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Abstract

Searchable Symmetric Encryption (SSE) has been widely applied in the design of encrypted database
for exact queries or even range queries in practice. In spite of its efficiency and functionalities, it always
suffers from information leakages. Some recent attacks point out that forward privacy is the desirable
security goal. However, there are only a very small number of schemes achieving this security. In this
paper, we propose a new flexible forward secure SSE scheme, denoted as “FFSSE”, which has the best
performance in the literature, namely with fast search operation, fast token generation and O(1) update
complexity. It also supports both add and delete operations in the unique instance. Technically, we
exploit a novel “key-based blocks chain” technique based on symmetric cryptographic primitive, which
can be deployed in arbitrary index tree structures or key-value structures directly to provide forward
privacy. In order to reduce the storage on the client side, we further propose an efficient permutation
technique (with similar function as trapdoor permutation) to support the re-construction of the search
tokens. Experiments show that our scheme is 4x, 300x and 300x faster than the Yogos (the state-
of-the-art forward private SSE scheme proposed in CCS 2016) in search, update and token generation,
respectively. Security analysis shows that our scheme is secure.

1 Introduction

Along with the popularity of outsourcing data to the cloud, data privacy becomes a critical consideration.
To protect the privacy, users usually encrypt data before uploading them to database or storage server.
However, encryption breaks the data availabilities, such that keyword search, range query or other functions
cannot be directly applied over the ciphertext. To address the above issues, some cryptographic techniques
have been proposed. Among them, searchable encryption (SE) is the mechanism to allow querying of the
encrypted data without leaking data privacy to the cloud server.

Searchable Symmetric Encryption (SSE) is designed on symmetric cryptographic primitives and thus has
very good performance (when compared to public key searchable encryption [IH3]). It allows a client to store
encrypted documents on a server, then to retrieve all documents containing a certain keyword (or collection
of keywords) at a later point. To do so, most efficient SSE schemes work in the following way: First, the
client computes a search token ¢ corresponding to the queried keyword k and sends ¢ to the server. By using
t, the server retrieves the documents identifiers containing the keyword w, then sends back them. (These
document identifiers need not be the actual file name. They can be instead of the pointers to the encrypted
files or even encrypted index of documents/records stored in the server.) The client then downloads the
appropriate documents according to its requirements.

Now, SSE has been widely used in encrypted databases [4H6] [8]. Take the CryptDB [4] as an example,
besides supporting SQL LIKE operator by using an SSE scheme [9] directly, it utilizes the SSE to implement



the SQL equality queries (=, !=, IN, NOT IN, etc) when the values in the column are not unique. Recently,
some researches [0} [7, [28H30] have been proposed to apply SSE to support rich queries, like conjunctive
query [I0], range query [I1I], and so on. Moreover, ARX [5] has applied SSE to provide equality query over
the encrypted NoSQL databases.

1.1 Leakages and attacks of SSE

Although SSE can protect the privacy of the data content to a certain level, the deterministic encryption
used in SSE makes the cloud server easy to observe the repeated queries and other leakages, which are
modeled as size patterns, query patterns and access patterns:

e Size pattern [12]. Tt means that a server can know the number of keyword-document pairs of the stored
data. Some of the SSE schemes may also leak the total number of messages and/or the total number
of keywords.

o Search pattern [I3]. It means that a server can know the repeated deterministic tokens. If the server
can also know a repeated query, it is also called as “query pattern”.

o Access pattern [13]. It means that a server can know the search results, including matching document
identifiers of a keyword search and the document identifiers of the added/deleted documents.

Generally, these leakages can be mitigated by utilizing an oblivious RAM (ORAM) [18],[19]. Unfortunate-
ly, ORAM usually brings the massive storage space, huge bandwidth cost and lots of interactions between the
user and the server for each keyword search. Thus, for the consideration of efficiency, almost all the existing
works assume these leakage patterns are allowable under real-ideal [I3], universal composable (UC) [25], 26],
or other specific security models.

Potential attacks based on these leakages have not been thoroughly analyzed and exploited until inference
attack conducted by Islam et al. [I4] in 2012. However, in order to let the inference attack be successful,
a server needs to know the content of all the original messages. In 2015, Cash et al. [15] studied more
effective leakage-abuse attacks, in which count attack is used for query recovery by abusing co-occurrence
patterns of keywords and size pattern. In 2016, Zhang et al. [16] studied file-injection attacks by abusing
the file-access patterns. By injecting files to the client, the malicious server can know the query privacy
even the plaintext of encrypted document. Kellaris et al. [I7] developed the first attack against systems
leaking only communication volume, in which communication volume means the server learns the number of
returned items of a query. This attack can be even applied to the SSE schemes based on fully homomorphic
encryption (FHE) or ORAM.

1.2 Need of forward privacy

The above attacks showed that even small leakage can be leveraged by an attacker to reveal the client’s
queries. Especially in the dynamic database, the server could inject new document to the client to obtain
more advantages. Zhang et al. [16] showed that the file-injection attack can be devastating. They actually
consider both adaptive and non-adaptive attacks. The adaptive attack refers to whether the server injects
documents before or after the client’s query is made. It is more effective, however, it cannot be applied to
the forward secure schemes, which achieve the forward privacy [12]. This fact highlights the importance of
forward privacy in any real-world deployment.

Forward privacy means a malicious server cannot learn if a newly added document matches previous
search queries. From a practical point of view, it is important for the user to securely and dynamically build
the encrypted database. As far as the authors know, there are only a limited number of schemes [I1], 12}, 20+
23] in the literature claimed to have forward privacy. Most of them are suffered from inefficiencies, while the
last scheme (i.e., Yogos [21]) is very efficient in practice for both searches and updates.



Table 1: Comparison with typical forward private SSE schemes. N is the number of entries (i.e. the number of
keyword-document pairs) in the database, while W is the number of distinct keywords, D is the number of documents, and M is the
length of search token. The n,, is the size of the search result set for keyword w, and a,, is the number of times the queried keyword w
was historically added and deleted to the database, a, is the a,, with a maximum value CT (when a}, is bigger than CT, it will be 1),
¢ is the first empty level which contains 2¢ blocks. Denote AE as asymmetric encryption, S€ as symmetric encryption, p as the length
of data identifier, A as the security parameters and 77 as tree traverse operation.
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1.3 Motivation

The Xogos protocol proposed by Bost [21] in 2016 is the first efficient forward private SSE scheme to our
knowledge. Its construction is based on the inverted index. For each element in the indexed list L,,=(indy,
-+, indy,) of keyword w, Yogos encrypts it and stores it at a (logical) location. Its idea is simple: for
preventing the malicious server from knowing where the newly added document belongs to, it generates the
storage location based on the inverse of a one-way trapdoor permutation (TDP), which can only be performed
in the client side with his/her private key. During the search operation, the protocol allows the server to
re-compute these storage positions based on the evaluation of permutation using the public information. By
this way, it achieves the optimal O(1) update complexity and O(a,,) search computation complexity, where
a4, denotes the number of times the queried keyword w was historically added to the database.
The outstanding contribution of Yo¢gog is exploiting a novel design of efficient forward private SSE without
using ORAM. It inspires us to study similar techniques with higher performance and broader application
scopes, aiming at improving the following limitations of o¢os:

o Asymmetric primitive. The TDP technique in Yogog relies on the asymmetric cryptographic primitive,
namely, the search operation requires O(a,,) times asymmetric encryptions and decryptions (imple-
mented by RSA). As we all know, asymmetric primitive is more expensive than symmetric primitive.
Therefore we focus on how to exploit the new technique based on symmetric cryptographic primitive
which has the same effect as TDP, as to further improve its performance;

e Dependence on token generation rule. The storage position in Yo¢pos must be generated based on the
repeated operation by the private key of the asymmetric primitive. That is, it specifies the token
generation rule. If we regard the (local) position (even the token) as the indez, the index generation
must rely on the token generation rule. So that, the TDP in Yo¢oc conflicts with the storage structure
with its own index generation rule. This limitation would limit its application scopes. Therefore we
also focus on how to exploit the new technique independent of token generation rule, to provide forward
private security for the existing structures with its own index generation Tule.

1.4 Owur Contributions

We construct a flexible forward secure searchable encryption scheme based on the symmetric primitives,
denoted as “FFSSE”, which has the most efficient performance until now (fast search operation and token
generation, O(1) update complexity), and supports both add and delete operations in the unique instance. As
shown in Table[l} it can be seen that: 1) FFSSE and Yogoss (Xogos-B and Zogos) have the best asymptotic
complexity in search and update. But in fact, FFSSE improves 4x search and 300x update than o¢oc-B



ek

STO(W)<n—kST1(W)< ----- STy(W) €———STpp1(w):
o !

Hyw Hkw Hkw Hkw

UTo(w) UT1(w) UTc(w) UTcr1(w)

Figure 1: Trapdoor permutation (TDP) technique. Operations in red can only be done by the client, using the secret key
sk.

(100x search and at least 300x update than Yo¢og) through experiments, owing to the adopted symmetric
cryptographic primitive; 2) FFSSE has the most efficient token generation among all the forward private
SSE schemes.

In addition to the basic scheme, we propose an improved scheme, denoted as FFSSE-¢, to further reduce
the client storage to the same as ogos. We remove the tree traverse operations and reduce the number
of nodes in the index tree, by dynamic merging the document identifiers of the same keyword. Compared
to Yogog, the search, update and token generation of FFSSE-¢ improve 60x, 200x and 200x respectively
through experiments.

Technically, we exploit: 1) a novel “key-based blocks chain” (KBBC) method based on symmetric crypto-
graphic primitive. Apart from the good performance, it does not rely on the index generation rule, so that it
can be deployed in arbitrary index tree structures or key-value structures to provide forward private security;
2) an efficient permutation technique (with similar function as TPD), denoted as “e-sTDP”. It adopts KBBC
technique to link the blocks and achieve the forward privacy. Meanwhile, it applies the one-way permutation
P (not necessary to have a trapdoor and can be instantiated by symmetric cryptographic primitive) instead
of TDP to re-generate the tokens and reduce the client storage. It is similar to the usage of TDP in Xog¢og,
but has a higher performance.

2 Related work

2.1 Searchable symmetric encryption

The first practical searchable encryption scheme was introduced by Song et al. [9] in 2000, using only
symmetric primitives. Later, known as Symmetric Searchable Encryption (SSE) schemes, several schemes
based on this similar concept were proposed. There are two kinds of SSE scheme, static one and dynamic
one. Because the static SSE doesn’t support dynamically adding or deleting keyword-document pairs after
initializing the database or storage system, recent researches mainly focus on the constructions of dynamic
SSE.

Among the design approaches of SSE, approach based on inverted index is used widely. In this approach,
an index is in the form of (key, value), where the key is a keyword and the value consists of a list of document
identifiers associated with the keyword. Compared to other approaches, it achieves the sublinear search time.
This is because searching for a keyword immediately returns the list of document identifiers matching the
keyword. In 2006, Curtmola et al. [13] firstly introduced this approach, and subsequent schemes are proposed
by Kamara et al. [24], Kurosawa and Ohtaki [25], Cash et al. [], Naveed et al. [26], Stefanov et al. [12] and
Bost [21], and so on.

However, creating a dynamic scheme based on this approach faces a great challenge. When adding/re-
moving a document, each of the keyword tokens must be linearly scanned through to add/remove a message
entry. Fortunately, the novel design of Bost [2I] provides not only the forward private security, but also the
efficient solution for this challenge.



2.2 Trapdoor permutation technique

We review the trapdoor one-way permutations described in [27]. A trapdoor permutation family [] over a
group D comprises the following three algorithms:

e Generate(1?) is a randomized generation algorithm. Its input is 1* and its output is the description
s of a permutation along with the corresponding trapdoor ¢.

e Evaluate(s, ) is a deterministic algorithm. Its inputs are the permutation description s and a value
x € D. Its outputs is a € D, the image of x under the permutation.

e Invert(s,t,a) is a deterministic algorithm. Its inputs are the permutation description s, the trapdoor
t and a value a € D. It outputs the preimage of a under the permutation.

The output of the Generate algorithm is a probability distribution IT on permutations, therefore (, 7 1) £

I1, where 7 is a permutation and 7~ ! is the inverse permutation. For a permutation with the description of
s, we have Invert(s,t, Evaluate(s,z)) = x.

Definition 1. The advantage of algorithm A in inverting a trapdoor permutation family is:
Advirvert = Plx = A(s, Evaluate(s, x)) : (s, t) & Generate, x £ Dj.

TDP in Yogos. In Yogog, TDP is built by the asymmetric primitive. As shown in Figure[l] only the client
who owes the trapdoor (private key sk) can generate the permutation, but the server who owes the public
info (public key pk) can evaluate this permutation. We can also see that the permutation about w is built
by encrypting a random value STy(w) for many times using the trapdoor sk (i.e., 7,,'), meanwhile, it can
be retrieved by decrypting the last one using the public info pk (i.e., mp).

The Yo¢os uses the TDP to construct a forward secure SSE. Most specially, for each keyword w, there
is a permutation over the set which contains the search tokens of keyword w denoted by D(w). The client
maintains a counter ¢ and its search token ST.(w) for each keyword w. When adds a keyword-document pair
for keyword w, the client will first produce a search token by ST, 1(w) + 7, (ST.(w)), and then produce
a storage position (called as update token) UT.y1(w) using a keyed hash. Finally update its client state
and store the document identifier into UT,41(w) in the server. Since the latest search token is stored in the
client, the malicious server cannot know where the UT,41(w) is produced from.

3 Preliminaries

3.1 Notations

Denote negl(A) as a negligible function, where A is the security parameter. Denote x & Xasais uniformly
sampled from the finite set X. In general, the symmetric key is the A\ bits string uniformly sampled from
{0,1}*. Denote Ej(m) as the symmetric encryption of the message m by the key k, Dy(c) as the symmetric
decryption of the ciphertext ¢ by the key k. Denote F as the symmetric encryption scheme selected in the
real construction. Moreover, denote H(k, m) as a keyed hash function with the key & and message m as
inputs.

Denote W as the keyword set and W as the number of distinct keywords (W = |W|). Denote W, C {0, 1}*
as the z-th keyword, and thus W = UZL W;. Denote D as the document set and D as the number of
documents (D = |D|); Denote ind, € {0,1}* as the z-th document identifier with the bit length of p, and
thus D = (ind;)2 ;.

In general, we denote w as the keyword, a,, as the number of times the queried keyword w was historically
added and deleted to the database DB, and n,, as the size of search results for keyword w. Denote DB(w)
as the set of documents containing keyword w in the database DB, and N as the total number of keyword-
document pairs which the database supports. Denote Hist(w) as the history of keyword w. It lists all the
modifications made to DB(w) over the time.



3.2 Dynamic searchable symmetric encryption

We review the general definition of dynamic searchable encryption scheme in [21], DSSE = (Setup, Search, Update),
containing an algorithm and two client-server protocols:

e Setup(DB): it is an algorithm for setting up the whole encrypted database supporting keyword search.
It takes a database DB as input, outputs a pair (EDB, K, ¢), where EDB is the encrypted database,
K is the secret key contained by the client and o is the client’s state.

e Search(K, ¢, o; EDB) = (Search¢ (K, o, q), Searchg(EDB)): it is a client-server protocol for perform-
ing a search query. The Search¢ (K, o, ¢) in the client takes the key K and its state o as inputs, outputs
a query ¢; the Searchg(EDB) in the server takes the EDB as input, outputs the results as document
identifiers matching the query ¢. For single-keyword search schemes, a search query is restricted to a
unique keyword w.

e Update(K, o, op, in; EDB) = (Update (K, o, op, in), Updateg(EDB)): it is a client-server protocol
supporting update operations of a document. The update operations are taken from the set {add, del},
meaning, respectively, the addition and the deletion of a document/keyword pair. To do these update
operations, the client takes inputs as the key K, an operator op, client’s state o and an input in parsed
as the index ind and a set W of keywords; while the server takes the EDB as input.

3.3 Forward privacy security

Leakage definition. Define £ = (£5¢twp, [Search —pUpdate) a9 the leakage function, describing what
protocols in FFSSE leak to the adversary. More formally, the leakage function £ will keep as state the
query list Q: the list of all queries issued so far, and for a search query on keyword w, entries are (i, w) , or
for an op update query with input in, entries are (¢,0p,in). The integer ¢ is a timestamp, initially set to
0, and it increments with the query times. Define sp(x) and qp(x) respectively denote the search and query
patterns, formally

sp(z) = {j: (j,z) € Q} (only matches search queries)

(@) = {j: (j.z) € Qor

(j,op,in) and x appears in in }.
Forward privacy. We review the definition of forward privacy described in [21].

Definition 2. A L-adaptively-secure SSE scheme X is forward private if the update leakage function LUPdete
can be written as

EUpdate(op, zn) — ,C’(Op7 {(znd“ Uz)})

where {(ind;,u;)} is the set of modified documents paired with the number u; of modified keywords for the
updated document ind;.

3.4 Key-based blocks chain

Before giving the details of our SSE protocol, we first present our proposed “key-based blocks chain” (KBBC)
technique to link arbitrary number of data blocks in a set B as a chain C while hiding their relations. Define
B as the data blocks set, B = {bg, - -,b,} and |B| = n. Denote C as a chain built over the subset B in B, i.e.,
B C B. Denote n. as the number of chains over the set B. Assume a block can only belong to one chain,
then 1 <n, <n.

Block definitions. We define three types of blocks: head block, tail block and internal block, which
are the first block, last block and other blocks in a chain C, denoted by C.head, C.tail and C.internal,
respectively. For each data block b in set B, define it as b=(id, value, key, ptr), where id and value are data
identifier and data value of this block, the ptr and key are data identifier and encryption key of its next
block. Denote b.id as the id of block b and others are similar.

KBBC algorithms. There are three algorithms in KBBC:
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Figure 2: An example of key—based blocks chain. There are four blocks with data identifiers of idy, ids, id3 and id4, whose
encryption keys are keyi, keyz, keys and keys respectively. The head block in the chain is the id; whose encryption key is maintained
in the client; the ids is a internal block and its key is stored in the previous block idy; the tail block is the id4, whose key is stored in
the previous block ids, however, its ptr value is L because it is the end of this chain.

e Init(): it initializes a blocks chain. It takes none input but outputs a description C for this chain.

o AddHead(C,id,value,1?): it adds a head block to the chain. It takes chain description C, the block
identifier id, block value value and security parameter 1 as inputs, and outputs a new head block b.
It has four steps: 1) generate a block as b=(id, value, C.head.key, C.head.id); 2) sample a random key
k from {0,1}*; 3) utilizes k to encrypt contents of block b except id; 4) store b in the server.

e Retrieve(C,id, k): it retrieves a next block in the chain. It takes the chain description C, block identifier
id and block key k as inputs, and outputs the identifier and encryption key of the next block. It has
tree steps: 1) find the block b by its identifier id; 2) decrypt block b by its key k; 3) output the obtained
identifier b.ptr and key b.key.

Build a blocks chain. To build a blocks chain, we first execute Init() to initialize the chain C; then,
for each block b; € B (B C B,0 <i < |B| — 1), we execute AddHead(C, b;.id, b;.value, 1) repeatedly, until
all blocks are added to the chain C. In fact, its idea is very simple: to link the blocks, the ptr and key of a
block are set to the data identifier and encryption key of its next block (but for the tail block, they are set
to L); to hide the relations, the identifier and encryption key of each block are encrypted and stored in its
previous block (but for the head block, they are stored in the client). Figure [2[shows an example of a chain
built from blocks with identifiers of idy,id> and idy.

Forward privacy. The KBBC algorithms are simple but powerful. Obviously, it can provide forward
privacy for the newly added block, because its next block identifier is encrypted by a random key stored in
the client.

Theorem 1. (AddHead leaks no information). Define Lg = (LEetricve paddHead) ypere
LBetrieve — (. num., Hist(C)), LaddHead = |
KBBC'is Lg — forward — privacy.

Proof. If C has already been retrieved, the adversary knows the number of blocks which have already been
in C (denote as numc) and the history of C including id, value, key of the retrieved blocks (denote as
Hist(C)). If all the chains of B have been retrieved, it leaks the number of chains over the set B (denote as
n¢). Therefore,

ﬁ]s%etrieve — (nm nume, HiSt(C))

According to the algorithm KBBC.AddH ead, when we add a new head block to C which has already been
retrieved, we will generate a new block as b=(id*, value*, C.head.key, C.head.id), which is encrypted by a
new key k stored in client side. Without the key k, the adversary can not decrypt b, so that the added head
block and blocks of C are indistinguishable. Moreover, the adversary can only know that we add a block into
B, but cannot know which chain it belongs to and weather generate a new chain. Therefore,
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Figure 3: Storage structure and operations of FFSSE. There are three keywords (W, Wy and W3) and their inverted
index lists (Lw,, Lw, and Lw;) in a database DB. The client stores the encryption key, identifier of head block of each list and a
counter in the map W. The server stores each document identifier in these lists into the value part of a data block in a node of the
tree 7. The root node shows the whole parts of a data block.
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the adversary cannot get any advantage to learn more additional information through AddH ead operation.
O

Independent of index generation rule. In KBBC, the index (data identifier) can be generated by
random selection or some algorithms according to application requirements. Compared to TDP in Yo¢og, it
is an important characteristic, which allows building a chain with forward privacy over the existing structures
with its own index generation rule. It is more flexible and may therefore be valuable for some other designs
with the consideration of forward security.

In fact, we can regard each block as a “key-value” structure, where the id with clear text is the key,
which may be the index or position in the concrete storage structure, other encrypted parts are the value. So
that, KBBC can be applied in most popular index tree (like AVL, B-tree) or key-value storage structures, to
provide the forward private security. In other words, it is suitable for both relational databases and NoSQL
databases.

4 The FFSSE construction

In this section, we describe our proposed forward secure searchable encryption scheme (denoted as “FFSSE”),
which is based on our “key-based blocks chain”.

4.1 Storage structure

Like the Xo¢os, we consider the SSE construction with inverted index scheme (such as [I3] and derived
works). For each keyword w € W, denote L,, as an indexed list to store the document identifiers (indp, - - -,
ind,,, ) containing the keyword w, where n,, is the size of L,,, that is, n, = |Ly|.

In the cloud server, we adopt the binary search tree 7 as an example (other index tree or key-value
structures are also OK) to store the data blocks defined in Section Each node stores a data block.
We denote T[id] as the node indexed by id, and T[id].data as the stored data. Each element (document
identifier) in the list L,, is stored in the value part of a data block. All the elements in every indexed list
are stored into the tree 7', based on the “key-based blocks chain” described in Section[3.4} As a result, there
are total W inverted lists containing N nodes stored in the 7, whose depth is log V.

In the client, we adopt a map W to store the state of each keyword. The keyword state of w can be
defined as the tuples of st,,=(id, key), where id and key are data identifier and encryption key of the head
block in the inverted list L,,. The default value of id is L. For a keyword w € W, W]w] is mapped to its
state st,,.

Figure |3 shows this storage structure. To support both add and delete operations, we actually store the
document identifier ind and its operator op into the value of a block. More specifically, “ind||add” denotes



the add operation but “ind| del” denotes the delete operation for document ind, where denotes the
concatenation of two strings. See the root node in tree 7 of Figure [3| for an example. In practice, the op can
be defined as a byte, for example, 0 for add but 1 for del. Moreover, besides the map W, the client should
securely store the secrete key uk.

(LH”

4.2 Our construction

Algorithm 1 FFSSE: Forward private SSE scheme supporting both add and delete operation
Setup()

1wk & {0,112
2: W « empty map, T < empty tree
Search(w, o; EDB)
Client:
1: (id, key) + (Ww].id, W[w].key)

2: Send token (id, key) to the server.
Server:

3: S < empty set, i <0

4: repeat

5: b+ Dkey (T[id}.data)

6: id < b.ptr

7. key < b.key

8:  ind|lop < b.walue

9:  S[i++] < ind|lop

10: until (b.ptr ==1)
11: S + Merge(S)
// merge the same ind with add and del operations
12: Send each ind in S to the client.
Update(op, w, ind, o; EDB)
Client:
(id, key) « (Ww].id, W[w].key)
ro & {0,1}*
id*  + H(uk,r)
key* + KeyGen(1*)
b (id", Epeye (“indllop” [Fieylid)
Wiwl.id < id*
Ww|.key « key*
Send block b to the server.
Server:
9: Insert block b into the tree 7.

—_

DT e

Algorithm [I] gives the formal description of our FFSSE scheme. It allows only insertion of data block into
tree T, and supports both add and delete operations of keyword-document pairs. In the pseudo code, H is a
keyed hash functions whose output is u bits long. Encryption Ey(m) and decryption Dy/(c) are implemented
by an IND-CPA (indistinguishability against the chosen plaintext attack) secure symmetric cryptographic
primitive.

Update operation. When the client wants to update (add or delete, denoted as op) a document (with
identifier ind) matching w, it runs KBBC.AddHead(L,,, -). More specifically, it firstly products a new data
block b, whose identifier is generated based on a random value sampled from {0,1}*. The b.value is set to
the document identifier and its operation, i.e., ind||op; the b.key and b.ptr are set to W{w].key and W{w].id



respectively, that is, encryption key and data identifier of current head block. Then, the client samples a
symmetric key key* with KeyGen(1*) function, and utilizes it to encrypt the value, key and ptr. Next, it
sends the block b to the server, and updates the state of keyword w as W{w].id = b.id and W[w].key = key*.
Finally, the server will insert this block into the tree 7 to finish this process. Figure [3] shows the details of
inserting a new keyword-document pair into the inverted list of W3.

Search operation. When the client performs a search query on w, it will issue a search token ¢ that will
allow the server to retrieve the document identifiers matching w. To do so, the client can only generate the
search token as the keyword state stored in the map Ww], i.e., t < (W]w].id, W[w].key). After receiving
the search token ¢, the server can retrieve the blocks chain one by one by running KBBC.Retrieve(LL,,, -)
repeatedly, until the tail block is visited. For each node in the chain, the server decrypts its value and obtains
the stored document identifier. If a document identifier has both the add and del operators, it should be
ignored. In Algorithm [I} a function Merge is defined to merge the same document identifier with different
operations. In the end, the server returns all the document identifiers matching w to the client to finish this
process.

Correctness. The correctness of FFSSE is quite straightforward. Like that in Yo¢og, the only issue is
collision among the data identifier id generated from H with input (uk, ). We can relate the correctness to
the collision resistance of H. The output of H is p bits long. In practice, u should satisfy the condition that
N?2 /2" is negligible in the security parameter A. Let N4, be the maximum number of keyword-document
pairs which the database can support. Therefore, setting u = A + 21log Ny is thoughtful.

4.3 Security analysis

The adaptive security of FFSSE can be proven in the Random Oracle Model.

Theorem 2. (Adaptive security of FFSSE). Define Lg = (Egeamh,ﬁgpdam), where
L3eareh — (sp(w), Hist(w)), L7 (op, w, ind) = 1.
FFSSE is Lg — adaptive — secure.

Proof. Let A be the security parameter. Deriving some games from real world game will help to prove the

theorem.
Game Gy. The Gy is the real world FFSSE security game SSEReally"S9F()\). That is to say,

P[SSERealiT55E(\) = 1] = PG, = 1].

Game G;. Algorithm [2| formally describes G, and introduces an intermediate game G, by including
the additional boxed lines. In the Update protocol, instead of calling hash function H to generate the new
id*, we pick random strings when it is confronted to a new keyword w. For hash function H, if an entry
is accessed for the first time, it is first randomly chosen and then returned; if an entry has been accessed,
then it will return the result which has returned before. Formally, for the first time, id’ + H(uk,r), id' is a
random result; when access r for next time, it will still return the result id’. The point of G, is to ensure
the consistency of H's transcript. In Gy , hash function H will always program to two same results for
the same input. If random number r doesn’t appear in hash function H's transcript, G; randomly chooses
id, otherwise, id will be set to the related value in the H's transcript. Then, G lazily programs the RO
when needed by the search protocol or by an adversary’s query, so it makes sure the consistence of output.
Because of it, in G; and Gy, the output of hash function H is indistinguishable. Therefore,

P|Gy =1] = P|G, = 1],
G1 and G are also indistinguishable unless the flag is set to true, formally speaking,

P[Gy = 1] — P[Gy = 1] < P[flag is set to true in G].
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The possibility of random number r gets the same random number is negligible. Furthermore, symmetric
encryption Ex(m) and decryption Dg(c) are IND-CPA. Therefore,
P|flag is set to true in G1] = AdviN P~ PA()\) is negligible.
Based on the above analysis,
P[Gy = 1] — P[G; = 1] = P[G; = 1] — P[Gy = 1]
< Advl{INDfCPA()\).

Algorithm 2 Game G; and Game G;. Boxed code is included in G; only
Setup()

1wk < {0,13*
2: W <« empty map, T « empty tree
3: flag = false
Search(w, o; EDB)
Client:
(ido, . . ., idn, cnt) < Ww]
if(ido, ..., idn,cnt) =L
return
¢ (indo|lopo, - - -, indent||0pent) < Hist(w)
key < W{w].key
: Send token (id, key) to the server.
Server:
S + empty set
H(uk,r;) < Wlw].id
: fori=20 to cnt
10: blk; < Dyey(T[id].data)
11: id; < blk;.ptr
12: key; + blk;.key
13: ind||op < blk;.value
14: S[i] < ind||op
15: H(uk,r;) <« id;
16: S «+ Merge(S)
17: Send each ind in S to the client.
Update(op, w, ind, o; EDB)
Client:
tid <+ Wiwl.id
key <+ Wlw).key
r& {0,131
id* <« {0,1}*
:if H(uk,r) #L then
’ flag <+ true,id” < H(uk,r)
end if
: key* « KeyGen(1Y)
: newBlk < (id", Egeyx (“ind|lop” || key||id))
: Ww).id «+ id*
: Wlw].key < key”™
: Wlw].ent++
: Send newBlk to the server.
Server:
14: Insert newBlk into the tree T.
H(uk,r)
1: t < H(uk,r)
2: if t =L then

3t {013

QRN STk

e g e N

4: if Jid € Ww]

5: flag < true,t < H(uk,r) ‘
6: end if

7 endif

8: return t

Game Gs. In Algorithm @, we remove the code which has nothing to do with the hash function H.
Therefore, Algorithm [3] are single roundtrip protocols.

For each update operation, we output fresh random strings. For search operation, we get next id from
the current block. For key, if an entry of W is accessed for the first time, G5 will randomly pick it, otherwise,
we will use the stored key. Therefore, we can conclude that

11



Algorithm 3 Game G4
Setup()

1 uk & {0,1}*

2: W « empty map, T + empty tree
3 u+0

4: Updates < empty map

Search(w, o; EDB)

Client:
1: idp «+ WJw]
2: key + WJw].key
3: [(uo,indo), .. ., (Uent, indent)] < Updates[w)]
4: if cnt =0 then
5: return (
6: end if
T: for i=0 to cnt do
8: Program H s.t. H(uk,r;) < id;
9: id;+1 « blk;.ptr
10: end for

11: Send token (id, key) to the server.

Update(op, w, ind, o; EDB)
Client:

. Append (u,ind) to Updates|w]

Did 4« Wlw].id

t key «— Ww].key

r& {0,1}*

side & {0, 13#

key* «+ KeyGen(1)

newBlk « (id*, Eeyx (“ind||op” ||keyl|id))

: Wlw].id + id*

: Wlw].key + key™

: Wlw].cnt++

: Send newBlk to the server.

tu=u+1

PEo©OOID Ul s Wiy

The Simulator. we can divide the code of G5 into two parts, one is the leakage function and the other
is the simulator. Algorithm 4| describes the simulator. SSET dealif;fvgf and Go are identical. Therefore,

PGy =1] — P[SSEIdealifg?gSE()\) =1]=0.

Conclusion. Combine the contributions which come from Gy, G, G2 and S, we can conclude that

P[SSEReal i (\) = 1] — P[SSEIdeal {%55E () = 1] < Advy¥ P~ P4 (N),

by stating that H is a hash function, symmetric encryption Fx(m) and decryption Dy(c) are IND-
CPA. O

4.4 Comparison with >o¢pog

In this section, we briefly discuss the comparison between FFSSE and Yo¢os-B whose client storage is not
reduced.

Computational performance. For the search and update operation in the server, both the FFSSE and
Yo¢os-B have the same computational complexities: O(a,,) for search, O(1) for update and token generation.
But from a practical point of view, FFSSE has a better performance than Yo¢os-B, because their primitives
are different: symmetric encryption scheme is in FFSSE while public key encryption scheme is in >0¢oc-B.

Support of add and delete operations. In FFSSE, we can use a unique instance to support both add
and delete operations by storing the document identifier and operators together. However, Yo¢oc-B utilizes
two instances for add and delete respectively. So that, FFSSE is more flexible for dynamic merging or other
operations.

12



Algorithm 4 Simulator S
Setup()

1: uk & {0,113
2: W « empty map, T + empty tree

3:u<+0
Client:
1: id + WJw].id
2: key + WJw].key
3: if cnt =0 then
4: return ()
5: end if
6: Send token (id, key) to the server.

Update(op, w, ind, o; EDB)

Client:
tid  +— Wiw].id
t key — Ww].key
r & q0,112
id* <& {0,131
key* «— KeyGen(1)
newBlk  (id*, Epey+ (“ind||op” ||keyl|id))
Wiw].id + id*
Ww].key <+ key™
: Wlw].ent++
: Send newBlk to the server.
cu=u—+1

CooXNoge W oo

5 An improved construction

To further reduce the client storage and improve the performances of search operation, we introduce an
improved FFSSE scheme, called “FFSSE-¢”.

5.1 Intuitions

Reducing client storage. In Yo¢os-B, the client storage is O(W(log | M| + log D)), where D is number
of documents and M is the length of search token. When M is big, which is a 2048 bits integer for a
reasonable level of security, this can be a problem on constrained devices. Thus, Yo¢os scheme reduces the
client storage to O(Wlog D) by using a re-computation method based on trapdoor permutation (TDP) .
In FFSSE, the client storage is O(W(u+ \)), that is, for each keyword w, there are u-bit data identifier and
A-bit encryption key in its client state. This can also be a problem on constrained devices. We can reduce
the client state to O(W log D) by preserving only the counter, like that in Yo¢os. For the data identifier and
encryption key, we can re-compute them instead of storing them.

Challenge. In order to remove the search token (id and key of head block) for storage reduction, we must
re-generate them. However, this will lead to the contradiction with index generation rule independence of
FFSSE. Even if we have to provide re-generation rule, we can’t use TDP technique, because of its performance
problem that we try to solve in this paper. It comes to the challenge then: how can we design a similar
TDP technique with both the efficient performance and the ability of token re-generation?

Improving search performance. For a keyword w, there are total a,, nodes storing the document
identifier and its operator in the tree 7. So, a search protocol contains total a,, tree traverse operations and
symmetric decryption operations. The traverse of the tree is also an expensive operation. Aiming at solving
this issue, we can dynamically merge all the nodes matching w into a small number of nodes. Because the
search operation in most SSE schemes allows the leakage of search results, the merge operation will not leak
other information.
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Figure 4: The e-sTDP. a one-way permutation (red) is performed in the client, while its inverse is simulated by the key-based
blocks chain. It is similar to the usage of TDP, so that we call it as “an efficient permutation similar to TDP”.

5.2 The e-sTDP technique

Basic idea. In order to obtain a good performance and forward security, we still apply the KBBC to link
the blocks and hide their relations. But for token re-generation, because the security requires the output
domain to be the same as the input domain in the random oracle (in Theorem [2]), we utilize a one-way
permutation P (not necessary to have a trapdoor) instead of TDP to recompute the tokens. Obviously, this
is not a strict trapdoor permutation, but it is very similar to the usage of TDP in Xo¢os. That is why we
call it as “e-sTDP”, which means “an efficient permutation similar to TDP”.

Considering the performance, we suggest to instantiate the permutation P by using symmetric cryp-
tographic primitive (such as block cipher). For convenience, we define the one-way permutation P as
P : {0,1}# — {0,1}#, and denote Py, (z) as a keyed permutation with the key k, and message x as in-

puts. Thus, for each & {0,1}#, we have [Py, (x)| = |z|.

The e-sTDP. Figure [4 shows the details of e-sTDP. For each keyword w, the client randomly generates
a STp(w) and stores a counter ¢ with default value 0. When adding a data block, the client will first compute
its identifier by: STei1(w) < Py, (STe(w)); id < Hg, (STeq1(w)). Then, based on KBBC, the client sets
the data identifier and encryption key of the next block and encrypts them. The search token is still the
(id, key) of the head block, which is re-computed by the client.

5.3 Our construction

Algorithm [5] gives the formal description of our improved forward private scheme, “FFSSE-£”. We still use
W/w] to store the keyword state, but there is only a counter cnt (default value is -1) after client storage
reduction. We define a constant value C'T" for dynamic adjustment.

Re-generation of search token. For re-computing the search token, we first pseudo-randomly generate
STy(w) from w (or a unique identifier i,, < W). Like that in Yo¢os, it is easy to do from a PRF G : W —
{0,1}* by computing STo(w) < G(iy)-

Then, to recompute the search token with the counter ¢, we can easily compute ST, (w) from STy (w) and
¢ by iterating P for c times, that is, ST, (w) < Pj (STo(w)). After obtaining the ST.(w), we can generate
the id of search token as Hg, (ST.(w)), where K,, is computed by the user’s secret key uk and w. For
the other part key of search token, we can generate hash key K by user’s secret key uk* and utilize it to
compute the key as Hg- (ST.(w)). As a result, the search token is (Hg, (ST.(w)), Hgx (STe(w))). We
denote this re-generation process as ReGen(w, ¢) which takes w and ¢ as inputs.

Dynamic adjustment. After a certain amount C'T" of operations on keyword w, the client can require
the server to delete all the nodes matching w. Then, it dynamically merges them into one (or more) nodes
according to some rules pre-defined in FFSSE-¢. Finally, it uploads the merged nodes to the server along
with a search operation, without loss of the security for the usage of “key-based blocks chain”. In the
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Algorithm 5 FFSSE-¢: Forward private SSE scheme supporting dynamic adjustment

Setup()
1wk < {0,11), uk* < {0, 1}
2: k, < KeyGen(1%)
3: W« empty map, T < empty tree
Search(w, o; EDB)
Client:
1: (id,key) <+ ReGen(w, Ww].cnt)

2: Send token (id, key) to the server.
Server:

3: S < empty set, 1 <0

4: repeat

5: b 4= Dyey (Tid].data)

6: id < b.ptr

7. key < b.key

8 ind|op + b.value

9:  S[i++] < ind|op

10: until (b.ptr ==1)
11: S < Merge(S)
// merge the same ind with add and del operations
12: Send each ind in S to the client.
Client:

13: if W[w].cnt mod CT == 0 then
14:  DynamicAdjust(w)
15: end if
Update(op, w, ind, o; EDB)
Client:
(id, key) + ReGen(w, W[w].cnt)
Ww].cnt++
(id*, key*) <+ ReGen(w, Ww].cnt)
b+ (id*, Egey- (“ind||op” | key||id))
Send block b to the server.
Server:

6: Insert block b into the tree 7.
ReGen(w, c)

1: if W[w].ent==-1 then

2 dd< L, key <+ L

3: else

4 K, + F(uk,w)

5. K} < F(uk*,w)

6:  STo(w) < G(iw)
7. if Ww].cnt==0 then
8
9

id + H(K,, STy(w)), key + H(K}, STo(w))

. else
10: ST.(w) < Py, (STo(w))
11: id < H(K,, ST.(w)), key + H(K}, ST (w))
12:  end if
13: end if

14: Return the i¢d and key.
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algorithm [5] we only represent the above client-server protocol as the function DynamicAdjust with the
input w.

Obviously, based on dynamic adjustment, the FFSSE-¢ can freely eliminate the same document identifier
with both add and delete operators in different nodes, reduce the total number of nodes in the tree 7 from
O(Wa,,) to O(W), and improve the search performance by reducing about a, traverse operations of the
tree.

Theorem 3. FFSSE-< is Lg — adaptive — secure.

5.4 Comparison with >ogog

In this section, we briefly discuss the comparison between FFSSE-¢ and Yo¢os, whose client storages are
both reduced to O(Wlog D).

Dynamic adjustment. This character is used in this paper, to emphasize that the SSE scheme can
adjust the elements stored in the cloud server for the consideration of efficiency. It is obvious that FFSSE-¢
supports dynamic adjustment for search performance, while Yo¢os does not.

Computational performance. Although the same computational complexities, O(a,,) for search and
O(1) for update, FFSSE-¢ has a better performance than Yo¢os caused by the adopted symmetric crypto-
graphic primitive and dynamic adjustment. As for token generation with complexity of O(a,,), FFSSE-¢ is
obviously better than »o¢og caused by the e-sTDP mechanism.

Functionalities and leakages. Compare to Yog¢os, FFSSE-¢ utilizes e-sTDP instead of traditional
TDP to hide the connection between the newly added nodes and the existing nodes. However, the search
and update protocols of these two schemes still have the same processes. They both store the keyword
states in the client and send the search or update token to the server. And thus, they actually have the same
functionalities and leakages.

6 Experiments and evaluations

The goal of our experiments is to compare the performance between FFSSEs (FFSSE and FFSSE-¢) and the
first efficient forward private SSE scheme Yogos. Generally, a complete search/update operation consists of
search/update in server side and token generation in client side. Considering token generation has its own
rule in different scheme, we separate a complete operation into two parts, that in server and that in client.

6.1 Implementation details

We implemented FFSSEs’ core functions and benchmarks in C/C++, using about 1000 lines of codes. All of
the cryptographic primitives implementation in FFSSEs use the third party’s code provided by Yodos [21]’s
open source code. For keyed hash function, we use HMAC. The keyed permutation P and symmetric
encryption are instantiated using AES in counter mode. For the FFSSE-¢, we set CT as 75.

Experiment environments. To provide the same experimental environments, we use the same keyword-
document pairs generation rules that Yogos does. Also, we use RocksDB as underlying server side’s storage
to store tree 7 since map T in Yogog is stored using this database. To note that, aside from the chosen for
pairs generation rules and cryptographic components, we drop RPC machinery in implementation and don’t
take timings of underlying database operations into account. These considerations attempt to guarantee
the accurate measurements and comparison of search, update and token generation operations for both our
schemes and Yo¢og’s.

We run our experiments on a desktop computer with a single Inter Core i7-7700 3.60HZ CPU, 2GB of
RAM running on ubuntu 14.0.4. Our codes have been opened in GitHub: https://github.com/liuzheli/FFSE.

Parameter. For our schemes, we set A, the length of symmetric keys, to 256 bits. The Ny, the
maximum number of keyword-document pairs, is determined by concrete benchmarks ranging from 140 to
14000000. The length of identifiers, p, can be set from A and N,,,, according to the above-mentioned
descriptions.
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Figure 5: Comparison of token generation in update operation. X-axis is the number of times that keyword w has been
queried, i.e., @y .

6.2 Evaluation

Token generation. We evaluated the performances of token generation algorithms in update operation.
Figure [5| shows the experiment results. We can conclude that our token generation algorithms have sig-
nificantly better performance than ogogs’. For two basic schemes, FFSSE is at least 300x faster than
Yo¢os-B, because Yogos-B requires RSA-based private key encryption operation but FFSSE only uses sym-
metric encryption operations. For two improved schemes with the same size of client storage, FFSSE-¢ is at
least 200x faster than Xogog, since it is based on symmetric encryption scheme. Moreover, as the number
of documents in the indexed list increases, the execution time of FFSSE-¢ does not increase, owing to the
dynamic adjustment (CT=75). Specially, we can see that the token generation in the client is very expensive
for Yopos when the length of indexed list is long.

SSE operations. We evaluated execution times of completed search and update operations to compare
performances of different schemes. We tested each scheme on the basis of the same keyword-document pairs,
the same keyword sets and the same benchmarks. Concretely, we first run the update operation benchmarks
and construct the databases at the same time. Then run the search operation benchmarks on them. Actually,
our benchmarks are the same as those in Xogos. The experiment results can be shown in Figure[6and Figure
[l We can conclude that no matter search or update operation, FFSSEs have significantly better performance
than Yogogs, derived from their different cryptographic primitives.

About search operation, FFSSE is average 4x better than Xo¢o¢-B. Despite our search algorithm only
contains symmetric key encryption, the reason why our advantage is not obvious is due to the facts: there
is no token generation operation, and RSA public key-based evaluation in Yo¢og-B is only 5x slower than
symmetric encryption in FFSSE. But for two improved schemes, FFSSE-¢ is average 60x better than Yo¢os.
After reducing client storage, token generation operation must be executed in the client. Because Yogog
uses RSA private key-based token generation, it is much slower than that in FFSSE-¢.

About update operation, the differences in their performances stem mainly from the token generation and
block encryption. Two basic schemes require less computation about token generation, but two improved
schemes must re-generate them for client storage reduction. We can see that FFSSE is average 300x better
than Yo¢os-B, FFSSE-¢ is average 200x better than Yo¢os.

Distribution of search operation. We also evaluated the execution time in client and that in server
of the search operation. Figure [§] shows the experiment results. Obviously, because of no need to re-
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generate tokens in the client, two basic schemes take more than 95% of the time to perform the server-side
operations. For FFSSE-e, the client-side operations take less time than server-side operations, because
dynamic adjustment of FFSSE-¢ reduces the number of encryption in token generation process. But for
Yogog, it takes lots of time in the client for the RSA private key-based token generation.

7 Conclusion

We focus on how to improve the performance of forward secure searchable encryption schemes. Until now,
the state-of-the-art forward private SSE scheme is Yogos proposed in CCS 2016, however, it relies on the
asymmetric cryptographic primitive. In this paper, we exploit a key-based blocks chain technique which
is based on symmetric cryptographic primitive, and apply it to design a more efficient forward secure SSE
scheme, named FFSSE. The proposed key-based blocks chain is independent of index generation rule, so
that it is more flexible than TDP in Xo¢os. It may be valuable for some other designs with the consideration
of forward security. In our future work, we plan to study how to design the forward secure order-preserving
encryption scheme based on key-based blocks chain technique.
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