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Abstract

Public key quantum money can be seen as a version of the quantum no-cloning theorem that
holds even when the quantum states can be verified by the adversary. In this work, investigate
quantum lightning, a formalization of “collision-free quantum money” defined by Lutomirski et al.
[ICS’10], where no-cloning holds even when the adversary herself generates the quantum state to
be cloned. We then study quantum money and quantum lightning, showing the following results:

• We demonstrate the usefulness of quantum lightning beyond quantum money by showing
several potential applications, such as generating random strings with a proof of entropy,
to completely decentralized cryptocurrency without a block-chain, where transactions is
instant and local.

• We give win-win results for quantum money/lightning, showing that either signatures/hash
functions/commitment schemes meet very strong recently proposed notions of security, or
they yield quantum money or lightning. Given the difficulty in constructing public key
quantum money, this suggests that natural schemes do attain strong security guarantees.

• We show that instantiating the quantum money scheme of Aaronson and Christiano
[STOC’12] with indistinguishability obfuscation that is secure against quantum computers
yields a secure quantum money scheme. This construction can be seen as an instance of
our win-win result for signatures, giving the first separation between two security notions
for signatures from the literature.

• Finally, we give a plausible construction for quantum lightning, which we prove secure
under an assumption related to the multi-collision resistance of degree-2 hash functions.
Our construction is inspired by our win-win result for hash functions, and yields the first
plausible standard model instantiation of a non-collapsing collision resistant hash function.
This improves on a result of Unruh [Eurocrypt’16] which is relative to a quantum oracle.

Thus, we provide the first constructions of public key quantum money from several crypto-
graphic assumptions. Along the way, we develop several new techniques including a new precise
variant of the no-cloning theorem.
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1 Introduction
Unlike classical bits, which can be copied ad nauseum, quantum bits — called qubits — cannot in
general be copied, as a result of the Quantum No-Cloning Theorem. No-cloning has various negative
implications to the handling of quantum information; for example it implies that classical error
correction cannot be applied to quantum states, and that it is impossible to transmit a quantum
state over a classical channel. On the flip side, no-cloning has tremendous potential for cryptographic
purposes, where the adversary is prevented from various strategies that involve copying. For example,
Wiesner [Wie83] shows that if a quantum state is used as a banknote, no-cloning means that an
adversary cannot duplicate the note. This is clearly impossible with classical bits. Wiesner’s
idea can also be seen as the starting point for quantum key distribution [BB87], which can be
used to securely exchange keys over a public channel, even against computationally unbounded
eavesdropping adversaries.

In this work, we investigate no-cloning in the presence of computationally bounded adversaries,
and it’s implications to cryptography. To motivate this discussion, consider the following two
important applications:

• A public key quantum money scheme allows anyone to verify banknotes. This remedies a
key limitation of Wiesner’s scheme, which requires sending the banknote back to the mint for
verification. The mint has a secret classical description of the banknote which it can use to
verify; if this description is made public, then the scheme is completely broken. Requiring the
mint for verification represents an obvious logistical hurdle. In contrast, a public key quantum
money scheme can be verified locally without the mint’s involvement. Yet, even with the
ability to verify a banknote, it is impossible for anyone (save the mint) to create new notes.

• Many cryptographic settings such as multiparty computation require a random string to be
created by a trusted party during a set up phase. But what if the randomness creator is not
trusted? One would still hope for some way to verify that the strings it produces are still
random, or at least have some amount of (min-)entropy. At a minimum, one would hope
for a guarantee that their string is different from any previous or future string that will be
generated for anyone else. Classically, these goals are impossible. But quantumly, one may
hope to create proofs that are unclonable, so that only a single user can possibly ever receive
a valid proof for a particular string.

The settings above are subtly different from those usually studied in quantum cryptography.
Notice that in both settings above, a computationally unbounded adversary can always break the
scheme. For public key quantum money, the following attack produces a valid banknote from scratch
in exponential-time: generate a random candidate quantum money state and apply the verification
procedure. If it accepts, output the state; otherwise try again. Similarly, in the verifiable randomness
setting, an exponential-time adversary can always run the randomness generating procedure until it
gets two copies of the same random string, along with two valid proofs for that string. Then it can
give the same string (but different valid proofs) to two different users. With the current state of
knowledge of complexity theory, achieving security against a computationally bounded adversary
means computational assumptions are required; in particular, both scenarios imply at a minimum
one-way functions secure against quantum adversaries.

Unfortunately, most of the techniques developed in quantum cryptography are inherently
information theoretic, and porting these techniques over to the computational setting can be
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tricky task. For example, whereas information-theoretic security can be often proved directly,
computational security must always be proved by a reduction to the underlying hard computational
problem.

We stress that the underlying problem should still be a classical problem (that is, the inputs
and outputs of the problem are classical), rather than some quantum problem that talks about
manipulating quantum states. For one, we want a violation of the assumption to lead to a mathe-
matically interesting result, and this seems much more likely for classical problems. Furthermore, it
is much harder for the research community to study and analyze a quantum assumption, since it
will be hard to isolate the features of the problem that make it hard. For this work, we want to:

Combine no-cloning and computational assumptions about
classical problems to obtain no-cloning-with-verification.

In addition to the underlying assumption being classical, it would ideally also be one that has
been previously studied by cryptographers, and ideally used in other cryptographic contexts. This
would give the strongest possible evidence that the assumption, and hence application, are secure.

For now, we focus on the setting of public key quantum money. Constructing such quantum
money from a classical hardness assumption is a surprisingly difficult task. One barrier is the
following. Security would be proved by reduction, an algorithm that interacts with a supposed
quantum money adversary and acts as an adversary for the the underlying classical computational
assumption. Note that the adversary expects as input a valid banknote, which the reduction must
supply. Then it appears the reduction should somehow use the adversary’s forgery to break the
computational assumption. But if the reduction can generate a single valid banknote, there is
nothing preventing it from generating a second — recall that the underlying assumption is classical,
so we cannot rely on the assumption to provide us with an un-clonable state. Therefore, if the
reduction works, it would appear that the reduction can create two banknotes for itself, in which
case it can break the underlying assumption without the aid of the adversary. This would imply
that the underlying assumption is in fact false.

The above difficulties become even more apparent when considering the known public key
quantum money schemes. The first proposed scheme by Aaronson [Aar09] had no security proof,
and was subsequently broken by Lutomirski et al. [LAF+10]. The next proposed scheme by Farhi
et al. [FGH+12] also has no security proof, though this scheme still remains unbroken. However,
the scheme is complicated, and it is unclear which quantum states are accepted by the verification
procedure; it might be that there are dishonest banknotes that are both easy to construct, but are
still accepted by the verification procedure.

Finally, the third candidate by Aaronson and Christiano [AC12] actually does prove security
using a classical computational problem. However, in order to circumvent the barrier discussed
above, the classical problem has a highly non-standard format. They observe that a polynomial-
time algorithm can, by random guessing, produce a valid banknote with some exponentially-small
probability p, while random guessing can only produce two valid banknotes with probability p2.
Therefore, their reduction first generates a valid banknote with probability p, runs the adversary on
the banknote, and then uses the adversary’s forgery to increase its success probability for some task.
This reduction strategy requires a very carefully crafted assumption, where it is assumed hard to
solve a particular problem in polynomial time with exponentially-small probability p, even though
it can easily be solved with probability p2.
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In contrast, typical assumptions in cryptography involve polynomial-time algorithms and inverse-
polynomial success probabilities, rather than exponential. (Sub)exponential hardness assumptions
are sometimes made, but even then the assumptions are usually closed under polynomial changes in
adversary running times or success probabilities, and therefore make no distinction between p and
p2. In addition to the flavor of assumption being highly non-standard, Aaronson and Christiano’s
assumption — as well as their scheme — have been subsequently broken [PFP15, Aar].

Turning to the verifiable randomness setting, things appear even more difficult. Indeed, our
requirements for verifiable randomness imply an even stronger version of computational no-cloning:
an adversary should not be able to copy a state, even if it can verify the state, and even if it devised
the original state itself. Indeed, without such a restriction, an adversary may be able to come
up with a dishonest proof of randomness, perhaps by deviating from the proper proof generating
procedure, that it can clone arbitrarily many times. Therefore, a fascinating objective is to

Obtain a no-cloning theorem, even for settings where the adversary
controls the entire process for generating the original state.

1.1 This Work: Strong Variants of No-Cloning and Connections to Post-Quantum
Cryptography

In this work, we study strong computational variants of quantum no-cloning, in particular public key
quantum money, and uncover interesting relationships between no-cloning and various cryptographic
applications.

1.1.1 Quantum Lightning Never Strikes the Same State Twice

The old adage about lightning is of course false, but the idea nonetheless captures some of the
features we would like for the verified randomness setting discussed above. Suppose a magical
randomness generator could go out into a thunderstorm, and “freeze” and “capture” lightning bolts
as they strike. Every lightning bolt will be different. The randomness generator then somehow
extracts a fingerprint or serial number from the frozen lightning bolt (say, hashing the image of the
bolt from a particular direction). The serial number will serve as the random string, and the frozen
lightning bolt will be the proof of randomness; since every bolt is different, this ensures that the
bolts, and hence serial numbers, have some amount of entropy.

Of course, it may be that there are other ways to create lightning other than walking out into a
thunderstorm (Tesla coils come to mind). We therefore would like that, no matter how the lightning
is generated, be it from thunderstorms or in a carefully controlled laboratory environment, every
bolt has a unique fingerprint/serial number.

We seek a complexity-theoretic version of this magical frozen lightning object, namely a phe-
nomenon which guarantees different outcomes every time, no matter how the phenomenon is
generated. We will necessarily rely on quantum no-cloning — since in principle a classical phe-
nomenon can be replicated by starting with the same initial conditions — and hence we call our
notion quantum lightning. Quantum lightning, roughly, is a strengthening of public key quantum
money where the procedure to generate new banknotes itself is public, allowing anyone to generate
banknotes. Nevertheless, it is impossible for an adversary to construct two notes with the same serial
number. This is a surprising and counter-intuitive property, as the adversary knows how to generate
banknotes, and moreover has full control over how it does so; in particular it can deviate from the

3



generation procedure any way it wants, as long as it is computationally efficient. Nonetheless, it
cannot devise a malicious note generation procedure that allows it to construct the same note twice.
This concept of quantum money can be seen as a formalization of the concept of “collision-free”
public key quantum money due to Lutomirski et al. [LAF+10].

Slightly more precisely, a quantum lightning protocol consists of two efficient (quantum) algo-
rithms. The first is a bolt generation procedure, or storm, , which generates a quantum state |E〉
on each invocation. The second algorithm, Ver, meanwhile verifies bolts as valid and also extracts a
fingerprint/serial number of the bolt. For correctness, we require that (1) Ver always accepts bolts
produced by , (2) it does not perturb valid bolts, and (3) that it will always output the same
serial number on a given bolt.

For security, we require the following: it is computationally infeasible to produce two bolts |E0〉
and |E1〉 such that Ver accepts both and outputs identical serial numbers. This is true for even for
adversarial storms — those that depart from or produce entangled bolts — so long as is
computationally efficient.

Applications. Quantum lightning as described has several immediate interesting applications:

• Quantum money. Quantum lightning easily gives quantum money. A banknote is just
a bolt, with the associated serial number signed by the bank using an arbitrary classical
signature scheme. Any banknote forgery must either forge the bank’s signature, or must
produce two bolts with the same serial number, violating quantum lightning security.

• Verifiable min-entropy. Quantum lightning also gives a way to generate random strings
along with a proof that the string is random, or at least has min-entropy. To see this, consider
an adversarial bolt generation procedure that produces bolts such that the associated serial
number has low min-entropy. Then by running this procedure several times, one will eventually
obtain in polynomial time two bolts with the same serial number, violating security.
Therefore, to generate a verifiable random string, generate a new bolt using . The string is
the bolt’s serial number, and serves as a proof of min-entropy, which is verified using Ver.

• Decentralized Currency. Finally, quantum lightning yields a simple new construction of
totally decentralized digital currency. Coins are just bolts, except the serial number must hash
to a string that begins with a certain number of 0’s. Anyone can produce coins by generating
bolts until the hash begins with enough 0’s. Moreover, verification is just Ver, and does not
require any interaction or coordination with other users of the system. This is an advantage
over classical cryptocurrencies such as BitCoin, which require a large public and dynamic
ledger, and requires a pool of miners to verify transactions. Our protocol does have significant
limitations relative to classical cryptocurrencies, which likely make it only a toy object. We
hope that further developments will yield a scheme that overcomes these limitations.

1.1.2 Connections to Post-quantum Security

One simple folklore way to construct a state that can only be constructed once but never a second
time is to use a collision-resistant hash function H. First, generate a uniform superposition of
inputs. Then apply the H in superposition, and measure the result y. The state collapses to the
superposition |ψy〉 of all pre-images x of y.
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Notice that, while it is easy to sample states |ψy〉, it is impossible to sample two copies of
the same |ψy〉. Indeed, given two copies of |ψy〉, simply measure both copies. Since these are
superpositions over many inputs, each state will likely yield a different x. The two x’s obtained are
both pre-images of the same y, and therefore constitute a collision for H.

The above idea does not yet yield quantum lightning. For verification, one can hash the state to
get the serial number y, but this alone is insufficient. For example, an adversarial storm can simply
choose a random string x, and output |x〉 twice as its two copies of the same state. Of course, |x〉 is
not equal to |ψy〉 for any y. However, the verification procedure just described does not distinguish
between these two states.

What one needs therefore is mechanism to distinguish a random |x〉 from a random |ψy〉.
Interestingly, as observed by Unruh [Unr16], this is exactly the opposite what one would normally
want from a hash function. Consider the usual way of building a computationally binding commitment
from a collision resistant hash function: to commit to a message m, choose a random r and output
H(m, r). Classically, this is computationally binding by the collision resistance of H: if an
adversary can open the commitment to two different values, this immediately yields a collision
for H. Unruh [Unr16] shows in the quantum setting, collision resistance — even against quantum
adversaries — is not enough. Indeed, he shows that for certain hash functions H it may be possible
for the adversary to produce a commitment, and only afterward decide on the committed value.
Essentially, the adversary constructs a superposition of pre-images |ψy〉 as above, and then uses
particular properties of H to perturb |ψy〉 so that it becomes a different superposition of pre-images
of y. Then one simply de-commits to any message by first modifying the superposition and then
measuring. This does not violate the collision-resistance of H: since the adversary cannot copy |ψy〉,
the adversary can only ever perform this procedure once and obtain only a single de-commitment.

To overcome this potential limitation, Unruh defines a notion of collapsing hash functions.
Roughly, these are hash functions for which |x〉 and |ψy〉 are indistinguishable. Using such hash
functions to build commitments, one obtains collapse-binding commitments, for which the attack
above is impossible. Finally, he shows that a random oracle is collapse binding.

More generally, an implicit assumption in many classical settings is that, if an adversary
can modify one value into another, then it can produce both the original and modified value
simultaneously. For example, in a commitment scheme, if a classical adversary can de-commit to
both 0 or 1, it can then also simultaneously de-commit to both 0 and 1 by first de-committing to
0, and then re-winding and de-committing to 1. Thus it is natural classically to require that it is
impossible to simultaneously produce de-commitments to both 0 and 1. Similarly, for signatures, if
an adversary can modify a signed message m0 into a signed message m1, then it can simultaneously
produce two signed messages m0,m1. This inspires the Boneh-Zhandry [BZ13a, BZ13b] definition
of security for signatures in the presence of quantum adversaries, which says that after seeing a
(superposition of) signed messages, the adversary cannot produce two signed messages.

However, a true quantum adversary may be able, for some schemes, to set things up so that
it can modify a (superposition) of values into one of many possibilities, but still only be able to
ever produce a single value. For example, it many be that an adversary sees a superposition of
signed messages that always begin with 0, but somehow modifies the superposition to obtain a
signed message that begins with a 1. This limitation for signatures was observed by Garg, Yuen,
and Zhandry [GYZ17], who then give a much stronger notion to fix this issue1.

Inspired by the above observations, we formulate a series of win-win results for quantum lightning
1Garg et al. only actually discuss message authentication codes, but the same idea applies to signatures
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and quantum money. In particular, in Section 4, we show, roughly,

Theorem 1.1 (informal). If H is a hash function that is collision resistant against quantum
adversaries, then either (1) H is collapsing or (2) it can be used to build quantum lightning without
any additional computational assumptions.2

The construction of quantum lightning is inspired by the outline above. One difficulty is that
above we needed a perfect distinguisher, whereas a collapsing adversary may only have a non-
negligible advantage. To obtain an actual quantum lightning scheme, we need to repeat the scheme
in parallel many times to boost the distinguish advantage to essentially perfect. Still, defining
verification so that we can prove security is a non-trivial task. Indeed, it is much harder to analyze
what sorts of invalid bolts might be accepted by the verification procedure, especially since we know
virtually nothing about the types of states the given adversary for collapsing accepts.

For example, in order to base security on collision resistance, we would like to say that if a bolt
passes verification, we can measure it and obtain a collision. But then we need that the classical
test (namely evaluating H(x)) and the quantum test (namely, that it is superposition) both succeed
simultaneously. Unfortunately, these two tests are non-commuting operations, so it is impossible
to test both with certainty simultaneously. If we perform the classical test before the quantum
test, it could be that the second test perturbs the quantum state so that it is in superposition, but
no longer a superposition of pre-images. Similarly, if we perform the quantum test first, it could
be that running the classical test collapses the state to a singleton. In this case, measuring two
accepting bolts could give us the same pre-image, so we do not get a collision.

Using a careful argument, we show nonetheless how to verify and prove security. The intuition
is to only perform a single test, and which test is performed is chosen at random independent of the
input. We demonstrate that if a state had a reasonably high probability of passing, then it must
have simultaneously had a noticeable probability of passing each of the two tests. This is enough to
get a collision. Next, we just repeat the scheme many times in parallel; now if a bolt even has a
non-negligible chance of passing, one of the components must have a high chance of passing, which
in turn gives a collision.

Next, we move on to other Win-Win results. We show that:

Theorem 1.2 (informal). Any non-interactive commitment scheme that is computationally binding
against quantum adversaries is either collapse-binding, or it can be used to build quantum lightning
without any additional computational assumptions.

The above theorem crucially relies on the commitment scheme being non-interactive: the serial
number of the bolt is the sender’s single message, along with his private quantum state. If the
commitment scheme is not collapse-binding, the sender’s private state can be verified to be in
superposition. If a adversary produces two identical bolts, these bolts can be measured to obtain
two openings, violating computational binding. In contrast, in the case of interactive commitments,
the bolt should be expanded to the transcript of the interaction between the sender and receiver.
Unfortunately, for quantum lightning security, the transcript is generated by an adversary, who can
deviate from the honest receiver’s protocol. Since the commitment scheme is only binding when the
receiver is run honestly, we cannot prove security in this setting.

2Technically, there is a slight gap due to the difference between non-negligible and inverse polynomial. Essentially
what we show is that the theorem holds for fixed values of the security parameter, but whether (1) or (2) happens
may vary across different security parameters.
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Instead, we consider the weaker goal of constructing public key quantum money. Here, since the
mint produces bolts, the original bolt is honestly generated. The mint then signs the transcript
using a standard signature scheme (which can be built from one-way functions, and hence implied
by commitments). If the adversary duplicates this banknote, it is duplicating an honest commitment
transcript, but the note can be measured to obtain two different openings, breaking computational
binding. This gives us the following:

Theorem 1.3 (informal). Any interactive commitment scheme that is computationally binding
against quantum adversaries is either collapse-binding, or it can be used to build public key quantum
money without any additional computational assumptions.

Finally, we extend these ideas to a win-win result for quantum money and digital signatures:

Theorem 1.4 (informal). Any one-time signature scheme that is Boneh-Zhandry secure is either
Garg-Yuen-Zhandry secure, or it can be used to build public key quantum money without any
additional computational assumptions.

Given the difficulty of constructing public key quantum money (let alone quantum lightning), the
above results suggest that most natural constructions of collision resistant hash functions, including
all of those used in practice, are likely already collapsing, with analogous statements for commitment
schemes and signatures. If they surprisingly turn out to not meet the stronger quantum notions,
then we would immediately obtain a construction of public key quantum money from simple tools.

Notice that using our win-win results give a potential route toward proving the security of
quantum money/lightning in a way that avoids the barrier discussed above. Consider building
quantum money from quantum lightning, and in turn building quantum lightning from a collision-
resistant non-collapsing hash function. Recall that a banknote is a bolt, together with the mint’s
signature on the bolt’s serial number. A quantum money adversary either (1) duplicates a bolt to
yield two bolts with the same serial number (and hence same signature), or (2) produces a second
bolt with a different serial number, as well as a forged signature on that serial number. Notice
that (2) is impossible simply by the unforgeability of the mint’s signature. Meanwhile, in proving
that (1) is impossible, our reduction actually can produce arbitrary quantum money states (for this
step, we assume the reduction is given the signing key). The key is that the reduction on its own
cannot produce the same quantum money state twice, but it can do so using the adversary’s cloning
abilities, allowing it to break the underlying hard problem.

1.1.3 Quantum Money From Obfuscation

We now consider the task of constructing public key quantum money. One possibility is based on
Aaronson and Christiano’s broken scheme [AC12]. In their scheme, a quantum banknote |$〉 is a
uniform superposition over some subspace S, that is known only to the bank. The quantum Fourier
transform of such a state is the uniform superposition over the dual subspace S⊥. This gives a
simple way to check the banknote: test if |$〉 lies in S, and whether it’s Fourier transform lies in S⊥.
Aaronson and Christiano show that the only state which can pass verification is |$〉.

To make this scheme public key, one gives out a mechanism to test for membership in S and
S⊥, without actually revealing S, S⊥. This essentially means obfuscating the functions that decide
membership. Aaronson and Christiano’s scheme can be seen as a candidate obfuscator for subspaces.
While unfortunately their obfuscator has since been broken, one may hope to instantiate their
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scheme using recent advances in general-purpose program obfuscation, specifically indistinguishability
obfuscation (iO) [BGI+01, GGH+13b].

On the positive side, Aaronson and Christiano show that their scheme is secure if the subspaces
are provided as quantum-accessible black boxes, giving hope that some obfuscation of the subspaces
will work. Unfortunately, proving security relative to iO appears a difficult task. One limitation is the
barrier discussed above, that any reduction must be able to produce a valid banknote, which means
it can also produce two banknotes. Yet at the same time, it somehow has to use the adversary’s
forgery (a second banknote) to break the iO scheme. Note that this situation is different from the
quantum lightning setting, where there were many valid states, and no process could generate the
same state twice. Here, there is a single valid state (the state |$〉), and it would appear the reduction
must be able to construct this precise state exactly once, but not twice. Such a reduction would
clearly be impossible. As discussed above Aaronson and Christiano circumvent this issue by using a
non-standard type of assumption; their technique is not relevant for standard definitions of iO.

In Section 5, we prove the security of Aaronson and Christiano’s scheme using iO. Our solution
is to separate the proof into two phases. In the first, we change the spaces obfuscated from S, S⊥ to
T0, T1, where T0 is a random unknown subspace containing S, and T1 is a unknown random subspace
containing S⊥. This modification can be proved undetectable using a weak form of obfuscation we
define, called subspace-hiding obfuscation, which in turn is implied by iO. Note that in this step,
we even allow the reduction to know S (but not T0, T1), so it can produce as many copies of |$〉 as
it would like to feed to the adversary. The reduction does not care about the adversary’s forgery
directly, only whether or not the adversary successfully forges. If the adversary forges when given
obfuscations of S, S⊥, it must also forge under T0, T1, else it can distinguish the two cases and hence
break the obfuscation. By using the adversary in this way, we avoid the apparent difficulties above.

In the next step, we notice that, conditioned on T0, T1, the space S is a random subspace between
T⊥1 and T0. Thus conditioned on T0, T1, the adversary clones a state |$〉 defined by a random
subspace S between T⊥1 and T0. The number of possible S is much larger than the dimension of
the state |$〉, so in particular the states cannot be orthogonal. Thus, by no-cloning, duplication is
impossible. We need to be careful however, since we want to rule out adversaries that forge with
even very low success probabilities. To do so, we need to precisely quantify the no-cloning theorem,
which we do. We believe our new no-cloning theorem may be of independent interest. We note
that when applying no-cloning, we do not rely on the secrecy of T0, T1, but only that S is hidden.
Intuitively, there are exponentially many more S’s between T0, T1 than the dimension of the space
|$〉 belongs to, so no-cloning implies that a forger has negligible success probability. Thus we reach
a contradiction, showing that the original adversary could not exist.

We also show how to view Aaronson and Christiano’s scheme as a signature scheme; we show that
the signature scheme satisfies the Boneh-Zhandry definition, but not the strong Garg-Yuen-Zhandry
notion. Thus, we can view Aaronson and Christiano’s scheme as an instance of our win-win results,
and moreover provide the first separation between the two security notions for signatures.

We note that our result potentially relies on a much weaker notion of obfuscation that full iO,
giving hope that security can be based on weaker assumptions. For example, an intriguing open
question is whether or not recent constructions of obfuscation for certain evasive functions [WZ17,
GKW17] based on LWE can be used to instantiate our notion of subspace hiding obfuscation. This
gives another route toward building quantum money from hard lattice problems. This is particularly
important at the present time, where the security of iO in the quantum setting is somewhat uncertain
(see below for a discussion).
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Finally, we note that independently of whether iO exists in the quantum setting, black box
oracles do provide subspace hiding, a fact which can be based easily on the quantum lower bounds
for unstructured search [BBBV97]. With this insight, our proof strategy can be used to give a
simplified analysis of Aaronson and Christiano’s black-box scheme. Their proof relied on developing
a new type of adversary method, called the inner-product adversary method. Instead, we rely simply
on the lower bound for unstructured search plus our quantitative no cloning theorem.

1.1.4 Constructing Quantum Lightning

In Section 6, we finally turn to actually building quantum lightning, and hence giving another route
to quantum money. Following our win-win results, we would like a non-collapsing collision-resistant
hash function. Unfortunately, Unruh’s counterexample does not yield an explicit construction.
Instead, he builds on techniques of [ARU14] to give a hash function relative to a quantum oracle3.
As it is currently unknown how to obfuscate quantum oracles with a meaningful notion of security,
this does not give even a candidate construction of quantum lightning. Instead, we focus on specific
standard-model constructions of hash functions. Finding suitable hash functions is surprisingly
challenging; we were only able to find a single family of candidates, and leave finding additional
candidates as a challenging open problem.

To motivate our construction, we consider the following approach to building quantum lightning
from the short integer solution (SIS) problem. In SIS, an underdetermined system of homogeneous
linear equations is given, specified by a wide matrix A, and the goal is to find a solution consisting
of “small” entries; that is, a “short” vector x such that A.x = 0. For random linear constraints,
SIS is conjectured to be computationally difficult, which is backed up by reductions from the
hardness of worst-case lattice problems [MR07]. SIS gives a simple collision resistant hash function
fA(x) = A · x, where the domain is constrained to be small; given a collision x,x′, one obtains a
SIS solution as x− x′.

One may hope that SIS is also non-collapsing, in which case we would obtain quantum lightning.
One (failed) attempt to obtaining a collapsing distinguisher is the following. Start with superposition
of “short” vectors x, weighted by a Gaussian function. When fA is applied, the superposition
collapses to a superposition over short vectors x that all have the same value of A · x. This will
be a bolt in the scheme, and the serial number will be the common hash. To verify the bolt, we
first check the hash. Then, to verify the bolt is in superposition, we apply the quantum Fourier
transform. Note that if x were a uniform superposition over all vectors, the QFT would give a
uniform superposition over all vectors in the row-span of A (with some phase terms). Instead, since
x is a superposition over “short” vectors, using the rules of Fourier transforms is possible to show
that the QFT gives a superposition over vectors of the form r ·A + e, where r is a random row
vector, and e is a Gaussian-weighted random short row vector.

Intuitively, we just need to distinguish these types of vectors from random vectors. Unfortunately,
distinguishing r ·A + e from random for a random matrix A is an instance of the Learning With
Errors (LWE) problem, which is widely believed to be comptuationally intractable, as evidenced by
quantum reductions from worst-case lattice problems [Reg05].

We therefore need to “break” LWE by given some trapdoor information. The usual way to break
LWE is to provide a short vector t in the kernel of A. Then, to distinguish an input u, simply
compute u · t, and check if the result is small. In the case u = r ·A + e, then u · t = e · t, which

3that is, the oracle itself performs quantum operations
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will be small. In contrast, if u is random, t · u will be large with overwhelming probability.
Unfortunately, the trapdoor t is a SIS solution! In particular, in order for the distinguisher

to work, one can show that t needs to be somewhat smaller than the size bound on the domain
of fA. With such a trapdoor, it is therefore easy to manufacture collisions for fA, so fA is no
longer collision-resistant. Worse yet, it is straightforward to use the trapdoor to come up with a
superposition of inputs that fools the distinguisher.

We do not know how to make the above approach work, as all ways we are aware of for breaking
LWE involve handing out a SIS solution. One possible approach would be to obfuscate an LWE
distinguisher that has the trapdoor hardcoded. This allows for distingishing LWE samples without
explicitly handing out a SIS solution. However, we currently do not know how to analyze the scheme,
and it might be possible to construct a SIS solution from any such distinguishing program.

We now turn to our actual construction. Our idea is to use linear equations over restricted
domains as in SIS, but will restrict the domain in different ways. In particular, we will view vectors
as specifying symmetric matrices (that is, an (n+ 1)n/2-dimensional vector will correspond to an
n× n symmetric matrix, with the vector entries specifying the upper-triangular part of the matrix).
Instead of restricting the size of entries, will will instead restrict the rank of the symmetric matrix.
Our construction then follows the rough outline of the SIS-based approach above, intuitively using
rank as a stand-in for vector norm. By switching from vector norm to matrix rank, we are able to
arrive at a construction whose security follows from a plausible computational assumption.

A bolt is then a superposition over rank-bounded matrices satisfying the linear constraints.
Analogous to the SIS approach, we are able to show that applying the Quantum Fourier transform on
such bolts results in a state whose support consists of matrices A that can be written as A = B + C,
where B is a sum of a few known matrices (based on the precise linear functions), whereas C is an
arbitrary low-rank matrix. We show how to generate the constraints along with a public “trapdoor”
which allows for such matrices can be identified. Our trapdoor is simply a row rank matrix in the
kernel of the linear constraints, analogous to how the LWE trapdoor is a short vector in the kernel.

One may be rightfully concerned at this point, as our trapdoor has the same form as domain
elements for our hash function. Indeed, if the rank of the trapdoor was smaller than the rank of the
domain, the trapdoor would completely break the construction. Importantly for our construction,
we show that this matrix can have higher rank than the allowed inputs to the hash function; as
such, it does not appear useful for generating collisions.

Our scheme can easily be proved secure under the assumed collision-resistance of our hash
function. Unfortunately, this assumption is false. Indeed, the family of matrices BTB for wide and
short matrices A is low rank. By evaluating our hash function on such matrices, we turn it into a
degree-2 polynomial over the B matrices. Unfortunately, Ding and Yang [DY08] and Applebaum et
al. [AHI+17] show that such hash functions are not collision resistant4.

However, we will apply a simple trick in order to get our scheme to work. Namely, we show
how to use the attacks above to actually generate superpositions over k colliding inputs for some
parameter k that depends on the various parameters of the scheme. At the same time, the attacks
do not seem capable of generating collisions beyond k. We will therefore set our bolt to be this
superposition over several colliding inputs. Now, we can apply our testing procedure to each of
the inputs separately to verify the bolt. If an adversary creates two bolts with the same serial

4Technically, they only show this is true if the degree-2 polynomials are random, whereas ours are more structured,
but we show that their analysis extends to our setting as well
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number, we can measure to obtain 2k colliding inputs. By assuming the plausible 2k-multi-collision
resistance of our hash functions, we obtain security.

Our construction requires a common reference string, namely the sequence of linear constraints
and the trapdoor. We can convert our scheme into the common random string (crs) model by using
the common random string to generate the trapdoor and linear constraints.

1.2 Related Works

Quantum Money. Lutomirski [Lut10] shows another weakness of Wiesner’s scheme: a merchant,
who is allowed to interact with the mint for verification, can use the verification oracle to break the
scheme and forge new currency. Public key quantum money is necessarily secure against adversaries
with a verification oracle, since the adversary can implement the verification oracle for itself. Several
alternative solutions to the limitations of Wiesner’s scheme have been proposed [MS10, Gav11],
though the “ideal” solution still remains public key quantum money.

Randomness Expansion and Certifiable Randomness. Colbeck [Col09] proposed the idea
of a classical experimenter, interacting with several potentially untrustworthy quantum devices,
can expand a small random seed into a certifiably random longer seed. Here, a crucial assumption
is that the devices cannot communicate and must obey the laws of quantum mechanics; no other
assumption about the devices is made. The application of quantum lightning to verified randomness
has a similar spirit, though the requirements are quite different. Randomness expansion requires
multiple non-communicating devices, but the experimenter can be classical and the devices can
have unbounded computational power; in contrast quantum lightning involves only a single device,
but the device must be computationally bounded, and the experimenter must perform quantum
operations. We note that a quantum experimenter can generate a random string for free; the
purpose of verifiable entropy in this case is simply to prove to another individual that the coins you
generated were indeed random.

Subsequent to our work, Brakerski et al. [BCM+18] consider certifiable randomness in the com-
putational setting, which is related, but entirely different from, our version of verifiable randomness.
In particular, their protocol is interactive and only privately verifiable, but allows for a classical
verifier. In contrast, our protocol is non-interactive (in the crs model) and publicly verifiable, but
requires a quantum verifier. They prove the security of their protocol under the LWE assumption.

Obfuscation and Multilinear Maps. There is a vast body of literature on strong notions of
obfuscation, starting with the definitional work of Barak et al. [BGI+01]. Garg et al. [GGH+13b]
propose the first obfuscator plausibly meeting the strong notion of iO, based on cryptographic
multilinear maps [GGH13a, CLT13, GGH15]. Unfortunately, there have been numerous attacks
on multilinear maps, which we do not fully elaborate on here. There have been several quantum
attacks [CDPR16, ABD16, CJL16, CGH17] on obfuscators, but there are still schemes that remain
unbroken. Moreover, there has been some success in transforming applications of obfuscation to
be secure under assumptions on lattices [BVWW16, WZ17, GKW17], which are widely believed to
be quantum hard. We therefore think it plausible that subspace-hiding obfuscation, which is all
we need for this work, can be based on similar lattice problems. Nonetheless, obfuscation is a very
active area of research, and we believe that one of the current obfuscators so some future variant
will likely be secure against quantum attacks.
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Computational No-cloning. We note that computational assumptions and no-cloning have
been combined in other contexts, such as Unruh’s revocable time-released encryption [Unr14]. We
note however, that these settings do not involve verification, the central theme of this work.

2 Preliminaries

2.1 Notations

Throughout this paper, we will let λ be a security parameter. When inputted into an algorithm, λ
will be represented in unary.

A function ε(λ) is negligible if for any inverse polynomial 1/p(λ), ε(λ) < 1/p(λ) for sufficiently
large λ. A function is non-negligible if it is not negligible, that is there exists an inverse polynomial
1/p(λ) such that ε(λ) ≥ 1/p(λ) infinitely often.

2.2 Quantum Computation

A quantum system Q is defined over a finite set B of classical states. We will generally consider
B = {0, 1}n. A pure state over Q is an L2-normalized vector in C|B|, which assigns a (complex)
weight to each element in B. Thus the set of pure states forms a complex Hilbert space. A qubit is
a quantum system defined over B = {0, 1}. Given a quantum system Q0 over B0 and a quantum
system Q1 over B1, we can define the product system Q = Q0 ×Q1 over B = B0 ×B1 = {(b0, b1) :
b0 ∈ B0, b1 ∈ B1}. Given a state v0 ∈ Q0 and v1 ∈ Q1, we define the product state v0 ⊗ v1 in the
natural way. An n-qubit system is then Q = Q⊕n0 where Q0 is a single qubit.

Bra-ket notation. We will think of pure states as column vectors. The pure state that assigns
weight 1 to x and weight 0 to each y 6= x is denoted |x〉. The set {|x〉} therefore gives an orthonormal
basis for the Hilbert space of pure states. We will call this basis the “computational basis.” If a
state |φ〉 is a linear combination of several |x〉, we say that |φ〉 is in “superposition.” For a pure
state |φ〉, we will denote the conjugate transpose as the row vector 〈φ|.

Entanglement. In general, a pure state |φ〉 over Q0 ×Q1 cannot be expressed as a product state
|φ0〉 ⊗ |φ1〉 where |φb〉 ∈ Qb. If |φ〉 is not a product state, we say that the systems Q0, Q1 are
entangled. If |φ〉 is a product state, we say the systems are un-entangled.

Evolution of quantum systems. A pure state |φ〉 can be manipulated by performing a unitary
transformation U to the state |φ〉. We will denote the resulting state as |φ′〉 = U |φ〉.

Basic Measurements. A pure state |φ〉 can be measured; the measurement outputs the value x
with probability |〈x|φ〉|2. The normalization of |φ〉 ensures that the distribution over x is indeed
a probability distribution. After measurement, the state “collapses” to the state |x〉. Notice that
subsequent measurements will always output x, and the state will always stay |x〉.

If Q = Q0 × Q1, we can perform a partial measurement in the system Q0 or Q1. If
|φ〉 =

∑
x∈B0,y∈B1 αx,y|x, y〉, partially measuring inQ0 will give x with probability px =

∑
y∈B1 |αx,y|

2.
|φ〉 will then collapse to the state

∑
y∈B1

αx,y√
px
|x, y〉. In other words, the new state has support only

on pairs of the form (x, y) where x was the output of the measurement, and the weight on each pair
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is proportional to the original weight in |φ〉. Notice that subsequent partial measurements over Q0
will always output x, and will leave the state unchanged.

The above corresponds to measurement in the computational basis. Measurements in other
bases are possible to, and defined analogously. We will generally only consider measurements in
the computational basis; measurements in other bases can be implemented by composing unitary
operations with measurements in the computational basis.

Efficient Computation. A quantum computer will be able to perform a fixed, finite set G of
unitary transformations, which we will call gates. For concreteness, we will use so-called Hadamard,
phase, CNOT and π/8 gates, but the precise choice is not important for this work, so long as the
gate set is “universal” for quantum computing.

Let Q be a quantum system on n qubits. Each gate costs unit time to apply, and each partial
measurement also costs unit time. Therefore, an efficient quantum algorithm will be able to make a
polynomial-length sequence of operations, where each operation is either a gate from G or a partial
measurement in the computational basis. Here, “polynomial” will generally mean polynomial in n.

Examples of Quantum Computations.

• Quantum Fourier Transform. Let Q0 be a quantum system over B = Zq for some integer
q. Let Q = Q⊗n0 . The Quantum Fourier Transform (QFT) performs the following operation
efficiently:

QFT|x〉 = 1√
qn
ωx·yq

∑
y∈{0,1}n

|y〉

where ωq = e2πi/q.
• Efficient Classical Computations. Any function that can be computed efficiently classically

can be computed efficiently on a quantum computer. More specifically, if f is computable by
a polynomial-sized circuit, then there is a efficiently computable unitary Uf on the quantum
system Q = Qin ⊗Qout ⊗Qwork with the property that: Uf |x, y, 0〉 = |x, y + f(x), 0〉.
Here, Qin is a quantum system over the set of possible inputs, Qout is a quantum system
over the set of possible outputs, and Qwork is another quantum system that is just used for
workspace, and is reset after use.

Quantum Queries. If a quantum algorithm makes queries to some function f , there are two
scenarios we will consider. In one, oracle accepts a quantum state consisting of input and response
registers, creates it’s own workspace registers initialized to |0〉, and applies the unitary Uf as defined
above to the joint state. After the query, it returns the input and response registers and discards
its workspace registers. Following [DFNS14], we call this a supplied response oracle. In the other
scenario, the oracle accepts a quantum state consisting of just input registers, creates it’s own
response and workspace registers initialized to |0〉, applies the unitary Uf , and returns the input and
new response registers. It discards its workspace registers. We call this a created response oracle.
Unless otherwise stated, we will use the supplied response version of every oracle.
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Mixed states. A quantum system may, for example, be in a pure state |φ〉 with probability
1/2, and a different pure state |ψ〉 with probability 1/2. This can occur, for example, if a partial
measurement is performed on a product system.

This probability distribution on pure states cannot be described by a pure state alone. Instead,
we say that the system is in a mixed state. The statistical behavior of a mixed state can be
captured by density matrix. If the system is in pure state |φi〉 with probability pi, then the
density matrix for the system is defined as ρ =

∑
i pi|φi〉〈φi|.

The density matrix is therefore a positive semi-definite complex Hermitian matrix with rows
and columns indexed by the elements of B. The density matrix for a pure state |φ〉 is given by the
rank-1 matrix |φ〉〈φ|. Any probability distribution over classical states can also be represented as a
density matrix, namely the diagonal matrix where the diagonal entries are the probability values.

Distance. We define the Euclidean distance ‖|φ〉−|ψ〉‖ between two states as the value
(∑

x |αx − βx|2
) 1

2

where |φ〉 =
∑
x αx|x〉 and |ψ〉 =

∑
x βx|x〉.

We will be using the following lemma:

Lemma 2.1 ([BBBV97]). Let |ϕ〉 and |ψ〉 be quantum states with Euclidean distance at most ε.
Then, performing the same measurement on |ϕ〉 and |ψ〉 yields distributions with statistical distance
at most 4ε.

2.3 Public Key Quantum Money

Here, we define public key quantum money. We will slightly modify the usual definition [Aar09],
though the definition will be equivalent to the usual definition under simple transformations.

• We only will consider what Aaronson and Christiano [AC12] call a quantum money mini-
scheme, where there is just a single valid banknote. It is straightforward to extend to general
quantum money using a signature scheme

• We will change the syntax to more closely resemble our eventual quantum lightning definition,
in order to clearly compare the two objects.

A quantum money scheme consists of two quantum polynomial time algorithms Gen,Ver.

• Gen takes as input the security parameter, and samples a quantum banknote |$〉

• Ver verifies a banknote, and if the verification is successful, produces a serial number for the
note.

For correctness, we require that verification always accepts money produced by Gen. We also
require that verification does not perturb the money. Finally, since Ver is a quantum algorithm,
we must ensure that multiple runs of Ver on the same money will always produce the same serial
number. This is captured by the following two of requirements:

• For a money state |$〉, let

H∞(|$〉) = − log2 min
s

Pr[Ver(|$〉) = s]

be the min-entropy of s produced by applying Ver to |$〉, were we do not count the rejecting
output ⊥ as contributing to the min-entropy. We insist that E[H∞(|$〉)] is negligible, where the
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expectation is over |$〉 ← Gen(1λ). This ensures the serial number is essentially a deterministic
function of the money.

• For a money state |$〉, let |ψ〉 be the state left over after running Ver(|$〉). We insist that
E[|〈ψ|$〉|2] ≥ 1− negl(λ), where the expectation is over |$〉 ← Gen(1λ), and any affect Ver has
on |ψ〉. This ensures that verification does not perturb the money.

Remark 2.2. We note that it is sufficient to only consider the first requirement. Since the serial
number is essentially a deterministic function of the money, we can always modify a Ver that does
not satisfy the second requirement into an algorithm Ver′ that does. Ver′ runs Ver, and copies the
output s into a separate register. Since s is almost deterministic, the copying into a separate register
only negligibly affects the money. Therefore, we un-compute Ver, and the result will be negligibly
close to the original state.

For security, consider the following game between an adversary A and a challenger

• The challenger runs Gen(1λ) to get a banknote |$〉. It runs Ver on the banknote to extract a
serial number s.

• The challenger sends |$〉 to A.

• A produces two candidate quantum money states |$0〉, |$1〉, which are potentially entangled.

• The challenger runs Ver on both states, to get two serial numbers s0, s1.

• The challenger accepts if and only if both runs of Ver pass, and the serial numbers satisfy
s0 = s1 = s.

Definition 2.3. A quantum money scheme (Gen,Ver) is secure if, for all quantum polynomial time
adversaries A, the probability the challenger accepts in the above experiment is negligible.

3 Quantum Lightning

3.1 Definitions

The central object in a quantum lightning system is a lightning bolt, a quantum state that we will
denote as |E〉. Bolts are produced by a storm, , a polynomial time quantum algorithm which
takes as input a security parameter λ and samples new bolts. Additionally, there is a quantum
polynomial-time bolt verification procedure, Ver, which serves two purposes. First, it verifies that a
supposed bolt is actually a valid bolt; if not it rejects and outputs ⊥. Second, if the bolt is valid, it
extracts a fingerprint/serial number of the bolt, denoted s.

Rather than having a single storm and single verifier Ver, we will actually have a family Fλ
of ( ,Ver) pairs for each security parameter. We will have a setup procedure SetupQL(1λ) which
samples a ( ,Ver) pair from some distribution over Fλ.

For correctness, we have essentially the same requirements as quantum money. We require that
verification always accepts bolts produced by . We also require that verification does not perturb
the bolt. Finally, since Ver is a quantum algorithm, we must ensure that multiple runs of Ver on
the same bolt will always produce the same fingerprint. This is captured by the following two of
requirements:
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• For a bolt |E〉, let
H∞(|E〉,Ver) = − log2 min

s
Pr[Ver(|E〉) = s]

be the min-entropy of s produced by applying Ver to |E〉, were we do not count the rejecting
output ⊥ as contributing to the min-entropy. We insist that E[H∞(|E〉,Ver)] is negligible,
where the expectation is over ( ,Ver)← SetupQL(λ) and |E〉 ← . This ensures the serial
number is essentially a deterministic function of the bolt.

• For a bolt |E〉, let |ψ〉 be the state left over after running Ver(|E〉). We insist that E[|〈ψ|E〉|2] ≥
1− negl(λ), where the expectation is over ( ,Ver)← SetupQL(λ), |E〉 ← , and any affect
Ver has on |ψ〉. This ensures that verification does not perturb the bolt.

Remark 3.1. We note that it is sufficient to only consider the first requirement. Since the serial
number is essentially a deterministic function of the bolt, we can always modify a Ver that does
not satisfy the second requirement into an algorithm Ver′ that does. Ver′ runs Ver, and copies the
output s into a separate register. Since s is almost deterministic, the copying into a separate register
only negligibly affects the bolt. Therefore, we un-compute Ver, and the result will be negligibly
close to the original state.
For security, informally, we ask that no adversarial storm can produce two bolts with the
same serial number. More precisely, consider the following experiment between a challenger and a
malicious bolt generation procedure :

• The challenger runs ( ,Ver)← SetupQL(1λ), and sends ( ,Ver) to .

• produces two (potentially entangled) quantum states |E0〉, |E1〉, which it sends to the
challenger

• The challenger runs Ver on each state, obtaining two fingerprints s0, s1. The challenger accepts
if and only if s0 = s1 6= ⊥.

Definition 3.2. A quantum lightning scheme has uniqueness if, for all polynomial time adversarial
storms , the probability the challenger accepts in the game above is negligible in λ.

Comparison to Public Key Quantum Money. We note that our quantum lightning definition
is very similar to the quantum money notion, except that the security notion is strengthened, and
we allow a family of generation/verification procedures. The differences are analogous to the various
notions of security for hash functions H:

• Quantum money can be seen as an analog of second-pre-image resistance. Here, a random
input x is sampled, hashed to get y, and (x, y) are sent to the adversary. The adversary has
to find a second x′ that hashes to y. In quantum money, a random note is created, a serial
number is extracted, and the adversary must find a second note with the same serial number.

• Quantum lightning can then be seen as the analog of collision-resistance. Here, the adversary
just tries to devise two arbitrary distinct inputs x, x′ that hash to the same value. In quantum
lightning, the adversary tries to construct two bolts with the same serial number. Just as in
the collision resistance setting, there are definitional issues with collision resistance that lead
the usual (theoretical) definitions to consist of families of hash functions. Most theoretical
constructions of collision-resistant hash functions are also function families. For similar reasons,
we define quantum lightning as a family of storm/verifier pairs.
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• One can also consider one-wayness, where the adversary is given a random y (but not the
pre-image x), and the goal is to find an arbitrary pre-image (potentially x itself). For quantum
lightning/money, this would correspond to giving the adversary a random serial number, and
then asking the adversary to find some state belonging to that serial number. We note that
this version is trivial without relying on no-cloning: we define the serial number for a state |x〉
to simply be the hash of x. Then one-wayness already immediately implies that it is hard to
find a state with a given serial number. Therefore, in the context of this paper, such a notion
for quantum money/lightning is uninteresting.

Variations. We consider several variations of the above notion

• No setup. Here, the set Fλ contains only a single ( ,Ver) pair. This means SetupQL simply
needs to output the security parameter, and ,Ver are deterministically derived from the
security parameter.

• Common random string. Here, each member of Fλ is indexed by a bit string r of length
n(λ). In this case, SetupQL simply outputs a random string of length n(λ), and ,Ver are
deterministically derived from this string.
This is in contrast to general Fλ, where the generation of ( ,Ver) may involve secrets that
are subsequently discarded.

• Min-entropy. Here, we consider a slightly different, but closely related, security notion,
which basically says that any for any malicious sampling procedure for bolts, the min-entropy
of the serial number must be high. Consider a malicious bolt generator . Define

H∞( ,Ver) = − log max
s

Pr[Ver(|E〉) = s : |E〉 ← ]

to be the min-entropy of serial numbers among the valid bolts generated by (bolts that are
rejected by Ver do not count toward min-entropy). Note that this is different that H∞(|E〉,Ver),
which measures the min-entropy of the serial number for a single bolt.
We say a quantum lightning scheme has min-entropy if, for all efficient quantum A, which
takes as input ,Ver and outputs a classical description of , and for all polynomials p

Pr[H∞( ,Ver]) ≤ log p(λ) : ← A( ,Ver), ( ,Ver)← SetupQL(1λ)] < negl(λ)

In other words, except with negligible probability, serial numbers produced by have
super-logarithmic min-entropy.

We can modify the above definition to p-min-entropy, where we insist on a particular amount
of min-entropy: for any efficient quantum A:

Pr[H∞( ,Ver]) ≤ p(λ) : ← A( ,Ver), ( ,Ver)← SetupQL(1λ)] < negl(λ)

With p-min-entropy, we can consider p anywhere from super-logarithmic to slightly less than
n, the bit-length of serial numbers. We cannot insist on n-min-entropy, since an adversarial
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storm can run several times, until, say, the first bit of the serial number is 0, and then only
output this bolt. The adversarial storm will run twice in expectation, is guaranteed to
produce a valid bolt, and moreover only outputs serial numbers beginning with a 0. More
generally, an efficient generation procedure can always sample bolts with serial numbers from
a distribution of min-entropy n−O(log λ), where n is the length of the serial numbers. Our
requirement will be that this is essentially the only strategy.
We say a quantum lightning scheme has full min-entropy if this is essentially the only strategy
possible for reducing min-entropy: for all efficient quantum A, there exists a polynomial p
such that

Pr[H∞( ,Ver]) ≤ n(λ)− log p(λ) : ← A( ,Ver), ( ,Ver)← SetupQL(1λ)] < negl(λ)

Note that a min-entropy adversary easily gives a uniqueness adversary: simply run the min-
entropy storm many times, saving all of the valid bolts that are produced. Since the min-entropy is
logarithmic, after a polynomial number of samples, there will be two with the same serial number;
simply output these bolts. This gives the following theorem:

Theorem 3.3. If a quantum lightning scheme has uniqueness, then it also has min-entropy.

From now on, we will usually only consider the uniqueness security property. Therefore, when
we say that a quantum lightning scheme is “secure”, we mean that it has uniqueness. We will only
use the other terms when we need to disambiguate the different security notions.

3.2 Applications

Quantum Money. Quantum lightning easily gives quantum money. To generate a new banknote,
simply run and output the obtained bolt |E〉 as the quantum money state. In the case where
actually comes from a family, first run SetupQL to get ( ,Ver), and then run to get |E〉. The
quantum money state is |E〉, ,Ver, and it’s serial number is s, ,Ver, where s is the serial number
of |E〉.

Technically, this just gives a quantum money “mini-scheme” where there is a single valid banknote.
This can be converted to a full quantum money scheme using signatures [AC12].

Provable Randomness. Quantum lightning also gives a way to generate a random string, and
prove that it has min-entropy. Assume that SetupQL has already been run in a trusted way (say, by
several organizations running SetupQL using an MPC protocol).

To generate a new random string, simply run to get a bolt |E〉. The random string will be the
serial number of the bolt, obtained using Ver. |E〉 will be the “proof” that the string has min-entropy.

Suppose that an adversarial storm can produce strings and valid proofs where the strings have
logarithmic min-entropy. Then, by running a polynomial number of times, eventually one will
obtain two identical strings, along with two valid proofs. This violates the security of the quantum
lightning scheme. Hence, we really do obtain a proof of min-entropy.

Notice that SetupQL was run only once, but can then be used to generate arbitrarily many
strings along with proofs of min-entropy.
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Unfortunately, the min-entropy bound obtained is weak; we can only guarantee a super-
logarithmic amount of min-entropy. If we assume sub-exponential hardness of the quantum lightning
scheme (that is, even a sub-exponential-time adversary cannot produce two bolts with the same
serial number), then we can get a proof of polynomial min-entropy, though the min-entropy may
still be much smaller than the overall length of the random string.

We leave obtaining higher min-entropy as an interesting open problem for future work. One may
hope to use randomness extraction, but analyzing appears difficult. The reason is that randomness
extraction usually assumes a random seed that is independent of distribution being extracted. For
quantum lightning, however, the random seed would be part of the description for Ver, and therefore
known to the adversary. The adversary can potentially craft its distribution on serial numbers so
that the extractor fails with the given seed.

Blockchain-less Cryptocurrency. Finally, we consider using quantum lightning to obtain
blockchain-less cryptocurrency. A coin is simply a bolt, except that the serial number must hash to
a value that begins with a certain number of zeros. To generate a new coin, simply keep generating
bolts until the serial number’s hash has the prescribed number of zeros.

Treating the hash function as a random oracle means that the only way to generate a coin is to
actually keep generating bolts until the serial number hashes correctly. The number of zeros is set
so that it takes a moderate amount of time to generate new coins. This ensures scarcity, a crucial
feature of any cryptocurrency.

This cryptocurrency is unlikely to be useful in practice due to a very important limitation.
Namely, as technology gets better, it will be easier and easier to create new coins. Without any
modifications, this will lead to an exponentially increasing supply of coins, and hence rampant
inflation. One option is to keep requiring the hashes to contain more and more zeros, but this will
render old coins invalid; with our scheme, it is impossible to distinguish coins made today with
coins made last week or last year. In either case, the result is highly undesirable.

Notice that current cryptocurrency instantiations avoid these problems, essentially, because it is
possible to distinguish new coins from old, due to all coins being recorded on a blockchain. Hence,
it is possible to increase the number of 0’s required in a hash to combat inflation.

We leave it as an interesting open problem to fix our protocol. One hope is to combine quantum
lightning with some form of time-released cryptography. The hope is to actually provide a way to
prove that a coin was minted some time in the past, so that it can be accepted using the verification
procedure from the time it was minted.

4 Win-win Results
In this section, we give several win-win results for public key quantum money and quantum lightning.

Recently, Unruh [Unr16] and Garg, Yuen, and Zhandry [GYZ17] have shown limitations with
prior definitions for commitment schemes, hash functions, and signatures5. The problem is that the
prior definitions implicitly assume that an adversary capable of producing two objects is able to do
so simultaneously. However, in the quantum setting, it may be possible for an adversary to produce
one of two objects, but impossible for it to simultaneously produce both.

For example, consider the case of signatures, which provide integrity over an insecure channel.
Classically, if an adversary intercepts a signed message and modifies it into a different signed message,

5Technically, Garg et al. only study message authentication codes, but their discussion applies to signatures as well
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it then has two signed messages, the one it received and the one it produced. Inspired by this, Boneh
and Zhandry give the first reasonable definition for security when the adversary sees a superposition
of signed messages. Their notion, roughly, says that such an adversary cannot produce two different
signed messages. Unfortunately, this definition allows for undesirable outcomes. For example, if the
original signed message always begins with the bit 0, it would be desirable for any signed message
produced by the adversary to also have the first bit be 0. However, the Boneh-Zhandry definition
allows for an adversary to construct a signed message that begins with 1; since the adversary only
ever produces a single signed message, this does not contradict Boneh-Zhandry security.

To combat such situations, Garg, Yuen, and Zhandry define a much stronger notion of security
for signatures that rules out such attacks. Similar situations arise for commitment schemes and hash
functions, and Unruh [Unr16] similarly gives definitions that rule out these undesirable settings.

In this section, we show that these undesirable attacks, if they exist for a particular scheme,
actually yield quantum money or quantum lightning. Thus, any scheme that meets the weaker old
security notions either (1) actually also meets the stronger security definitions, or (2) can be used
to construct quantum money/lightning, in either case leading to a positive outcome. Given the
difficulty of constructing public key quantum money, we interpret our win-win results to suggest
that most natural constructions of primitives actually meet the stronger security properties.

4.1 Infinity-Often Security

Before describing our win-win results, we need to introduce a non-standard notion of security.
Typically, a security statement says that no polynomial-time adversary can win some game, except
with negligible probability. A violation of the security statement is a polynomial-time adversary
that can win with non-negligible probability; that is, some probability ε that is lower bounded by
an inverse-polynomial infinitely often.

Our win-win results are of the form “either (A) is secure or (B) is secure.” Unfortunately, one of
the two security properties needs to be relaxed slightly. The reason is that we will use a supposed
attack for (A) to yield a verifier for (B) that allows us to prove security. However, if the attack
for (A) only succeeds with non-negligible probability, it’s winning probability may frequently be
too small to be useful for proving (B). Instead, we will either treat a break for (A) as yielding an
attack with an actual inverse polynomial winning probability (so that it will always be useful), or
only guarantee security for (B) infinitely often (basically, in the cases where the attack for (A) was
useful).

This motivates the notion of infinitely often security. A scheme has infinitely-often security if,
roughly, security holds for an infinite number of security parameters, but not necessarily all security
parameters. More precisely, instead of a poly-time adversary’s advantage or success probability
being upper-bounded by a negligible function, it is only guaranteed to be bounded infinitely often by
a negligible function. If a scheme is not infinitely-often secure, it means that there is an adversary
that has an inverse polynomial advantage (as opposed to non-negligible). It is straightforward to
modify all security notions in this work to infinitely-often variants.

Our win-win results will therefore be phrased as:

• “either (A) is secure or (B) is infinitely-often secure”, and

• “either (A) is infinitely-often secure or (B) is secure.”
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4.2 Collision Resistant Hashing

A hash function is a function H that maps large inputs to small inputs. We will considered keyed
functions, meaning it takes two inputs: a key k ∈ {0, 1}λ, and the actual input to be compressed,
x ∈ {0, 1}m(λ). The output of H is n(λ) bits. For the hash function to be useful, we will require
m(λ)� n(λ).

The usual security property for a hash function is collision resistance, meaning it is computa-
tionally infeasible to find two inputs that map to the same output.

Definition 4.1. H is collision resistant if, for any quantum polynomial time adversary A,

Pr[H(x0) = H(x1) ∧ x0 6= x1 : (x0, x1)← A(k), k ← {0, 1}λ] < negl(λ)

Unruh [Unr16] points out weaknesses in the usual collision resistance definition, and instead
defines a stronger notion called collapsing. Intuitively, it is easy for an adversary to obtain
a superposition of pre-images of some output, by running H on a uniform superposition and
then measuring the output. Collapsing requires, however, that this state is computationally
indisitnguishable from a random input x. More precisely, for an adversary A, consider the following
experiment between A and a challenger

• The challenger has an input bit b.

• The challenger chooses a random key k, which it gives to A.

• A creates a superposition |ψ〉 =
∑
x αx|x〉 of elements in {0, 1}m(λ).

• In superposition, the challenger evaluates H(k, ·) to get the state |ψ′〉 =
∑
x αx|x,H(k, x)〉

• Then, the challenger either:

– If b = 0, measures the H(k, x) register, to get a string y. The state |ψ′〉 collapses to
|ψy〉 ∝

∑
x:H(k,x)=y αx|x, y〉

– If b = 1, measures the entire state, to get a string x,H(k, x). The state |ψ′〉 collapses to
|x,H(k, x)〉

• The challenger returns whatever state remains of |ψ′〉 (namely |ψy〉 or |x,H(k, x)〉) to A.

• A outputs a guess b′ for b. Define Collapse-Expb(A, λ) as the random variable b′.

Definition 4.2. H is collapsing if, for all quantum polynomial time adversaries A,

|Pr[Collapse-Exp0(A, λ) = 1]− Pr[Collapse-Exp1(A, λ) = 1]| < negl(λ)

Theorem 4.3. Suppose H is collision resistant. Then both of the following are true:

• Either H is collapsing, or H can be used to build a quantum lightning scheme that is infinitely
often secure.

• Either H is infinitely often collapsing, or H can be used to build a quantum lightning scheme
that is secure.
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Proof. Let A be a collapsing adversary; the only difference between the two cases above are whether
A’s advantage is non-negligible or actually inverse polynomial. The two cases are nearly identical, but
the inverse polynomial case will simplify notation. We therefore assume that H is not infinitely-often
collapsing, and will design a quantum lightning scheme that is secure.

Let A0 be the first phase of A: it receives a hash key k as input, and produces a superposition
of pre-images, as well as it’s own internal state. Let A1 be the second phase of A: it receives the
internal state from A0, plus the superposition of input/output pairs returned by the challenger. It
outputs 0 or 1.

Define qb(λ) = Pr[Collapse-Expb(A, λ) = 1]. By assumption, we have that |q0(λ) − q1(λ)| ≥
1/p(λ) for some polynomial p. We will assume q0 < q1, the other case handled analogously.

For an integer r, consider the function H⊗r(k, ·) which takes as input a string x ∈ ({0, 1}m(λ))r,
and outputs the vector (H(k, x1), . . . ,H(k, xr)). The collision resistance of H easily implies the
collision resistance of H⊗r, for any polynomial r. Moreover, we will use A to derive a collapsing
adversary A⊗r for H⊗r which has near-perfect distinguishing advantage. A⊗r works as follows.

• First, it runs A0 in parallel r times to get r independent states |ψi〉, where each |ψi〉 contains
a superposition of internal state values, as well as inputs to the hash function.

• It assembles the r superpositions of inputs into a superposition of inputs for H⊗r, which it
then sends to the challenger.

• The challenger responds with a potential superposition over input/output pairs (through the
output value in ({0, 1}n(λ))r is fixed).

• A⊗r disassembles the input/output pairs into r input/output pairs for H.

• It then runs A1 in parallel r times, on each of the corresponding state/input/output superpo-
sitions, to get bits b′1, . . . , b′r.

• A⊗r then computes f = (
∑
i b
′
i)/r, the fraction of b′i that are 1.

• If f > (q0 + q1)/2 (in other words, f is closer to q1 than it is to q0), A outputs 1; otherwise it
outputs 0.

Notice that if A⊗r’s challenger uses b = 0 (so it only measures the output registers), this
corresponds to each A seeing a challenger with b = 0. In this case, each b′i with be 1 with
probability q0. This means that f will be a (normalized) Binomial distribution with expected value
q0. Analogously, if b = 1, each b′i will be 1 with probability q1, so f will be a normalized Binomial
distribution with expected value q1. Since q1 − q0 ≥ 1/p(λ), we can use Hoeffding’s inequality
to choose r large enough so that in the b = 0 case, f < (q0 + q1)/2 = q0 + 1/2p(λ) except with
probability 2−λ. Similarly, in the b = 1 case, f > (q0 + q1)/2 = q1 − 1/2p(λ) except with probably
2−λ. This means A⊗r outputs the correct answer except with probability 2−λ.

We now describe a first attempt at a quantum lightning scheme:

• SetupQL0 simply samples and outputs a random hash key k. This key will determine 0,Ver0
as defined below.
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• 0 runs A⊗r0 (k), where r is as chosen above and A⊗r0 represents the first phase of A⊗r.
When A⊗r0 produces a superposition |ψ〉 over inputs x ∈ {0, 1}rm for H⊗r(k, ·) as well as some
private state, 0 applies H⊗r in superposition, and measures the result to get y ∈ {0, 1}rn.
Finally, 0 outputs the resulting state |E〉 = |ψy〉.

• Ver0 on input a supposed bolt |E〉, first applies H⊗r(k, ·) in superposition to the input registers
to obtain y, which it measures. It saves y, which will be the serial number for the bolt.
Next, consider two possible tests Test0 and Test1. In Test0, run A⊗r1 — the second phase of
A⊗r — on the |E〉 and measure the result. If the result is 1 (meaning A⊗r guesses that the
challenger measured the entire input/output registers), then abort and reject. Otherwise if
the result is 0 (meaning A⊗r guess that the challenger only measured the output), then it
un-computes A⊗r1 . Note that since we measured the output of A⊗r1 , un-computing does not
necessarily return the bolt to its original state.
Test1 is similar to Test0, except that the input registers x are measured before running A⊗r1 .
This measurement is not a true measurement, but is instead performed by copying x into
some private registers. Moreover, the abort condition is flipped: if the result of applying A⊗r1
is 0, then abort and reject. Otherwise un-compute A⊗r1 , and similarly “un-measure” x by
un-computing x from the private registers.
Ver0 chooses a random c, and applies Testc. If the test accepts, then it outputs the serial
number y, indicated that it accepts the bolt.

Correctness. For a valid bolt, Test0 corresponds to the b = 0 challenger, in which case we know
A⊗r1 outputs 0 with near certainty. This means Ver continues, and when it un-computes, the result
will be negligibly close to the original bolt. Similarly, Test1 corresponds to the b = 1 challenger, in
which case A⊗r1 outputs 1 with near certainty. Un-computing returns the bolt to (negligibly close
to) its original state. For a valid bolt, the serial number is always the same. Thus, ,Ver satisfy
the necessary correctness requirements.

Security. Security is more tricky. Suppose instead of applying a random Testc, Ver0 applied both
tests. The intuition is that if Ver accepts, it means that the two possible runs of A⊗r1 would output
different results, which in turn means that A⊗r1 detected whether or not the input registers were
measured. For such detection to even be possible, it must be the case that the input registers
are in superposition. Then suppose an adversarial storm generates two bolts |E0〉, |E1〉 that are
potentially entangled such that both pass verification with the same serial number. Then we can
measure both states, and the result will (with reasonable probability) be two distinct pre-images of
the same y, representing a collision. By the assumed collision-resistance of H (and hence H⊗r), this
will means a contradiction.

The problem with the above informal argument is that we do not know how A⊗r1 will behave on
non-valid bolts that did not come from A⊗r0 . In particular, maybe it passes verification with some
small, but non-negligible success probability. It could be that after passing Test0, the superposition
has changed significantly, and maybe is no longer a superposition over pre-images of y, but instead a
single pre-image. Nonetheless, if the auxiliary state registers are not those generated by A⊗r0 , it may
be that the second test still accepts — for example, it may be that if A⊗r’s private state contains a
particular string, it will always accept; normally this string would not be present, but the bolt that
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remains after performing one of Testc may contain this string. We have to be careful to show that
this case cannot happen, or if it does there is still nonetheless a way to extract a collision.

Toward that end, we only choose a single test at random. We will first show a weaker form of
security, namely that an adversary cannot produce two bolts that are both accepted with probability
close to 1 and have the same serial number. Then we will show how to modify the scheme so that it
is impossible to produce bolts that are even accepted with small probability.

Consider a bolt where, after measuring H(k, ·), the inputs registers are not in superposition at
all. In this case, the measurement in Test1 is redundant, and we therefore know that both runs of
Testc are the same, except the acceptance conditions are flipped. Since the choice of test is random,
this means that such a bolt can only pass verification with probability at most 1/2.

More generally, suppose the bolt was in superposition, but most of the weight was on a single
input x0. Precisely, suppose that when measuring the x registers, x0 is obtained with probability
1− α for some relatively small α. We prove the following:

Claim 4.4. Consider a quantum state |φ〉 and a projective partial measurement on some of the
registers. Let |φx〉 be the state left after performing the measurement and obtaining x. Suppose that
some outcome of the measurement x0 occurs with probability 1− α. Then ‖|φx0〉 − |φ〉‖ <

√
2α

Proof. First, the |φx〉 are all orthogonal since the measurement was projective. Let Pr[x] be the
probability that the partial measurement obtains x. It is straightforward to show that |φ〉 =∑
y

√
Pr[x]βx|φx〉 for some βx of unit norm. The overall phase can be taken to be arbitrary, so we

can set βx0 = 1. Then we have 〈φx0 |φ〉 =
√

1− α.
This means ‖|φx0〉 − |φ〉‖2 = 2− 2(〈φx0 |φ〉) = 2− 2

√
1− α ≤ 2α for α ∈ [0, 1].

Now, suppose for the bolt that Test0 passes with probability t. Suppose α ≤ 1/200. Then Test1
can only pass with probability at most 3/2− t. This is because with probability at least 199/200,
the measurement in Test1 yields x0. Applying Claim 4.4, the result in this case is at most a distance√

2/200 = 1
10 from the original bolt. In this case, since the acceptance criteria for Test1 is the

opposite of Test0, the probability Test1 passes is at most 1− t+ 4
10 by Lemma 2.1. Over all then,

Test1 passes with probability at most (199/200)
(
1− t+ 4

10

)
+ (1/200) ≤ 3

2 − t.
Therefore, since the test is chosen at random, the probability of passing the test is the average of

the two cases, which is at most 3
4 regardless of t. Therefore, for any candidate pair of bolts |E0〉|E1〉,

either:

(1) If the bolts are measured, two different pre-images of the same y, and hence a collision for
H⊗r, will be obtained with probability at least 1/200

(2) The probability that both bolts accept and have the same serial number is at most 3
4 .

Notice that if |E0〉, |E1〉 are produced by an adversarial storm , then event (1) can only happen
with negligible probability, else we obtain a collision-finding adversary. Therefore, we have that for
any efficient , except with negligible probability, the probability that both bolts produced by
accept and have the same serial number is at most 3

4 .
In the full scheme, a bolt is simply a tuple of λ bolts produced by 0, and the serial number is

the concatenation of the serial numbers from each constituent bolt. The above analysis show that
for any efficient adversarial storm that produces two bolt sequences |Eb〉 = (|Eb,1〉, . . . , |Eb,λ〉), the
probability that both sequences completely accept and agree on the serial numbers is, except with
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negligible probability, at most
(

3
4

)λ
, which is negligible. Thus we obtain a valid quantum lightning

scheme.

4.3 One-time Signatures

A signature scheme consists of three polynomial time classical algorithms Gen,Sign,Ver. Gen is
a randomized procedure that takes as input the security parameter and produces a secret key
and public key pair (pk, sk)← Gen(1λ). Sign takes as input the secret key and a message m, and
produces a signature σ ← Sign(sk,m). Finally, Ver takes as input the public key, a message m, and
a supposed signature σ on m, and either accepts or rejects.

A signature scheme is correct if Ver accepts signatures outputted by Sign: for

Pr[Ver(pk,m, σ) = 1 : σ ← Sign(sk,m), (sk, pk)← Gen(1λ)] ≥ 1− negl(λ)

For security, we will for simplicity only consider one-time signature schemes where the adversary
only receives a single superposition of messages. Also, following Garg, Yuen, and Zhandry [GYZ17],
for this subsection only, we will consider the created response model of a quantum query, where
the oracle supplies the response register. Modeling security in the more common supplied response
setting is a more complicated task. Finally, again for simplicity we assume that the signing function
is a deterministic function of the secret key and message; this can be made without loss of generality
by using a pseudorandom function to generate the randomness.

Boneh-Zhandry security. Boneh and Zhandry [BZ13b] give the following definition of security
for signatures in the presence of quantum adversaries. Let A be a quantum adversary, and consider
the following experiment between A and a challenger:

• The challenger runs (sk, pk)← Gen(λ), and gives pk to A

• A makes a quantum superpositions query to the function m 7→ Sign(sk,m)

• A outputs two classical message/signature pairs ((m0, σ0), (m1, σ1)).

• The challenger accepts and outputs 1 if and only if (1) m0 6= m1, and (2) Ver(pk,mb, σb) for
both b ∈ {0, 1}. Denote this output by W-BZ-Exp(A, λ).

Definition 4.5 (Boneh-Zhandry [BZ13b]). A signature scheme is one-time weakly BZ-secure if, for
any quantum polynomial time adversary A, W-BZ-Exp(A, λ) is negligible.

We can also consider a stronger variant, where the challenger accepts if (m0, σ0) 6= (m1, σ1),
ruling out the possibility of producing two signatures on a single message. Denote the output of
this modified experiment by S-BZ-Exp(A, λ).

Definition 4.6 (Boneh-Zhandry [BZ13b]). A signature scheme is one-time strongly BZ-secure if,
for any quantum polynomial time adversary A, S-BZ-Exp(A, λ) is negligible.
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Garg-Yuen-Zhandry security. Garg, Yuen, and Zhandry [GYZ17] recently give a strengthening
of Boneh-Zhandry security, which rules out the types of attacks discussed above that are possible
under Boneh-Zhandry security.

Let A be an adversary, and consider the following experiment:

• The challenger runs (sk, pk)← Gen(λ), and gives pk to A

• A makes a quantum superposition query to the function m 7→ Sign(sk,m).

• A outputs a superposition |ψ〉 =
∑
m,σ,aux αm,σ,aux|m,σ, aux〉 of message/tag pairs as well as

auxiliary information.

• The challenger runs Ver on them,σ registers using the public key. This is done in superposition.
The challenger then measures the output of Ver.

– If the output is 0, the challenger outputs ⊥.
– Otherwise, the challenger outputs what remains in the registers m,σ, aux. This is the

state
|ψ′〉 ∝

∑
m,σ,aux:Ver(pk,m,σ)=1)

αm,σ,aux|m,σ, aux〉

Call this output GYZ-Exp(A, λ).

We call A m-respecting if, after the signing query, A cannot directly modify them registers, but is
allowed to operate on the remaining registers, potentially based on the contents of m. Alternatively,
A can replace all registers with a special symbol ⊥. This captures the ability of an adversary who
intercepts a superposition of signed messages to measure the message, copy the message to some
other register, and potentially operate on it’s own private space. Such operations will not affect
verification. Moreover, such an adversary can also throw away the entire superposition, and replace
it with arbitrary junk. However, in this case, verification will reject, so we might as well just have A
produce ⊥.

Analogously, we call A (m,σ)-respecting if we do not allow A to directly modify the m or σ
registers. A is still allowed to operate on its remaining registers, potentially based on the contents
of m,σ. Alternatively, A can replace all registers with ⊥.

Definition 4.7 (Garg-Yuen-Zhandry [GYZ17]). A signature scheme is one-time weakly GYZ-
secure if, for any quantum polynomial time adversaries A, there exists an m-respecting quantum
polynomial time S such that the following two distributions on states are quantum polynomial-time
indistinguishable:

GYZ-Exp(A, λ) and GYZ-Exp(S, λ)

The scheme is one-time strongly GYZ-secure if S can be taken to be (m,σ)-respecting.

Theorem 4.8. Suppose (Gen,Sign,Ver) is one-time weakly (resp. strongly) BZ-secure. Then both
of the following are true:

• The scheme is either one-time weakly (resp. strongly) GYZ-secure, or can be used to build an
infinitely-often secure public key quantum money scheme.

• The scheme is either infinitely often one-time weakly (resp. storngly) GYZ-secure, or can be
used to build a secure public key quantum money scheme.
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Proof. We prove the strong setting, assuming the scheme is not infinitely-often GYZ-secure. The
weak setting is nearly identical, as is the case where the scheme is not (always) GYZ-secure.
Consider an adversary A for one-time strong infinitely-often GYZ security. Consider the following
two algorithms derived from A:

• Let B be A, except that after receiving the result of the signing query, B measures the (m,σ)
registers before continuing.

• Let S be the same as A, except for the following two changes. First, S also measures the
(m,σ) registers, obtaining (m0, σ0), which it copies into its own private registers. Second, once
A produces its final output, a superposition |ψ〉 over m,σ, aux, S tests if (m,σ) = (m0, σ0). If
so, it outputs whatever state remains in |ψ〉. Otherwise, it outputs ⊥.

Now, S is a (m,σ)-respecting adversary. Since we know A is a one-time strong infinitely-often
GYZ adversary, this means there is an efficient distinguisher D such that

|Pr[D(GYZ-Exp(A, λ)) = 1]− Pr[D(GYZ-Exp(S, λ)) = 1]|

is inverse polynomial. Define:

• q0(λ) = Pr[D(GYZ-Exp(A, λ)) = 1]

• q1(λ) = Pr[D(GYZ-Exp(B, λ)) = 1]

• q2(λ) = Pr[D(GYZ-Exp(S, λ)) = 1]

Claim 4.9. |q1(λ)− q2(λ)| is negligible

Proof. Suppose not, that |q1(λ)− q2(λ)| ≥ δ(λ) for a non-negligible δ. Notice that the only instance
in which the challenger outputs anything but ⊥ is when (m,σ, aux) 6= ⊥ and if (m,σ) is valid.
Moreover, if the output is not ⊥, then the only different between B and S comes from |m,σ, aux〉
where (m,σ) 6= (m0, σ0). Therefore, the final superposition produced by B must have weight at least
δ on (m,σ, aux) where (m,σ) is valid and not equal to (m0, σ0). Thus, we obtain a one-time strong
BZ adversary: simply run B, copying the post-signing message/signature pair (m0, σ0) (which was
measured by B) into a private register. Then at the end, measure the state, to obtain (m1, σ1). With
probability at least δ, (m1, σ1) is valid an not equal to (m0, σ0). Thus output ((m0, σ0), (m1, σ1)) as
the forgery. This adversary has non-negligible probability δ of succeeding.

Therefore, we have that |q0(λ)− q1(λ)| is an inverse polynomial quantity 1/p(λ). As in Theo-
rem 4.3, we can repeat the scheme many times in parallel to obtain a new signature scheme and
adversary where q0(λ) ≤ 2−λ and q1(λ) ≥ 1−2−λ. We will abuse notation, and write A,B, S as the al-
gorithms corresponding to this new obtained adversary with almost perfect distinguishing advantage.
Let A0, A1 be the two phases of A, and similarly B0, B1, S0, S1. Notice that A0 = B0 = S0.

We now describe our basic quantum money scheme (Gen,Ver), assuming q0(λ) ≤ 2−λ and
q1(λ) ≥ 1− 2−λ as above:

• Gen0(1λ) samples (sk, pk)← Gen(1λ). It then runs A0 on pk. When A0 outputs a superposition
over internal state values and a signing query, Gen0 signs the query with sk, placing the output
in newly created registers. Gen0 outputs the entire state of the adversary and result of the
signing query, along with the public key, as the banknote |$〉.
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• Ver0(|$〉, pk) first measures the |pk〉 register to obtain pk′. If pk′ 6= pk, Ver rejects.
Then it runs Ver on the (m,σ) registers in superposition, and measures the result. If Ver
rejects, then Ver0 rejects.
Next, consider two possible tests. Test0 is the following. Finish running A by running A1
on on the banknote to get a superposition over (m,σ, aux). Then simulate the challenger
by running Ver(pki,m, σ) in superposition; if the result is 0, abort and reject. If the result
is 1, produce the whatever state |ψ′i〉 remains. Feed the result of the previous step into the
distinguisher D, to get an output b. If b = 1, then abort and reject. Otherwise, un-compute
all of the preceding steps.
Test1 is similar, but modified analogously to the proof of Theorem 4.3. Instead of running
A1, run B1, for which the only difference is that the (m,σ) registers are measured at the
beginning. We also change the acceptance condition: if b = 0, then abort and reject. Otherwise,
un-compute all of the preceding steps.
Ver0 simply chooses a random c, and applies Testc. If the test passes, then Ver0 outputs the
serial number pk.

Correctness. For a valid banknote, the serial number pk is clearly a deterministic function of the
note. Moreover, the step of Ver where Ver is run will always accept without modifying the quantum
money state. Finally, we claim that either test Testc always accepts and negligibly affects the state.
This is true simply because Testc corresponds to running the challenger on input b = c, and the the
test accepts exactly if A,D behave as guaranteed.

Security. Analogous to the proof of Theorem 4.3, the scheme above is not secure. However, the
same arguments can be made to show that for any for any candidate pair of quantum money states
|E0〉|E1〉, either:

(1) If the banknotes are measured, two different valid message/signature pairs for pk will be
produced with probability at least 1/200.

(2) The probability that both banknotes accept is at most 3
4 .

Notice that case (1) can be used to obtain a BZ-forger. The adversary gets a public key pk from
the BZ challenger. Then it constructs a quantum money state with serial number pk; the only step
it cannot perform for itself is the signing, which it accomplishes using the BZ signing oracle. Then it
runs the adversary to get two banknotes, which it measures. Since the signature scheme is assumed
to be BZ secure, the probability of (1) occurring must be negligible. Therefore, for any efficient
quantum money adversary, it must be the case that (2) happens, except with negligible probability.

Just as in the proof of Theorem 4.3, we can shrink the probability both banknotes accept to
negligible by running multiple instances of the scheme in parallel. This completes the proof.

4.4 Commitment Schemes

Next, we turn to commitment schemes. An interactive commitment scheme consists of four interactive
classical polynomial-time algorithms CommitS ,CommitR,RevealR:
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• In the commit phase, the sender has a message m and security parameter λ, and the receiver
has no input (except the security parameter). The sender runs CommitS(1λ,m) and the
receiver runs CommitR(1λ), which may send multiple messages bank and forth. At the end of
the interaction, CommitS and CommitR produce some state StateS , StateR, respectively, which
are the saved state for the next round of communication.

• In the reveal phase, the receiver is given the message m. Then the sender sends an “opening”
to the message m, which is just StateS . The receiver runs RevealR(m, StateR, StateS), and
either accepts or rejects.

We call a commitment scheme publicly verifiable if, after the commit phase but before the reveal
phase, the receiver publishes StateR; in this case we will still require all of the security properties
discussed below to hold even if the sender sees StateR at this point.

The classical definition of computational-binding for a commitment scheme is the following,
adapted to the quantum setting. consider an adversary, consisting of an algorithm Commit′S .
Consider the following experiment between this adversary and a challenger:

• The adversary runs Commit′S and challenger runs CommitR(1λ); the two algorithms interact.
The challenger ensures that every message received is measured before responding, guaranteeing
that CommitR is run classically.

• Commit′S produces two openings State′S,0,State′S,1 and two messages m0,m1. CommitR pro-
duces a state StateR.

• The challenger receives (State′S,b,mb) for b = {0, 1}. For each b, it runs RevealR(m0,StateR,State′S,b).

• The challenger outputs 1 if and only if both runs of RevealR for b = 0, 1 accept.

Definition 4.10. (CommitS ,CommitR,RevealR) is computationally binding if, for all quantum
polynomial-time adversaries Commit′S , the probability the challenger accepts in the above game is
negligible.

Recently, Unruh [Unr16] offers a stronger definition, called collapse-binding. Here, consider the
following experiment between an binding adversary Commit′S and a challenger. Note that Unruh
only considers non-interactive schemes, whereas we consider interactive schemes. Therefore, our
definition appears different than his. However, in the case of non-interactive schemes, our definitions
coincide.

• The challenger is given an input c ∈ {0, 1}.

• The adversary runs Commit′S(1λ) and the challenger runs CommitR(1λ); the two algorithms
interact. The challenger ensures that every message received is measured before responding,
guaranteeing that CommitR is run classically.

• Commit′S produces a superposition
∑
αState′

S ,m
|State′S ,m〉 which it sends to the challenger. It

may also produce a private state that is entangled with this superposition. CommitR produces
a classical state StateR.

• The challenger then runs RevealR in superposition on StateR and the superposition produced
by Commit′S . It measures the result of the computation. If RevealR rejects, the challenger
aborts and rejects.
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• Next, if c = 0, the challenger does nothing. If c = 1, the challenger measures the m register of
the adversary’s state.

• Finally, the challenger outputs everything. This includes the (potentially collapsed) superposi-
tion produced by Commit′S , the adversary’s private state (if any), and StateR. Denote this
output by Collapse-Expc(Commit′S , λ)

Definition 4.11. A commitment scheme CommitS ,CommitR,RevealR is collapse-binding if, for all
polynomial time quantum adversaries Commit′S , Collapse-Exp0(Commit′S , λ) is computationally
indistinguishable from Collapse-Exp1(Commit′S , λ).

Theorem 4.12. Suppose (CommitS ,CommitR,RevealR) is a publicly verifiable computationally
binding commitment scheme. Then both of the following are true:

• The scheme is either collapse-binding, or can be used to build an infinitely-often secure public
key quantum money scheme.

• The scheme is either infinitely often collapse-binding, or can be used to build a secure public
key quantum money scheme.

Proof. The proof is analogous to the proofs for hash functions and signatures, and we only sketch the
proof here. Suppose the commitment scheme is computationally binding, but is not infinitely-often
collapse-binding. Then there is an adversary Commit′S and a distinguisher D such that

|Pr[D(Collapse-Exp0(Commit′S , λ)) = 1]− Pr[D(Collapse-Exp1(Commit′S , λ)) = 1]|

is greater than an inverse polynomial. For simplicity, assume that Pr[D(Collapse-Exp0(Commit′S , λ)) =
1] ≤ 2−λ and Pr[D(Collapse-Exp1(Commit′S , λ)) = 1] ≥ 1 − 2−λ; the more general case can be
handled analogously to the hash function/signature case by repeating many instances in parallel.

To generate a quantum money state, run the experiment Collapse-Exp with Commit′S until
Commit′S outputs a superposition

∑
αState′

S ,m
|State′S ,m〉, plus potentially a private state that is

entangled with this superposition. Output this superposition, the adversary’s private state, if any,
and StateR produced by CommitR (recall that the scheme is publicly verifiable, so binding will hold
even if CommitR is public).

To verify a banknote, choose a random c ∈ {0, 1}. Finish running Collapse-Expc by running
RevealR in superposition on StateR and the superposition of (State′S ,m) pairs; if c = 0, this is all
that happens, while if c = 1, measure the message registers afterward. Then take the output of the
experiment, and feed it to D. If the output of D is not c, reject. Otherwise, accept, and output
StateR as the serial number.

Similar to the proofs in the case of signatures and hash functions, if an adversary is able to
produce two banknotes that have the same serial number StateR, then one of two things happen:

(1) The superposition of messages in one of the banknotes has a noticeable weight on at least
two messages. In this case, measuring the message registers will give different answers with
noticeable probability.

(2) The banknotes will fail verification with noticeable probability.
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In the (1) case, we can use the two banknotes to produce two openings State′S,0,m0,State′S,1,m1
that can be used to reveal to two different messages simultaneously. This gives a violation of
computational binding. Therefore, under the assumption that the scheme is computationally
binding, it must be that (2) happens with overwhelming probability.

This does not give us a full quantum money scheme, but by repeating λ times in parallel, the
probability a banknote accepts in the (2) case becomes exponentially small, giving a full quantum
money scheme.

4.5 Non-interactive Commitments

A commitment scheme is non-interactive if the commit phase consists of a single message from the
sender to receiver. In this setting, we usually allow a setup phase before the commit phase, where a
common random string crs is chosen. In such a scheme, there is no CommitR, and StateR is just
the sender’s commit message together with the crs. Notice here that a non-interactive scheme is
automatically publicly verifiable.

Theorem 4.13. Suppose (CommitS ,RevealR) is a computationally binding non-interactive commit-
ment scheme. Then both of the following are true:

• The scheme is either collapse-binding, or can be used to build an infinitely-often secure quantum
lightning scheme

• The scheme is either infinitely often collapse-binding, or can be used to build a secure quantum
lightning scheme

The proof is essentially the same as Theorem 4.12, and very similar to Theorem 4.3. The main
difference is that SetupQL generates the crs for the commitment scheme. This is then the common
random string which is used to select ,Ver.

We note that interactive commitments do not give bolts, since an adversarial bolt generator can
generate bolts that deviate from how the honest receiver would act. This would potentially allow the
bolt generator to set up the bolt in such a way that it can open the commitment to multiple values
and hence create multiple valid bolts. However, for a non-interactive commitment, the receiver
plays no role in generating the bolt, so an adversarial storm has no chance of cheating in this way.
Two bolts with the same serial number in this case can be used to open the commitment to two
values, breaking computational binding.

5 Quantum Money from Obfuscation
In this section, we show that, assuming injective one-way functions exist, applying indisitnguishability
obfuscation to Aaronson and Christiano’s abstract scheme [AC12] yields a secure quantum money
scheme.

5.1 Obfuscation

The following formulation of indistinguishability obfuscation is due to Garg et al. [GGH+13b]:

Definition 5.1. (Indistinguishability Obfuscation) An indistinguiability obfuscator iO for a circuit
class {Cλ} is a PPT uniform algorithm satisfying the following conditions:
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• iO(λ,C) preserves the functionality of C. That is, for any C ∈ Cλ, if we compute C ′ = iO(λ,C),
then C ′(x) = C(x) for all inputs x.

• For any λ and any two circuits C0, C1 ∈ Cλ with the same functionality, the circuits iO(λ,C)
and iO(λ,C ′) are indistinguishable. More precisely, for all pairs of PPT adversaries (Samp, D),
if there exists a negligible function α such that

Pr[∀x,C0(x) = C1(x) : (C0, C1, σ)← Samp(λ)] > 1− α(λ)

then there exists a negligible function β such that∣∣Pr[D(σ, iO(λ,C0)) = 1]− Pr[D(σ, iO(λ,C1)) = 1]
∣∣ < β(λ)

The circuit classes we are interested in are polynomial-size circuits — that is, when Cλ is the
collection of all circuits of size at most λ. We call an obfuscator for this class an indistinguishability
obfuscator for P/poly. The first candidate construction of such obfuscators is due to Garg et
al. [GGH+13b].

When clear from context, we will often drop λ as an input to iO and as a subscript for C.

Definition 5.2. A subspace hiding obfuscator (shO) for a field F and dimensions d0, d1 is a PPT
algorithm shO such that:

• Input. shO takes as input the description of a linear subspace S ⊆ Fn of dimension d ∈ {d0, d1}.
For concreteness, we will assume S is given as a matrix whose rows form a basis for S.

• Output. shO outputs a circuit Ŝ that computes membership in S. Precisely, let S(x) be the
function that decides membership in S. Then

Pr[Ŝ(x) = S(x)∀x : Ŝ ← shO(S)] ≥ 1− negl(n)

• Security. For security, consider the following game between an adversary and a challenger,
indexed by a bit b.

– The adversary submits to the challenger a subspace S0 of dimension d0

– The challenger chooses a random subspace S1 ⊆ Fn of dimension d1 such that S0 ⊆ S1.
It then runs Ŝ ← shO(Sb), and gives Ŝ to the adversary

– The adversary makes a guess b′ for b.

The adversary’s advantage is the the probability b′ = b, minus 1/2. shO is secure if, all PPT
adversaries have negligible advantage.

Theorem 5.3. If injective one-way functions exist, then any indistinguishability obfuscator, appro-
priately padded, is also a subspace hiding obfuscator for field F and dimensions d0, d1, as long as
|F|n−d1 is exponential.

Proof. We first prove the case where F = F2, the finite field on two elements, and where d1 = d0 + 1.
Consider an adversary A. Consider the following hybrid experiments:
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• H0: in this hybrid, A receives iO(S0) from the challenger, corresponding to b = 0. S0 is
appropriately padded before obfuscating so that all the programs received by A in the following
hybrids have the same length.

• H1: in this hybrid, A receives an obfuscation of the following function. Let P̂ be an obfuscation
under iO of the simple program Z that always outputs 0 on inputs in Fn−d0 . Let B be a
(n− d0)× n matrix whose rows are a basis for S⊥, the space orthogonal to S. This basis can
be computed by Gaussian elimination. Then Ŝ is the obfuscation under iO of the function

Q(x) =


1 if B · x = 0
1 if P̂ (B · x) = 1
0 Otherwise

Since P̂ always outputs 0, this program still accepts if and only if the input is in S. Therefore,
H0 and H1 are indistinguishable by the security of the outer iO invocation.

• H2: this hybrid is the same as H1, except that P̂ is the obfuscation under iO of the function

Py(x) =
{

1 if OWF(x) = y

0 Otherwise

Here, OWF is an injective one-way function, and y = OWF(x∗) for a random x∗ ∈ Fn−d0 . By
our assumption that |F|n−d1 is exponential, and that d0 = d1 − 1, we have that the bit-length
of x∗, namely n− d0, is linear in the security parameter. Therefore, we can invoke the security
of OWF.
Notice that the only point on which Z and Py differ is x∗, and finding x∗ requires inverting
OWF. Therefore, if iO was a differing inputs obfuscator, the obfuscations of Z and Py would
be indistinguishable. Since Z and Py differ in only a single input, the results of [BCP14] show
that iO is a differing inputs obfuscator for these circuits.
Therefore, H1 and H2 are computationally indistinguishable.
Notice now, since F = F2 = {0, 1}, that Q(x) decides membership in the subspace S1 of
vectors x such that B · x is in the span of x∗ (which is just {0, x∗}). Except with negligible
probability, x∗ 6= 0, and so S1 has dimension d0 + 1 = d1 and contains S0. Moreover the set of
dimension-d1 spaces containing S0 is in bijection with the set of non-zero x∗.

• H3. In this hybrid, a random x∗ is chosen, S1 is constructed as above, and then obfuscated.
Since Q(x) decides membership in S1, the programs being obfuscated in H2 and H3 are the
same, so these two hybrids are indistinguishable by iO.

• H4. Here, we choose x∗ at random, except not equal to 0. Since x∗ comes from a set of size
|F|n−d0 which by assumption is exponential, the two distributions are negligibly close. Now,
the set S1 is a random dimension-d1 space containing S0, so H4 corresponds to the case b = 1.

Over larger fields, we have to change the proof. The reason is that {0, x∗} is no longer the
same as the span of x∗. This means that the function obfuscated in H2 is not a linear subspace,
but the union of two parallel affine spaces. Instead, assume for simplicity that the first digit of x∗
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is non-zero. Over large fields, this happens with overwhelming probability; over small fields, we
still know that some digit is non-zero with overwhelming probability. The discussion below can be
modified easily to work with any other bit.

For an input y = (b, y′) for a bit y, let Reduce(y) = y′/b if b 6= 0 and Reduce(0, y′) =∞.
In the hybrids above, we modify Q(x) to be

Q(x) =


1 if B · x = 0
1 if P̂ (Normalize(B · x)) = 1
0 Otherwise

InH2, we will choose a random x′ such that the first bit is non-zero. Then we set x∗ = Reduce(x′).
Notice that Reduce(x∗) is a random string, so we can still invoke the security of OWF. Moreover,
now in H2, Q(x) accepts if and only if Reduce(B · x) ∈ {0, x∗}, which is the same condition as
B · x ∈ Span(x′).

If x′ was chosen truly randomly, this would correspond to obfuscating a random space of dimension
d1 containing S0. Unfortunately, we did not choose x′ uniformly at random, but conditioned on the
first digit being non-zero. To fix this, we choose i from a geometric distribution with probability
1 − 1

|F| , and then choose a random x′ such that the first i − 1 digits are 0, and the ith digit is
non-zero. With overwhelming probability, i will be in [n], and the distribution on x′ is therefore
statistically close to uniform. We then modify Reduce to divide out by the ith digit instead of the
first. The same analysis as above applies in the case of more general i; now S1 is (statistically close)
to a random subspace containing S0.

Finally, to handle more general d0, d1, we perform a sequence of hybrids, first invoking the above
on dimensions (d0, d0 + 1), then (d0 + 1, d0 + 2), etc. This completes the proof.

5.2 New No-Conversion and No-Cloning Theorems

No-Conversion. Here, we consider the following general task. Fix a dimension d, two sequences
S1,S2 of states |ψi〉 and |φi〉 of dimension d for i = [n]. Finally, fix a probability distribution D over
[n].

The goal in the (S1,S2,D)-Conversion problem is to, given a state |ψi〉 for i sampled from D,
produce the state |φi〉. Consider a mechanismM for this task. We will use the following measure
for how wellM solves the conversion problem: let F 2

S1,S2,D(M) denote the expectation of |〈φi|ξ〉|2
where i ← D, and ξ ← M(|ψi〉). In other words, F2 measures the expected fidelity (squared)
between the stateM produces and the desired output state.

For a set of vectors S, let AS be the matrix of inner products between the vectors. For a
probability distribution D over [n], let BD be the n×n matrix where the (i, j) entry is √pipj where
pi is the probability of i. Then let CS1,S2,D = AS1 ◦AS2 ◦ BD, where ◦ denotes the Hadamard
(point-wise) product. In other words, the (i, j) entry of CS1,S2,D is √pipj〈ψi|ψj〉〈φi|φj〉. For a
positive semi-definite Hermitian matrix C, let λ1(C) be the spectral radius (that is, maximum
eigenvalue) of C.

Theorem 5.4 (No-Conversion). For any CPTP operator M, we have that F 2
S1,S2,D(M) ≤ d ×

λ1(CS1,S2,D).
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Proof. Pick a basis {|x〉} for the system, and write

|ψi〉 =
∑
x

ai,x|x〉 |φi〉 =
∑
x

bi,x|x〉

We will think of M as outputting a mixed state ρ. Then for a fixed i, we can write the
expectation of |〈φi|ξ〉|2 as 〈φi|ρ|φi〉. M is linear, so we writeM(|x〉〈x′|) =

∑
y,y′ M(x,y),(x′,y′)|y〉〈y′|

for coefficients M(x,y),(x′,y′). By Choi’s theorem, the requirement that M is completely positive
is equivalent to M being a positive matrix. SinceM is trace preserving, Tr(M(|x〉〈x|)) = 1, and
therefore Tr(M) = d.

Thus we have that F 2
S1,S2,D(M) can be written as

F 2
S1,S2,D(M) =

∑
i

pi〈φi|M(|ψi〉〈ψi|)|φi〉 =
∑

i,x,x′,y,y′

piM(x,y),(x′,y′)ai,xa
∗
i,x′b∗i,ybi,y′

Notice that this expression is linear in M. Consider the space of positive M with trace d, which
is a convex space containing the set of valid M. This space is the convex hull of the set of M of the
form M(x,y),(x′,y′) = dvx,y′v∗x′,y′ such that

∑
x,y |vx,y|2 = 1. Therefore, it suffices to bound the value

of F 2 for such matrices:∑
i

pi〈φi|M(|ψi〉〈ψi|)|φi〉 = d
∑

i,x,x′,y,y′

piv(x,y′)v
∗
(x,y′)ai,xa

∗
i,x′b∗i,ybi,y′ = dv† ·E†E · v

Where v is the vector of the v(x,y′), and E is the matrix

Ei,(x,y′) = √piai,xbi,y′

This expression is bounded by λ1(dE† ·E) = dλ1(E† ·E). Notice that the set of eigenvalues for
E† ·E is the same as E ·E† = CS1,S2,D, so F 2 is bounded by dλ1(CS1,S2,D) as desired.

No-Cloning. Cloning is the special case of conversion where |φi〉 = |ψi〉 ⊗ |ψi〉. Thus AS2 =
AS1 ◦AS1 . This means CS1,S2,D = A◦3S1

◦BD, where A◦3 means the 3-times Hadamard product of
A. Assume the probabilities of each state are equal, so that BD is just 1/n in every coordinate.
Then F 2 is bounded by d

nλ1(A◦3). More generally, for the process of duplicating a given state k
times, F 2 will be bounded by d

nλ1(A◦(k+1)). If we assume n > d and that no two states in the set
are the same, then A will be a matrix with 1’s on the diagonal, and entries with norm less than 1
off diagonal. This means, as we increase k, A◦(k+1) will asymptotically approach the n× n identity
matrix. Thus, as k goes to infinity, F 2 approaches d

n , which is less than 1. Note if perfect cloning is
possible, then it is possible to make k perfect copies, meaning F2 should be 1. Thus, we re-cast the
traditional no-cloning theorem using our theorem. Moreover, for any set of states, by analyzing
A◦3, it is possible to give concrete bounds on the success probability of cloning.

Example. Consider the following task. Let F be a field. A random subspace S ⊆ Fn of dimension
n/2 is chosen, for an even integer n. Let |ψS〉 = 1

|F|n/4
∑
x∈S |x〉 be the uniform superposition over

S. The goal is, given |ψS〉 for a random subset S, to copy the state. We would like to upper-bound
F 2 for this problem.
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Let Na,b count the number of subspaces of dimension a there are inside Fb. The matrix B is
just the matrix that has 1/Nn/2,n in ever position. Meanwhile, AS1 is the matrix with rows and
columns indexed by subspaces S, where

(AS1)S,T = 〈ψS |ψT 〉 = |F|dim(S∩T )−n/2

Then the matrix C is:
(C)S,T = 1

Nn/2,n
|F|3 dim(S∩T )−3n/2

We now seek to upper-bound the maximum eigenvalue λ1 of this matrix. It is not hard to see
that the maximum eigenvalue corresponds to the unit vector v = 1√

Nn/2,n
(1 1 . . . 1) that places

an equal positive weight on each subspace. Then λ1(C) is just

λ1(C) = 1
N2
n/2,n

∑
S,T

|F|3 dim(S∩T )−3n/2 = 1
Nn/2,n

∑
T

|F|3 dim(S0∩T )−3n/2

Where S0 is any fixed n/2-dimensional subspace S. This last inequality follows due to symmetry:
the sum over T for any two different subspaces S0, S1 is the same.

Now, the number of T such that dim(S0, T ) = k is upper bounded by Nk,n/2Nn/2−k,n; this is
because any such T is the direct sum of a T0 ⊂ S of dimension k, and a T1 ⊂ |F|n of dimension
n/2− k.

Thus, we can upper bound λ1 as

λ1(C) ≤
n/2∑
k=0
|F|3k−3n/2Nk,n/2Nn/2−k,n/Nn/2,n

Now we observe that

Na,b = (|F|b − 1)(|F|b − |F|) · · · (|F|b − |F|a−1) = |F|ab
b∏

i=b−a+1
(1− |F|−i)

Therefore,

Nk,n/2Nn/2−k,n/Nn/2,n = |F|−kn/2
∏n/2
i=n/2−k+1(1− |F|−i)

∏n
i=n/2+k+1(1− |F|−i)∏n

i=n/2+1(1− |F|−i)

= |F|−kn/2
∏n/2
i=n/2−k+1(1− |F|−i)∏n/2+k
i=n/2+1(1− |F|−i)

≤ |F|−kn/2

Therefore,

λ1(C) ≤
n/2∑
k=0
|F|3k−3n/2−kn/2 = |F|−3n/2

n/2∑
`=0
|F|−`(n+1) ≤ 2|F|−3n/2

Now, the dimension d that the state |ψS〉 lives in is |F|n. Therefore, applying Theorem 5.4, we
have that F 2 is at most |F|n × λ1(C) ≤ 2× |F|−n/2.
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5.3 Quantum Money from Obfuscation

Here, we recall Aaronson and Christiano’s [AC12] construction, when instantiated with a subspace-
hiding obfuscator.

Generating Banknotes. Let F = Zq for some prime q. Let λ be the security parameter. To
generate a banknote, choose n a random even integer that is sufficiently large; we will choose n
later, but it will depend on q and λ. Choose a random subspace S ⊆ Fn of dimension n/2. Let
S⊥ = {x : x · y = 0∀y ∈ S} be the dual space to S.

Let |$S〉 = 1
|F|n/4

∑
x∈S |x〉. Let P0 = shO(S) and P1 = shO(S⊥). Output |$S〉, P0, P1 as the

quantum money state.

Verifying banknotes. Given a banknote state, first measure the program registers, obtaining
P0, P1. These will be the serial number. Let |$〉 be the remaining registers. First run P0 in
superposition, and measure the output. If P0 outputs 0, reject. Otherwise continue. Notice that
if |$〉 is the honest banknote state |$S〉 and P0 is the obfuscation of S, then P0 will output 1 with
certainty.

Next, perform the quantum Fourier transform (QFT) to |$〉. Notice that if |$〉 = |$S〉, now the
state is |$S⊥〉.

Next, apply P1 in superposition and measure the result. In the case of an honest banknote, the
result is 1 with certainty.

Finally, perform the inverse QFT to return the state. In the case of an honest banknote, the
state goes back to being exactly |$S〉.

The above shows that the scheme is correct. Next, we argue security:

Theorem 5.5. If shO is a secure subspace-hiding obfuscator for d0 = n/2 and some d1 such that
both |F|n−d1 and |F|d1−n/2 are exponentially-large, then the construction above is a secure quantum
money scheme.

Corollary 5.6. If injective one-way functions and iO exist, then quantum money exists

We now prove Theorem 5.5

Proof. We prove security through a sequence of hybrids

• H0 is the normal security experiment for quantum money. Suppose the adversary, given a
valid banknote, is able to produce two banknotes that pass verification with probability ε.

• H1: here, we recall that Aaronson and Christiano’s scheme is projective, so verification is
equivalent to projecting onto the valid banknote state. Verifying two states is equivalent to
projecting onto the product of two banknote states. Therefore, in H1, instead of running
verification, the challenger measures in the basis containing |$S〉 × |$S〉, and accepts if and
only if the output is |$S〉 × |$S〉. The adversary’s success probability is still ε.

• H2: Here we invoke the security of shO to move P0 to a higher-dimensional space. P0 is moved
to a random d1 dimensional space containing S0.
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We prove that the adversary’s success probability in H2 is negligibly close to ε. Suppose not.
Then we construct an adversary B that does the following. B chooses a random d0 = n/2-
dimensional space S0. It queries the challenger on S0, to obtain a program P0. It then
obfuscates S⊥0 to obtain P1. B constructs the quantum state |$S0〉, and gives P0, P1, |$S0〉 to
A. A produces two (potentially entangled) quantum states |$0〉|$1〉. B measures in a basis
containing |$S0〉 ⊗ |$S0〉, and outputs 1 if and only if |$S0〉 ⊗ |$S0〉.
If B is given P0 which obfuscates S0, then A outputs 1 with probability ε, since it perfectly
simulates A’s view in H1. If P0 obfuscates a random space containing S0, then B simulates
H2. By the security of shO, we must have that B outputs 1 with probability at least ε− negl.
Therefore, in H2, A succeeds with probability ε− negl.

• H3: Here we invoke security of shO to move P1 to a random d1-dimensional space containing
S⊥0 . By an almost identical analysis to he above, we have that A still succeeds with probability
at least ε− negl.

• H4. Here, we change how the subspaces are constructed. First, a random space T0 of
dimension d1 is constructed. Then a random space T1 of dimension d1 is constructed, subject
to T⊥0 ⊆ T1. These spaces are obfuscated using shO to get programs P0, P1. Next, a random
n/2-dimensional space S0 is chosen such that T⊥1 ⊆ S0 ⊆ T0. S0 is used to construct the state
|$S0〉, which is given to A along with P0, P1. Then during verification, the space S0 is used
again.
The distribution on spaces is identical to that in H3, to A succeeds in H4 with probability
ε− negl.

Since on average over T0, T1, A succeeds with probability ε−negl, there exist fixed T0, T1, T
⊥
0 ⊆ T1,

such that the adversary succeeds for these T0, T1 with probability at least ε− negl.
We now construct a no-cloning adversary C. C is given a state |$S0〉 for a random S0 such that

T⊥1 ⊆ S0 ⊆ T0, and it tries to clone |$S0〉. To do so, it constructs obfuscations P0, P1 of T0, T1 using
shO, and gives them along with |$S0〉 to A. C then outputs whatever A outputs. C’s probability of
cloning, F 2, is exactly the probability A succeeds in H4, which is ε− negl.

We therefore seek to bound F 2 for this instance of the cloning problem. For simplicity, we will
assume T0 is the space of vectors where the last n− d1 components are 0, and T1 is the space where
the first n− d1 components are 0. The other cases are handled analogously. T⊥1 is the space where
the final d1 components are 0. Therefore, S is a random space of dimension n/2, subject to the
last n − d1 components being zero, and the first n − d1 components are free. We can therefore
ignore the first and last n− d1 components (since the final components are always 0, and the initial
components will always be uniform superpositions). Define n′ = 2d1− n. Therefore, we can think of
choosing a random subset W of dimension d1−n/2 = n′/2 out of a space of dimension 2d1−n = n′.

Our states will be indexed by W , and we overload notation and write

|$W 〉 = 1
|F|n′/4

∑
x∈W
|x〉

This is exactly the example worked out above, so the probability that A succeeds is at most
2|F|−n′/2 = 2|F|d1−n/2. By the assumptions of the theorem, this is exponentially small. Hence
ε− negl is exponentially small, and therefore ε is negligible.
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5.4 A Signature Scheme

We also note that the construction above gives rise to a particular signature scheme. On input a
message m, choose a random subspace S containing m. Construct the programs P0, P1 obfuscating
S, S⊥, using randomness derived from S (say using a PRF). Then sign the obfuscated programs
using an arbitrary signature scheme to obtain σ. Output P0, P1, σ as the signature on m.

If the underlying signature scheme satisfies the Boneh-Zhandry definition of security, then so
does the derived signature scheme. However, consider the following “attack.” Create a uniform
superposition of messages, ask the signing oracle for a signature, and then measure the signature.
The result is a tuple P0, P1, σ representing a subspace S, along with a (statistically close to) uniform
superposition over all messages m ∈ S. Using the quantum Fourier transform, it is possible to verify
this state S using P0, P1 as in the quantum money scheme. In particular, it is possible to distinguish
this state from the state obtained by measuring the entire message/tag pair. This violates the
Garg-Yuen-Zhandry security notion. Thus, we give the first example separating the two definitions
for signatures.

5.5 A simplified Proof in the Black Box Setting

Aaronson and Christiano [AC12] prove their scheme secure if the subspaces are given as quantum-
accessible oracles. In order to prove security they had to develop a new adversary method, called
the inner-product adversary method.

Here, we show that our proof above can be adapted to give a much simpler proof of security for
their scheme in the black-box setting.

First, we going through the hybrids in Theorem 5.3, we see that the transitions invoking iO
(namely H0 to H1 and H2 to H3), we just use the fact that identical oracles are indistinguishable.
The only difference between H1 and H2 is that the function P̂ goes from being all-zeros to accepting
a single random input. Thus, by the lower bound for Grover search [BBBV97], we have that H1
and H2 are indistinguishable, except with probability at most O(q2/|F|n−d0), where q is the number
of quantum queries. Finally, H3 and H4 are indistinguishable except with probability 1/|F|n−d0 .

This shows that for a d0-dimensional subspace S, an oracle for S is indisitnguishable from an
oracle for T where T is a random d0 + 1-dimension space containing S. By indistinguishable, we
mean that a q query algorithm has at most a probability O(q2|F|d0−n) of distinguishing. Now, the
constant in the Big-Oh is independent of d0. Therefore, by performing a simple hybrid, we have
that S is indistinguishable from a random T of dimension d1 containing S, except with probability

O

d1−1∑
i=d0

q2|F|i−n
 ≤ O(q2|F|d1−1−n)

Next, we plug this result into the proof of Theorem 5.5. Suppose the adversary copies a quantum
state with probability ε. The proof of Theorem 5.5 shows that ε is at most O(q2|F|−(n+1−d1) +
|F|−(d1−n/2).

For |F| = 2, this gives ε ≤ O(q22n−d1 + 2d1−n/2). The quantity on the right can be minimized by
choosing the right value for d1, namely d1 = 3n

4 + log2(q). This gives ε ≤ O(2n/4q). In other words,
we have that q ≥ Ω(ε2−n/4). Compare this to Aaronson and Christiano’s result, which says that
q ≥ Ω(

√
ε2−n/4). Thus, our bound matches their bound for constant ε, though is slightly worse for

small ε. However, the advantage of our proof is its simplicity, only requiring the lower bound for
Grover search, and a quantitative version of the no-cloning theorem.
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6 Constructing Quantum Lightning

6.1 Background

Degree-2 Polynomials over Zq. Consider a set A of n degree-2 polynomials over m variables in
Zq for some large prime q. Let fA : Zmq → Znq be the function that evaluates each of the polynomials
in A on its input. We will be interested in the compressing case, where n < m

As shown by [DY08, AHI+17], the function fA is not collision resistant when the coefficients
of the polynomials are random. Here, we recreate the proof, and also discuss the multi-collision
resistance of the function.

To find a collision for fA, choose a random ∆ ∈ {0, 1}m. We will find a collision of the form
x,x + ∆. The condition that x,x + ∆ collide means P (x + ∆)− P (x) = 0 for all polynomials in
A. Now, since P has degree 2, all the order-2 terms in x in this difference will cancel out, leaving
only terms that are linear in x (and potentially quadratic in ∆). This gives us a system of linear
equations over x, which we can solve provided the equations are consistent. As shown in [AHI+17],
these equations are consistent with overwhelming probability provided n ≤ m.

This attack can be generalized to find k + 1 colliding inputs. Choose random ∆1, . . . ,∆k. We
will compute and x such that x,x + ∆1, . . . ,x + ∆k form k + 1 colliding points. Each ∆j generates
a system of n equations for x as described above. Let B = B∆1,...,∆k

be the matrix consisting of
all the rows of B∆j

as j varies. As long as B is full rank, a solution for x is guaranteed. Again,
B will be full rank with overwhelming probability, provided m ≥ kn. However, if m � kn, this
procedure will fail, and it therefore appears reasonable to assume the multi-collision resistance of
such functions.

Using the above, we can even generate superpositions over k + 1 inputs such that all the inputs
map to the same output. Consider the following procedure:

• Generate the uniform superposition

|φ0〉 ∝
∑

∆1,...,∆k

|∆1, . . . ,∆k〉

• Write ∆ = (∆1, . . . ,∆k) In superposition, run the computation above that maps ∆ to the
affine space S∆ such that, for all x ∈ S, fA(x) = fA(x + ∆j) for all j. This will be an
affine space of dimension m− nk with overwhelming probability. Then construct a uniform
superposition of elements in S∆. The resulting state is then:

|φ1〉 ∝
∑
∆

1√
|S∆|

∑
x∈S∆

|∆,x〉

• Next, in superposition, compute fA(x), and measure the result to get a string y. The resulting
state is

|φy〉 ∝
∑

∆,x∈S∆:fA(x)=y

1√
|S∆|

|x,∆〉

• Finally, in superposition, compute the maps (x,∆1, . . . ,∆k) to (x,x + ∆1, . . . ,x + ∆k). The
resulting state is
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|ψy〉 ∝
∑

∆,x∈S∆:fA(x)=y

1
|S∆|

|x,x + ∆1, . . . ,x + ∆k〉

We note that the support of this state is all vectors (x0, . . . ,xk) such that fA(xi) = y for all
i ∈ [0, k]. Moreover, for all but a negligible fraction, the weight |S∆| is the same, and so the
weights for these components are the same. Even more, the total weight of the other points is
negligible. Therefore, the this state is negligibly close to the state

∑
x0,...,xk:fA(xi)=y∀i

|x0, . . . ,xk〉 =

 ∑
x:fA(x)=y

|x〉

⊗(k+1)

∝ |ψ′y〉⊗(k+1)

where |ψ′y〉 ∝
∑

x:fA(x)=y
|x〉

Linear Functions over Rank-Constrained Matrices. Here, we consider a related problem.
Consider a set of n linear functions A over rank-d matrices in Zm×mq . Since q is large, a random
rank-d matrix in Zm×mq will have it’s first d columns span the entire column space. Therefore, most
rank constrained matrices can be written as (A A ·B) for a m× d matrix A and a d× (m− d)
matrix B.

Let fA : Zm2
q → Znq be the function that evaluates each of the functions in A on its input. We

can therefore think of fA as a degree-2 polynomial over A,B. Note, however, that in this case, the
function is bipartite: it can be divided into two sets of variables (A and B) such that it is linear in
each set. This means we can easily invert the function by choosing an arbitrary selection for one of
the sets of variables, and then solving for the other.

Linear Functions over Rank-Constrained Symmetric Matrices. By instead considering
only symmetric matrices, we essentially become equivalent to degree-2 polynomials. In particular,
A ·AT for A ∈ Zm×dq is a symmetric rank-d matrix. Moreover, any degree-2 polynomial over Zmq
can be represented as a linear polynomial over rank-1 symmetric matrices by tensoring the input
with itself.

Note, however, that since Zq is not a closed field, in general we cannot decompose any symmetric
rank-d matrix into A ·AT (though we can over the closure).

Therefore, linear functions over rank-constrained symmetric matrices can be seen as a slightly
relaxed version of the degree-2 polynomials discussed above. In particular it is straightforward
to generalize the algorithm for generating superpositions of colliding inputs to generate uniform
superpositions of low-rank matrices that collide.

6.2 Hardness Assumption

Our assumption will have parameters n,m, q, d, e, k, to be described in the discussion below.
Let D be the set of symmetric m × m matrices over Zq whose rank is at most d. We will

alternately think of D as matrices, as well as vectors by writing out all of the
(m+1

2
)
entries on and

above the diagonal.
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Let A be a set of n linear functions over D, which we will think of as being n linear functions
over

(m+1
2
)
variables. Consider the function fA : D → Znq given by evaluating each linear function

in A.
As discussed above, we could imagine assuming that fA is multi-collision resistant for a random

set of linear functions A. However, in order for our ultimate bolt verification procedure to work, we
will need A to have a special form.
A is sampled as follows. Let R ∈ Ze×mq be chosen at random. Consider the set of symmetric

matrices A ∈ Zm×mq such that R ·A ·RT = 0. This is a linear subspace of dimension
(m+1

2
)
−
(e+1

2
)

(note that since B is symmetric, R ·A ·RT is guaranteed to be symmetric, so we only get
(e+1

2
)

equations). We can think of each A as represented by its
(m+1

2
)
upper-triangular entries, which

gives us an equation over
(m+1

2
)
variables.

Let A be a basis for this space of linear equations. Thus, we set n =
(m+1

2
)
−
(e+1

2
)
. Note that

we will not keep R secret.
Rank d symmetric matrices in Zm×mq have

(d+1
2
)

+ d× (m− d) = d×m−
(d
2
)
degrees of freedom.

Therefore, the function fA will be compressing provided

d×m−
(
d

2

)
> n =

(
m+ 1

2

)
−
(
e+ 1

2

)

By choosing fA in this way, we can provide a “trapdoor” R that will be used for verifying bolts.
Note that this trapdoor is a rank-e matrix in the kernel of fA. If e < d, this would allow us to
compute many colliding inputs, as, for any rank-1 S, the whole affine space S + αR has rank at
most e+ 1 ≤ d and maps to the same value. However, if we choose e > d, R does not appear to let
us find collisions.

Our Assumption. We now make the following hardness assumption
We say a hash function f is k-multi-collision resistant (k-MCR) if it is computationally infeasible

to find k colliding inputs.

Assumption 6.1. There exists some functions n, d, e, k in m such that n =
(m+1

2
)
−
(e+1

2
)
<

d × m −
(d
2
)
, kn ≤ d × m −

(d
2
)
< (2k + 1)n, and e > d, such that fA as sampled above is

(2k + 2)-MCR, even if R is given to the adversary.

For example, we can choose e, d such that m = e+ d− 1, in which case n = d×m−
(d
2
)
− e. By

choosing e ≈ d, we have d×m−
(d
2
)
� 3n, so we can set k to be 1. We therefore assume that it is

computationally infeasible to find 4 colliding inputs to fA.

6.3 Quantum Lightning

We now describe our quantum lightning construction.

Parameters. Our scheme will be parameterized by integers n,m, q, d, e, k.

Setup. To set up the quantum lightning scheme, simply sample A,R as above, and output A,R.
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Bolt Generation. We generate a bolt |Ey〉 as a superposition of k + 1 colliding inputs, following
the procedure described above. The result is statistically close to |Ey〉⊗(k+1) where |E′y〉 is the
equally-weighted superposition over rank-d symmetric matrices such that applying fA gives y. We
will call |E′y〉 a mini-bolt

Verifying a bolt. Full verification of a bolt will run a mini verification on each of the k + 1
mini-bolts. Each mini verification will output an element in Znq ∪ {⊥}. Full verification will accept
and output y only if each mini verification accepts and outputs the same string y. We now describe
the mini verification.

Roughly, our goal is to be able to distinguish |E′y〉 for some y from any singleton state. Out goal
is to output y in this case, and for any other state, reject.

Mini verification on a state |φ〉 will proceed in two steps. Recall that superposition is over the
upper triangular portion of m×m matrices. We first apply, in superposition, the procedure that
flips some external bit if the input does not correspond to a matrix of rank at most d. The bit is
initially set to 0. Then we measure this bit, and abort if it is 1. Notice that for the honest |E′y〉
state, this will pass with certainty and not affect the state.

In the next step, we apply the procedure that evaluates fA in superposition, and flips some
external bit if the result is not y. The bit is initially set to 0. Then we measure this bit, and abort
if it is 1. Notice that for the honest |E′y〉 state, this will pass with certainty and not affect the state.

At this point, if we have not aborted, our state is a superposition of pre-images of fA which
correspond to symmetric rank-d matrices. If our input was |E′y〉, the state is the uniform superposition
over such pre-images.

Next, we verify that the state is in superposition and not a singleton state. To do so, we perform
the quantum Fourier transform (QFT) to the state. We now analyze what the QFT does to |Ey〉.

The support of |E′y〉 is the intersection of sets S, T where S is the set of all pre-images of y
(not necessarily rank constrained) and T is the set of all rank-d matrices. We analyze the Fourier
transform applied to each set separately.

Recall that the Fourier transform takes the uniform superposition over the kernel of a matrix to
the uniform superposition over its row-span. Therefore, the superposition over pre-images of 0 is
just the uniform superposition of symmetric matrices A such that R ·A ·RT = 0 (or technically,
just the upper triangular part). The fact that the superposition lies in a coset of the kernel simply
introduces a phase term to each element in the superposition.

Next, we analyze the Fourier transform of rank-constrained matrices.

Claim 6.2. The Fourier transform of the uniform superposition over rank d matrices is negligibly
close to the uniform superposition over rank m− d matrices

Proof. Since we are working over a large q, almost all rank-d matrices can be written as (B B ·C)
where B ∈ Zm×dq and C ∈ Zd×(m−d)

q . Therefore, the uniform superposition over rank-d matrices is
negligibly close to ∑

B,C
|B,B ·C〉

When we take the Fourier transform, up to an overall scaling term, this state becomes:

∑
D,E
|D,E〉

∑
B,C

ωTr[DT ·B+ET ·B·C]
q


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Now, notice that Tr[DT ·B+ET ·B ·C] = Tr[DT ·B+C ·ET ·B] = Tr[(DT +C ·ET ) ·B]. Therefore,
the inner sum is actually 0 unless DT + C ·ET = 0; in other words D = −E ·CT . In this case, the
sum evaluates to a constant, independent of D,E. Therefore, the resulting superposition only has
support on tuples of the form | −E ·CT ,E〉, which are rank m− d matrices. Moreover, almost all
rank m− d matrices have this form, and the weight on every matrix of this form will be identical
provided that E is full rank (which is the case for almost all matrices).

Therefore, the Fourier transform of rank d matrices become rank m− d matrices.

Note, however, that we are working with the upper triangular portion of rank d symmetric
matrices. We must therefore analyze what happens for these matrices.

Claim 6.3. The Fourier transform of the uniform superposition over upper-triangular parts of rank
d symmetric matrices is negligibly close to the uniform superposition over upper triangular parts of
rank m− d symmetric matrices

Proof. Let |τ〉 be the superposition of upper triangular portion of rank d symmetric matrices, and
let |σ〉 be the Fourier transform

For the sake of analysis, we will consider completing these upper-triangular portions by filling
out the lower-triangular part with 0s. Now take the Fourier transform. The result will have the
uniform superposition in the lower triangular part, and the state |σ〉 in the upper part.

To analyze, consider first operating in the Fourier domain by performing the map |x, y〉 →
|x, y+ x〉 for each entry x above the diagonal, where y is the mirror entry below the diagonal (recall
that we set y to be 0). This turns |τ〉 into the superposition of symmetric rank-d matrices. Note
that, if we apply the map |x, y〉 → |x, y + x〉 and then the Fourier transform, this is equivalent to
first applying the Fourier transform, and then applying the map |x, y〉 → |x+ y, y〉.

Therefore, we will analyze what happens to the modified state |τ ′〉 under the Fourier transform.
This is the intersection of rank-d general matrices with the set of symmetric matrices. The set of
symmetric matrices is Fourier transformed to the set of skew-symmetric matrices, and rank-d is
transformed to rank-m − d. The intersection in the primal domain becomes the convolution in
the Fourier domain, so the Fourier domain is a superposition over matrices of the form |B + C〉
where B is skew-symmetric and C is rank m − d Now, we perform the maps |x, y〉 → |x + y, y〉
to each pair of off-diagonal entries. The result is that the B components in the upper triangular
part disappear, and we are left the upper triangular part of a rank m− d symmetric matrix (since
B + BT is symmetric), and the bottom part is uniform. This upper part is precisely |τ〉.

Putting this together, since multiplication in the primal domain becomes convolution in the
Fourier domain, after we apply the Fourier transform to our mini bolt state, the result is the the
superposition of upper triangular parts of matrices A + B where B is symmetric and rank m− d
and A is symmetric such that R ·A ·RT = 0. The superposition is uniform, though there will be a
phase factor associated with each element

We therefore compute R · (A + B) ·RT = R ·B ·RT and compute the rank. Notice that the
rank is at most m − d for honest bolt states. Therefore, if the rank is indeed at most m − d we
will accept, otherwise we will reject. Next, we un-compute R · (A + B) ·RT , and undo the Fourier
transform. The analysis above shows that for an honest state |Ey〉, we will accept with overwhelming
probability, and the final both state will be negligibly close to the original bolt.

Note that, in contrast, if the bolt state is a singleton state, then the Fourier transform will
result in a uniform superposition over all symmetric matrices; when we applyR · (·) ·RT , the result
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will have rank e with overwhelming probability. So we set m − d < e to have an almost perfect
distinguishing advantage.

Security. We now prove security. Consider a quantum adversary A that is given A and tries
to construct two (possibly entangled) bolts |E0〉, |E1〉. Assume toward contradiction that with
non-negligible probability, verification accepts on both bolts, and outputs the same serial number y.

Conditioned on acceptance, by the above arguments the resulting mini bolts must all be far
from singletons when we trace out the other bolts. This means that if we measure the mini-bolts,
the resulting superpositions will have high min-entropy. Therefore, we measure all 2k+ 2 mini bolts,
and we obtain 2k + 2 colliding inputs that are distinct except with negligible probability. This
violates our hardness assumption.

Theorem 6.4. If Assumption 6.1 holds, then the scheme above is a secure quantum lightning
scheme.

6.4 Collapse-non-binding Hash Functions

If k = 0, our construction above simply has a single copy of |E′y〉. This says that the function fA is
collapse-non-binding, except that the function is not collision resistant.

We can instead view our function as a collapse-non-binding hash function as follows. Start with
the function f⊗(k+1)

A . We now restrict the domain to k + 1-multi-collisions for fA. On this domain,
the function’s output will always have the form (y, y, . . . , y), so we can just take the output to be y.
Call this function g.

On this domain, g is almost collision resistant, except that the k+1 elements of the multi-collision
input can be permuted to obtain a collision for g. We therefore restrict to multi-collisions in sorted
order.

Now our input generation will generate the superposition of k+ 1 colliding inputs as before, and
then sort. Of course, soring is non-reversible, so we need to be careful. Notice that the superposition
of colliding inputs is symmetric, in the sense than any permutation on the k + 1 inputs will result
in the same superposition. We will therefore actually apply the map

∑
σ |xσ(1), . . . , xσ(k+1)〉 7→

|x1, . . . , xk+1〉, which is a unitary transformation, assuming the x1, . . . , xk+1 are sorted. This gives
us a superposition of inputs to g. To verify that we are still in superpostion, we undo the map to
make a symmetric state again, and then apply the bolt verification above.

This gives a collapse-non-binding hash function g, albeit on a restricted domain. We would like
a function h that is collapse-non-binding on Zoq for some o. Toward that end, we first consider our
inputs as the tuples (∆1, . . . ,∆k, x). This is still a restricted domain, so we think of x = x0 +

∑
i aivi,

where vi span the space S∆. The inputs will actually be (∆1, . . . ,∆k, a). Now the domain is
unrestricted. Note that some care is needed, since the dimension of S∆ varies for some ∆. This
means the domain length varies somewhat. However, this can be handled with some care; we omit
the details.
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