDS under certain conditions, but we
only present the former one in Table 9 since circ(0, x, 1, 1, 1) = circ(0, 1, 1, 1, x)T.

Table 9: List of generic near-MDS circulant matrices of order 5 ≤ n ≤ 9

n Coefficients of the first row Condition sets
(cf.Table 10) Determinants

5 (0, x, 1, 1, 1)
(0, 1, x, 1, 1) S0 x5 + x3 + x+ 1

6
(0, x, 1, 1, 1, x)
(0, x, 1, x, 1, 1)
(0, 1, x, x, 1, 1)

S0
S0
S2

x4

x4 + x2 + 1
x4 + x2 + 1

(0, x−1, x, 1, 1, 1)
(0, x, x−1, 1, 1, 1)
(0, x−1, 1, x, 1, 1)
(0, x, 1, x−1, 1, 1)
(0, x−1, 1, 1, x, 1)
(0, x, 1, 1, x−1, 1)
(0, x−1, 1, 1, 1, x)
(0, 1, x−1, x, 1, 1)
(0, 1, x, x−1, 1, 1)

S1
S2
S1
S1
S4
S5
S0
S3
S3

x6 + x4 + 1 + x−4 + x−6

x6 + x4 + 1 + x−4 + x−6

x6 + 1 + x−2 + x−4 + x−6

x6 + x4 + x2 + 1 + x−6

x6 + x2 + 1 + x−2 + x−6

x6 + x2 + 1 + x−2 + x−6

x6 + x4 + 1 + x−4 + x−6

x6 + 1 + x−2 + x−4 + x−6

x6 + x4 + x2 + 1 + x−6

7

(0, x−1, 1, x, 1, 1, 1)
(0, x, 1, x−1, 1, 1, 1)
(0, x−1, 1, 1, 1, x, 1)
(0, x, 1, 1, 1, x−1, 1)
(0, 1, x−1, x, 1, 1, 1)
(0, 1, x, x−1, 1, 1, 1)

S6

x7 + x5 + x3 + x+ x−5 + x−7

x7 + x5 + x−1 + x−3 + x−5 + x−7

x7 + x5 + x−1 + x−3 + x−5 + x−7

x7 + x5 + x3 + x+ x−5 + x−7

x7 + x5 + x−1 + x−3 + x−5 + x−7

x7 + x5 + x3 + x+ x−5 + x−7

8

(0, x, x−1, 1, x, 1, 1, 1)
(0, x, 1, x, x−1, 1, 1, 1)
(0, x, 1, 1, x−1, 1, 1, x)
(0, 1, x−1, 1, x, x, 1, 1)
(0, 1, 1, x, x−1, x, 1, 1)
(0, x−1, x, 1, x−1, 1, 1, 1)
(0, x−1, 1, x−1, x, 1, 1, 1)
(0, x−1, 1, 1, x, 1, 1, x−1)
(0, 1, x, 1, x−1, x−1, 1, 1)
(0, 1, 1, x−1, x, x−1, 1, 1)

S7
S8
S8
S7
S8
S7
S8
S8
S7
S8

x−8

x−8

x−8

x−8

x−8

x8

x8

x8

x8

x8

9

(0, x, x−1, x, x, x−1, 1, 1, x)
(0, x, x, x, 1, x−1, 1, x, x−1)
(0, x−1, x, 1, x, x, x, x−1, 1)
(0, x−1, x, x−1, x−1, x, 1, 1, x−1)
(0, x−1, x−1, x−1, 1, x, 1, x−1, x)
(0, x, x−1, 1, x−1, x−1, x−1, x, 1)

S9
S9
S9
S10
S10
S10

0
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Table 10: Condition sets in Table 9

Sets Conditions
S0 x, x+ 1, x2 + x+ 1
S1 x, x+ 1, x2 + x+ 1, x3 + x+ 1
S2 x, x+ 1, x2 + x+ 1, x3 + x2 + 1
S3 x, x+ 1, x2 + x+ 1, x3 + x+ 1, x3 + x2 + 1
S4 x, x+ 1, x2 + x+ 1, x3 + x+ 1, x4 + x3 + 1
S5 x, x+ 1, x2 + x+ 1, x3 + x2 + 1, x4 + x+ 1
S6 x, x+ 1, x2 + x+ 1, x3 + x+ 1, x3 + x2 + 1, x4 + x3 + x2 + x+ 1
S7 x, x+ 1, x2 + x+ 1, x3 + x+ 1, x3 + x2 + 1, x4 + x+ 1, x4 + x3 + 1, x4 + x3 + x2 + x+ 1
S8 x, x+ 1, x2 + x+ 1, x3 + x+ 1, x3 + x2 + 1, x4 + x3 + x2 + x+ 1, x5 + x4 + x3 + x2 + 1

S9

x, x+ 1, x2 + x+ 1, x3 + x+ 1, x3 + x2 + 1, x4 + x+ 1, x4 + x3 + 1
x4 + x3 + x2 + x+ 1, x5 + x2 + 1, x5 + x3 + 1, x5 + x3 + x2 + x+ 1
x5 + x4 + x2 + x+ 1, x5 + x4 + x3 + x+ 1, x5 + x4 + x3 + x2 + 1
x6 + x5 + x4 + x2 + 1, x7 + x4 + x3 + x2 + 1, x7 + x6 + x4 + x+ 1
x12 + x11 + x10 + x9 + x8 + x7 + x6 + x2 + 1

S10

x, x+ 1, x2 + x+ 1, x3 + x+ 1, x3 + x2 + 1, x4 + x+ 1, x4 + x3 + 1
x4 + x3 + x2 + x+ 1, x5 + x2 + 1, x5 + x3 + 1, x5 + x3 + x2 + x+ 1
x5 + x4 + x2 + x+ 1, x5 + x4 + x3 + x+ 1, x5 + x4 + x3 + x2 + 1
x6 + x4 + x2 + x+ 1, x7 + x5 + x4 + x3 + 1, x7 + x6 + x3 + x+ 1
x12 + x10 + x6 + x5 + x4 + x3 + x2 + x+ 1
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