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ABSTRACT
We propose a lattice-based electronic voting scheme, EVOLVE (Elec-

tronic Voting from Lattices with Verification), which is conjectured

to resist attacks by quantum computers. Our protocol involves a

number of voting authorities so that vote privacy is maintained as

long as at least one of the authorities is honest, while the integrity

of the result is guaranteed even when all authorities collude. Fur-

thermore, the result of the vote can be independently computed by

any observer.

At the core of the protocol is the utilization of a homomorphic

commitment schemewith strategically orchestrated zero-knowledge

proofs: voters use approximate but efficient “Fiat-Shamir with

Aborts” proofs to show the validity of their vote, while the au-

thorities use amortized exact proofs to show that the commitments

are well-formed. We also present a novel efficient zero-knowledge

proof that one of two lattice-based statements is true (so-called OR

proof) and a new mechanism to control the size of the randomness

when applying the homomorphism to commitments.

We give concrete parameter choices to securely instantiate and

evaluate the efficiency of our scheme. Our prototype implementa-

tion shows that the voters require 8 milliseconds to submit a vote

of size about 20KB to each authority and it takes each authority

0.15 seconds per voter to create a proof that his vote was valid. The

size of the vote share that each authority produces is approximately

15KB per voter, which we believe is well within the practical bounds

for a large-scale election.
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1 INTRODUCTION
Given how information technology has penetrated almost every

aspect of our world, one could be surprised at the primitive state

of technology used in the process that most influences society:

elections. Electronic voting machines, which required voters to

physically turn up at polling stations to cast their ballots on dedi-

cated machines, saw a brief rise in popularity until the early 2000s,

but many countries have since then gone back to paper-and-pencil

voting amidst worries about security and reliability.

These are definitely genuine concerns. Researchers discovered se-

rious security flaws in several models of voting machines that were

used in elections in the US, the Netherlands, and Germany [19, 22].

Recent news reports on massive security breaches and suspicions of

foreign meddling in national elections have only aggravated those

concerns.

Nevertheless, many countries are warming up to the idea of

online voting, in which voters cast their ballots using their personal

devices from the comfort of their couch. A handful of countries,

including Estonia, Switzerland, and Australia, are already using

online voting for local and national elections, and it is quite a

common tool among private organizations to elect officers and

board members.

There are of course many aspects to securing an online voting

system, but the underlying cryptographic protocol is obviously

an important ingredient. All of the currently deployed electronic

voting systems (e.g., Helios [2], the Swiss voting system [31], and

the Estonian one) are based on cryptographic primitives that rely

on the hardness of factoring or discrete logarithms for their security.

Both of these assumptions are well-known to succumb to attacks by

quantum computers, meaning that, as soon as sufficiently powerful

quantum computers become available, an adversary could use them

to break the vote secrecy of a past election, or to tamper with the

result of an ongoing one. The threat of foreign meddling in elections

gives additional reason for concern: powerful nation states may

very well be the first to build quantum computers, and they may

not be particularly vocal about their achievement.

Fortunately, we do have some cryptographic problems that resist

attacks by quantum computers. Lattices are themost prominent one,

offering a good trade-off between efficiency and security for basic

primitives such as signatures and encryption. For more advanced

protocols, such as those required for electronic voting, lattices tend

to, however, suffer from extremely high bandwidth requirements.

The main difficulty in constructing practical lattice-based pri-

vacy schemes is the lack of efficient zero-knowledge proofs, which

is an important tool in electronic voting schemes to let voters prove
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Voter Auth/Voter Total Size / Voter

Time 8.5ms 0.15s

Size 78KB 18KB 150KB

Table 1: Time and space complexity of the voting scheme
with 4 authorities. Using the parameters of Section 5, each voter ouputs

one OR-Proof and four commitments (one per authority), while each au-

thority outputs one proof per voter.

that they cast a valid ballot. Most lattice-based zero-knowledge

proofs are either Fiat-Shamir proofs with single-bit challenges or

Stern-type proofs [32] with soundness error 2/3, which have to be

repeated many times to reduce the soundness error. Amortization

techniques [6, 14, 18] exist when performing thousands of proofs

in parallel, but these are not very useful when each voter must

prove correctness of his own vote. Lyubashevsky’s “Fiat-Shamir

with Aborts” technique [25] yields much more efficient proofs with

large challenges, but only allows to prove correctness of the state-

ment up to a small multiple of the witnesses, which could be quite

detrimental in the context of voting, as it may allow an attacker to

inflate the weight of this vote.

The only quantum-safe voting protocol that we are aware of [11]

therefore shuns zero-knowledge proofs completely and uses fully-

homomorphic encryption [21] instead. The paper doesn’t give any

implementation details or concrete parameter choices, so it’s hard to

make statements about efficiency, but due to the “heavy machinery”

being utilized, chances are that the protocol is not efficient enough

for medium to large-scale elections.

1.1 Our Contributions
In this paper, we present a new lattice-based electronic voting

scheme that does use zero-knowledge proofs, but overcomes their

inefficiencies by re-organizing the proofs so that the voting author-

ities assist the voters by performing amortized proofs. Our protocol

provably guarantees vote privacy as long as one of a number of

voting authorities is honest, and guarantees consistency (i.e., that

honest votes are correctly counted) even if all voting authorities

are corrupt, all under standard lattice-based assumptions in the

random-oracle model. We suggest concrete choices for the security

parameters and implement a prototype of our protocol. Our exper-

imental results (Table 1) show that voters need less than 10ms to

cast a vote and a complete bulletin (including all commitments and

votes) is of size 150KB, though the proof and verification time is

higher for the authorities these computations can be done after the

vote and are easily parallelizable, which we think is well within

practical bounds for a large-scale election.

To better understand the technical hurdles to obtain this result,

we briefly sketch a voting protocol by Cramer et al. [15] on which

our protocol is based. Let’s say there are NV voters and NA voting

authorities that assist in a binary election, i.e., where each voter

votes zero or one and the result is the sum of the votes. Let’s also

say that there is a public bulletin board where voters can post their

ballots. The authorities jointly compute the tally and post the result

of the election, together with a proof of correctness. The goal is

to obtain vote privacy, meaning that as long as one authority is

honest, the adversary does not learn anything more about the votes

of honest voters than what is already implied by the result, as well

as consistency and universal verifiability, meaning that anyone

can check that all honest votes were counted correctly, even if all

authorities collude to rig the election.

The protocol of Cramer et al. [15] begins by letting each voter

secret-share his vote among the NA authorities and commit to each

of the shares. The voter sends the share and the opening infor-

mation to each authority, and performs an OR-proof [13] to show

that he secret-shared a zero-or-one vote by exploiting a homomor-

phism in the commitment scheme. When the voting phase closes,

all servers check the openings of the commitments they received.

Each authority then publishes the sum of all the shares it received

together with valid opening information, again using the homo-

morphism in the commitments. The result of the election is the

sum of all these partial sums.

There are a number of hurdles to overcome when translating this

approach into lattice-based primitives. The first is that, as discussed

above, lattice-based zero-knowledge proofs are either inefficient or

approximate, while amortization doesn’t help for proofs by indi-

vidual voters. The second is that commitments typically use short

vectors as randomness (i.e., opening information), but applying

homomorphisms accumulates the size of this randomness, which

must be compensated for by choosing larger parameters, which

comes at a big cost in efficiency. The third problem is that the typi-

cal OR-proof technique [13] of XOR-ing challenge values doesn’t

work for lattices, because challenges are polynomials with small

coefficients in a ring, but do not form a group among them.

We address the first problem by strategically splitting up the

burden of the proofs between voters and authorities. Namely, we

let voters prove that they secret-shared a zero-or-one vote using

approximate proofs, but we let the authorities prove that the com-

mitment they received is well-formed, i.e., has short opening infor-

mation. The authorities do so for all voters simultaneously, so they

can use the more efficient amortized proofs [6, 14, 18].

The second problem we address by letting authorities re-commit

to the sum of batches of votes, and by letting them prove in zero

knowledge that the new commitment indeed contains the sum of

all votes in the batch. By repetitively applying this technique, each

authority can keep the randomness growth within bounds, so that

it eventually ends up with a commitment to the sum of all received

shares with short randomness.

Finally, we solve the problem with the OR proofs by not using

polynomials with short coefficients as challenges, but rather per-

mutations over the indices of a polynomial. These permutations do

form a group, so that they can be used to build efficient OR proofs.

The proofs outlined above are constructed using quantum-secure

building blocks via the Fiat-Shamir transform. While there is a

known classical reduction from hard lattice problems to schemes

constructed in this manner, there is no quantum reduction known.

The underlying reason as to why a general proof is unlikely to come

is due to the fact that classically-secure computationally binding
commitments are not known to be binding for a quantum committer

(c.f. [16]). Nevertheless, there are known quantum security proofs

in the QROM for Fiat-Shamir schemes of the same form as ours, but

in which the parameters are set differently [34]. Furthermore, there



are currently no known natural counter-examples of Fiat-Shamir

zero-knowledge proofs (nor of commitment schemes) which are

based on quantum-hard problems via classical reductions, but are

broken by quantum adversaries. It therefore seems reasonable to

assume that such Fiat-Shamir schemes are secure. If one would like

to have a reduction that is in the QROM, one could instantiate the

schemes as in [1] and then use the reduction in [34]. This would,

however, lead to a noticeable increase in the size of the proofs and

public keys.

1.2 Overview of the Cryptographic Tools
Commitment Scheme with “Unbounded” Messages Sizes. We re-

view the lattice-based instantiation of a generic commitment scheme

from [17] to lattices [7].

To commit to an integer x ∈ Zq , we first interpret it as a polyno-
mial in Rq whose constant coefficient is x and all others are 0, then

pick a random vector of polynomials r having small coefficients,

and output [
a
b

]
=

[
A
B

]
r +

[
0
x

]
where the public commitment key

[
A
B

]
is a matrix of uniformly ran-

dom polynomials. To open a commitment

[
a
b

]
one simply computes

the inverse operation [
0
x

]
=

[
a
b

]
−

[
A
B

]
r

This commitment is binding if finding small solutions to the equa-

tion Ar = 0 mod q is hard (since opening a commitment to two dif-

ferent values implies finding small r and r′ such that Ar = a = Ar′),
this problem is called M-SIS (Module Short Integer Solution). The

commitment is hiding if distinguishing

[
A
B

]
r from uniform is hard,

we will show that this problem can be reduced to the M-LWE prob-

lem (Module LearningWith Error). A useful property of this scheme

is that it’s additively-homomorphic, i.e. the sum of two commit-

ments is a commitment to the sum of the messages using the sum

of the randomnesses, however one cannot sum an arbitrary number

of commitments as finding a solution to Ar = 0 mod q (and thus

breaking the binding property) becomes easier as the coefficients

of r grow.

Approximate Zero-Knowledge Proofs. Suppose that A is a matrix

over Rk×ℓ and t is an element in Rk such that there exists an s
with small coefficients satisfying As = t.1 Then it is possible to

very efficiently prove in zero-knowledge using the “Fiat-Shamir

with Aborts” technique that there exist s̄ and c̄ that satisfy As̄ = c̄t.
The coefficients of s̄ are somewhat larger than those of s and the

coefficients of c̄ are very small. Notice that such proofs are not

homomorphic. In other words giving giving a proof for t1 and t2

does not give a proof for t1 + t2 because the c̄i could be different.

This is the main reason why the voters cannot simply use these

types of proofs by themselves to commit to their votes.

1
The parameters that we will use in this paper will typically have k ≈ 7 and ℓ ≈ 2k
with the ring R being Zq [X ]/(X 256 + 1).

Amortized Exact Zero-Knowledge Proofs. If we would like to have
proofs compose homomorphically, we would need to prove the

knowledge of s̄ such that As̄ = γ t for some fixed γ . While this is

quite inefficient for one proof, it can be in fact made very efficient

when needing to prove many such relations simultaneously [6, 14,

18]. If one has a very large number of relations, then one can have

γ = 1. It was shown in [18] that one could apply the improved zero-

knowledge proof from [9] to efficiently prove these linear relations

with γ = 2 when having access to only around a few thousand

relations for security parameter 256. In our voting scheme, this is

the proof system that the authorities will use when proving that

the randomness used by the voters’ commitment scheme contains

small coefficients.

Approximate Zero-Knowledge Proof of an OR of Two Statements.
A classic construction to prove that an elementy belongs in either a

language L(R0) or a language L(R1) is as follows. The prover will

prove both that y ∈ L(R0) and that y ∈ L(R1) but he will cheat

in one of the proofs. If the verifier can make sure that the prover

cheats in exactly one of the proofs without knowing which one

he will effectively be convinced that y ∈ L(R0) ∪ L(R1). Suppose

that the prover P knows a witnessw0 of the fact that y ∈ L(R0), P
can choose a challenge c1 and create a fake proof that y ∈ L(R1).

He then starts an honest proof that y ∈ L(R0) and sends its com-

mitment along with the one from the fake proof to the verifier,

the verifier answers with a challenge c , P finishes his honest proof

but using the challenge c0 = c − c1 instead of c , he then sends the

responses for both proofs. The verifier receives two valid proofs but

he cannot guess which one is a fake as he knows that c0 + c1 = c
but he does not know which of the two challenges was created first.

This proof is sound because once c1 and c are fixed the verifier has

no degree of freedom on the choice of c0, it is Zero-Knowledge

because the verifier cannot distinguish the difference of two chal-

lenges (c−c1) from a challenge (c0). In lattice-based Zero-Knowledge

the challenge is taken to be a small polynomial (e.g. with coeffi-

cients in {0, 1}) meaning that one can easily distinguish between

a challenge and the difference of two challenges (which will have

coefficients in {−1, 0, 1}), hence such a proof would clearly not be

zero knowledge. This problem can be mended by using larger chal-

lenges and restarting the protocol if the difference of the challenges

is not in the right set (i.e. by using rejection sampling), this is the

approach taken in [29] but it results in very inefficient proofs. Note

however that the challenge c sent by the verifier does not need to

come from the same set as c0 and c1, what one needs is that for

a bit b ∈ {0, 1} and any couple (cb , c) the value c1−b is uniquely

fixed (i.e. the prover can cheat on at most one proof) and that c
induces a random permutation over the space of challenges (this

way the verifier cannot know whether c0 or c1 was created first).

With this in mind if the challenge space for c0 and c1 is e.g. the

set of all polynomials with binary coefficients and fixed hamming

weight (we will use a slightly larger but similar challenge space),

then taking c to be a random permutation over the coefficients of

these polynomials is a much better solution. In doing so we obtain

efficient Or-Proofs which we will use to prove that commitments

open to 0 or 1, however these proofs are still approximate. That is,

they prove knowledge of r̄ with small coefficients and a polynomial



¯f with very small coefficients such that

¯f

[
a
b

]
=

[
A
B

]
r̄ + ¯f

[
0
x

]
, and x ∈ {0, 1}.

1.3 Overview of the Construction
We will now explain how we utilize the above building blocks to

build a voting scheme.

We will make the convention that the voters (and information

pertaining to the voters) are numbered 1 through NV using a sub-

script, whereas the information pertaining to the authorities is

numbered 1 through NA and is labeled using a parenthesized super-

script. In particular, for elements x
(j)
i , we will define xi =

NA∑
j=1

x
(j)
i ,

x (j) =
NV∑
i=1

x
(j)
i , and x =

NV∑
i=1

NA∑
j=1

x
(j)
i =

NA∑
j=1

NV∑
i=1

x
(j)
i .

A voter i who wishes to cast a votevi (which is 0 or 1), first splits

vi into NA parts v
(j)
i where the first NA − 1 of them are chosen

uniformly random modulo q and the last share v
(NA)
i is chosen

such that

NA∑
j=1

v
(j)
i = vi (modq). Each v

(j)
i is then interpreted as a

polynomial in the ring Rq whose constant coefficient is v
(j)
i and

the other coefficients are 0. The voter i then uses the commitment

scheme to commit to each share v
(j)
i as[

A
B

]
· r(j)i +

[
0
v
(j)
i

]
=

[
a(j)i
b
(j)
i

]
. (1)

All the commitments are published to the bulletin board. Note that

because the commitment scheme is additively homomorphic, we

have

NA∑
j=1

[
a(j)i
b
(j)
i

]
=

[
ai
bi

]
=

[
A
B

]
· ri +

[
0
vi

]
,

which is a valid commitment to vi (but with slightly larger ran-

domness ri ). Voter i now creates a zero-knowledge OR-proof that

he has knowledge of a vector r̄i with small coefficients and a ring

element
¯fi with very small coefficients such that[

ai
bi

]
· ¯fi =

[
A
B

]
· r̄i +

[
0

vi · ¯fi

]
, and vi ∈ {0, 1}. (2)

This proof πVi also gets posted to the bulletin board.

Each voter now sends to authority j the encryption (under au-

thority j’s public key) of the share v
(j)
i and the randomness under

which this share was committed r(j)i from (1) (one can alternatively

think that the voters simply post this encryption to the bulletin

board). Upon receiving all such encryptions from every voter, au-

thority j needs to create a proof of knowledge that the r(j)i all have

small coefficients. He uses the Amortized Exact Zero-Knowledge

proof to create proofs πAi, j that prove the knowledge of r̂(j)i that

satisfy

A · r̂(j)i = 2a(j)i . (3)

If all NA authorities provide proofs of the above statement, then

using the additive homomorphism of the commitment scheme, we

obtain a proof of knowledge of an r̂i such that

2ai =
NA∑
j=1

2a(j)i =
NA∑
j=1

A · r̂(j)i = A · r̂i . (4)

Combining this with (2), implies that A · (2r̄i − ¯fi r̂i ) = 0. Based
on the hardness of the M-SIS problem, this implies that 2r̄i = ¯fi r̂i .
One can then rewrite (2) as

2 ·

[
ai
bi

]
· ¯fi =

[
A
B

]
· ¯fi r̂i +

[
0

2vi · ¯fi

]
,

and since we choose the challenge set such that
¯fi is invertible in

Rq , we can divide by
¯fi to finally obtain

2 ·

[
ai
bi

]
=

[
A
B

]
· r̂i +

[
0

2mi

]
, and vi ∈ {0, 1}. (5)

Because there is no longer the factor
¯fi which could be distinct

for every voter, the commitment in (5) is additively homomorphic.

In particular, if we compute

2 ·

NV∑
i=1

[
ai
bi

]
=

[
A
B

]
· r̂ +


0

2

NV∑
i=1

vi

 , and vi ∈ {0, 1}, (6)

and r̂ is a vector with small coefficients, then the quantity

2 ·

NV∑
i=1

[
ai
bi

]
is a commitment to twice the total number of 1-votes that have

been cast. If there are many voters, then r̂ =
∑
i r̄i is not small, but

we show how to handle this issue later.

For universal verifiability, we therefore would like the value of

r̂ to be publicly computable. For this to happen, each authority

simply computes

NV∑
i=1

r(j)i = r(j) and reveals it by publishing it to the

bulletin board. Any verifier can simply check that

A · r(j) = a(j). (7)

We now claim that it must be that

r =
NA∑
j=1

r(j) = 2r̂.

From (3), we know that

A · r̂(j) =
NV∑
i=1

A · r̂(j)i = 2a(j).

Combining this with (7) implies that Ar̂(j) = A · (2r(j)). Unless one
can break the M-SIS problem, it must be that r̂(j) = 2r(j), and then

we have

r̂ =
NA∑
j=1

r̂(j) = 2

NA∑
j=1

r(j) = 2r.

Plugging the above into (6) and dividing by 2 implies that[
a
b

]
=

NV∑
i=1

[
ai
bi

]
=

[
A
B

]
· r +


0

NV∑
i=1

vi

 , and vi ∈ {0, 1}. (8)



If r is small enough, then the above implies that

[
a
b

]
is a commit-

ment to the full vote tally

NV∑
i=1

vi , and one can obtain this tally by

computing b − B · r. As long as there are fewer than q voters, we

can exactly recover

NV∑
i=1

vi over the integers.

1.3.1 Reducing the Randomness. An issue that we still need to

deal with is how to make sure that the randomness, when summed

over all the voters, does not grow too much. This is crucial in order

for the final commitment in (6) to be meaningful. A trivial way to

accomplish this is to simply set the parameters large enough so that

a large set of voters can be accommodated. This is an extremely

impractical solution that we would like to avoid.

The way that we can overcome this issue is by making the Au-

thorities create votes of 0 using randomness that is close to the

randomnesses used by the individual voters. For example, if voters

1, . . . , l whose commitments to Authority j are

[
a(j)

1

b
(j)
1

]
, . . . ,

[
a(j)l
b
(j)
l

]
under randomnesses r(j)

1
, . . . , r(j)l , then the Authority can create a

vote of 0 using randomness r′ = r −
∑
i r(j)i , where r is a fresh ran-

domness that comes from the same distribution as the commitment

randomnesses. The Authority would then publish the “vote”

[
a′

b ′

]
,

prove that it’s a zero-vote by proving that there exists some r̂′ such
that [

A
B

]
· r̂′ = 2

[
a′

b ′

]
, (9)

and also prove that there exists a small r̂ such that[
A
B

]
· r̂ = 2 ·

([
a′

b ′

]
+

∑
i

[
a(j)i
b
(j)
i

])
(10)

The proof in (10) can be “amortized-in” with the proofs πAi, j because

the size of the randomness is the same. The proof of (9), however,

contains larger randomness, and so such proofs should be amortized

only among themselves.
2

Notice that because the randomness of the sum of the com-

mitments

[
a′

b ′

]
+

∑
i

[
a(j)i
b
(j)
i

]
=

[
A
B

]
· r is as small as in one voter

commitment, we have effectively reduced the size of the sum of the

randomness in l voter commitments to that of one commitment. If

we do this for every block of l voters, then we effectively reduced

the sum of the randomness by a factor of l .
It’s easy to see that this procedure is repeatable. Once every l

blocks of votes have small randomness, we can consider repeating

this procedure by summing over l such blocks. This will effectively

reduce the total sum of the randomnesses by another factor of l .
If we continue this procedure, then we will be effectively adding

2(NV /l + NV /l
2 + . . .) ≈ 2NV /(l − 1) extra proofs. The advantage

will be that we now only need to worry about the randomness

2
It is also possible to do these proofs in a non-amortized fashion and only get an

approximate proof. In this case, depending on the value of l , the parameters may have

to be increased.

growing by a factor l for the proof in (9). We set our parameters so

that l = 30.

One can also think of the above procedure as the authority sum-

ming up 30 votes, recommitting to the sum using fresh, small ran-

domness, and then giving a proof that he correctly recommitted

to the sum of the votes. In particular, proving that the difference

between his new commitment and the sum of the 30 commitments

is a commitment to 0.

2 PRELIMINARIES
2.1 Notations
We fixn andq to be integers throughout this paper, we denote by Zq

the integers modulo q, which we will represent between −

⌊
q−1

2

⌋
and

⌊
q+1

2

⌋
. We will denote by R the polynomial ring Z [X ] /Xn + 1,

and by Rq the quotient ring R/qR. Elements in Z,R,R, or Rq will

be written in lower case, vectors over Z,R,R, or Rq will be written

in bold face lower case, and matrices will be in bold face upper

case. The Euclidean norm is denoted as ∥·∥, the infinity norm and

l1 norm are denoted respectively as ∥·∥∞, and ∥·∥1. All norms can

be extended to a polynomial f =
∑n−1

0
fiX

i
by considering the

vector (f0, . . . , fn−1) of its coefficients (if said coefficients are in

Zq we consider their representative that lies between −

⌊
q−1

2

⌋
and⌊

q+1

2

⌋
). For a set S we write s

$

← S to denote that s was sampled

at random from S, for a distribution χ we write s ← χ to denote

that s was sampled from χ .

2.2 E-Voting Schemes
We base our syntax and security definitions of one-pass electronic

voting schemes on that of Bernhard et al. [10], but there are some

differences. First, we explicitly model a multi-authority setting

where each authority independently generates its own keys. Second,

ballot testing in our scheme must be performed by the authorities,

who use their secret key in the process. Verification of the entire

election can still be done publicly, though. As ballot testing, tallying,

and verification do not require interaction with the voters, the

authorities do not need to be online for the first part of the election

and only need to run the ballot testing and tallying algorithms once

all the ballots have been cast.

Amulti-authority electronic voting scheme EV is a tuple (Setup,
ASetup,Vote,TestB,Tally,Verify) of algorithms and protocols that

are used by authorities A1, . . . ,ANA and voters with identities

id ∈ I as follows. We consider binary elections (we consider the

more general case of votes in {0, 1}k for k ≥ 1 in Appendix B), i.e.,

where each voter id ∈ I casts a votevid ∈ {0, 1} and the result of the
election is r =

∑
id∈Ivid . We assume that all voters and authorities

have read access and authenticated append-only write access to a

public bulletin board BB, meaning that entries can only be appended

to the board and entries are authenticated (e.g., signed) under the

writer’s identity. Moreover, each voter can only write once to the

bulletin board; authorities can write as often as they want.

• Setup(λ) generates trusted common parameters par .
• ASetup(par) is used by authority Aj to generate a public

key pkj and corresponding secret key skj .



• Vote(par, pk
1
, . . . , pkNA

, id,v) is used by voter id ∈ I to
cast his vote v ∈ {0, 1}. It returns a ballot b that the voter

posts on the bulletin board BB.
• TestB(par, pk

1
, . . . , pkNA

, skj ,b) allows authority Aj to

test whether ballot b is valid or not by returning 1 or 0,

respectively. The ballot is only considered valid after all

NA authorities confirm its validity on the bulletin board BB.
This check can be performed as the votes come in, or only

after the voting phase has ended. The tallying authorities

therefore do not have to be online during the voting phase:

rather than interacting directly with the voters, the tallying

authorities can obtain the ballots from the bulletin board

after voting has ended and discard invalid ballots if needed.

• Tally(par, pk
1
, . . . , pkNA

,BB, skj ) is an interactive proto-

col run among the authorities Aj , j = 1, . . . ,NA, at the

end of which they announce the tally r and proof Π.
• Verify(par, pk

1
, . . . , pkNA

,BB, r ,Π) can be run by anyone

to check the correctness of the election result.

Correctness. Correctness guarantees that, when all parties be-

have honestly, all ballots are deemed valid and the result of the

election is correct. Let id1, . . . , idNV ∈ I be voter identities and

v1, . . . ,vNV be their respective votes. Let par
$

← Setup(1λ); and

(pkj , skj )
$

← ASetup(par) for j = 1, . . . ,NA. For i = 1, . . . ,NV and

j = 1, . . . ,NA let bi
$

← Vote(par, pk
1
, . . . , pkNA

, idi ,vi ), BB[i] ←
bi , and let (r ,Π) be the outcome of the protocol when each au-

thority Aj runs Tally(par, pk
1
, . . . , pkNA

,BB, skj ), j = 1, . . . ,NA.

The scheme is correct if for all i = 1, . . . ,NV and j = 1, . . . ,NA,

the following conditions hold with overwhelming probability: r =∑NV
i=1

vi , TestB(par, pk
1
, . . . , pkNA

, skj ,bi ) = 1, and Verify(par,
pk

1
, . . . , pkNA

,BB, r ,Π) = 1.

Privacy. Privacy requires that an adversary who corrupts NA − 1

authorities and an arbitrary number of voters does not learn any-

thing more about the votes of honest voters than what is revealed

by the election result. The single-authority BPRIV notion of Bern-

hard et al. [10] defines this by requiring that the adversary cannot

tell a bulletin board for a first set of votes with the real election

result and proof from a bulletin board for a second set of votes with

the same result and a simulated proof. The BPRIV notion is not

easily adapted to the multi-authority setting, because the corrupt

authorities would have to be involved in computing the tally for

both bulletin boards. We therefore adapt the notion to require that

the adversary cannot distinguish between the bulletin boards of

two different sets of votes, as long as both sets of votes yield the

same election result, i.e., have the same total number of zero-votes

and one-votes.

The advantage of an adversary A in breaking the privacy of the

electronic voting scheme EV is defined through the experiment

Exppriv,β
A

below as

Advpriv

A
(λ) =

��� Pr[Exppriv,0
A
(λ) = 1] − Pr[Exppriv,1

A
(λ) = 1]

��� ,
whereA is given access to all oracles in the setO = {OVote,OCast,
OTally} as well as read and append-only write access to the bulletin
board BB. The OVote and OCast oracles can be queried as many

times as A wants, but the OTally oracle can only be queried once.

Experiment Exp
priv,β
A

(λ):

par
$

← Setup(1λ) ; pk
1

$

← ASetup(par) ; HV ← ∅

(pk
2
, . . . , pkNA

, st)
$

← A(par, pk
1
)

β ′
$

← AO,BB(st)
HV ′ ← {(id,v0,v1,b) ∈ HV :

∀j ∈ {1, . . . ,NA} : "Aj approves b"∈ BB}
V0 ←

∑
(id,v0,v1,b)∈HV ′ v0 ; V1 ←

∑
(id,v0,v1,b)∈HV ′ v1

If V0 , V1 then return ⊥ else return β ′

Oracle OVote(id,v0,v1):

b
$

← Vote(par, pk
1
, . . . , pkNA

, id,vβ )
HV ← HV ∪ {(id,v0,v1,b)}
BB← BB∥"id casts b"
If TestB(par, pk

1
, . . . , pkNA

, sk1,b) = 1

then BB← BB∥"A1 approves b"
else BB← BB∥"A1 rejects b"

Oracle OCast(id,b):
If "id casts b" ∈ BB and TestB(par, pk

1
, . . . , pkNA

, sk1,b) = 1

then BB← BB∥"A1 approves b"
else BB← BB∥"A1 rejects b"

Oracle OTally:
Run Tally(par, pk

1
, . . . , pkNA

,BB, sk1) with A to obtain (r ,Π)

Return (r ,Π)

Consistency. Consistency requires that the election result is cor-

rect with respect to the votes cast by voters. Bernhard et al.’s notion

of strong consistency [10] requires that individual ballots can be

extracted online. We relax this notion by requiring that, if an elec-

tion finishes successfully, the result must be “realistic” with respect

to the honestly cast votes. Meaning, the result must be at least the

number of honest one-votes and at most the total number of votes

cast minus the number of honest zero-votes. We strengthen the

notion, however, by requiring that this property holds even against

corrupt election authorities. Intuitively, our notion is similar to the

quantitative verifiability goal of Cortier et al. [12]; a formal analysis

and comparison would require further work.

Formally, the advantage of an adversary A in breaking the con-

sistency of EV is defined through the consistency experiment

Expcons

A
below as

Advcons

A (λ) = Pr[Expcons

A (λ) = 1] .

Experiment Expcons

A
(λ):

par
$

← Setup(1λ) ; HV ← ∅

(pk
1
, . . . , pkNA

, st)
$

← A(par)

(r ,Π)
$

← AOVote,BB(st)
HV ′ ← {(id,v,b) ∈ HV :

∀j ∈ {1, . . . ,NA} : "Aj approves b"∈ BB}
h0 ← |{(id, 0,b) ∈ HV ′}| ; h1 ← |{(id, 1,b) ∈ HV ′}|
t ← |{b : ∀j ∈ {1, . . . ,NA} : "Aj approves b"∈ BB}|
If Verify(par, pk

1
, . . . , pkNA

,BB, r ,Π) = 1

and (r < h1 or r > t − h0)

then return 1 else return 0

Oracle OVote(id,v):

b
$

← Vote(par, pk
1
, . . . , pkNA

, id,v)



HV ← HV ∪ (id,v,b)
BB← BB∥"id casts b"

2.3 Homomorphic Commitments
Our first building block will be a commitment scheme, which will

allow voters to commit to their vote. Additionally using an homo-

morphic commitment scheme (i.e. one in which the sum of two

commitments is a commitment to the sum of the associated mes-

sages) will allow our voting protocol to use the sum of all of the

voters’ commitments as a commitment to the result of the election.

A commitment scheme is a triple (KeyGen, Com, Open) such that:

• K ← KeyGen(1λ) generates the public commitment key.

• (c,d) ← ComK(m) generates the commitment c and open-

ing d for messagem
• m′ ← OpenK(c,d) opens the commitment c using the

opening d (potentiallym′ =⊥ if d is not a valid opening of

c)

We will ignore the subscript K on the commitment and opening

algorithm when the key is clear from the context and we will

denote by c = Com(m;d) the commitment ofm with opening d . We

consider computationally binding/hiding commitment schemes, i.e.

schemes with the following properties:

• Correctness : For any messagem OpenK(ComK(m)) =m
with overwhelming probability.

• Computational Hiding : A commitment hides the com-

mited message. It is computationally hard for any PPT

adversaryA to generate messagesm0,m1 such thatA can

distinguish between ComK (m0) and ComK (m1).

• Computational Binding :A commitment cannot be opened

to two messages. It is computationally hard for any PPT

adversary A to generate a triple (c,d,d ′) such that (c,d)
opens tom and (c,d ′) opens tom′ form ,m′.

We will consider additively homomorphic commitment schemes,

i.e. schemes such that if OpenK(c,d) =m and OpenK(c
′,d ′) =m′,

then OpenK(c +c
′,d +d ′) =m+m′ (this property will be restricted

to openings with small enough norm, c.f Section 3.1).

2.4 Zero-Knowledge Proofs of Knowledge
Our second building block will be proofs of knowledge, they will

be used to prove that the voters commited to correct votes. We will

consider relaxed ZKPoK (Zero-Knowledge Proof of Knowledge) as

defined in [9]. They differ from standard Σ-protocols in that the

soundness extractor recovers a witness that lies in a somewhat

larger language than the one used for the secret.

Definition 2.1. Let S = (P ,V ) be a two-party protocol, where V
is PPT, and let R, R′ be binary relations such that R ⊂ R′. Then

S is called a Σ′-protocol for R,R′ with challenge set C, public

input y and private inputw , if and only if it satisfies the following

conditions:

• Three-move form: The protocol is of the following form:

The prover P computes a commitment t and sends it to V .

The verifier then draws a challenge c
$

← C and sends it to P .
The prover sends a response s to the verifier. Depending on
the protocol transcript (t , c, s), the verifier finally accepts

or rejects the the proof. The protocol transcript (t , c, s) is
called accepting if the verifier accepts.

• Completeness: Whenever (x ,w) ∈ R, the verifier V ac-

cepts with probability at least 1 − α .
• Soundness: There exists a PPT algorithm E (the knowl-

edge extractor) such that, for any (x ,w) ∈ R and determin-

istic prover P∗(x) which succeeds in makingV accept with

probability p = 1/|C| + ε over the choice of c
$

← C, E can

extract (x ,w ′) ∈ R′ in expected time poly(|x |)/ε
• Special honest-verifier zero-knowledge (HVZK):There

exists a PPT algorithm Sim (the simulator) taking x ∈ L(R)
and c ∈ C as inputs, that outputs Sim(x , c) = (t , s) so that

the triple (t , c, s) is indistinguishable from an accepting

protocol transcript generated by a real protocol run.

We will use the non-interactive flavor of the ZKPoK by applying

the Fiat-Shamir transform [20], i.e. the protocol can be made non-

interactive in the random oracle model by replacing the challenge

sampling of V by a hash of (x , t).

2.5 Rejection Sampling and the Normal
Distribution

For a protocol to be zero-knowledge, the output of the prover needs

to be independent of his secret. In certain situations achieving this

independence requires rejection sampling to ensure a target distri-

bution (e.g. [25]). We use discrete Gaussians when sampling errors

in our proofs of knowledge as this allows for tighter parameters.

Definition 2.2 (Continuous Normal Distribution). The continuous
Normal distribution over Rr centered at v with standard devia-

tion σ is defined by the probability density function ρrv,σ (x) =(
1√

2πσ 2

)r
e
−
∥x−v∥2

2σ 2

Definition 2.3 (Discrete Normal Distribution). The discrete Nor-
mal distribution over Zr centered at v with standard deviation σ is

defined by the probabilitymass functionDr
v,σ (x) = ρrv,σ (x)/ρrσ (Zr )

For a polynomial f ∈ R we will denote by f ← Dn
σ the fact that

the coefficients of f come from the distribution Dσ

Lemma 2.4 (Tail-Cut Bound [5]). Pr

[
∥z∥ ≥ 2σ

√
r ; z← Dr

σ
]
<

2
−r

Theorem 2.5 (Rejection sampling [25] Theorem 4.6). LetV be
a subset of Zr with elements of norm less thanT , leth be a distribution
over V, let σ = 11T . Consider the following algorithms:
Rej :

(1) v← h
(2) z← Dr

v,σ
(3) Output (v, z) with probability min

(
Dr
σ (z)/(3Dr

v,σ (z)), 1
)

F :

(1) v← h
(2) z← Dr

σ
(3) Output (v, z) with probability 1/3

The distributions output by both of these algorithms are statistically
close, i.e. the output z of Rej is a discrete Normal distribution cen-
tered on 0. Moreover the probability that Rej outputs something is
exponentially close to 1/3



2.6 M-SIS and M-LWE
The M-SIS (Module Short Integer Solution) and M-LWE (Module

Learning With Error) problems introduced in [24] are new variants

of the Ring-SIS [26, 30] and Ring-LWE [27] problems often used in

lattice-based constructions. Module problems are a generalization

of their Ring counterparts in that instead of using operations over

a large polynomial ring (e.g. of dimension 1024 or 2048) the module

variants use operations on matrices of smaller polynomials (e.g.

a matrix of size 4 or 8 containing polynomials of dimension 256),

this allows for more modular implementations as the underlying

ring does not need to be changed to accommodate new security

parameters.

Definition 2.6 (M-SIS). WedefineM-SISq,n,d,m,β as follows: Given

A
$

← Rd×mq , find z ∈ Rm such that Az = 0 mod q and 0 < ∥z∥ ≤
β .

Remark that w.l.o.g the last block of sized×d of A can be taken to

be the identity matrix (simply by left multiplying by the inverse of

this block which has non-zero determinant with high probability).

Let ψ be an error distribution over R, let s ∈ Rdq . We define As,ψ

to be the distribution over Rdq × R obtained by choosing a vector

a
$

← Rdq , and e ← ψ , and returning (a, ⟨a, s⟩ + e). We will use

the normal form of the M-LWE problem in which the secret are

sampled from the same distribution as the errors.

Definition 2.7 (Decision M-LWE). Let Ψ be a family of distribu-

tions over R, we define (the decision variant of) M-LWEq,n,d,Ψ

as follows: Let ψ ∈ Ψ, let s ← ψd ; the goal is to distinguish be-

tween arbitrarily many independent samples from As,ψ and the

same number of independent samples fromU (Rdq ,Rq ).

2.7 Invertible polynomials
For extraction of witnesses in our zero knowledge protocols it will

be useful that challenges (which will be polynomials of infinity

norm equal to 1) and even differences of challenges are invertible

in Rq . For this we use the following lemma adapted from [28]:

Lemma 2.8 (Theorem 1.1 [28]). If q is prime, q = 17 mod 32,
and q > 2

20 then any f ∈ Rq such that 0 < ∥ f ∥∞ ≤ 2 has an inverse
in the ring.

3 CRYPTOGRAPHIC PRIMITIVES
3.1 Commitment
In this section we describe the lattice-based homomorphic com-

mitment we will use, the security of this commitment scheme

relies on the hardness of the M-LWE and M-SIS problems. Let

d ∈ N, let σ ∈ R, Br be a positive real bound. We define a com-

mitment with key space R
(d+1)×(2d+1)
q , message space Rq , open-

ing space

{
r ∈ R2d+1, ∥r∥ ≤ Br

}
, and commitment space Rd+1

q
(adapted from [7], which is a lattice-based instantiation of a generic

commitment proposed in [17]):

Keygen(1λ) :

• Let A′
$

← R
d×(d+1)
q

• Let A =
[

A′ Id
]
∈ R

d×(2d+1)
q

• Let B
$

← R
1×(2d+1)
q

• Output C :=

[
A
B

]
∈ R
(d+1)×(2d+1)
q

Commit(m ∈ Rq ) :

• Let r← Dn(2d+1)
σ

• Output Com(m; r) := Cr +
[

0
m

]
∈ Rd+1

q

Open(c ∈ Rd+1

q , r ∈ R2d+1

q ) :

• If:

– ∃m′ ∈ Rq s.t c − Cr =
[

0
m′

]
– ∥r∥ ≤ Br

• Then outputm′

• Else output ⊥

Theorem 3.1. The commitment scheme described above is compu-
tationally hiding under the M-LWE assumption and computationally
binding under the M-SIS assumption.

Proof. The proof is close to the one of [7] but we use M-LWE

as a computational assumption rather than statistical security as it

allows for better parameters.

Binding Property: Suppose an adversary A generates a triple

(c, r, r′) such that Open(c, r) = m and Open(c, r′) = m′ where
m,m′ are valid messages and m , m′. Using the opening algo-

rithm we have that B(r − r′) = m −m′ , 0, thus r − r′ , 0 and

∥r − r′∥ ≤ 2Br . Additionally A(r−r′) = 0, i.e. we have a solution of

norm less than 2Br for the M-SISq,n,d,2d+1,2Br challenge defined

by A.

Hiding Property: We show that an adversary that can distinguish

a commitment from uniform can break the M-LWE problem (which

clearly implies the computational hiding property given in Sec-

tion 2.3). Let A generate a messagem, suppose A can distinguish

Com(m) from the uniform distribution over Rd+1

q with non neg-

ligible probability. Let C =
[

X Y
]
, with X ∈ R(d+1)×d

q and

Y ∈ R(d+1)×(d+1)
q , be the public commitment key. Let U = Y−1X,

since X is sampled uniformly, so is U. Consider the function that

maps y ∈ Rd+1

q to Y−1

(
y −

[
0
m

] )
, this function maps the uni-

form distribution to itself and maps the distribution of Com(m)
to the M-LWEq,n,d,Dn

σ
distribution for the matrix U. Indeed if

y = Cr +
[

0
m

]
then Y−1

(
y −

[
0
m

] )
=

[
U I

]
r. A is thus a dis-

tinguisher for M-LWEq,n,d,Dn
σ
. �

By using Theorem 2.4 it is clear that our commitment scheme

will be correct with overwhelming probability as long as Br ≥

2

√
n(2d + 1)σ , however we will need a larger gap between σ and

Br to be able to use the homomorphic properties of the commitment

scheme.

3.2 OR Proof for Homomorphic Commitments
In this section we describe an or proof for our commitment scheme,

i.e. a zero knowledge proof that a commitment c opens to a value

m ∈ {0, 1}. As stated in Section 1.2, the proof is relaxed in the

sense that it only proves knowledge of a randomness r such that



f c opens to a message f m for some small f ∈ Rq . For a fixed

matrix C ∈ R(d+1)×(2d+1)
q , we first define the two binary relations

for which we want to prove the disjunction:

R0 =
{
(c, r) ∈ Rd+1

q × R2d+1, c = Cr, ∥r∥ ≤ BOR

}
R1 =

{
(c, r) ∈ Rd+1

q × R2d+1, c = Cr +
[
0
1

]
, ∥r∥ ≤ BOR

}
We also define the two relaxed binary relations from which the

soundness extractor will be able to recover a witness.

R
′
0
=

{
(c, r, f ) ∈Rd+1

q × R2d+1 × R,

f c = Cr, ∥r∥ ≤ B′OR , 0 < ∥ f ∥ ≤ 2

√
60

}
R
′
1
=

{
(c, r, f ) ∈Rd+1

q × R2d+1 × R,

f c = Cr + f

[
0
1

]
, ∥r∥ ≤ B′OR , 0 < ∥ f ∥ ≤ 2

√
60

}
Let C be the set of all polynomials with coefficients in {−1, 0, 1}

with exactly 60 nonzero coefficients, i.e.

C =
{
f ∈ R, ∥ f ∥∞ = 1, ∥ f ∥

1
= 60

}
.

Our OR-Proof will use the challenge space Π = Perm(n) × {0, 1}60

(where Perm(n) is the set of all permutations over the coefficients

of vectors of dimension n). An element π = (s, b) ∈ Π acts on a

polynomial in C by permuting its coefficients according to s and

changing the sign if the ith nonzero coefficient if bi = 1. Remark

that for any f ,д ∈ C, for π
$

← Π we have Pr [π (f ) = д] = 1/|C|.

Let σOR be a positive real parameter, BOR be a positive real bound,

and H be a collision resistant hash function that maps arbitrary

inputs to the uniform distribution over Π. We can now define our

OR-proof for homomorphic commitments:

ΠOR(c = Cr +
[

0
m

]
, r,m ∈ {0, 1}):

(1) r1−m ← D
n(2d+1)
σOR

(2) f1−m
$

← C

(3) t1−m := Cr1−m + f1−m

[
0

1 −m

]
− f1−mc

(4) ρ ← D
n(2d+1)
σOR

(5) tm := Cρ
(6) π := H (c, t0, t1)

$

← Π
(7) fm = π

2m−1(f1−m )
(8) rm = ρ + fmr

(9) Abort with probability 1 −min

(
D
n(2d+1)
σOR (rm )

3D
n(2d+1)

fm r,σOR
(rm )
, 1

)
(10) Output (r0, r1, f0, f1)

VerifyOR (c, (r0, r1, f0, f1)):

(1) Let t0 := Cr0 − f0c

(2) Let t1 := Cr1 + f1

[
0
1

]
− f1c

(3) Let π = H (c, t0, t1)

(4) Check ∥r0∥ ≤ B′OR
(5) Check ∥r1∥ ≤ B′OR

(6) Check f0 ∈ C
(7) Check f1 = π (f0)

Remark that we could, as in [29], use a challenge f ∈ C and compute

f1−m = f − fm . But since C is not stable by difference this would

leak information about m which would force us to use another

rejection sampling and significantly increase the slack of the proof.

Using Π as the challenge space allows us to cleverly circumvent

this issue and obtain much better parameters.

Theorem 3.2. If σOR ≥ 22 ∗
√

60BOR , B′OR ≥ 2

√
n(2d + 1)σOR ,

then ΠOR is a zero knowledge proof of knowledge for the language
R0 ∨ R1, with soundness extractor in R′

0
∨ R′

1
.

Proof.

Correctness: Using Theorem 2.5 with σOR ≥ 22

√
60BOR ≥ ∥ fmr∥

we have that the rejection step accepts with probability 1/3 and thus

the proof outputs a result after an average of 3 runs. By construction

of the proof the condition f1 = π (f0) is verified on an honest

proof. Moreover using Lemma 2.4 we have for b ∈ {0, 1}, ∥rb ∥ ≤

2

√
n(2d + 1)σOR ≤ B′OR with overwhelming probability.

Zero-knowledge: We construct a simulator Sim. For (c, r) ∈ R0 ∨

R1 and π ∈ Π, Sim does the following:

(1) f0
$

← C

(2) f1 = π (f0)

(3) For b ∈ {0, 1}, rb ← D
n(2d+1)
σOR

(4) For b ∈ {0, 1}, tb = Crb + fb

[
0
b

]
− fbc

(5) Abort with probability 2/3

(6) output (r0, r1, f0, f1)

Using Theorem 2.5 the distribution of the output of the simulator

is identical to the one of an honest prover.

Soundness Let (c, r) ∈ R0∨R1, let P
∗(c) be a deterministic prover,

i.e. P∗(c) always queries H on the same input and his probability

of success only depends on the output of H . Suppose that P∗(c)
succeeds with probability p = 1/|C| + ε over the randomness of the

challenge π . We construct a soundness extractor E which extracts

r′′, f ′′, in poly(|(c, r)|)/ε calls toH , such that (c, r′′, f ′′) ∈ R′
0
∨R′

1
.

E first runs P∗(c) on fresh challenges π
$

← Π until P∗(c) outputs a
valid proof (c, (r0, r1, f0, f1)), this takes expected time O

(
1

1/ |C |+ε

)
.

E then runs P∗(c) on random challenges until it outputs a valid

proof (c, (r′
0
, r′

1
, f ′

0
, f ′

1
)) such that either f0 , f ′

0
or f1 , f ′

1
. Suppose

P∗(c) has produced both of these proofs, let b ∈ {0, 1} be such

that fb , f ′b , let (c, t0, t1) be the hash query made by P∗(c), since
both proofs output by P∗(c) verify correctly, we have both tb =

Crb + fb

[
0
b

]
− fbc and tb = Cr′b + f ′b

[
0
b

]
− f ′b c, which implies:

(fb − f ′b )c = C(rb − r′b ) + (fb − f ′b )

[
0
b

]
Let r′′ = rb − r′b , f

′′ = fb − f ′b , then (c, r
′′, f ′′) ∈ R′

0
∨ R′

1
.

We still need to prove that P∗(c) outputs a proof such that fb , f ′b



with probability at least ε .

Pr

[
P∗(c) succeeds ∧ (f0 , f ′

0
∨ f1 , f ′

1
)
]

= Pr

[
P∗(c) succeeds

]
− Pr

[
P∗(c) succeeds ∧ (f0 = f ′

0
∧ f1 = f ′

1
)
]

= 1/|C| + ε − Pr

[
P∗(c) succeeds ∧ (f0 = f ′

0
∧ π (f0) = π

′(f0)
]

≥ 1/|C| + ε − Pr

[
π (f0) = π

′(f0)
]

= ε

�

3.3 Amortized Proof
In this section we want to give a proof of knowledge of a small

preimage for a one-way function. This proof can be used to prove

that a commitment c opens to 0, by proving knowledge of r such
thatCr = c, or it can be used to simply prove knowledge of the value

that c commits to, by proving knowledge of r such that Ar = a (with
a the top part of c). The proof given in this section avoids the caveat

of the OR-proof from the previous section where the extracted

randomness r was such that there is a small polynomial f such that

f c = Cr +
[

0
f x

]
, in this section we will always have f = 2. This is

particularly useful because it entails that proving knowledge for

two commitments implies proving knowledge for their sum (with

of course a larger extracted randomness), which was not true for

the previous proof where summing the extracted values would give

an opening of f1c1 + f2c2 for some small polynomials f1, f2; it is
not clear how one would extract an opening for c1 + c2 from this.

As explained in Section 1.2, there are no efficient constructions to

prove knowledge of a single secret, however in the context of our E-

voting scheme each authority will prove knowledge of many secrets

at once (one per voter). We can thus use the construction of [14, 18]

which achieves quasi-optimal slack and negligible soundness error

when amortizing over enough secrets. We first define the binary

relation for which we will prove knowledge of a witness, let t ∈ N,

let X ∈ Rt×(2d+1)
q (in our scheme we will use either X = C ∈

R
(d+1)×(2d+1)
q or X = A ∈ Rd×(2d+1)

q ), let s ∈ N be the number of

secrets we amortize over, let BAmo and B′Amo be two positive real

bounds.

RAmo,X =

{
(xi , ri )i ∈[s] ∈

(
Rtq × R

2d+1

q

)s
,

∀i ∈ [s] : xi = Xri ∧ ∥ri ∥ ≤ BAmo

}
The binary relation for the soundness extractor will be:

R
′
Amo,X =

{
(xi , ri )i ∈[s] ∈

(
Rtq × R

2d+1

q

)s
,

∀i ∈ [s] : 2xi = Xri ∧ ∥ri ∥ ≤ B′Amo

}
We use the amortized zero-knowledge scheme from [14, 18], which

we will denote by ΠAmo,X , as a black box algorithm (the descrip-

tion of the algorithm is rather lengthy so we refer to the cited

paper for the full scheme, we discuss our choice of parameters

and its validity in Section 5). The algorithm ΠAmo,X takes as in-

put (xi , ri )i ∈[s] ∈ RAmo,X and outputs a proof P , the verification

algorithm VerifyAmo,X takes as input (xi )i ∈[s] and a proof P and

accepts or rejects.

Theorem 3.3. If B′Amo ≥ 2684n
√

2d + 1BAmo , and s ≥ 2209,
then ΠAmo,X is a zero knowledge proof of knowledge for the language
RAmo,X, with soundness extractor in R′Amo,X.

We now briefly discuss the parameter choices made for our amor-

tized proof. We do not go into much detail as the description of the

proof itself is rather cumbersome. An important point however is

that the construction given in [18] depends on a parameter α which

does not affect security nor the size of the proof (per voter) but

dictates the efficiency of the proof as well as the number of voters

needed to amortize. For any α ≥ 2 the number of voters needed for

amortization
3
grows in O

(
1

log
2 α

)
and the time complexity of both

the prover and the verifier grow in O(α). It is clear that increasing
α past a certain point will yield little advantage at a high cost in

computation time, however simply setting α = 2 means we would

need to amortized over more than 10600 voters to have 128 bits of

post quantum security. We set α = 16, which means that a little

more than 2800 voters are enough for amortization, at the cost of

our proofs taking 8 times longer to compute than for α = 2. This

time cost is not much of an issue since the amortized proofs are

computed by the authorities after all votes have been cast and are

not an urgent matter.

We should point out that after the submission of this paper, Baum

and Lyubashevsky [8] constructed a different amortized proof sys-

tem that only requires approximately 500 proofs for the amortiza-

tion advantages to fully kick-in. We can therefore use this latter

proof system in our voting protocol when there is a small number

of voters.

4 OUR E-VOTING SCHEME
4.1 The Scheme
We instantiate our voting scheme according to the definition given

in Section 2.2. We split the tallying algorithm in two parts, this algo-

rithm in our E-Voting definition is interactive between authorities

A1, . . . ,ANA . In our instantiation there is no need for interaction,

each authorityAj can run an algorithm Tallyj (par ,pk1, . . . ,pkNV ,

BB, skj ) and publish on the bulletin board its partial tally t (j) and

proof πA,(j), anyone can then run Tally(par ,pk1, . . . ,pkNV ,BB) to
compute the total tally and final proof.

Setup(λ) :

• generate parameters n,q,d,σ .

• C :=

[
A
B

]
← Keygen(1λ), with C ∈ R(d+1)×(2d+1)

q .

• output par := n,q,d,σ ,C

Let

(
KGen(1λ),Enc,Dec

)
be a CCA-Secure public key encryption

scheme, which the authorities will use to obtain the shares of the

randomness of each voter.

ASetupj(par ) :

• (pkj , skj ) ← KGen(1λ)

3
The exact number of voters needed for amortization with k bits of post-quantum

security is p2
where p is the first prime larger than 4k 1+1/logα

9+logα + 1



• Give skj to Aj
• output pkj

To cast a bulletin, voter i will share his vote into NA additive shares

and compute a commitment c(j)i for each of them. He proves that

the sum of these commitments is a commitment to either 0 or 1 and

then encrypts the randomness r(j)i under the public key pkj so that

each authority can open one share of the vote. He finally posts his

vote, proof, commitments, and encryptions on the bulletin board

along with a signature.

Votei(par ,pk1, . . . ,pkNA , idi ,vi ) :

• v
(j)
i

$

← Zq s.t. vi =
∑NA

1
v
(j)
i

• r(j)i ← D
n(2d+1)
σ

• c(j)i := Com
(
v
(j)
i ; r(j)i

)
• ri :=

∑NA
1

r(j)i
• ci :=

∑NA
1

c(j)i
• πVi = ΠOR (ci , ri )

• e(j)i = Enc(r(j)i ,pkj )

• bi =
(
idi ,π

V
i , (c

(j)
i , e

(j)
i )j ∈[NA]

)
• Sign and publish bi on the bulletin board

Before tallying the votes each authority Aj will check whether

the bulletins have been properly cast. i.e. for each bulletin bi , Aj
checks the signature on bi , the proof that vi ∈ {0, 1} and that

the encryption of r(j)i under his public key decrypts to a valid

randomness.

TestBi, j(par ,pk1, . . . ,pkNA , skj ,bi ) :

•

(
idi ,π

V
i , c
(1)

i , e
(1)

i , . . . , c
(NA)
i , e(NA)

i

)
:= bi

• Check that bi was signed by voter idi
• Verify(πVi )

• r(j)i := Dec(e(j)i , skj )

• Check




r(j)i



 ≤ 2

√
n(2d + 1)σ

Each authority Aj will compute its share t(j) of the total tally as

well as a proof that t(j) has been computed correctly. To do so Aj

first decrypts e(j)i for each bulletin bi to recover randomness r(j)i .

He then proves that for each voter i , r(j)i is a valid opening of c(j)i
and finally outputs r(j), the sum over i of all r(j)i (the share t(j) of

the final tally can be obtained by opening c(j) the sum of the c(j)i
using the r(j) output by Aj ) as well as the proofs he computed.

Note that w.l.o.g we will consider in all the following algorithms

that all the bulletins on the bulletin board were tested and accepted

by all the authorities (otherwise we can just discard the rejected

bulletins and adjust NV to the number of remaining bulletins).

Tallyj (par ,pk1, . . . ,pkNA ,BB, skj )

•

(
idi ,π

V
i , c
(1)

i , e
(1)

i , . . . , c
(NA)
i , e(NA)

i

)
:= bi , For (bi )i ∈NV ∈

BB
• ∀i, r(j)i := Dec(e(j)i , skj )

• πA,(j) =
(
πA

1
, . . . ,πANV

)
= ΠAmo,A

(
a(j)

1
, . . . , a(j)NV

, r(j)
1
, . . . , r(j)NV

)

• r(j) =
∑NV

1
r(j)i

• Sign and publish πA,(j), r(j) on the bulletin board

To compute the total tally, anyone can simply recover the random-

nesses r(j) published by each authority Aj , compute the corre-

sponding commitment c(j) =
∑

c(j)i and open it to the partial tally

t(j). The total tally is then the sum of the partial tallies.

Tally(par ,pk1, . . . ,pkNA ,BB)

• For each authority Aj , j ∈ [NA] recover r(j) on BB

• ∀j, c(j) :=
∑NV
i=1

c(j)i

• ∀j,
[

0
t(j)

]
:= c(j) − Cr(j)

• t :=
∑NA

1
t(j)

• publish t

The verification algorithm can be run by anyone to check that the

final tally is correct (i.e. the voting scheme is publicly verifiable).

To do so one simply verifies all the proofs output by the voters and

authorities and checks that the opening of the total tally has been

done correctly (by computing it again).

Verify(par ,pk1, . . . ,pkNA ,BB, t)

• For each i ∈ [NV ] , j ∈ [NA], recover c(j)i ,π
V
i ,π

A
i, j on BB.

• ∀i , verify πVi
• ∀i, j, verify πAi, j
• ∀j, c(j) :=

∑NV
i=1

c(j)i

• ∀j,
[

0
t(j)

]
:= c(j) − Cr(j)

• Check that t =
∑NA

1
t(j)

For correctness we need all the proofs to verify correctly, which will

be true with overwhelming probability for appropriate parameters

(cf. Section 5), we also need the test on the norm of r(j)i to suc-

ceed, which will be true with overwhelming probability by using

Lemma 2.4, and we need for the commitment of the partial tallies to

open correctly, i.e. we need




r(j)



 ≤ Br . We can fix the parameters

so that this condition is verified, however the norm of r(j) grows
linearly with the number of voters which, as we discuss in the next

section, heavily impacts the efficiency of this scheme.

Dealing with Misbehaving Authorities. A malicious authority

could prevent a voter from casting his vote by claiming that the

voter’s ballot is invalid. Since the TestB algorithm requires the

secret key of the authority, the authority’s claim cannot be publicly

verified. This situation can be improved by letting voters store the

randomness used in the encryption of e(j)i and, in case their ballot

is incorrectly claimed to be invalid, reveal r(j)i and the randomness

to show that the authority is at fault.

4.2 Improved Voting Scheme
Amajor caveat in the scheme presented in Section 4.1 is that param-

eters grow linearly in the number of voters. Indeed for correctness

a verifier needs to be able to open the sum over all voters of the

commitments of the vote shares, this implies that the bound Br
on the size of correct openings grows linearly in the number of



Com(v1,2, r1,2)

Π(r1,2 small)

Π(v1,2= v1,1+v2,1)

Com(v1,1, r1,1)

Π(r1,1 small)

Π(v1,1 = v1 + v2)

Com(v1, r1)

Π(r1 small)

Com(v2, r2)

Π(r2 small)

Com(v2,1, r2,1)

Π(r2,1 small)

Π(v2,1 = v3 + v4)

Com(v3, r3)

Π(r3 small)

Com(v4, r4)

Π(r4 small)

Figure 1: Example of the improved tallying for an authority.
At each level s fresh randomnesses ru,s are sampled and the authority com-

mits to the sum of the votes of the previous level. The authority computes

a proof that each new randomness is small and that it commits to the right

value. Finally the authority publishes all the commitments and proofs as

well as the opening, here r1,2, of the top level commitment which opens to

the sum of the votes (i.e. v1,2 = v1 + v2 + v3 + v4).

voters. Increasing this bound heavily impacts the parameters of the

scheme, e.g. if we fix n = 256 and q ≃ 2
31
, then for ∼ 100 bits of

security we require a dimension d = 7 for 100 voters and d = 12 for

100 000 voters. This nearly doubles the commitment size, proof size

and communication cost per voter (another issue with the previous

scheme is that privacy is nontrivial, indeed revealing the sum of the

randomnesses used makes it so that the privacy cannot be easily

proven). We avoid this problem by using the fact that the authorities

know the shares of many commitments and can thus create new

commitments for the sum of their associated messages (this is the

solution discussed in Section 1.3.1). e.g. Imagine authorityAj has re-

ceived the commitments and openings c(j)i = Com(v(j)i ; r(j)i , ) from
voters 1 to NV , Aj can choose l << NV and compute new com-

mitments c(j)
1,1, . . . , c

(j)
NV /l,1

, where c(j)i,1 = Com(
∑l i
l (i−1)+1

v
(j)
i ; r(j)i,1)

with fresh randomnesses r(j)i,1 and publish these commitments on

the bulletin board. Notice that c(j) =
∑NV

1
c(j)i opens to the same

message as c(j)
′
=

∑NV /l
1

c(j)i,1 (assuming both sums are valid com-

mitments). However the randomness in the commitment c(j)
′
will

be approximately l times smaller than the one in c(j) which means

that c(j)
′
can be a valid commitment even if c(j) is not. By proving

in zero knowledge that for i ≤ NV /l the commitment c(j)i,1 is valid

and opens to the same value as

∑l i
l (i−1)+1

c(j)i we can ensure that

the scheme remains secure even if parameters are only set so that

c(j)
′
is valid and not c(j). This effectively allows us to reduce Br

by a factor l. This process can be iterated by summing the c(j)i,1 by

buckets of l and outputting new commitments c(j)i,2 to the sum of

the corresponding messages with fresh randomnesses, once again

accompanied by a proof that each commitment is valid and opens

to the same value as a sum of c(j)i,1 (an example of such summations

with buckets of size l = 2 is given in Figure 1).

Each authority can repeat this process until there are less than l
commitments to be summed, resulting in a bound Br that grows
linearly in l but remains independent of the number of voters.

On the other hand this new protocol will output an overhead of

∼ NV /(l − 1) commitments (more precisely NV /l +NV /l
2 + . . . ex-

tra commitments) and 2 additional proofs (which can be amortized

over) for each new commitment.

Tallyj (par ,pk1, . . . ,pkNA ,BB, skj )

•

(
idi ,π

V
i , c
(j)
1
, e(j)

1
, . . . , c(j)NV

, e(j)NV

)
:= bi , For (bi )i ∈NV ∈ BB

• ∀i, r (j)i,0 := Dec(e(j)i , skj )

• ∀i,
[

0
v
(j)
i,0

]
:= c(j)i − Cr(j)i

• For s ∈
(
1, . . . ,

⌈
logl (NV )

⌉)
:

– For u ∈ (1, . . . , ⌈NV /l
s ⌉):

∗ r(j)u,s ← D
n(2d+1)
σ

∗ r(j)u,s
′

:= r(j)u,s −
ul∑

x=(u−1)l+1

r(j)x,s−1

∗ v
(j)
u,s :=

ul∑
x=(u−1)l+1

v
(j)
x,s−1

∗ c(j)u,s := Com
(
v
(j)
u,s ; r(j)u,s

)
∗ c(j)u,s

′
:= c(j)u,s −

ul∑
x=(u−1)l+1

c(j)x,s−1

∗

[
a(j)u,s
b(j)u,s

]
:= c(j)u,s

• πA,(j) = ΠAmo,A

(
a(j)u,s , r

(j)
u,s

){
s ∈

(
0, . . . ,

⌈
logl (NV )

⌉)
u ∈ (1, . . . , ⌈NV /l

s ⌉)

• πA,(j)
′
= ΠAmo,A

(
c(j)u,s

′
, r(j)u,s

′){
s ∈

(
1, . . . ,

⌈
logl (NV )

⌉)
u ∈ (1, . . . , ⌈NV /l

s ⌉)

• c(j)Tot =
(
c(j)u,s

){
s ∈

(
1, . . . ,

⌈
logl (NV )

⌉)
u ∈ (1, . . . , ⌈NV /l

s ⌉)

• Sign and publish πA,(j),πA,(j)
′
, c(j)Tot , r

(j)
1, ⌈logl (NV )⌉

on the

bulletin board

To compute the total tally one only needs to open the commitments

c(j)
1, ⌈logl (NV )⌉

for each j ∈ NA as these are commitments to the

partial tallies of each authority.

Tally(par ,pk1, . . . ,pkNA ,BB)

• For j ∈ [NA] recover c(j)
1, ⌈logl (NV )⌉

and r(j)
1, ⌈logl (NV )⌉

on BB

• ∀j,
[

0
t(j)

]
:= c(j)

1, ⌈logl (NV )⌉
− Cr(j)

1, ⌈logl (NV )⌉

• t :=
∑NA

1
t(j)

• publish t

To verify the election one needs to verify the OR-Proof of each user,

the proof of correct opening of each c(j)u,s , and the proof that c(j)u,s
′

opens to zero. The verifier can then recompute the tally and check

that it has been done correctly.

Verify(par ,pk1, . . . ,pkNA ,BB, t)

• For each i ∈ [NV ], recover π
V
i on BB.

• ∀i , verify πVi
• ∀j ∈ [NA] , ∀(s,u) ∈

(
1, . . . ,

⌈
logl (NV )

⌉)
×(1, . . . , ⌈NV /l

s ⌉)

recover π
A,(j)
u,s and π

A,(j)
u,s

′
from BB



Parameter Notation Value

Ring dimension n 256

Modulus q 2
3
1 − 2

7 − 2
5 + 1

Module size d 7

Commitment std deviation σ 1

Number of voters NV arbitrary

Number of authorities NA 4

"Bucket" size l 30

Table 2: A possible set of parameters for our E-Voting
scheme. These parameters achieve a post-quantum security of 119 bits in

time and 93 bits in space for privacy, as well as 180 bits in time and 141 bits

in space for consistency.

• ∀j,u, s verify πA,(j)u,s and π
A,(j)
u,s

′

• For j ∈ [NA] recover c(j)
1, ⌈logl (NV )⌉

and r(j)
1, ⌈logl (NV )⌉

on BB

• ∀j,
[

0
t(j)

]
:= c(j)

1, ⌈logl (NV )⌉
− Cr(j)

1, ⌈logl (NV )⌉

• Check that t =
∑NA

1
t(j)

We prove privacy and consistency in Appendix A and we discuss

how to set the parameters in Section 5.

5 PARAMETERS
In this section we review the bounds imposed on the parameters

of our scheme by the correctness and security of the vote, and we

propose concrete parameters in Table 2 as well as benchmarks from

our implementation of the scheme.

The correctness and security of our scheme impose the following

bounds on the parameters:

• Correctness of πV : BOR ≥ 2NA
√
n(2d + 1)σ

• Zero-knowledge of πV : B′OR ≥ 44

√
60n(2d + 1)BOR

• Correctness of πA: BAmo,1 ≥ 2

√
n(2d + 1)σ

• Zero-knowledge of πA: B′Amo,1 ≥ 2684n
√

2d + 1BAmo,1

• Correctness of πA
′
: BAmo,2 ≥ 2(l + 1)

√
n(2d + 1)σ

• Zero-knowledge of πA
′
: B′Amo,2 ≥ 2684n

√
2d + 1BAmo,2

• Consistency of the vote (equation (3)): 2B′OR ≤ Br

• Consistency of the vote (equation (4)): 2

√
60NAB

′
Amo,1 ≤

Br
• Consistency of the vote (equation (7)): (l + 1)B′Amo,1 ≤ Br
• Consistency of the vote (equation (8)): B′Amo,2 ≤ Br

Using the security analysis of [4] and [3] to assess the hardness

of M-LWE and M-SIS, we set our parameters as in Table 2 (we

arbitrarily fix the number of authorities to 4, anything larger than

2 is enough for security and this does not impact performance sig-

nificantly). Due to the improved E-voting scheme of Section 4.2,

the number of voters does not affect the security at all and can

thus be taken arbitrarily large. Using these parameters and the

cryptanalysis of [3, 4] we obtain a post-quantum security of 119

bits in time and 93 bits in space for the privacy of our scheme, as

well as a post-quantum security of 180 bits in time and 141 bits in

space for consistency. We have implemented the complete voting

scheme in C. The main computational problems in the scheme are

Voter Authority per voter Verification per Voter

total total sampling OWF total

Time 8.5ms 0.15s 33.2% 62.9% 0.15s

Table 3: Timings for our implementation of the voting
scheme simulating an election with 11000 voters.

the sampling of discrete Gaussian vectors and multiplication of

polynomials in Zq [X ]/(X
n + 1). For the sampling we have imple-

mented a two-stage Knuth-Yao sampler. We have taken great care

to ensure that the statistical distance between the sampled vectors

and the exact discrete distribution is below 2
−100

. This required

computing the probabilities and the lookup table for the sampler

with a multiprecision library. We used pari [33] for this task. For the

fastest possible multiplication in rings of the given form, one usu-

ally chooses the prime q in such a way that Zq contains a 2n-th root

of unity. This then implies that the modulusXn +1 splits into linear

factors over Zq and allows for using an NTT-based multiplication

algorithm. Unfortunately, the security requirements of our scheme

prevent q from being chosen in this way. Instead of completely re-

sorting to a general algorithm that works for multiplication modulo

arbitrary polynomials, we have exploited the fact that for our prime

q, Xn + 1 does in fact split into 16 factors. This allowed us to use

a general multiplication algorithm only after 4 stages of NTT. We

have used our own NTT implementation and the highly optimized

FLINT library [23] for the base case multiplication. FLINT uses a

variant of Kronecker substitution for this task.

Table 3 gives the results of an experiment conducted with 11000

Voters. In that instance each authority Aj will amortize proofs

over 4000 commitments (we use 4000 commitments rather than the

minimum of 2809 so that the data structures used in the amortized

proofs are simpler to implement) and thus compute 3 amortized

proof to obtain πA,(j) as well as 1 amortized proof to compute

πA,(j)
′
. The total time per server is of 41min, we give times per

voter in Table 3. We have used a laptop equipped with an Intel

Skylake i7 CPU running at 2.6 GHz to perform all tests.
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A SECURITY ANALYSIS OF THE VOTING
SCHEME

In this section we prove the privacy and consistency of our E-

voting scheme as defined in Section 4. For privacy we consider the

following advantages for an adversary A:

• AdvCCA
A
(λ) the advantage ofA in the CCA security game

of the encryption scheme.

• AdvHid
A
(λ) the advantage of A over the Hiding property

of the commitment scheme.

Since the zero-knowledge of both the OR-Proof and the amortized

proof are statistical, the probability of distinguishing between the

simulator and the actual proof is less than 2
−λ

.

Theorem A.1. The advantage of any PPT adversary A over the
privacy of our E-voting scheme is at most:

Advpr iv
A
(λ) ≤ NV

(
2AdvCCAA (λ) +

l

l − 1

AdvHid
A (λ) + 2

−λ+1

)
+2
−λ+2

Proof. We use a game based proof:

Game G0 : In this game we run Exp
pr iv,0
A

as defined in Section 2.2.

The voting, casting and tallying oracle are run honestly by the

simulator using choice bit β = 0 and thus votes v0,i for i ∈ [NV ].
Game G1,i≤NV : In this game we modify the honest voting oracle

OVote(id,v0,v1) so thatwhen it runsVote(par ,pk1, . . . ,pkNA , idi ,v0),

the OR-proof for ci = Com(vi ; ri ) is not done honestly but simu-

lated. Note that when simulated the proof is independent of the

randomness ri and vote v0,i . The advantage of the adversary in

distinguishing between Game G1,i−1 and Game G1,i (where we

consider Game G0 as Game G1,−1) is zero if Vote is never called

on idi (i.e. idi corresponds to a corrupted voter) and 2
−λ

otherwise.

AdvG1,i
A
≤ AdvG1,i−1

A
+ 2
−λ

Game G2 : In this game we modify the tallying oracle of the first

authority (the honest one) to make πA,(1) independent of the de-

crypted randomnesses (r(1)i )i ∈[NV ]. i.e. we modify the Tally
1
(par ,

pk1, . . . ,pkNA ,BB, sk1) oracle so that the proof πA,(1) is computed

using the simulator of the amortized proof.

AdvG2

A
≤ Adv

G1,NV
A

+ 2
−λ

Game G3 : In this game we modify the Tally
1
(par ,pk1, . . . ,pkNA ,

BB, sk1) oracle so that the proof πA,(1)
′
is computed using the

simulator of the amortized proof.

AdvG3

A
≤ AdvG2

A
+ 2
−λ

Game G4,i≤NV : In this game we modify the voting oracle for iden-

tity idi so that it outputs the encryption e(1)i := Enc(0,pk1) instead

of e(1)i := Enc(r(1)i ,pk1). The simulator also modifies the Tally
1

oracle so that it uses r(1)i without decrypting e(1)i .

AdvG4,i
A
≤ AdvG4,i−1

A
+ AdvCCAA (λ)

Game G5,i≤NV At this point all the values published by the ora-

cles OVote and OTally
1
are independent of the votes (v0,i )i ∈[NV ]

except for the commitments output by OVote. We would like to use

the hiding property of the commitment to change c(1)i = Com(v(1)i ,

r(1)i ) to c(1)i = Com(v(1)i + v1,i − v0,i , r
(1)

i ). Doing so implies that
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the commitment c(1)u,s
′
for u = ⌈i/l⌉ and s = 1 will no longer be a

commitment of zero but a commitment of v1,i −v0,i . This does not

matter since the proof πA,(1)
′
is now simulated and thus indepen-

dent of the existence of a witness that c(1)u,s
′
commits to zero.

AdvG5,i
A
≤ AdvG5,i−1

A
+ AdvHid

A (λ)

Game G
6,1≤s≤⌈logl (NV )⌉−1,1≤u≤⌈NV /l s ⌉ : Now that the votes have

been changed from v0,i to v1,i we need to change the values of

the commitments of the partial sums in order for c(1)u,s
′
to be com-

mitments to zero, this will be needed to change πA,(1)
′
back to

an honest proof. To do so we let v0,u,s =
ul∑

x=(u−1)l+1

v
(j)
0,x,s−1

and

v1,u,s =
ul∑

x=(u−1)l+1

v
(j)
1,x,s−1

(where v0,i,0 = v0,i and v1,i,0 = v1,i ).

We can now change the commitments c(j)u,s = Com
(
v
(j)
u,s ; r(j)u,s

)
to

c(j)u,s = Com
(
v
(j)
u,s +v1,u,s −v0,u,s ; r(j)u,s

)
and the partial sums are

verified.

AdvG6,i
A
≤ AdvG6,i−1

A
+ AdvHid

A (λ)

Game G7,i≤NV : We revert the randomness encryptions to e(1)i =

Enc(r(1)i ), this modification is consistent with the tallying scheme

as the randomness used have not been modified.

AdvG7,i
A
≤ AdvG7,i−1

A
+ AdvCCAA (λ)

Game G8 : We compute the proof πA,(1)
′
honestly. This is possible

because all commitments c(1)u,s
′
are commitments of zero made with

the appropriate randomnesses.

AdvG8

A
≤ Adv

G7,NV
A

+ 2
−λ

Game G9 : Similarly we compute the proof πA,(1) honestly.

AdvG9

A
≤ AdvG8

A
+ 2
−λ

Game G10,i≤NV : We compute the proof πi honestly. This is possi-
ble because ci is still a commitment to either zero or one with the

same randomness as before.

AdvG10,i
A
≤ AdvG10,i−1

A
+ 2
−λ

Game G11 We runExp
pr iv,1
A

, this game is identical toGame G10,NV .

AdvG11

A
= Adv

G10,NV
A

�

We now consider the consistency of our voting scheme. For a

tighter security proof we will assume a slight modification on the

algorithm Tallyj : Rather than using only the hash of the corre-

sponding commitments to compute the challenges for the proofs

πA,(j) and πA,(j)
′
, the authorities will hash the whole bulletin board

(which among other things contains the relevant commitments). Let

H (BB) = (chl1, . . . , chlNA ) andH
′(BB) = (chl ′

1
, . . . , chl ′NA

) be these

hashes, the jth authority will then use chlj and chl
′
j as challenges

for his proofs πA,(j) and πA,(j)
′
. In doing so we guarantee that we

can extract witnesses for all NA proofs πA,(j) in one rewinding of

the random oracle OH .

Theorem A.2. Let A be an adversary with non negligible ad-
vantage Advcons

A
(λ) = ε in experiment Expcons

A
(λ). Using A we

construct an extractor E who breaks the binding property of Com in
expected time 1/ε + neдl(λ)

Proof. We will assume that when A succeeds in Expcons
A
(λ)

all the bulletins on BB were accepted by all the authorities, we can

make this assumption because any bulletin that was not accepted

is effectively discarded (the authorities do not include it in their

amortized proofs nor in the final tally). We can thus use NV as the

number of accepted tallies. E starts by running A until it succeeds

in Expcons
A
(λ), i.e. until it outputs a bulletin board BB that verifies

correctly and such that r < h1 or r > NV −h0. Using the soundness

of the proofs πA,(j), E rewindsA and obtains witnesses r̂(j)i , for i ≤

NV and j ≤ NA, such that 2Ar̂(j)i = 2a(j)i . Let v̂
(j)
i = b(j)i − 2

−1Br̂(j)i ,

then we have:

2c(j)i = Cr̂(j)i + 2

[
0
v̂
(j)
i

]
(1)

Suppose there exists i ≤ NV such that v̂i :=
∑NA
j=1

v̂
(j)
i mod q is

not in {0, 1}, E runs the soundness extractor for πVi and obtains r̄i ,
¯f ∈ R and v̄i ∈ {0, 1} such that:

¯f ci = Cr̄i + ¯f

[
0
v̄i

]
(2)

By summing equations (1) over j ∈ [NA] and multiplying them by

¯f , and by multiplying (2) by 2 we obtain the following:

c′i := 2
¯f ci = C2r̄i +

[
0

2
¯f v̂i

]
(3)

c′i = 2
¯f ci = C ¯f

NA∑
j=1

r̂(j)i +
[

0
2

¯f v̄i

]
(4)

Since we assumed that v̂i < {0, 1} and we know v̄i ∈ {0, 1}, if we

have ∥2r̄i ∥ ≤ Br and




 ¯f
∑NA
j=1

r̂(j)i



 ≤ Br (which we will ensure

in Section 5), then E has successfully opened c′i to two different

messages and thus broken the binding property of Com.

We can now assume that for every i ≤ NV , v̂i ∈ {0, 1}. For s ∈[⌈
logl NV

⌉]
,u ∈ [⌈NV /l

s ⌉] and j ∈ [NA], let v̂
(j)
u,s =

ul∑
x=(u−1)l+1

v̂
(j)
x,s−1

(where v̂
(j)
u,0 := v̂

(j)
u ), let c(j)

′

u,s = c(j)u,s −
ul∑

x=(u−1)l+1

c(j)x,s−1
. E runs

the soundness extractor for πA,(j)
′
and obtains r̂(j)

′

u,s such that

2c(j)
′

u,s = Cr̂(j)
′

u,s .

Using the extraction for πA,(j) we already have r̂(j)u,s such that

2a(j)u,s = Ar̂(j)u,s , from which we obtain messagesm
(j)
u,s such that:

2c(j)u,s = Cr̂(j)u,s +
[

0
m
(j)
u,s

]
(5)

Now suppose that for all u, s, j we havem
(j)
u,s = v̂

(j)
u,s this implies

that the ciphertext c(j)
1, ⌈logl NV ⌉

has an extraction:

2c(j)
1, ⌈logl NV ⌉

= Cr̂(j)
1, ⌈logl NV ⌉

+ 2

[
0

v̂
(j)
1, ⌈logl NV ⌉

]
(6)



By construction of v̂
(j)
u,s we have v̂

(j)
1, ⌈logl NV ⌉

=
∑NV
i=1

v̂
(j)
i . Since the

bulletin board verifies correctly we know that c(j)
1, ⌈logl NV ⌉

opens

to plaintext v(j) such that r =
∑NV
j=1

v(j) by the binding property of

Com we have that v(j) =
∑NV
i=1

v̂
(j)
i and thus:

r =
∑
j
v(j)

=
∑
j

∑
i
v̂
(j)
i

=
∑
i
v̂i

=
∑

i ∈HV ′
vi +

∑
i ∈CV ′

v̂i

= h1 +
∑

i ∈CV ′
v̂i

Since we have shown that for all i ≤ NV , v̂i ∈ {0, 1} this implies

that h1 ≤ r ≤ NV − h0 which contradicts the fact that A wins

experiment Expcons
A
(λ). We have thus shown that there exist u,v, j

such thatm
(j)
u,s , v̂

(j)
u,s , i.e. one of the partial sum does not commit

to the proper value.

Fix a j ≤ NA for which there exist such a commitment and let u, s
be the smallest such triple (in lexicographic order). In particular

this implies that s ≥ 1 (as we have proven that all c(j)i open to v̂
(j)
i )

and that for x ∈ ((u − 1)l + 1,ul) we have the following witness

extracted from πA,(j):

2c(j)x,s−1
= C r̂(j)x,s−1

+

[
0

v̂
(j)
x,s−1

]
(7)

By summing equation (7) over x ∈ ((u − 1)l + 1,ul) and subtracting

the extraction for c(j)u,s we obtain:

2c(j)u,s
′
= c(j)u,s −

ul∑
x=(u−1)l+1

c(j)x,s−1

= C ©­«r̂(j)u,s −
ul∑

x=(u−1)l+1

r̂(j)x,s−1

ª®¬ +
[

0
m
(j)
u,s − v̂

(j)
u,s

]
(8)

From the extraction of πA,(j)
′
we had 2c(j)u,s

′
= Cr̂(j) ′u,s . We know that

m
(j)
u,s , v̂

(j)
u,s , which implies that if






r̂(j)u,s −
ul∑

x=(u−1)l+1

r̂(j)x,s−1






 ≤ Br

and




r̂(j) ′u,s




 ≤ Br (which we ensure in Section 5) then we have found

two distinct openings for 2c(j)u,s
′
and broken the binding property

of Com. �

B E-VOTING FOR MULTIPLE CANDIDATES
Though we have described our E-Voting scheme as being for votes

in {0, 1}, it can be extended to votes in {0, 1}k for any constantk at a

small cost. Adapting the scheme and security definitions of Section 4

is straightforward and does not pose any problem.
4
Our commit-

ment scheme can be directly adapted to having message space Rkq

4
The consistency definition can be extended to k candidates by considering the votes

v , the number of honest 1 votes h1 , the number of honest 0 votes h0 , the number of

by taking C =
[
A
B

]
with A ∈ Rd×(2d+k)q , and B ∈ Rk×(2d+k )q , the

resulting commitments will be somewhat larger but the security

remains the same. The amortized proofs can be used directly with

this new commitment scheme (since they can be used with any

one-way function). To obtain a (relaxed) proof that a commitment is

in {0, 1}k it is sufficient to use k parallel proofs for commitments in

{0, 1}, we describe this construction in more detail as its soundness

is not trivial.

It is not directly clear that a proof for commitments in {0, 1}k can

be obtained by running k proofs for (partial) commitments in {0, 1}.

Indeed, for a public commitment key C =
[
A
B

]
, let Bi be the ith

row of B, let Di =

[
A
Bi

]
. For a commitment c =

[
a
b

]
= Cr +

[
0
m

]
we define in the same manner di = Di r+

[
0
mi

]
wheremi is the i

th

element of m. Our aim is to run the proof ΠOR on each of the di to
prove thatmi is in {0, 1} and conclude that m is in {0, 1}k . However

each proof will have a different
¯fi in the soundness extraction. i.e.

for i , j we will obtain r̄i , r̄j , ¯fi , ¯fj such that:

• ¯fidi = Di r̄i + ¯fi

[
0
mi

]
• ¯fjdj = Dj r̄j + ¯fj

[
0
mj

]
Remark that since the top part of both Di and Dj are equal to A
and the top part of both di and dj are equal to a, we have ¯fia = Ar̄i
and

¯fja = Ar̄j and thus A( ¯fj r̄i − ¯fi r̄j ) = 0. Which entails that

¯fj r̄i = ¯fi r̄j if


 ¯fj r̄i − ¯fi r̄j



 ≤ 2Br (by the binding property of the

commitment scheme) which will be true for our parameters. Now

if we multiply our second equation by
¯fi and then divide by

¯fj
(which according to Lemma 2.8 will have an inverse for well chosen

parameters) we obtain:

¯fidj = Dj r̄i + ¯fi

[
0
mj

]
By applying the same reasoning to all j , i and concatenating over

the rows bi we can extract a witness for the commitment c:

¯fi c = Cr̄i + ¯fi

[
0
m

]
We thus obtain a proof of knowledge for commitments in {0, 1}k by

using k proofs for commitments in {0, 1}, i.e. for the binary relation:

ROR =

{
(c, r) ∈Rd+kq × R2d+k ,

c = Cr +
[

0
m

]
,m ∈ {0, 1}k , ∥r∥ ≤ BOR

}
and the relation for the soundness extractor:

R
′
OR =

{
(c, r, f ) ∈Rd+kq × R2d+k × Rq , f c = Cr + f

[
0
m

]
,

m ∈ {0, 1}k , ∥r∥ ≤ B′OR , 0 < ∥ f ∥ ≤ 2

√
60

}
We have the following theorem:

approved voters t , and the result r as k -dimensional vectors. An adversary then wins

the consistency game if there exists j < k such that rj < h1, j or rj > tj − h0, j .



Theorem B.1. For a matrix C ∈ R(d+k)×(2d+k )q decomposed in

matrices Di ∈ R
(d+1)×(2d+k )
q as specified above, let ΠOR,Di be the

OR proof defined in Section 3.2 using the matrix Di as commitment
key.
If σOR ≥ 22 ∗

√
60BOR , B′OR ≥ 2

√
n(2d + k)σOR , then ΠORk =

ΠOR,D1
∧ . . . ∧ ΠOR,Dk is a zero knowledge proof of knowledge for

the language ROR , with soundness extractor in R′OR .

Now that we have a proof for message in {0, 1}k our voting

scheme can be adapted to k candidates in a completely straightfor-

ward manner.
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