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Abstract. This paper shows that quantum computers can significantly speed-up a type of meet-in-the-middle
attacks initiated by Demiric and Selçuk (DS-MITM attacks), which is currently one of the most powerful
cryptanalytic approaches in the classical setting against symmetric-key schemes. The quantum DS-MITM
attacks are demonstrated against 6 rounds of the generic Feistel construction supporting an n-bit key and an
n-bit block, which was attacked by Guo et al. in the classical setting with data, time, and memory complexities of
O(23n/4). The complexities of our quantum attacks depend on the adversary’s model and the number of qubits
available. When the adversary has an access to quantum computers for offline computations but online queries
are made in a classical manner (so called Q1 model), the attack complexities are O(2n/2) classical queries,
O(2n/q) quantum computations by using about q qubits. Those are balanced at Õ(2n/2), which significantly
improves the classical attack. Technically, we convert the quantum claw finding algorithm to be suitable in the
Q1 model. The attack is then extended to the case that the adversary can make superposition queries (so called
Q2 model). The attack approach is drastically changed from the one in the Q1 model; the attack is based on
3-round distinguishers with Simon’s algorithm and then appends 3 rounds for key recovery. This can be solved
by applying the combination of Simon’s and Grover’s algorithms recently proposed by Leander and May.
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1 Introduction

1.1 Background

Post-quantum cryptography is a hot topic in the current symmetric-key cryptographic community. It has been
known that Grover’s quantum algorithm [Gro96] and its generalized versions [BBHT98,BHMT02] reduce the cost
of the exhaustive search on a k-bit key from 2k to 2k/2. Whereas Grover’s algorithm is quite generic, post-quantum
security of specific constructions has also been evaluated, which includes key recovery attacks against Even-Mansour
constructions [KM12], distinguishers against 3-round Feistel constructions [KM10], key recovery attacks against
multiple encryptions [Kap14], forgery attacks against CBC-like MACs [KLLN16a], key recovery attacks against FX
constructions [LM17], and so on. Given those advancement of the quantum attacks, NIST announced that they
take into account the post-quantum security in the profile of the light-weight cryptographic schemes [MBTM17]. It
is now important to investigate how quantum computers can impact to the symmetric-key cryptography.

It is also possible to view the quantum attacks from an approach-wise. That is, several researchers converted
the well-known cryptanalytic approaches in the classical setting to ones in the quantum setting. Several examples
are quantum differential cryptanalysis [KLLN16b], quantum meet-in-the-middle attacks [Kap14,HS18], quantum
universal forgery attacks [KLLN16a], and so on.

At the present time, one of the most powerful cryptanalytic approaches in the classical setting is a type of the
meet-in-the-middle attacks initiated by Demiric and Selçuk [DS08]. The attacks are often called meet-in-the-middle
attacks, while we call them the DS-MITM attacks in order to distinguish them from the simple and traditional
meet-in-the-middle attacks that separate the attack target into two independent parts. The DS-MITM attacks are
powerful. For example, one of the current best attacks against AES-128 is the DS-MITM attacks [DFJ13], which
can often be applied to other SPN-based ciphers as well. The DS-MITM attacks are also effective against Feistel
constructions [GJNS14] and their variants [GJNS16]. Considering those facts, it is of great interest to investigate
whether quantum computers can significantly speed-up the DS-MitM attacks.



A pioneering work of quantum attacks against symmetric-key cryptography by Kuwakado and Morii [KM12]
and a remarkable work by Kaplan et al. [KLLN16a] demonstrate that security of symmetric-key primitives drops to
a linear to the output size when adversaries are allowed to make superposition queries, in which the adversaries pass
superposition states to oracles and receive the results also as superposition states. Such a situation may be realized
in future, and this security model is theoretically interesting. Indeed, several attacks have recently been proposed in
this model [Kap14,Bon17,LM17]. On the other hand, we can consider another security model such that adversaries
only make queries through a classical network but have access to quantum computers in their local environment.
This model is relatively realistic. Kaplan et al. [KLLN16a] called the former and the latter settings Q2 model and
Q1 model, respectively.

Given the above background, our target in this paper is a quantum version of the DS-MITM attacks. As a
demonstration, we improve on the classical DS-MITM attack against generic 6-round Feistel constructions proposed
by Guo et al. [GJNS14]. Our main focus is the Q1 model, while we also discuss further speed-up in the Q2 model.

1.2 Simple Quantum Attacks against Feistel Construction

Before we explain the summary of our results, we explain that simple applications of the quantum attacks do not
strongly impact to the security of the Feistel construction. We start by introducing the target Feistel construction
analyzed in this paper.

Target Feistel Construction. This paper presents cryptanalysis against a Feistel construction that is typically
analyzed in the context of generic attacks. Namely, our target is a balanced Feistel construction whose block size is n
bits, and the round function first XORs an n/2-bit subkey and then apply a public function F : {0, 1}n/2 7→ {0, 1}n/2.
Subkeys in each round are independently chosen, thus the key size for r rounds is nr/2 bits. The public function
F can be different in different rounds. To avoid making the paper unnecessarily complicated, we denote the public
function in all rounds by an identical notation F .

Classical Attacks against Feistel Construction. Generic attacks in the classical setting against the class of Feistel
constructions have been studied by many papers in various approaches; the impossible differential attack [Knu02],
the all-subkeys recovery attack [IS12,IS13], the DS-MITM attack [GJNS14], the dissection attack [DDKS15], and
so on. The number of attacked rounds depends on the assumed key size. Considering that the block size is n bits
and thus the adversaries can obtain the full codebook with 2n queries and memory, let us discuss the case that the
adversaries can spend up to 2n computations. In this setting, the best attack is the DS-MITM attack [GJNS14]
that recovers the key up to 6 rounds with O(23n/4) complexities in all of data, time, and memory.

Application of Grover’s Algorithm and Parallelization. The most simple quantum attack is applying Grover’s
algorithm [Gro96] to exhaustive key search. Let k denote the key length. With a quantum computer and Grover’s
algorithm, the exhaustive search can be performed in time O(2k/2). Furthermore, if O(n2p) qubits are available to
the adversary, the Grover search can be parallelized [GR04], and the cost of the exhaustive search is reduced in
time O(2(k−p)/2). Thus, by applying the parallelized Grover search to the r-round Feistel construction, key recovery
attacks can be performed in time O(2nr/4−p/2) with O(1) classical queries, using O(n2p) qubits.

For 6 rounds (r = 6), the key can be recovered in time O(2n), using Õ(2n) qubits. This does not have any
advantages. Strictly speaking, the exhaustive search can be performed without guessing the last-round subkey, but
the attack still does not have any advantage over the classical DS-MITM attack.

Application of Quantum Dissection Attacks. Consider an iterated block cipher, i.e., the cipher which is constructed
as Erk = E1,K1

◦E2,K2
◦· · ·◦Er,Kr

, where each Ei is an n-block cipher with m-bit key, and subkeys in k = (K1, . . . ,Kr)
are independently chosen. Erk is an n-bit block cipher with mr-bit key, and the iterated construction is one of the
simplest ways to handle a long key only by using a block cipher for short keys.

Kaplan proposed quantum meet-in-the-middle attacks and quantum dissection attacks to recover the key against
the iterated construction [Kap14]. For r = 2, the quantum meet-in-the-middle attack can recover the full key in
time O(22m/3), using O(22m/3) qubits. For r = 4, the quantum dissection attack can recover the full key in time
O(22m/3+n/2), using O(22m/3) qubits.

These attacks can be applied to Feistel constructions, as Dinur et al. [DDKS15] applied the dissection attack
to Feistel constructions in the classical setting. For example, 6-round Feistel constructions can be regarded as
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two iterations of the 3-round Feistel construction. Thus, applying the quantum meet-in-the-middle attack, we can
recover the full key in time O(2n), using O(2n) qubits. Again, this approach does not have any advantage over the
classical DS-MITM attack.

1.3 Our Contributions

We show that quantum computers significantly speed-up the DS-MITM attacks in both of the Q1 and Q2 models.
For the Q1 model, we need to solve a variant of claw finding problem to find a match between the offline and

online phases. Normally, a claw between functions f ′ and g is defined to be a pair (x, y) such that f ′(x) = g(y),
and there exist quantum algorithms [BHT97,Amb04,Zha05,Tan09] to find a claw assuming both of f ′ and g are
quantum accessible. However, we need to find a pair (x, y) such that f(x, y) = g(y), and g must be implemented in
a classical manner in our Q1 model attack. Thus we describe a quantum algorithm to solve this issue.

We then apply the above algorithm in the Q1 model to improve the classical DS-MITM attack by Guo et
al. [GJNS14] against the 6-round Feistel construction. The data complexity, or the number of classical queries, is
reduced from O(23n/4) of the classical attack to O(2n/2). The time complexity T depends on the parameter q that
is the number of qubits available. In fact, T is given by a tradeoff curve Tq = 2n, where q ≤ 2n/2. Hence, in addition
to D, the quantum attack outperforms the classical attack with respect to T when q > 2n/4. In particular, all
parameters are balanced at Õ(2n/2), which improves previous O(23n/4) in the classical setting.

We then further analyze the attack complexity against the 6-round generic Feistel construction in the Q2 model.
The approach is quite different from the one in the Q1 model. We use the distinguisher against 3-round Feistel
construction by Kuwakado and Morii [KM10] as a base, and then append 3 more rounds for key recovery.1 The
3-round distinguisher uses Simon’s algorithm [Sim97] whereas the 3-round key recovery requires to use Grover’s
algorithm [Gro96]. The combination of those two algorithms has recently been studied by Leander and May [LM17],
which leads to significant speed-up in our setting. In this attack, T = D = 23n/4 that is the same as the classical
attack, but the space, i.e. the number of qubits and the amount of classical memory is O(1). This extreme efficiency
in space is only available in the Q2 model.

As pointed out in Kaplan et al. [KLLN16a], the 3-round distinguisher has the following problem:

Problem 1. The 3-round distinguisher by Kuwakado and Morii only uses the right half n/2-bits of outputs of the
Feistel construction. On the other hand, if the Feistel construction is implemented on a quantum circuit, then it
will output all the n-bits. In the classical setting, attackers can just truncate received n bits to obtain the right half
n/2-bits. However, in the quantum setting, truncating n bits to n/2-bits is non-trivial because all (quantum) bits
are entangled. Hence the 3-round distinguisher is applicable only when attackers have access to a quantum circuit
which outputs just the right half n/2-bits of the Feistel construction.

This paper shows a general technique to simulate “truncation” of outputs of oracles in the quantum setting. Our
technique can apply not only to the 3-round distinguisher by Kuwakado and Morii but also to various situations in
symmetric-key cryptography This technique solves the controversial issue of the quantum distinguisher by Kuwakado
and Morii, which is pointed out by Kaplan et al [KLLN16a].

The attack complexity against 6-round Feistel construction in each attack setting is summarized in Table 1.
When the attacks are compared with respect to a product of the time complexity, data complexity, the number
of qubits and the amount of classical memory, the Q2 model outperforms the other two. When the attacks are
compared with respect to a maximum value among the time complexity, data complexity, the number of qubits and
the amount of classical memory, the Q1 model becomes the best. 2

1.4 Paper Outline

The paper is organized as follows. Section 2.1 explains attack models and quantum algorithms related to this work.
Section 3 extends the previous quantum claw finding algorithm to the case that one function is evaluated only in
the classical manner. Section 4 improves the previous DS-MITM attack against 6-round Feistel construction by

1 Dong and Wang [DW17] independently pointed out the combination of the 3-round distinguisher [KM10] and key recovery
attack [LM17].

2 Since any Q1 attack can be trivially converted to a Q2 attack by regarding quantum oracles as classical oracles, we can
construct a Q2 attack with max(T,D,M,N) = N1/2 � N3/4 from the best Q1 attack. However, such a Q2 attack requires
time T = N in the case that only O(log(N)) qubits are available.
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Table 1. Summary of the Attack Complexities against 6-Round Feistel Construction

Overall Complexity
Setting Time (T ) Data (D) #qubits (N) Classical Mem (M) Product (TDMN) max(T,D,M,N)

Classical N3/4 N3/4 − N1/2 N9/4 N3/4

Q1 N/q N1/2 q N1/2 N8/4 N1/2

Q2 N3/4 N3/4 log(N) 1 logN ·N6/4 N3/4

The range of q in Q1 is q ≤ N1/2. All complexities of Q1 are balanced when q = N1/2. Q1 always outperforms
classical attacks in terms of the data complexity for any q. Besides, it improves classical attacks in terms of the
time complexity when N1/4 ≤ q ≤ N1/2.

applying the theory in Sect. 3. Section 5 discusses the attack on Feistel construction when the adversaries can make
superposition queries.

2 Preliminaries

This section gives attack models and a summary of the quantum algorithms that are related to our work. Throughout
the paper, we assume a basic knowledge of the quantum circuit model. For a public function F : {0, 1}n/2 →
{0, 1}n/2, we assume that a quantum circuit which calculates F , CF : |x〉 |y〉 7→ |x〉 |y ⊕ F (x)〉 is available, and CF
runs in a constant time.

2.1 Offline Quantum Computation

If we want to access some data or to operate table look-up in a quantum algorithm without any measurement, we
have to set all data on quantum circuits so that data can be accessed in quantum superposition states. In particular,
if we want to implement random access to memories, we need as many qubits (or width of the quantum circuit) as
the data size. Thus, quantum memory for random access is physically equivalent to quantum processor. We regard
that they are essentially identical.

Regardless of whether we use quantum computers or classical computers, the running time of an algorithm
significantly depends on how a computational hardware is realized, when the algorithm needs exponentially many
hardware resources. Thus if we want to use exponentially many qubits, we have to pay attention to data communi-
cation costs in quantum hardwares. In the quantum setting, Bernstein [Ber09] and Banegas and Bernstein [BB17]
introduced two communication models, which they call free communication model and realistic communication
model. The free communication model assumes that we can operate a unitary operation on any pairs of qubits.
On the other hand, the realistic communication model assumes that 2p qubits are arranged as a 2p/2 × 2p/2 mesh,
and a unitary operation can be operated only on a pair of qubits that are within a constant distance. A quantum
hardware in the free communication model which has O(N) qubits can simulate a quantum hardware in the free
communication model which has O(

√
N) qubits, with time overhead O(

√
N) [BBG+13].

In this paper, for simplicity, we estimate the time complexity of quantum algorithms in the free communication
model. Note that this does not imply that our proposed attacks do not work in the realistic communication model.
We design our algorithms so that small quantum processors (of size polynomial in n) parallelly run without any
communication between each pair of small processors. Hence if the realistic communication model is applied, time
complexity increases by a factor of polynomial in n.

2.2 Related Quantum Algorithms

Grover’s Algorithm. Grover’s quantum algorithm, or the Grover search, is one of the most famous quantum
algorithms, with which we can obtain quadratic speed up on database searching problems compared to the classical
algorithms. It was originally developed by Grover [Gro96] and generalized later [BBHT98,BHMT02]. Let us consider
the following problem:
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Problem 2. Suppose a function φ : {0, 1}u → {0, 1} is given as a black box, with a promise that there is x such that
φ(x) = 1. Then, find x such that φ(x) = 1.

Grover’s algorithm can solve the above problem with O(2u/2) evaluations of φ using O(u) qubits, if φ is given
as a quantum oracle (or using O(v) qubits, if φ is given as a v-qubit quantum circuit without any measurement).
The algorithm is composed of iterations of an elementary step which operates O(1) evaluation of φ, and can easily
be parallelized [GR04].

If we can use a quantum computer with O(u2p) qubits, we regard it as 2p independent small quantum processors
with O(u) qubits. Then, by parallelly running O(

√
2u/2p) iterations on each small quantum processor, we can find

x such that φ(x) = 1 with high probability. This parallelized algorithm runs in time O(
√

2u/2p · Tφ), where Tφ is
the time needed to evaluate φ once.

Simon’s Algorithm. Grover’s algorithm is an exponential time algorithm. Here we introduce a quantum algorithm
that can solve a problem in polynomial time. The problem is defined as follows:

Problem 3. Let φ : {0, 1}u → {0, 1}u be a function such that there is a unique secret value s that satisfies φ(x) = φ(y)
if and only if x = y or x = y ⊕ s. Then, find s.

Suppose φ is given as a quantum oracle. Then, Simon’s algorithm [Sim97] can solve the above problem with O(n)
queries, using O(n) qubits. We have to solve a system of linear equations after making queries, which requires
O(n3) arithmetic operations. Since any classical algorithm needs exponential time to solve this problem (see the
original paper [Sim97] for details), Simon’s algorithm obtains exponential speed-up from classical algorithms. The
algorithm can be applied to the problem of which condition “ φ(x) = φ(y) if and only if x = y or x = y ⊕ s” is
replaced with the weaker condition “φ(x⊕ s) = φ(x) for any x”, under the assumption that φ satisfies some good
properties [KLLN16a].

Quantum Claw Finding Algorithms. Let us consider two functions f : {0, 1}u → {0, 1}` and g : {0, 1}v →
{0, 1}`. If there is a pair (x, y) ∈ {0, 1}u × {0, 1}v such that f(x) = g(y), then it is called a claw of the functions f
and g. Now we consider the following problem:

Problem 4. Let u, v be positive integers such that u ≥ v. Suppose that two functions f : {0, 1}u → {0, 1}` and
g : {0, 1}v → {0, 1}` are given as black boxes. Then, find a claw of f and g.

This problem, called claw finding problem, has attracted researchers’ attention and is well studied. It is known that,
given f and g as quantum oracles, this problem can be solved with O(2(u+v)/3) queries in the case v ≤ u < 2v,
and O(2u/2) queries in the case 2v ≤ u [BHT97,Amb04,Zha05,Tan09]. Quantum claw finding algorithms and
their generalizations already have some applications in attacks against symmetric-key cryptosystems [Kap14,MS17].
Below we assume ` = O(u+ v).

3 Claw Finding between Classical and Quantum Functions

Quantum claw finding algorithms are useful, though, they cannot be applied if one of target functions, say g, is not
quantum accessible. For example, if we need some information from a classical online (i.e., keyed) oracle to calculate
g(y), then we have to use other algorithms, even if we have a quantum computer.

Sections 3 and 4 focus on the Q1 model. Hence, this section considers how to find a claw of functions f, g where
g can be evaluated only classically. We are particularly interested in the case that there exists only a single claw of
f and g, and show that the following proposition holds.

Proposition 1. Suppose that f can be implemented on a quantum circuit Cf using O(u + v) qubits, g can be
evaluated only classically, and we can use a quantum computer with O((u + v)2p) qubits. Assume that there exist
only a single claw of f and g. Then we can solve Problem 4 in time

O
(
TCg,all + 2u/2+v−(p+pL)/2 · TQf + 2v−pL+p

)
, (1)

where TCg,all is the time to calculate the pair (y, g(y)) for all y, TQf is the time to run Cf once, and pL is a parameter
that satisfies pL ≤ min{p, n}. We also use O(2v) classical memory.

Below we give an algorithm to find a claw and confirm that it gives the upper bound 1, which shows Proposition 1.

5



Algorithm. First, evaluate g(y) for all y classically, and store each pair (y, g(y)) in a list L. For each y ∈ {0, 1}v,
define a function fy : {0, 1}u → {0, 1} by fy(x) = 1 if and only if f(x) = g(y). Given Cf and the list L, we can

implement fy on a quantum circuit that runs in time O(TQf ) using O(u + v) qubits. Note that the parallelized

Grover search on fy, which parallelly runs O(2p−pL) independent small processors, can find x0 such that fy(x0) = 1

(if there exists) in time O(2u/2−(p−pL)/2 · TQf ). Let CGrovery denote this quantum circuit of size O((u+ v)2p). Then,
run the following procedure:

1. For 0 ≤ i ≤ 2v−pL − 1, do:
2. Run CGrover(i‖j) parallelly for 0 ≤ j ≤ 2pL − 1 (see Fig. 1).

3. If a pair (x, (i‖j)) such that f(i‖j)(x) = 1 is found, then return the pair (x, (i‖j)).

In the above procedure, we consider that i, j are elements in {0, 1}v−pL and {0, 1}pL , respectively, and i‖j ∈ {0, 1}v.

2𝑝−𝑝𝐿 copies for 𝑓(𝑖||1)

𝑂 (𝑢 + 𝑣)2𝑝 quantum registers

2𝑝−𝑝𝐿 copies for 𝑓(𝑖||0) 2𝑝−𝑝𝐿 copies for 𝑓(𝑖||2𝑝𝐿−1)

Fig. 1. How to use O(2p) qubits

Complexity analysis. To evaluate g(y) and store it for every y, we need O(TCg,all) time and O(2v) classical memory.

In Step 2 of the procedure, the parallelized Grover search on f(i‖j) requires time O(2u/2−(p−pL)/2TQf ) for each i
and j as stated above. In Step 3 of the procedure, we need time O(2p) to check whether a pair (x, (i‖j)) such

that f(i‖j)(x) = 1 exists. Thus, the total running time is O(TCg,all + 2v−pL · (2u/2−p/2+pL/2TQf + 2p)) = O(TCg,all +

2u/2+v−p/2−pL/2 · TQf + 2v−pL+p).

As for the number of qubits, for a fixed i, we use O((u+ v)2p−pL) qubits for the parallelized Grover search on
f(i‖j) for each 0 ≤ j ≤ 2pL − 1. Thus the total number of qubits we use is O((u+ v)2p−pL) · 2pL = O((u+ v)2p).

3.1 Variation of Claw Finding

Next, we consider the following variant of the claw finding problem.

Problem 5. Suppose that functions f : {0, 1}u×{0, 1}v → {0, 1}` and g : {0, 1}v → {0, 1}` are given as black boxes,
with promise that there is a unique pair (x, y) ∈ {0, 1}u × {0, 1}v such that f(x, y) = g(y). Then, find such a pair
(x, y).

Again, we assume that g can be evaluated only classically, f can be implemented on a quantum circuit, and
` = O(u + v). Problem 5 appears to be different from Problem 4, however, we can also solve it by applying our
algorithm introduced above with a slight modification to the definition of fy as: fy(x) = 1 if and only if f(x, y) =
g(y). With this small modification, we can find the pair (x, y) such that f(x, y) = g(y) with the same complexity as
in Proposition 1. The next section treats this variant problem to attack Feistel constructions, instead of the original
claw finding problem. In what follows, we measure p ≤ v and 2v ≤ TCg,all.

Corollary 1. Suppose that f can be implemented on a quantum circuit Cf using O(u+v) qubits, g can be evaluated
only classically, and we can use a quantum computer with O((u + v)2p) qubits, where p ≤ v. Assume that there is
a unique claw of f and g. Then we can solve Problem 4 in time

O
(
TCg,all + 2

u
2 +v−p · TQf

)
, (2)
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where TCg,all ≥ 2v is the time to calculate the pair (y, g(y)) for all y and TQf is the time to run Cf once. We also
use O(2v) classical memory.

The algorithms that we introduced in this section assume an ideal situation that we are given a quantum circuit
that calculates f without error. However, in real applications, having some error might be inevitable (e.g. we use
Grover’s algorithm as a subroutine a few times to calculate f). Nevertheless, if error is small, then the above algo-
rithms can still be applied with a small modification. (Roughly speaking, we use quantum amplitude amplification
technique [BHMT02] instead of Grover’s algorithm. See Section B in the appendix for details.)

4 Quantum DS-MITM Attacks against Feistel Constructions

In this section, we show that quantum computers can significantly speed-up the DS-MITM attacks even under the
limitation that queries are made only in a classical manner (Q1 model). To demonstrate it, we improve on the
previous key recovery attack against 6-round Feistel constructions presented by Guo et al. [GJNS14].

4.1 Classical DS-MITM Attack on 6-Round Feistel Constructions

Overview of DS-MITM Attacks We first briefly introduce the framework of the DS-MITM attack. The attack
generally consists of the distinguisher and the key-recovery parts as illustrated in Fig. 2. A truncated differential is
specified to the entire cipher and suppose that the plaintext difference ∆P propagates to the input difference ∆X
of the distinguisher with probability p1. Similarly, the ciphertext difference ∆C propagates to the output difference
∆Y of the distinguisher with probability p2 when decryption is performed. The attack is composed of two parts:
distinguisher analysis and queried-data analysis.

𝑘𝑒𝑦 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦

𝑑𝑖𝑠𝑡𝑖𝑛𝑔𝑢𝑖𝑠ℎ𝑒𝑟

𝑘𝑒𝑦 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦

Δ𝑃

Δ𝑋

Δ𝑌

Δ𝐶

Pr = 𝑝1

(𝑋, 𝑋0
′), 𝑋1

′ , 𝑋2
′ , ⋯ , 𝑋𝛿−1

′

#𝑐ℎ𝑎𝑟𝑎𝑠 = 𝑁𝐶

Pr = 𝑝2

(𝑌, 𝑌0
′), 𝑌1

′, 𝑌2
′, ⋯ , 𝑌𝛿−1

′

𝛿-𝑠𝑒𝑡

Δ0
Δ1

Δ2
Δ𝛿−1

Δ-𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒

(𝑃, 𝑃′)

(𝐶, 𝐶′)

Fig. 2. Overview of DS-MITM Attacks.

In the distinguisher analysis, the attacker enumerates all the possible differential characteristics that can satisfy
the specified truncated differential. Suppose that there exist Nc such characteristics. For each of them, input paired
values to the distinguisher are expected to be fixed uniquely. Let (X,X ′0) be the paired values. Then, the attacker
generates a set of texts called δ-set by generating δ − 1 new texts X ′i ← X ′0 ⊕ i for i = 1, 2, · · · , δ − 1. Suppose
that the corresponding value at the output of the distinguisher can be computed. Let Y, Y ′0 , Y

′
1 , Y

′
2 , · · · , Y ′δ−1 be

the corresponding values at the output of the distinguisher. The attacker then computes the differences between Y
and Y ′i for i = 0, 1, · · · , δ − 1 and makes a sequence of δ output differences at the output of the distinguisher. This
sequence is called ∆-sequence. Note that the difference between Y and Y ′i may be able to be computed only partially,
say γ bits. Thus the bit-size of the sequence is γδ. In the end, the ∆-sequence of the size γδ bits is computed for
each of the Nc characteristics and stored in a list L.
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In the queried-data analysis, the attacker makes queries to collect (p1p2)−1 paired values having the plaintext
difference ∆P and the ciphertext difference ∆C. One pair, with a good probability, satisfies ∆X and ∆Y at the
input and output of the distinguisher, respectively. Thus for each of (p1p2)−1 paired values, the attacker guesses
subkeys for the key-recovery rounds such that ∆X and ∆Y appear after the first and the last key recovery parts,
respectively. Then, one of the paired texts (corresponding to P ′) is modified to P ′i so that the δ-set is generated
at the input to the distinguisher, and those are queried to the oracle to obtain the corresponding ciphertext C ′i.
The attacker then processes C ′i with the guessed subkeys for the last key-recovery part, and the ∆-sequence is
computed at the output of the distinguisher. Finally, those are matched the list L. If the analyzed pair is a right
pair and the guessed subkeys are correct, then a match will be found. Otherwise, a match will not be found as long
as (p1p2)−1Nc × 2−γδ � 1.

Application to 6-Round Feistel Constructions. Guo et al. [GJNS14] applied the DS-MITM attack to 6-round
Feistel constructions. The attack needs to solve the following problems.

Problem 6. Let F : {0, 1}n/2 7→ {0, 1}n/2 be a public function and ∆ be a fixed difference.

• For a given output difference ∆o, how can we find all v such that F (v)⊕ F (v ⊕∆) = ∆o?
• For a given input difference ∆i, how can we find all v such that F (v)⊕ F (v ⊕∆i) = ∆?

In the classical attack, those problems can be solved only with 1 access to the precomputed table of size 2n/2. The
procedure is rather straightforward. Readers are refer to the paper by Guo et al. [GJNS14] for the exact procedure.

Distinguisher Analysis. The core of the attacks is the 5-round distinguisher explained below. The input and output
differences for the 5 rounds are defined as 0‖X and Y ‖0, respectively, where X,Y ∈ {0, 1}n/2, X 6= Y . For a given
X,Y , the number of the 5-round differential characteristics satisfying those input and output differences is 2n/2.
In fact, by representing the n/2-bit difference of the second round-function’s output as Z, the 5-round differential
characteristics can be fixed to

(0‖X)
1stR−→ (X‖0)

2ndR−→ (Z‖X)
3rdR−→ (Y ‖Z)

4thR−→ (0‖Y )
5thR−→ (Y ‖0),

which is illustrated in the left-half of Fig. 3.

𝐹 
𝐾𝑖  
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𝐾𝑖+1 

𝐹 
𝐾𝑖+2 
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𝐾𝑖+4 

0 𝑋 

𝑌 0 

0 0 

𝑍 𝑌 
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𝑍 𝑋 

0 

𝛿-set 

Δ-sequence 

𝐹 
𝐾0 

5𝑅 𝐷𝑖𝑠𝑡𝑖𝑛𝑔𝑢𝑖𝑠ℎ𝑒𝑟 

𝑋 ∗ 

𝑌 0 

∗ 

Δ-sequence 

0 𝑋 𝛿-set 

0 ∗ 

𝑝1 = 2−𝑛/2 

Fig. 3. Left: |Z| Differential Characteristics in the 5-Round Distinguisher. Right: 1-Round Extension for Key-Recovery.

For each Z, both input and output differences of F in the middle 3 rounds are fixed, which suggests that the paired
values during F are fixed to one choice on average. Guo et al. showed that by generating a δ-set at the right half
of the distinguisher’s input, the corresponding ∆-sequence can be computed for the right-half of the distinguisher’s
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output. Readers are referred to the paper by Guo et al. [GJNS14] for the complete analysis. The computed ∆-
sequences are stored in the list L. Note that the size of δ is very small. Indeed, p1 = 2−n/2, p2 = 1, Nc = 2n/2 and
γ = n/2. Hence, δ = 3 is sufficient to filter out all the wrong candidates.

To balance the complexities between the distinguisher analysis and the queried-data analysis, Guo et al. iterated
the above analysis for 2n/4 different choices of Y . More precisely, the n/4 MSBs of Y are always set to 0 and n/4
LSBs of Y are exhaustively analyzed. The complexity of the procedure for each choice of Y is O(2n/2) both in time
and memory. Hence, the entire complexity of the distinguisher part is O(23n/4) in both time and memory.

Queried-Data Analysis. Guo et al. appended 1-round before the 5-round distinguisher to achieve the 6-round
key-recovery attack, which is illustrated in the right-half of Fig. 3. By propagating the input difference to the
distinguisher, 0‖X, in backwards, ∆P is set to X‖∗ where ∗ can be any n/2-bit difference. The probability p1 that
a randomly chosen plaintext pair with the difference X‖∗ satisfies the difference 0‖X after 1 round is 2−n/2.

The attacker collects the pairs that satisfy the truncated differential in Fig. 3 by using the structure tech-
nique. Namely, the attacker prepares 2 sets of 2n/2 plaintexts in which the first and the second sets have the form
{(c‖0), (c‖1), · · · , (c‖2n/2 − 1)} and {(c ⊕ X‖0), (c ⊕ X‖1), · · · , (c ⊕ X‖2n/2 − 1)}, respectively, where c is a ran-
domly chosen n/2-bit constant. About 2n pairs exist whereas only O(2n/4) pairs satisfy ∆C in the corresponding
ciphertexts. By iterating this procedure O(2n/4) times for different choices of c, the attacker collects O(2n/2) pairs
satisfying the truncated differential in Fig. 3. In summary, with O(23n/4) queries (and thus the time complexity of
O(23n/4) memory accesses), O(2n/2) pairs are obtained, in which one pair will satisfy the probabilistic differential
propagation in the first round.

For each pair, the input and output differences of F in the first round are fixed, which will fix K0 uniquely. The
attacker then modifies the left-half of the plaintext such that δ-set with δ = 3 is generated at the right-half of the
input to the distinguisher. The right-half of the plaintext is also modified to ensure that the left-half of the input to
the distinguisher is not affected. The modified plaintexts are then queried to obtain the corresponding ciphertexts.
The attacker computes the corresponding ∆-sequence and matches L; the list computed during the distinguisher
analysis. A match recovers K0 and Z. The other subkeys are trivially recovered from the second round one by one.

Summary of Complexity. In the distinguisher analysis, both of the time and memory complexities are O(23n/4).
In the queried-data analysis, the data and time complexities are O(23n/4) and it uses a memory of size O(2n/2) to
collect the pairs with the structure technique.

Remarks. Solving Problem 6 is rather straightforward in the classical attack with O(2n/2) memory, whereas this
is a crucial problem to the quantum adversaries. This is because the efficient table look-up cannot be executed in
quantum computers.

4.2 Quantum DS-MITM Attack on 6-Round Feistel Constructions

We now convert the classical DS-MITM attack on 6-round Feistel constructions into quantum one, in which the
adversary has access to a quantum computer to perform offline computations whereas queries are made in the
classical manner. The attack complexity becomes O(2n/2) queries, O(2n/2) offline quantum computations by using
O(2n/2) qubits.

The main idea is to introduce quantum operations to reduce the complexity of the distinguisher analysis. We
show that the claw finding algorithm in Sect. 3 can be used to find a match between the distinguisher and the
queried-data analyses. This enables us to adjust the tradeoff between the complexities in the distinguisher and the
queried-data analyses, and thus the data complexity can also be reduced.

Adjusted Truncated Differentials. After the careful analysis, we determined to analyze all 2n/2 choices of Y
in the 5-round distinguisher during the distinguisher analysis part. In the classical attack, this increases the cost of
the distinguisher analysis to O(2n), whereas it reduces the number of queries in the queried-data analysis. In the
quantum attack, the increased cost of the distinguisher analysis can be reduced to its square root, i.e. O(2n/2) and
eventually the cost of two analyses are balanced.
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Switching Online and Offline Phases. The claw finding algorithm in Sect. 3 matches the result of the quantum
computation against the results collected in the classical method. Namely, the results of the queried-data analysis
must be stored before the distinguisher analysis starts.

This can be easily done by switching the order of the two analyses. In fact, such a switch has already been
applied by Darbez and Perrin [DP15, Appendix E] though their goal is to optimize the classical attack complexity,
which is different from ours.

Queried-Data Analysis. Because queries are made in the classical manner, the procedure of the queried-data
analysis remains unchanged from the classical attack by Guo et al. However, to directly apply the claw finding
algorithm to the DS-MITM attack, we explicitly separate the procedure to collect p−11 = 2n/2 pairs satisfying the
truncated differentials (both ∆P and ∆C) and the procedure to compute ∆-sequences.

Precomputation for Collecting Pairs. The goal of this procedure is to collect 2n/2 pairs satisfying both ∆P = X‖∗
and ∆C = ∗‖0. To use the structure technique, we query 2 sets of 2n/2 plaintexts {(c‖0), (c‖1), · · · , (c‖2n/2−1)} and
{(c⊕X‖0), (c⊕X‖1), · · · , (c⊕X‖2n/2− 1)}. About 2n pairs can be generated and 2n/2 of them have no difference
in the right-half of the ciphertexts. The generated pairs are stored in the list Lpre indexed by the difference Y (the
left-half of ∆C). In summary, this procedure requires O(2n/2) classical queries, O(2n/2) memory access and O(2n/2)
classical memory.

Generating ∆-sequences. The goal of this procedure is to generate ∆-sequences for all the pairs stored in Lpre. To
make it consistent with the notations in Sect. 3, we define a classical function g : {0, 1}n/2 → {0, 1}δn/2 that takes
the difference Y (the left-half of ∆C) as input and outputs the ∆-sequence as follows.

1. Pick up all the pairs in Lpre such that the difference Y matches the g’s input.
2. Compute the ∆-sequences as in the classical attack by assuming that the probabilistic differential propagation

in the first round is satisfied.

Then, the classical queried-data analysis becomes identical with computing g(y) for all y ∈ Y . The cost of computing
g for a single choice of y is 1. Hence, with the notation in Sect. 3, TCg,all becomes O(2n/2). After this phase, a list L

with a classical memory that stores O(2n/2) ∆-sequences is generated.

Quantum Distinguisher Analysis. The goal of the distinguisher analysis is to calculate ∆-sequences for all
2n/2 choices of Y and 2n/2 choices of Z in Fig. 3 in order to find a match with L. We define a quantum function
f : {0, 1}n/2 × {0, 1}n/2 → {0, 1}δn/2 that takes Z and Y as input and calculates the corresponding ∆-sequence.
Given that L is computed before this analysis, the goal can be viewed as searching for a preimage Z such that
∃Y, f(Z, Y ) ∈ L.

An Issue to be taken into account. Note that in our situation, the function f might be incompletely defined. We
want to define f(Z, Y ) to be the corresponding ∆-sequence to (Z, Y ), however, to be precise, we will have the
following issue when Problem 6 is solved.

Issue. To calculate the corresponding ∆-sequence, we need input/output pairs of the 2nd, 3rd, and 4th round
functions that are compatible with the pair (Z, Y ). Though there exists one suitable pair for each round function
on average, there might be no pair or more than one pair that are compatible with the pair (Z, Y ).

This issue already exists even in the classical setting, but it is trivially solved. However, solving the issue in the
quantum setting is non-trivial, and deserves careful attention. In what follows, for simplicity, we first describe the
attack by assuming that the above issue is naturally solved as in the classical setting, and later explain how to deal
with it.

Quantum procedures and complexity. Assume that f(Z, Y ) is uniquely determined for each (Z, Y ). Remember that
the goal of the quantum distinguisher analysis is to find Z such that ∃Y, f(Z, Y ) ∈ L. As discussed in Corollary 1,

suppose that a quantum circuit Cf that calculates f(Z, Y ) for a single choice of (Z, Y ) in time TQf can be imple-
mented by using O(n) qubits and we can use a quantum computer with O(n2p) qubits. Then the time complexity

to find such Z becomes O(2n/4+n/2−p · TQf + 2n/2).
We construct Cf so that it runs the following steps:
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1. Find the input/output pair of the 2nd round function F that has input difference X and output difference Z.

2. Find the input/output pair of the 3rd round function F that has input difference Z and output difference X⊕Y .

3. Find the input/output pair of the 4th round function F that has input difference Y and output difference Z.

4. Construct a δ-set and calculate the corresponding ∆-sequence, using the result of Steps 1, 2, and 3.

5. Output the ∆-sequence obtained in Step 4.

Steps 1,2, and 3 correspond to Problem 6, which was solved using an efficient table look-up in the classical setting.
However, in our circuit Cf , we use the Grover search to find the input/output pairs, since there is an obstacle that
quantum computer cannot perform an efficient table look-up. Because the input and output sizes of F are n/2
bits, we can run Steps 1,2, and 3 with Grover’s algorithm in time O(2n/4), using O(n) qubits. The complexities of
Steps 4 and 5 are much smaller than that of the application of Grover’s algorithm. Hence the above Cf runs in

time TQf = O(2n/4), using O(n) qubits. Note that Cf may return an error with a small probability since we use the
Grover search as subroutines for a few times. However we can deal with this error, as explained in Sect. 3.

As described in Corollary 1, if O(n2p) qubits are available (p ≤ n/2), then we can find Z such that f(Z, Y ) ∈ L
in time O(2n/4+n/2−p+n/4 + 2n/2) = O(2n−p). Complexities are balanced at p = n/2. In summary, we can find a
match with time complexity O(2n/2), using O(n2n/2) qubits.

Dealing with the issue. Next, we explain how to deal with the issue described above. We regard that each element
in {0, 1}n/2 is a binary representation of an integer i (0 ≤ i ≤ 2n/2 − 1).

As described before, to calculate the value f(Z, Y ), we have to calculate input and output pairs of the 2nd,
3rd, and 4th round functions that are compatible with Z, Y (and X). More concretely, we have to calculate a tuple
(α2, α3, α4) that satisfies F (α2)⊕F (α2⊕X) = Z (the condition for the 2nd round function), and F (α3)⊕F (α3⊕Z) =
X ⊕ Y (the condition for the 3rd round function), and F (α4) ⊕ F (α4 ⊕ Y ) = Z (the condition for the 4th round
function). Without loss of generality, we assume α2 < α2 ⊕X,α3 < α3 ⊕Z,α4 < α4 ⊕ Y . Remember that the issue
is that there might be no such tuple (α2, α3, α4), or more than one tuples that are compatible with Z, Y .

If there is no tuple that is compatible with (Z, Y ), we simply put f(Z, Y ) :=⊥. The problem is that there might
be more than one tuples that are compatible with (Z, Y ). In the classical setting, the number of solutions for a given
(Z, Y ) can be obtained easily by looking-up a precomputation table. On the other hand, in the quantum setting,
we need to iterate Grover’s algorithm multiple times if there are more than one tuples, thus the complexity of this
part increases as proportional to the number of tuples.

Now we assume that the following property holds: for arbitrary d 6= d′ ∈ {0, 1}n/2 \ {0n/2}, there are at most
Nmax := d3(n2 − 1)/ log(n2 − 1)e many bit-strings α that satisfies F (α) ⊕ F (α ⊕ d) = d′ and α < α ⊕ d. This is
a reasonable assumption since, for a random function φ : {0, 1}u → {0, 1}u, we have Pr[|φ−1(d′)| ≤ 3u/ log u] ≥
1 − 1/2u (see Lemma 5.1 in [MU05]), and F (·) ⊕ F (· ⊕ d) is an almost random function if F is random (and here
we consider that the domain of F (·)⊕ F (· ⊕ d) is {x|x < x⊕ d}, of which cardinality is 2n/2−1).

To avoid the problem that there might be more than one tuples, we divide the problem into N3
max cases, and

associate a triplet (i, j, k) with each case (0 ≤ i, j, k ≤ Nmax−1). We run the quantum distinguish analysis described
above for each cases, i.e., run it N3

max times. In the case (i, j, k), we search for α2, α3, α4 from the sets of strings
of which most significant logNmax bits are i, j, and k, respectively. By our assumption described above, there is at
most only one tuple (α2, α3, α4) in each case, and the problem does not occur in each case.

Trying all N3
max cases increases the time complexity by a factor of N3

max. However, we run the Grover search on
the restricted domains for each case, and thus the time complexity decreases by a factor of

√
Nmax. Consequently,

dealing with the issue increases the time complexity by a factor of N3
max/

√
Nmax = N

5/2
max = O(n5/2).

Complexity Summary. The complexity of the attack is as follows.

• The queried-data analysis requires O(2n/2) classical queries, O(2n/2) computations and O(2n/2) classical mem-
ory.

• The quantum distinguisher analysis requires O(n2n/2) qubits and O(n5/22n/2) offline computations.

In the end, all the complexities are balanced at Õ(2n/2), which is significantly smaller than the classical attack by
Guo et al. that requires Õ(23n/4) queries and offline computations.
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5 Attacks Using Quantum Queries

This section discusses quantum attacks in the Q2 model. That is, an adversary is allowed to make quantum
superposition queries to online oracles. We show that we can recover full keys of an r-round Feistel construction
(r > 3) in time O(n32n(r−3)/4), using O(n2) qubits. Our idea is to combine the trivial key-recovery attack using
Grover search with the quantum distinguisher of 3-round Feistel construction by Kuwakado and Morii [KM10],
which was later generalized by Kaplan et al. [KLLN16a]. To combine them, we apply the technique by Leander and
May [LM17], with a little adjustment. We also show in Sect. 5.2 how to simulate the “half output oracle” given a
usual complete encryption oracle, which solves the controversial issue in the quantum distinguisher by Kuwakado
and Morii (see Problem 1).

Again, we consider n-bit Feistel constructions such that each n/2-bit round key is added before round function
F . We do not consider parallelization for quantum query attacks, since it seems unreasonable to assume that there
are many copies of the online oracle and an adversary is allowed to parallelly access to them.

5.1 Quantum Distinguisher of 3-Round Feistel Constructions

We briefly explain the quantum attack that distinguishes 3-round Feistel constructions from a random permutation
π [KM10,KLLN16a]. The attack works in the Q2 model, and runs in polynomial time due to Simon’s algorithm.

Assume that we are given a quantum oracle that calculates W (x, y), the right n/2-bits of the ciphertext which is
encrypted with 3-round Feistel constructions (see Fig. 5.1). Then, W (x, y) = x⊕F (K1⊕y⊕F (K0⊕x)) holds. Now,

𝐹
𝐾0

𝐹
𝐾1

𝐹
𝐾2

𝑥 𝑦

𝑊(𝑥, 𝑦)𝑉(𝑥, 𝑦)

Fig. 4. 3-round Feistel constructions

fix two different bit strings α, β ∈ {0, 1}n/2 and define f : {0, 1}n/2+1 → {0, 1}n/2 by f(0, x) := W (α, x) ⊕ β and
f(1, x) := W (β, x)⊕α for x ∈ {0, 1}n/2. Then simple calculation shows that f ((b, x)⊕ (1, F (K0 ⊕ α)⊕ F (K0 ⊕ β)))
= f (b, x) holds, i.e., f has a period (1, F (K0 ⊕ α)⊕ F (K0 ⊕ β)).

On the other hand, if we are given a quantum oracle that calculates the right n/2-bits of π(x, y) instead of
W (x, y), and construct such a function f , then f does not have such a period with high probability. Thus, roughly
speaking, we can distinguish 3-round Feistel constructions from a random permutation π with high probability by
using Simon’s algorithm.

5.2 Truncating Outputs of Quantum Oracles

The distinguishing attack described above is interesting, though, there is a controversial issue. As pointed out by
Kaplan et al. [KLLN16a], if we are only given the complete encryption oracle (quantum oracle that returns n-bit
output values (V (x, y),W (x, y)) or π(x, y) ), then it is not trivial whether the above attack works. In the classical
setting, if we are given the complete encryption oracle and want only the right half of outputs, then we can just
truncate outputs of the complete oracle. However, in the quantum setting, answers to queries are in quantum
superposition states, of which right n/2-bits and left n/2-bits are entangled. Since the usual truncation destroys
entanglements, it is not trivial how to simulate the oracle that returns exactly the right half of the output, from
the complete encryption oracle. However, it is still possible, and below we explain how to simulate truncation of
outputs of quantum oracles without destroying quantum entanglements.
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Let O : |x〉 |y〉 |z〉 |w〉 7→ |x〉 |y〉 |z ⊕OL(x, y)〉 |w ⊕OR(x, y)〉 be the complete encryption oracle, where OL, OR
denote the left and right n/2-bits of the complete encryption, respectively. Our goal is to simulate oracle OR :
|x〉 |y〉 |w〉 7→ |x〉 |y〉 |w ⊕OR(x, y)〉. Instead of simulating OR itself, it suffices to simulate an operator O′R :
|x〉 |y〉 |w〉 |0n/2〉 7→ |x〉 |y〉 |w ⊕OR(x, y)〉 |0n/2〉 using ancilla qubits. Let |+〉 := Hn/2 |0n/2〉, where Hn/2 is an
n/2-bit Hadamard gate. Then O |x〉 |y〉 |+〉 |w〉 = |x〉 |y〉 |+〉 |w ⊕OR(x, y)〉 holds for any x, y, w ∈ {0, 1}n/2.

Now, define O′R := (I ⊗Hn/2) ·Swap · O · Swap · (I ⊗Hn/2), where Swap is an operator that swaps last n-qubits:
|x〉 |y〉 |z〉 |w〉 7→ |x〉 |y〉 |w〉 |z〉. Then easy calculations show that O′R |x〉 |y〉 |w〉 |0n/2〉 = |x〉 |y〉 |w ⊕OR(x, y)〉 |0n/2〉
holds. Hence we can simulate OR given the complete encryption oracle O, using ancilla qubits.

5.3 Grover Meets Simon Technique and Adjustment for Feistel Constructions

To combine the quantum distinguisher described above with key recovery using the Grover’s search, we use a
technique by Leander and May [LM17]. They proposed the technique that combines Grover’s algorithm with Simon’s
algorithm, to recover keys of FX constructions.

We want to apply it to Feistel constructions, however, some adjustment is needed since their algorithm is
dedicatedly designed to attack FX constructions. In this section, we first describe the original proposition by
Leander and May, then describe our adjusted proposition, and finally describe difference between them.

The original technique. The following proposition is the original technique by Leander and May [LM17].

Proposition 2 (Theorem 2 in [LM17]). Let Ψ : Fm2 × Fn2 → Fn2 be a function such that Ψ(k, ·) : Fn2 → Fn2 is a
random function for any fixed k ∈ Fn2 . Suppose Ψ is public, and an adversary can calculate it offline. For k0 ∈ {0, 1}m
and k1, k2 ∈ {0, 1}n, let Φk0,k1,k2 : Fm2 × F3n

2 → Fn2 be the function defined by Φk0,k1,k2(x) = Ψ(k0, x ⊕ k1) ⊕ k2.
Then, given quantum oracle accesses to Φk0,k1,k2(·), we can recover (k0, k1, k2) with a constant probability and
O((m+ n)2m/2) queries, using O(m+ n2) qubits.

Leander and May’s algorithm firstly defines function Φ′ : Fm2 × Fn2 → Fn2 by Φ′(k, x) = Φk0,k1,k2(x)⊕ Ψ(k, x). Since
Φ′(k0, x ⊕ k1) = Ψ(k0, x ⊕ k1) ⊕ k2 ⊕ Ψ(k, x) = Φ′(k0, x) holds, Φ′(k0, ·) has a period k1. Roughly speaking, their
algorithm searches for the correct key k0 with the Grover search, and checks whether or not each candidate key k is
correct by checking whether Φ′(k, ·) is periodic or not, by running many independent Simon’s algorithm parallelly.
The Grover search for an m-bit key k0 requires O(m) qubits. O(n) parallel Simon’s algorithm requires O(n2) qubits.
Thus the above algorithm needs O(m+ n2) qubits.

Note that the above proposition refers only to query complexity, but not to time complexity. In the above
algorithm, O(n3) arithmetic are needed to solve linear equations after O(n) queries are made by Simon’s algorithm
(see Section 2.2). This is the essential point that makes difference between the query complexity and the time
complexity. Taking these O(n3) operations into account, the running time of their algorithm is O((m+ n3)2m/2).

Adjusted technique. Now we describe our adjusted technique, which can be proven in the similar way as the
original proposition. In the next section, k0 in Proposition 3 will correspond to subkeys of the last (r − 3)-rounds
K3, . . . ,Kr−1 of r-round Feistel constructions, and k1 will correspond to the hidden period in the quantum distin-
guishing attack introduced in Section 5.1.

Proposition 3. Let Ψ : Fm2 × Fn2 → Fn2 be a function such that Ψ(k, ·) : Fn2 → Fn2 is a random function for any
fixed k ∈ Fn2 . Let Φ : Fm2 × Fn2 → Fn2 be a function such that Φ(k, ·) : Fn2 → Fn2 is a random function for any fixed
k ∈ Fn2 \ {k0}, and Φ(k0, x) = Ψ(k0, x ⊕ k1). Then, given quantum oracle accesses to Φ(·, ·) and Ψ(·, ·), we can
recover (k0, k1) with a constant probability and O((m+ n2)2m/2) queries, using O(m+ n2) qubits.

Again, we search for the correct key k0 with the Grover search and check whether or not Φ′(k, ·) = Φ(k, ·)⊕ Ψ(k, ·)
is periodic for the candidate key k by running Simon’s algorithm parallelly. Our algorithm is not so much different
from the original one, though, we give detailed descriptions of the algorithm in Appendix C, for completeness.
Due to the similar reason as for Proposition 2, time complexity of this variant algorithm also becomes at most
O((m+ n3)2m/2).
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The difference between Proposition 2 and Proposition 3. Here we explain how our algorithm (and our
problem that it solves) in Proposition 3 differs from the original algorithm (Proposition 2).

In the original problem (Proposition 2), Ψ is assumed to be a public function (that is, adversary can calculate Φ
offline), and Φk0,k1,k2 is given as an online oracle. On the other hand, in our problem (Proposition 3), both of two
functions Φ and Ψ are given as online oracles, and adversary cannot calculate them offline. In addition, the domain
size of Φk0,k1,k2 in the original problem differs from that of Φ in our problem. These lead to the difference of query
complexities between the original proposition and ours. See Appendix C for details.

In the situation that we want to combine Grover’s and Simon’s algorithm and we are given two keyed quantum
oracles, the original proposition cannot be applied and some modification such as Proposition 3 is required.

5.4 Combining the Quantum Distinguisher with Key Recovery Attacks

This section explains how to apply Proposition 3 to extend the quantum distinguisher in Section 5.1 to key recovery
attacks. We begin with explaining intuition behind our attack.

Consider to guess subkeys for the last (r − 3)-rounds K3, . . . ,Kr−1, given the quantum encryption oracle of an
r-round Feistel construction. Let us suppose the guess is correct. Then we can implement a quantum circuit that
calculates the first three rounds of the Feistel construction. On the other hand, if the guess is incorrect, then the
corresponding quantum circuit will be the circuit that calculates an almost random function. Hence we can check
the correctness of the guess by using the 3-round quantum distinguisher. We guess K3, . . . ,Kr−1 by using Grover’s
algorithm, while we use Simon’s algorithm for the 3-round distinguisher.

Next, we describe details of our attack. Assume that we are given the quantum encryption oracle of an r-
round Feistel construction Encr : {0, 1}n → {0, 1}n. For k = (K ′3, . . . ,K

′
r−1) ∈ {0, 1}(r−3)n/2, let Dk : {0, 1}n →

{0, 1}n denote the partial decryption of the last (r − 3)-rounds with the key candidate (K ′3, . . . ,K
′
r−1). Define

W : {0, 1}(r−3)n/2 × {0, 1}n/2 × {0, 1}n/2 → {0, 1}n/2 be the function defined by

W (k, x, y) := the right half n/2-bits of Dk ◦ Encr(x, y). (3)

We can implement a quantum circuit of W using the quantum oracle of Encr and the simulating technique we
described in Section 5.2. Note that W (k0, x, y) = x⊕ F (K1 ⊕ y ⊕ F (K0 ⊕ x)) holds, where k0 = (K3, . . . ,Kr−1) is
the set of correct partial keys of the Feistel construction Encr from the 4-th round to the last round.

Now, fix two different n/2-bit strings α, β, and define Ψ, Φ : {0, 1}(r−3)n/2 × {0, 1}n/2 → {0, 1}n/2 by Ψ(k, x) :=
W (k, α, x) ⊕ β and Φ(k, x) := W (k, β, x) ⊕ α. Then Ψ(k, ·) is an almost random function for each k, and Φ(k, ·)
is also an almost random function for each k 6= k0. In addition, Φ(k0, x) = Ψ(K0, x ⊕ k1) holds, where k1 =
F (α⊕K0)⊕ F (β ⊕K0), since

Φ(k0, x) = W (k0, β, x)⊕ α = β ⊕ F (K1 ⊕ x⊕ F (β ⊕K0))α

= α⊕ F (K1 ⊕ x⊕ F (β ⊕K0)⊕ F (α⊕K0)⊕ F (α⊕K0))⊕ β = W (k0, α, x⊕ k1)⊕ β = Ψ(k0, x⊕ k1).

Thus, by applying Proposition 3, we can recover the round keys K3, . . . ,Kr−1. After we obtain K3, . . . ,Kr−1, we
can construct a quantum circuit that calculates the first 3 rounds of the Feistel construction. Hence, for arbitrary
α, β ∈ {0, 1}n/2 such that α 6= β, we can compute F (α⊕K0)⊕F (β⊕K0) in polynomial time by using the 3-round
distinguisher. Then we can recover K0 in time O(2n/4) by using the Grover search. Once K0,K3, . . . ,Kr−1 are
recovered, we can easily recover K1,K2 in time O(2n/4) by using the Grover search.

Complexity. Consequently, we can recover K0, . . .Kr−1 in time O(n32(r−3)n/4), using O(n2) qubits. In particular,
for the case r = 6, all the complexities are balanced at Õ(2n/2), which is the same as the attack in Section 4:

• The attack requires O((m+n2)2n) queries, O(n32n/2) computations, and O(m+n2) qubits. No classical memory
is required in this attack.

We do not consider parallelization here, since it seems unreasonable to assume that there exist many copies of
the online quantum oracle and adversaries can parallelly access to them.
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GJNS14. Jian Guo, Jérémy Jean, Ivica Nikolic, and Yu Sasaki. Meet-in-the-middle attacks on generic Feistel constructions.
In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology - ASIACRYPT 2014 - 20th International
Conference on the Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C.,
December 7-11, 2014. Proceedings, Part I, volume 8873 of Lecture Notes in Computer Science, pages 458–477.
Springer, 2014.
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A On Quantum Amplitude Amplification

This section briefly explains the quantum amplitude amplification technique, which is developed by Brassard, Høyer,
Mosca, Tapp [BHMT02] since the later sections in the appendix need it.

Proposition 4 (Quantum Amplitude Amplification [BHMT02]). Let A be a quantum algorithm on u qubits
without any measurement. Let B : {0, 1}u → {0, 1} be a boolean function. We call an element x ∈ {0, 1}u is good
if B(x) = 1, and bad otherwise. Define unitary operators SB and S0 on u-qubit states by

SB : |x〉 7→

{
− |x〉 if x is good,

|x〉 otherwise,
(4)

and

S0 : |x〉 7→

{
− |x〉 if x = 0,

|x〉 otherwise.
(5)

Let a be the probability that we obtain a good element x when we measure A |0〉. Define Q := −AS0A−1SB and let
t > 0 be an integer. Then, the probability that we obtain a good x when we measure QtA |0〉 is equal to sin2((2t+1)θa),
where θa ∈ [0, π/2] is the constant defined by sin2 θa = a .
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We need this proposition in the appendix C. Below we call B classifier, following the work by Leander and
May [LM17]. Note that, if there is a O(u)-qubit quantum circuit that calculates B in time TB, then SB can be
implemented on a quantum circuit with O(u)-qubits so that it runs in time O(TB). In the above proposition, we
have to know or estimate the probability a before running algorithms, which may not be possible in some situations.
However, actually we can find a good element even if we do not know the probability a in advance.

Proposition 5 (Quantum Amplitude Amplification, without knowing a [BHMT02]). Let a be the prob-
ability that we obtain a good element x when we measure A |0〉. Then, there is a quantum algorithm that runs in
time O(

√
1/a(TA + TB)) that finds a good element x with constant probability. Here, TA and TB are the time that

is required to run A and evaluate B on a quantum circuit, respectively.

The algorithm in Proposition 5 is described as the following procedures. First, a sequence of positive integers
t1, t2, . . . is defined. Second, the algorithm run the following procedure for each i ≥ 1: run the quantum circuit QtiA
on the initial state |0〉, and measure the final quantum state. If a good element x is obtained, then the algorithm
outputs x as a result, and stops. If the algorithm cannot find such a good element, then it runs forever.

If A is an Hadamard gate, quantum amplitude amplification matches the Grover search on B, and thus this
technique is a generalization of the Grover search. In the similar way as for the Grover search, quantum amplitude
amplification can be parallelized. If O(u2p) qubits are available, then we regard them as O(2p) small quantum
processors of size O(u). By running the algorithm on those small processors, we can find a good element in time
O(
√

1/a2p(TA + TB)).

B Dealing with Small Errors of f

This section shows that Corollary 1 is still valid even if f can be calculated only with some small error. We use
the quantum amplitude amplification technique (see Appendix C) instead of the Grover search. Suppose that our
goal is to find x such that f(x, y0) = g(y0) for a fixed y0 ∈ {0, 1}v. Assume w, ` = O(u + v), and we only have a
quantum circuit C ′f that calculates f with some error:

C ′f : |x〉 |y0〉 |0w+`〉 7→
√

1− δ2x,y0 |x〉 |y0〉 |ψx,y0〉 |f(x, y0)〉+ δx,y0 |x〉 |y0〉 |garbage〉 ,

for some w-qubit state |ψx,y0〉, which contains some necessary intermediate information to calculate f(x, y0), and
(w + `)-qubit state |garbage〉, which corresponds to unnecessary information. Here we assume that f is calculated
by using the Grover search that normally contains some small error, and we now assume that δx,y0 = O(1/2u/2).
Let U⊕y0 denote the unitary operator |z〉 7→ |z ⊕ y0〉. With the notations in Proposition 4, we put A := C ′f · (Hu ⊗
U⊕y0 ⊗ Iw+`), which suggests that

A |0u+v+w+`〉 = C ′f

(√
1/2u

∑
x

|x〉 |y0〉 |0w+`〉

)
=
√

1/2u
∑
x

(√
1− δ2x,y0 |x〉 |y0〉 |ψx,y0〉 |f(x, y0)〉+ δx,y0 |x〉 |y0〉 |garbage〉

)
,

where Hu is the Hadamard operator of dimension on u-qubit states and Iw+` is the identity operator on (w + `)-
qubit states. Now we run the quantum amplitude amplification with the above A, defining that the “good” element
corresponds to a state such that the last `-qubits match g(y0). That is, we define B : {0, 1}u+v+w+` → {0, 1} by
B(α) = 1 if and only if the last `-bits of α is g(y0). A quantum circuit of B can be implemented using O(u+v)-qubits
since we already know (y0, g(y0)). Then, the good probability is roughly equals to 1/2u, which suggests that we can
find x such that fy0(x) = 1 in time O(2u/2). Thus our algorithm works even if f can be calculated with a small
error.

C Detail Descriptions of the Algorithm in Proposition 3

Our algorithm in Proposition 2 is not so much different from the original algorithm in Proposition 3 by Leander
and May, but here we give details and concrete descriptions of our algorithm in Proposition 3 for completeness.
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We use similar notations as in [LM17]. The algorithm needs quantum amplitude amplification by Brassard, Høyer,
Mosca and Tapp [BHMT02] (see Proposition 4).

The algorithm in Proposition 3 consists of two parts. The first part recovers k0, and the second part recovers k1.
Since Φ′(k0, ·) := Φ(k0, ·)⊕Ψ(k0, ·) is a periodic function with the period k1, the second part is trivial after recovering
k0 (we can use Simon’s algorithm to recover k1). Hence, in what follows, we explain the quantum algorithm to recover
k0.

Roughly speaking, the algorithm is defined as QtA for some suitable quantum algorithm A, classifier B, and
a parameter t. Remember that the oracle Φ in our problem is a little different from the oracle Φk0,k1,k2 in the
original problem. Due to this difference of oracles, our algorithm is slightly different from the original algorithm
in the construction of classifier B. In our classifier B described below, process branches depending on whether the
condition Ψ(k0,mi ⊕ k′1) = Ψ(k0,mi ⊕ k′1) for any i holds. On the other hand, in the original algorithm by Leander
and May, the corresponding branch occurs depending on a different condition. The difference of oracles does not
affect algorithm A, and it is almost same as the corresponding algorithm in the original one by Leander and May.

Below we give descriptions of A and B, and then describe the concrete description of the algorithm. Descriptions
below basically follow arguments given in [LM17].

Quantum algorithm A on input |0〉. A is a quantum algorithm without measurement on m + 2n(n +
√
n)

qubits. Let h : {0, 1}m × ({0, 1}n)×(n+
√
n) → ({0, 1}n)×(n+

√
n) be the function defined by

h(k;x1, . . . , xn+
√
n) = (Φ′(k, x1), . . . , Φ′(k, xn+

√
n)), (6)

where Φ′(k, x) = Φ(k, x)⊕ Ψ(k, x), and

Uh : |k〉 |x1, . . . , xn+√n〉 |y1, . . . , yn+√n〉 7→ |k〉 |x1, . . . , xn+√n〉 |y1 ⊕ Φ′(k, x1), . . . , yn+
√
n ⊕ Φ′(k, xn+√n)〉 (7)

be the corresponding unitary operator. Then the quantum algorithm A on input |0〉 is defined as follows:

1. Apply H⊗m+n(n+
√
n) ⊗ In(n+√n) on |0〉, which produces the quantum state∑

k,x1,...,xn+
√

n

|k〉 |x1, . . . , xn+√n〉 |0〉 .

2. Apply Uh, which yields the state∑
k,x1,...,xn+

√
n

|k〉 |x1, . . . , xn+√n〉 |Φ′(k, x1), . . . , Φ′(k, xn+
√
n)〉

.
3. Apply Im ⊗H⊗n(n+

√
n) ⊗ In(n+√n), which results in the final state∑

k,x1,...,xn+
√

n
u1,...,un+

√
n

(−1)
∑

i ui·xi |k〉 |u1, . . . , un+√n〉 |Φ′(k, x1), . . . , Φ′(k, xn+
√
n)〉

In particular, A is formally defined as A := (Im ⊗ H⊗n(n+
√
n) ⊗ In(n+√n)) · Uh · (H⊗m+n(n+

√
n) ⊗ In(n+√n)). A

makes O(n+
√
n) quantum queries (in Step 2).

Classifier B (and the operator SB). Here we define classifier B : {0, 1}m+n(n+
√
n) → {0, 1}. First, at the

beginning of the algorithm, take d 3m+n(n+
√
n)

n e random messages {mi}i such that mi 6= mj for i 6= j. Then the
value B(k, u1, . . . , un+

√
n) is determined by the following procedures:

1. If dim(Span(u1, . . . , un+
√
n)) 6= n− 1, then

2. Return 0
3. Else
4. Calculate the unique k′1 ∈ {0, 1}n such that k′1 ⊥ Span(u1, . . . , un+

√
n).

5. If Ψ(k,mi ⊕ k′1) = Ψ(k,mi ⊕ k′1) hold for all i, then
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6. Return 1
7. Else
8. Return 0
9. End If

10. End If

The unitary operator, or quantum circuit, of SB is constructed so that it runs the above procedure and finally
calculate SB |η〉 = (−1)B(η) |η〉 for each η. Then it is obvious that SB requires O(m+n(n+

√
n)) queries (in Step 5)

and some deterministic calculations to solve linear equations, which requires additional time time O(n3) (in Steps
1 and 4). Eventually, B can be evaluated once in time O(m+ n3).

Remark 1. The classifier in the original algorithm by Leander and May requires no query, since it does not need
online queries in the step that corresponds to Step 5 in our algorithm. This difference derives from the difference
between the setting of our problem and the original one: Ψ is given as an online (keyed) oracle in our setting,
whereas Ψ is assumed to be calculated offline in the original setting.

The Concrete Description of the Algorithm in Proposition 3. The concrete description of the algorithm
in Proposition 3 (to recover k0) is as follows.

1. Take
⌈ 3m+n(n+

√
n)

n

⌉
random messages {mi}i such that mi 6= mj for i 6= j.

2. Set t :=
⌈(
π/Arcsin(2−

m
2 )
)⌉

3. Set |0〉 as the initial state, run QtA, and measure the final state.
4. Output the first m-bit of the measurement result in Step 3.

Note that we can easily recover k1 once we recover k0, as stated above.
Complexity analysis for our algorithm is almost same as the original one, since there is little difference between

our algorithm and the original one. Thus the claim of Proposition 3 holds.
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