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Abstract

In this work, we abstract some key ingredients in previous key exchange protocols based
on LWE and its variants, by introducing and formalizing the building tool, referred to as key
consensus (KC) and its asymmetric variant AKC. KC and AKC allow two communicating
parties to reach consensus from close values obtained by some secure information exchange.
We then discover upper bounds on parameters for any KC and AKC. KC and AKC are
fundamental to lattice based cryptography, in the sense that a list of cryptographic primitives
based on LWE and its variants (including key exchange, public-key encryption, and more)
can be modularly constructed from them. As a conceptual contribution, this much simplifies
the design and analysis of these cryptosystems in the future.

We then design and analyze both general and highly practical KC and AKC schemes,
which are referred to as OKCN and AKCN respectively for presentation simplicity. Based on
KC and AKC, we present generic constructions of key exchange (KE), public-key encryption
(PKE), and authenticated key exchange (AKE) from LWR, LWE, RLWE and MLWE. The
generic constructions allow versatile instantiations with our OKCN and AKCN schemes, for
which we elaborate on evaluating and choosing the concrete parameters in order to achieve a
well-balanced performance among security, computational cost, bandwidth efficiency, error
rate, and operation simplicity.
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1 Introduction

Most public-key cryptosystems currently in use, based on the hardness of solving (elliptic curve)
discrete logarithm or factoring large integers, will be broken, if large-scale quantum computers
are ever built. The arrival of such quantum computers is now believed by many scientists to be
merely a significant engineering challenge, and is estimated by engineers at IBM to be within
the next two decades or so. Historically, it has taken almost two decades to deploy the modern
public key cryptography infrastructure. Therefore, regardless of whether we can estimate the
exact time of the arrival of the quantum computing era, we must begin now to prepare our
information security systems to be able to resist quantum computing. In addition, for the
content we want to protect over a period of 15 years or longer, it becomes necessary to switch
to post-quantum cryptography today. This has been recognized not only by the cryptography
research community, but also by standardization bodies and leading information companies. As
noted in [ADPS16, AJS16], in the majority of contexts the most critical asymmetric primitive
to upgrade to post-quantum security is ephemeral key exchange (KE).

Lattice-based cryptography is among the major mathematical approaches to achieving se-
curity resistant to quantum attacks. For cryptographic usage, compared with the classic hard
lattice problems such as SVP and CVP, the learning with errors (LWE) problem is proven to
be much more versatile [Reg09]. Nevertheless, LWE-based cryptosystems are usually less effi-
cient, which was then resolved by the introduction of the ring-LWE (RLWE) problem [LPR10].
In recent years, large numbers of impressive works are developed from LWE and RLWE,
with (ephemeral) key exchange and public-key encryption being the study focus of this work
[JD12,Pei14,BCNS15,ADPS16,BCD+16,Reg09,GPV08,LP11,LPR10,LPR13b,PG13]. For an
excellent survey of lattice-based cryptography, the reader is referred to [Pei16].

Some celebrating progresses on achieving practical LWE- and RLWE-based ephemeral key ex-
change are made in recent years. The performance of RLWE-based key exchange is significantly
improved with NewHope [ADPS16], which achieves 256-bit shared-key with error rate about
2−61. The negligible error rate of NewHope is achieved by decoding the four-dimensional lattice
D̃4. Compared to LWE, the additional ring structure of RLWE helps to improve the efficiency
of cryptosystems, but the concrete hardness of RLWE remains less clear. The work [BCD+16]
proposes a key exchange protocol Frodo only based on LWE, and demonstrates that LWE-based
key exchange can be practical as well. Nevertheless, bandwidth of Frodo is relatively large, as
Frodo uses about 22kB bandwidth for its recommended parameter set. In addition, Frodo has
relatively large error rates, and cannot be directly used for PKE. Whether further improve-
ments on LWE- and RLWE-based key exchange can be achieved remains an interesting question
of practical significance.

One of the main technical contributions in the works [ADPS16,BCD+16,PG13], among oth-
ers, is the improvement and generalization of the key reconciliation mechanisms [Pei14,JD12].1

But the key reconciliation mechanisms were only previously used and analyzed, for both KE
and PKE, in a non-black-box way. This means, for new key reconciliation mechanisms devel-
oped in the future to be used for constructing lattice-based cryptosystems, we need to analyze
the security from scratch. Also, for the various parameters involved in key reconciliation, the
bounds on what could or couldn’t be achieved are unclear.

1To our knowledge, the key reconciliation mechanism in [Pei14] is the first that fits our KC definition (the
mechanism in [JD12] requires the distance be of special types).
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1.1 Our Contributions

In this work, we abstract some key ingredients in previous LWE- and RLWE-based key exchange
protocols, by introducing and formalizing the building tool, referred to as key consensus (KC)
and its asymmetric variant AKC. KC and AKC allow two communicating parties to reach
consensus from close values obtained by some secure information exchange, such as exchanging
their LWE/RLWE samples. KC and AKC are fundamental to lattice based cryptography, in the
sense that a list of cryptographic primitives based on LWE or RLWE (including authenticated
key exchange, public-key encryption, and more) can be modularly constructed from them. As
a conceptual contribution, this much simplifies the design and analysis of these cryptosystems
in the future, by allowing for modular and black-box design and analysis with KC and AKC.

Abstracting KC and AKC also allows us to study and prove the inherent upper-bounds
among the parameters. In particular, we discover the upper bounds on parameters for any KC
and AKC. This allows us to understand what can or cannot be achieved with any KC and AKC,
and guides our actual protocol design. These upper-bounds also guide parameter choosing for
various trade-offs, and are insightful in comparing the performance of KC vs. AKC.

Guided by, and motivated for reaching, these proved upper-bounds, we then design and
analyze both general and highly practical KC and AKC schemes, which are referred to as
OKCN and AKCN respectively for presentation simplicity.

Based on KC and AKC, we present generic constructions of key exchange from LWR, LWE,
RLWE and MLWE with delicate analysis of error rates. Then, for the instantiations of these
generic constructions with our OKCN and AKCN schemes, we elaborate on evaluating and
choosing the concrete parameters in order to achieve a well-balanced performance among secu-
rity, computational efficiency, bandwidth efficiency, error rate, and operation simplicity.

• We propose the first construction of key exchange merely based on the LWR problem with
concrete analysis and evaluation, to the best of our knowledge. In particular, we provide
a delicate approach to calculating its error rate.

Specifically, for the LWR-based KE protocol, the main difficulty here is the error prob-
ability analysis: the rounding operation in LWR brings new noises, yet these noises are
deterministic, because they are completely determined by the public matrix A and the
secret vector S. In the formula calculating the error probability, the deterministic noises
will multiply the secret S. However they are correlated. This correlation prevents us from
calculating the error probability efficiently. Note that, in the LWE-based KE, the noises
are independent of A and the secret vector S. So this is a new difficulty we encounter in
LWR-based KE. Our contribution is to provide an analysis breaking the correlation, and
design an algorithm to calculate the error probability numerically.

A salient feature of LWR-based key exchange protocols is their bandwidth efficiency, for
instance, about 16.19kB at the level of at least 128-bit quantum security (in the sense of
resistance against the best known quantum attacks).

• When applied to LWE-based cryptosystems, OKCN can directly result in more practical
or well-balanced schemes of key exchange. To further save bandwidth, we make a thorough
analysis of the variant where some least significant bits of LWE samples are chopped off,
which results in, for instance, 18.58kB bandwidth at the level of at least 128-bit quantum
security. Chopping off some least bits of LWE samples can only improve the actual security
guarantee in reality, but complicates the analysis of error rates.
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|K| bw.(kB) err. pq-sec

OKCN-LWR 256 16.19 2−30 130
OKCN-LWE 256 18.58 2−39 134

Frodo 256 22.57 2−38.9 130

Table 1: Brief comparison between OKCN-LWE/LWR and Frodo. |K| refers to the size in bits
of the shared key; “bw.(kB)” refers to bandwidth in kilo bytes; “err.” refers to the error rate,
and “pq-sec” refers to the best known quantum attack against the underlying lattice problem.

• When applied to RLWE-based cryptosystems, to the best of our knowledge, AKCN can
lead to the most efficient KE protocols with shared-key of size of at least 512 bits (which
may be prudent for ensuring 256-bit post-quantum security in reality). We first use the
technique of NewHope to further lower the error rate, by decoding the four-dimensional
lattice D̃4, but at the price of achieving only 256-bit shared key.

We then develop new approaches to lower the error rate of RLWE-based KE for achieving
shared key of size at least 512 bits. Firstly, we make a key observation on RLWE-based key
exchange, by proving that the errors in different positions in the shared-key are almost
independent. Here, the main problem prevent us from using Central Limit Theorem
(CLT) is that any two different coefficients of the product of two Gaussian polynomials are
correlated. Note that the classical CLT requires the random variables to be independent.
While some variants of CLT allow the random variables to be correlated (such as CLT
extended to a stochastic process), but these variants cannot fit into our situation as far as
we know. We are unaware of any existing techniques in dealing with this problem precisely.
But we do need a result to deal with arbitrary two different coefficients, because when using
error correcting code any two different coordinates may have errors. We prove that, even
when coefficients are correlated, we can still have result similar to CLT. Though it is only
an asymptotic result, it at least provides an indication or justification for the reasonability,
and can play a fundamental basis for the approach to lower error rate of RLWE-based KE
with error-correction codes. We note that, in some related (concurrent and subsequent)
works on RLWE-based KE using error-correction codes, it is simply assumed the errors
are independent without any argument. Also, for some related works on KE from RLWE
and MLWE where some least significant bits of RLWE/MLWE samples are cut off, it is
also similarly assumed that these least significant bits are uniform at random.

Then, based upon this observation, we present a super simple and fast code, referred to
as single-error correction (SEC) code, to correct at least one bit error. By equipping
OKCN/AKCN with the SEC code, we achieve the simplest (up to now) RLWE-based
key exchange, from both OKCN and AKCN, with negligible error rate for much longer
shared-key size; for instance, OKCN-based implementation for 765-bit shared-key with
bandwidth of 3136 bytes at error rate 2−68.4 and about 250-bit post-quantum security,
and AKCN-based implementation for 765-bit shared-key with bandwidth of 3392 bytes at
error rate 2−54.4 and about 258-bit post-quantum security.

To further improve the bandwidth, error rate and post-quantum security simultaneously,
we develop new lattice code in E8, based on which we achieve AKCN-based KE for 512-
bit shared-key with bandwidth of 3360 bytes at error rate 2−63.3 and about 262-bit post-
quantum security. Note that sphere packing is optimal with the lattice E8.
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• Finally, when applying OKCN/AKCN to MLWE-based KE, they result in the (up-to-
date) most efficient lattice-based key exchange protocols for 256-bit shared-key. Moreover,
as noted in [BDK+17], MLWE-based implementations are very flexible and versatile, for
instance, the recommended (resp., light) implementation of KE has bandwidth 1856 (resp.,
1312) bytes at error rate 250.1 (resp., 2−36.2) and 183-bit (resp., 116) post-quantum security.

We then present applications to CCA-secure PKE, and to privacy-preserving authenticated
key-exchange (AKE). In particular, we design a new AKE scheme, referred to as concealed
non-malleable key-exchange (CNKE).

|K| bw.(B) err. pq-sec

OKCN-RLWE-SEC-1 765 3136 2−68.4 250
OKCN-RLWE-SEC-2 765 3392 2−61 258

NewHope 256 3872 2−61 255

AKCN-RLWE-SEC-1 765 3264 2−68.4 250
AKCN-RLWE-SEC-2 765 3520 2−61 258

AKCN-RLWE-E8 512 3360 2−63.3 262
NewHope-Simple 256 4000 2−61 255

Table 2: Brief comparison between OKCN/AKCN-RLWE and NewHope.

|K| bw.(B) err. pq-sec

OKCN-MLWE-KE 256 1856 2−50.1 183
OKCN-MLWE-PKE-1 256 1952 2−80.3 183
OKCN-MLWE-PKE-2 256 2048 2−166.4 171

AKCN-MLWE-PKE (Kyber) 256 2272 2−142.7 171

Table 3: Brief comparison between OKCN/AKCN-MLWE and Kyber.

All the main protocols developed in this work are implemented. The code and scripts,
together with those for evaluating concrete security and error rates, for protocols based on LWE,
LWR and RLWE are also available from Github http://github.com/OKCN. Besides theoretical
analysis, much efforts in this work were also put on implementation and concrete evaluation.

1.2 Applications to KEM, PKE and AKE

KC-based KE protocol can be viewed as the equivalent of traditional Diffie-Hellman. It means
that, as discussed in [Pei14], it can be transformed into an authenticated key exchange (AKE)
protocol via the SIGMA mechanism [Kra03], and is well suitable to be integrated into more
advanced protocols like IKE and TLS. As discussed in [Pei14], KC-based KE protocol can
in turn be transformed into a CCA-secure key-encapsulation mechanism (KEM) via the FO-
transformation and its variants [FO13, AGKS05, Pei14, TU16]. In this work, we also explicitly
present CCA-secure KEM construction based on OKCN-MLWE, which is instantiated from
[HHK17].

AKC-based KE protocol is actually a key transport protocol, which directly yields CPA-
secure KEM (and CCA-secure KEM via the FO-transformation). A concrete MLWE-based
CCA-secure KEM from our AKCN is presented in [BDK+17], by using a specific variant of
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the FO-transformation proposed in [HHK17]. Following the generic paradigm for achieving
AKE from public-key encryption, a concrete AKE protocol based on KEM is also proposed
in [HHK17]. In this work, we present a CCA-secure PKE scheme, with instantiation from
AKCN-MLWE, by combining the techniques in [FO13,D02,TU16,HHK17], which aims for: (1)
compatibility with existing standards; (2) flexibility when being used for AKE; (3) resistance to
side-channel attacks.

We then design a new AKE scheem, referred to as concealed non-malleable key-exchange
(CNKE). CNKE does not use signatures as the underlying authentication mechanism, and is
carefully designed to enjoy the following advantages:

• Computational efficiency: By replacing CCA-secure KEM in existing constructions with
an ephemeral key exchange/transport protocol, it is computationally more efficient, and
is more applicable to client/server setting with low-power clients.

• Robust resistance to man-in-the-middle (MIM) malleating attacks, to secrecy exposure,
and to side-channel attacks.

• Privacy protection: Client’s identity information, as well as the components of the un-
derlying ephemeral key exchange/transport protocol, are encrypted. Identity privacy is
deemed to be an important privacy issue, and is mandated by some prominent standards
like TLS1.3, EMV, etc. Concealing the components of the ephemeral key exchange/trans-
port protocol not only strengthens security, but is also useful for privacy protection.

• Well compatibility with with TLS1.3. CNKE explicitly uses authenticated encryption
(that is mandated by TLS1.3), and uses the Finish mechanism of TLS1.3 for mutual au-
thentications.

For all the OKCN/AKCN-based KE protocols developed in this work, when they are used
for KEM or PKE, the first-round message from the initiator corresponds to the public key.

1.3 Advantages and Disadvantages of OKCN vs. AKCN

Above all, with OKCN and AKCN, we provide a general framework for achieving key ex-
change and public-key encryption from lattice (specifically, LWE and its variants: LWR, RLWE,
MLWE), in a systemized and modular way. Secondly, we provide a set of practical yet pow-
erful tools for dealing with noise: OKCN, AKCN, single-error correction code and lattice code
in E8, which we suggest may play a basic role in the future design and analysis of crypto-
graphic schemes from LWE and its variants. Also, to the best of our knowledge, AKC-based
key exchange (actually, key transport) was firstly formalized in this work.

But cryptosystems based upon OKCN and AKCN have different performances and features
in different settings.

• OKCN-based KE can be viewed as the equivalent of Diffie-Hellman in the lattice world,
while AKCN-based KE is not. Specifically, with AKCN, the responder can predetermine
and set the shared-key at its wish. But AKCN can be directly used for CPA-secure KEM.

• It is well recognized that monoculture is bad for security, and that AKE protocol via
the SIGMA mechanism takes advantages over PKE-based AKE (e.g., symmetry, post-ID,
privacy, modular and diversified deployments, etc). For instance, the first generation of
IKE is based on PKE, but the second generation moves to SIGMA-based AKE.
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• OKCN-based KE is more versatile, and is more appropriate for incorporating into the
existing standards like IKE and TLS that are based on Diffie-Hellman via the SIGMA
mechanism. In view that OKCN is better suitable for incorporating into IKE and TLS, it
should be more desirable to employ the same OKCN mechanism for public-key encryption,
for the sake of system simplicity and easy deployment.

• On the same parameters (q,m, g) as specified in Section 3 and 4 (which implies the same
bandwidth), OKCN-based KE has lower error rate than AKCN-based KE. Or, on the same
parameters (q,m, d) (which implies the same error rate), OKCN-based KE has smaller
bandwidth than AKCN-based KE. This comparison is enabled by the upper-bounds on
these parameters developed in Section 3 and 4.

• Similarly, on the same parameters (q,m, g) (which implies the same bandwidth), OKCN-
based KEM has lower error rate than AKCN-based KEM. On the same parameters (q,m, d)
(which implies the same error rate), the bandwidth of OKCN-based KEM is at least as
good as that of AKCN-based KEM.2

• For KE of 256-bit shared-key, OKCN/AKCN-MLWE is the most efficient. But for KE
with shared-key of size 512 bits or more (which might be necessary for ensuring 256-bit
post-quantum security in reality), OKCN/AKCN-RLWE is the most efficient.

• Compared to RLWE and MLWE, the LWE and LWR problems have fewer algebraic struc-
tures that can be exploited by attacks. As noise sampling is relatively cumbersome for
lattice-based cryptography, LWR-based KE may be more desirable in this sense.

1.4 On Novelty of OKCN and AKCN

To the best of our knowledge, the formulations of KC and AKC, their necessary properties
for CPA-secure KEM, and their upper-bounds on the various parameters, are first (explicitly)
presented in this work, which much simplify the future design and analysis of KE and PKE
based on LWE and its variants. Indeed, both the design of OKCN and that of AKCN were
guided by, and motivated for reaching, the upper-bounds for KC and AKC proved in this work.

To the best of our knowledge, OKCN is the first multi-bit reconciliation mechanism, and
the first that can be instantiated to tightly match the upper-bound, which is the source for
essentially outperforming Frodo.

The design of AKCN was guided by, and motivated for, the upper-bound for AKC proved
in this work. In designing AKCN, we combine all existing optimizations in the literature in
order to almost meet the proved upper-bound. AKCN is clearly a generalization of the basic
reconciliation mechanisms proposed in [LPR10, LP11], and its design was also inspired by the
design of our OKCN and the works [BPR12,PG13].3 In particular, the reconciliation mechanisms
proposed in [LPR10,LP11] correspond to the special case of AKCN when g = q and m = 2. Note
that, with AKCN, we use Equation 1 described in Section 2.4, which was explicitly proposed
in [BPR12] for forming LWR samples and may also be derived implicitly from [Pei09].

2Specifically, as shown in this work, for KEM with 256-bit shared-key, the bandwidth of OKCN-based KEM
is at least as good as that of AKCN-based KEM. But if the shared-key is of size 512 bits or more (e.g., to ensure
256-bit post-quantum security targeting the underlying shared-key in reality), OKCN-based KEM can have a
smaller bandwidth.

3But AKCN and the underlying reconciliation mechanism of [PG13] could be viewed as incomparable in
general.
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Briefly speaking, the novelty of AKCN lies in two aspects: (1) the combination of the basic
reconciliation mechanism from [LPR10,LP11] and the rounding technique from [BPR12,Pei09]
in the Con procedure is first explicitly presented in this work, where the Rec procedure is
less straightforward in this case; (2) multi-bit reconciliation with generalized m. Here, the
bottom line is that the exact formula of AKCN, even for the special case of m = 2 (that is just
the underlying reconciliation mechanism of CPA-secure Kyber [BDK+17]), couldn’t be directly
instantiated from any existing single work.

1.5 Recommended Algorithms

Our work can serve as a general framework for understanding and evaluating the various propos-
als for KEM schemes from LWE and its variants. With this submission, due to time limitation
and intellectual property issues of implementation codes,4 we only implemented the following
five algorithms that are recommended for standardization considerations.

AKCN-SEC: It is an RLWE-based ephemeral KEM, which is specified in Section 8.3.3. AKCN-
SEC uses AKCN equipped with the single-error correction (SEC) code. Its security lies in
Category-5.

OKCN-SEC: It is an ephemeral KEM scheme based on RLWE, which is specified in Section
8.3.4. OKCN-SEC uses OKCN equipped with the SEC code. Its security lies in Category-
5.

OKCN-MLWE: It is an OKCN-based ephemeral KEM from MLWE, which is specified in
Section 9.1.1. Its security lies in Category-4.

AKCN-MLWE: It is an AKCN-based ephemeral KEM from MLWE, which is specified in
Section 9.1.2. Its security lies in Category-4.

AKCN-MLWE-CCA: It is an AKCN-based CCA-secure public-key encryption from MLWE,
which is specified in Section 9.5. Its security lies in Category-4.

1.6 Other Algorithms for Considerations

As KEM schemes from LWE and its variants are reduced to the corresponding KC and AKC
mechanisms, and as our OKCN and AKCN are almost optimal, the following KEM algorithms
are also of competitive performance or can serve as the benchmarks for evaluation and compar-
isons.

OKCN/AKCN-LWR: Specifically, the ephemeral KEM schemes based on OKCN and AKCN
from LWR, as specified in Section 5. Their security lies in Category-3.

OKCN/AKCN-LWE: Specifically, the ephemeral KEM schemes based on OKCN and AKCN
from LWE, as specified in Section 6. Their security lies in Category-3.

OKCN/AKCN-RLWE: Specifically, the ephemeral KEM schemes based on OKCN and AKCN
from RLWE, as specified in Figure 10 and 11 in Section 8. Their security lies in Category-5.

4We understand that, according to the call-for-proposals of NIST, the submitters should have full intellectual
properties for the implementation codes they submit.
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All the above protocols are also implemented, and their codes and scripts are available from
Github http://github.com/OKCN. As these implementations share some codes from Frodo and
NewHope, we did not submit them to NIST.

In addition, the following two algorithms have special desirable features and performance.
But they have not been implemented yet, due to time limitation. We will provide the imple-
mentations of them in the future.

AKCN-E8: It is an RLWE-based ephemeral KEM scheme specified in Section 8.4.1, which
uses the developed lattice code in E8 to reduce the error probability. It can have better
performance compared to AKCN-SEC, at the price of increasing the complexity a little.
Its security lies in Category-5.

CNKE: It is an authenticated key exchange protocol described in Section 9.6. CNKE is com-
putationally efficient, and is well compatible with existing standards like TLS in the clien-
t/server setting. Its MLWE-based construction is described in Section 9.6.4, with security
level lying in Category-4. The construction can also be straightforwardly adapted to those
based on LWE, LWR and RLWE.

1.7 Concurrent and Subsequent Work

The work [CKLS16] proposes a CPA-secure PKE scheme, named Lizard, based both on a variant
of LWE (referred to as spLWE) and on a variant of LWR (referred to as spLWR). Specifically, for
Lizard, the public key is generated with spLWE sample, while the ciphertext is generated with
spLWR sample. The underlying reconciliation mechanism of Lizard can be viewed as a special
case of AKCN for m|g|q, where g (resp., m) in AKCN corresponds to p (resp., t) in [CKLS16].
Also, we do not know how to apply the analysis of Lizard to KE protocols merely based on
LWR, as analyzed in Section 6 where both public key and ciphertext are generated merely from
LWR samples.

To the best of our knowledge, AKC-based key exchange (actually, key transport) was firstly
formalized in this work. In particular, AKCN4:1 is the first AKC-based variant of NewHope.
Another AKC-based variant of NewHope, named NewHope-simple, was presented subsequently
in a short note posted on 17 December 2016 [ADPS16b]. In comparison, NewHope-simple is still
slightly inferior to AKCN4:1-RLWE in bandwidth expansion (specifically, 256 vs. 1024 bits).

Recently, a module lattice based CPA-secure KEM scheme, named Kyber, was introduced
[BDK+17]. Though different notations and presentation methods are used in [BDK+17], it is
easy to see that the underlying AKC mechanism of Kyber (specifically, Line 6 of Algorithm
2 in [BDK+17]) is just our AKCN scheme. Specifically, by letting σ1 = tT r + e2, m = 2
and g = 2dv , the resultant instantiation of AKCN is actually the underlying AKC mechanism
implicitly used in [BDK+17]. In particular, when setting dt = du = 13 and k = 1 (corresponding
to t1 = t2 = 0 and l = 1 in our case), Kyber is actually AKCN-RLWE that is explicitly specified
in this work.

12
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2 Preliminaries

A string or value α means a binary one, and |α| is its binary length. For any real number x, bxc
denotes the largest integer that less than or equal to x, and bxe = bx + 1/2c. For any positive
integers a and b, denote by lcm(a, b) the least common multiple of them. For any i, j ∈ Z such
that i < j, denote by [i, j] the set of integers {i, i+1, · · · , j−1, j}. For any positive integer t, we
let Zt denote Z/tZ. The elements of Zt are represented, by default, as [0, t − 1]. Nevertheless,
sometimes, Zt is explicitly specified to be represented as [−b(t− 1)/2c, bt/2c].

If S is a finite set then |S| is its cardinality, and x← S is the operation of picking an element
uniformly at random from S. For two sets A,B ⊆ Zq, define A + B , {a + b|a ∈ A, b ∈ B}.
For an addictive group (G,+), an element x ∈ G and a subset S ⊆ G, denote by x+ S the set
containing x+ s for all s ∈ S. For a set S, denote by U(S) the uniform distribution over S. For
any discrete random variable X over R, denote Supp(X) = {x ∈ R | Pr[X = x] > 0}.

We use standard notations and conventions below for writing probabilistic algorithms, ex-
periments and interactive protocols. If D denotes a probability distribution, x ← D is the
operation of picking an element according to D. If α is neither an algorithm nor a set then
x← α is a simple assignment statement. If A is a probabilistic algorithm, then A(x1, x2, · · · ; r)
is the result of running A on inputs x1, x2, · · · and coins r. We let y ← A(x1, x2, · · · ) denote the
experiment of picking r at random and letting y be A(x1, x2, · · · ; r). By Pr[R1; · · · ;Rn : E] we
denote the probability of event E, after the ordered execution of random processes R1, · · · , Rn.

A function f(λ) is negligible, if for every c > 0 there exists an λc such that f(λ) < 1/λc for
all λ > λc. In in this work, for presentation simplicity, when dealing with concrete parameters
we also informally say that a quantity lower than 2−60 is negligible.

2.1 Authenticated Encryption with Associated Data

The presentation in this section is verbatim from [Z16]. Briefly speaking, an authenticated
encryption with associated data (AEAD) scheme transforms a message M and a public header
information H (e.g., a packet header, an IP address) into a ciphertext C in such a way that C
provides both privacy (of M) and authenticity (of C and H) [R02]. In practice, when AEAD
is used within cryptographic systems, the associated data is usually implicitly determined from
the context (e.g., the ciphertext of the CPA-secure KEM, the hash of the transcript of protocol
run or some pre-determined states). For simplicity, we usually do not explicitly specify the
associated data in this work. For all the protocols developed in this work that use AEAD, the
associated data can be set to be empty without sacrificing provable security.

Let SE = (Kse,Enc,Dec) be a symmetric encryption scheme. The probabilistic polynomial-
time algorithm Kse takes a security parameter κ as input and samples a key K from a finite
and non-empty set K⋂{0, 1}κ. For presentation simplicity, we assume K ← K = {0, 1}κ.
The polynomial-time encryption algorithm Enc : K × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ ∪ {⊥} and the
(deterministic) polynomial-time decryption algorithm Dec : K×{0, 1}∗×{0, 1}∗ → {0, 1}∗∪{⊥}
satisfy: for any K ← K, any associate data H ∈ {0, 1}∗ and any message M ∈ {0, 1}∗, if
EncK(H,M) outputs C 6= ⊥, then DncK(C) always outputs M . Here, we assume the ciphertext
C bears the associate data H in plain.

Let A be an adversary. Table 4 describes a security game for AEAD. We define the advantage
of A to be Advaead

SE (A) =
∣∣2 · Pr[AEADASE returns true]− 1

∣∣. We say that the SE scheme is
AEAD-secure, if for any sufficiently large κ the advantage of any probabilistic polynomial-time
adversary is negligible.
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main AEADASE: procedure Enc(H,M0,M1): procedure Dec(C ′):

K ← Kse If |M0| 6= |M1|, Ret ⊥ If σ = 1 ∧ C ′ /∈ C then
σ ← {0, 1} C0 ← EncK(H,M0) Ret DecK(C ′)
σ′ = AEnc,Dec C1 ← EncK(H,M1) Ret ⊥
Ret (σ′ = σ) If C0 = ⊥ or C1 = ⊥, Ret ⊥

C ∪← Cσ; Ret Cσ

Table 4: AEAD security game

The above AEAD security is quite strong. In particular, it means that, after adaptively
seeing a polynomial number of ciphertexts, an efficient adversary is infeasible to generate a
new valid ciphertext in the sense its decryption is not “⊥”. Also, for two independent keys
K,K ′ ← Kse and any message M and any header information H, Pr[DecK′(EncK(H,M)) 6= ⊥]
is negligible.

The AEAD security definition is based on that in [RS06,PRS11], with the following modifi-
cations: the length-hiding requirement is removed while header information integrity property
is added. In this work, we assume users’ identities and public-key information to be of equal
length; otherwise, we need length-hiding AEAD as defined in [PRS11,KPW13]. Currently, the
most popular AEAD scheme in use may be GCM-AES.

2.2 Key Encapsulation Mechanism (KEM)

We review the definition of KEM given in [D02, HHK17]. A key encapsulation mechanism
KEM = (KeyGen,Encaps,Decaps) consists of three algorithms. On a security parameter κ, the
key generation algorithm KeyGen outputs a key pair (pk, sk), where pk also defines a finite key
space K. The encapsulation algorithm Encaps, on input pk, outputs a tuple (K, c) where c is
said to be an encapsulation of the key K which is contained in key space K. The deterministic
decapsulation algorithm Decaps, on input sk and an encapsulation c, outputs either a key
K := Decaps(sk, c) ∈ K or a special symbol ⊥/∈ K to indicate that c is not a valid encapsulation.
We call KEM δ-correct if

Pr[Decaps(sk, c) 6= K|(pk, sk)← KeyGen(1κ); (K, c)← Encaps(pk)] ≤ δ.

The security notion, indistinguishability under chosen ciphertext attacks (CCA), is defined
w.r.t. Figure 1. For any PPT adversary A, define its CCA-advantage as AdvCCAKEM (A) :=
|Pr[GAME CCA outputs 1]] − 1/2|. We say the KEM scheme is CCA-secure, if for any suffi-
ciently larger security parameter and any PPT adversary A, AdvCCAKEM (A) is negligible.

2.3 Public-Key Encryption (PKE)

We review the definition of PKE given in [FO13, HHK17]. A public-key encryption scheme is
given by a triple of algorithms, PKE = (K, E ,D), where for every sufficiently large κ ∈ N.

• KeyGen, the key-generation algorithm, is a probabilistic polynomial-time (in κ) algorithm
which on input 1κ outputs a pair of strings, (pk, sk), called the public and secret keys,
respectively. This experiment is written as (pk, sk)← KeyGen(1κ).
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GAME IND-CCA

(pk, sk)← Gen
b

$← {0, 1}
(K∗0 , c

∗)← Encaps(pk)

K∗1
$← K

b′ ← ADecaps(c∗,K∗b )
return [b′ = b]

Decaps(c 6= c∗)

K := Decaps(sk, c)
return K

Figure 1: CCA game for KEM.

• E , the encryption algorithm, is a probabilistic polynomial-time (in κ) algorithm that takes
public key pk and message M from the message space MSP, draws coins r uniformly from
coin space COIN, and produces ciphertext C := Epk(M ; r). This experiment is written as
C ← Epk(x).

• D, the decryption algorithm, is a deterministic polynomial-time (in κ) algorithm that takes
secret key sk and ciphertext C ∈ {0, 1}∗, and returns message M := Dsk(C) or a special
symbol ⊥ indicating decryption failure.

We require that an asymmetric encryption scheme should satisfy the following correctness con-
dition:

We say a PKE scheme is δ-correct, if for every sufficiently large κ ∈ N, every (pk, sk) generated
by KeyGen(1κ) and every M ∈ MSP, we always have E[maxM∈MSP Pr[Dsk(Epk(M)) 6= M ]] ≤ δ.

Definition 2.1 (CCA-security). Let PKE = (KeyGen, E ,D) be an asymmetric encryption scheme,
and A = (A1,A2) be an adversary for PKE. For κ ∈ N, define the following CCA-advantage:

AdvCCA
A (κ) = 2 · Pr[(pk, sk)← KeyGen(1κ); (M0,M1, st)← ADsk1 (pk);

b← {0, 1};C∗ ← Epk(Mb) : ADsk2 (C∗, st) = b]− 1.

We say that the PKE scheme is CCA-secure, if for every sufficiently large security parameter κ,
and PPT adversary A, its CCA-advantage AdvCCA

A is negligible in κ.

2.4 The LWE, LWR, and RLWE problems

Given positive continuous σ > 0, define the real Gaussian function ρσ(x) , exp(−x2/2σ2)/
√

2πσ2

for x ∈ R. Let DZ,σ denote the one-dimensional discrete Gaussian distribution over Z, which
is determined by its probability density function DZ,σ(x) , ρσ(x)/ρσ(Z), x ∈ Z. Finally, let
DZn,σ denote the n-dimensional spherical discrete Gaussian distribution over Zn, where each
coordinate is drawn independently from DZ,σ.

Given positive integers n and q that are both polynomials in the security parameter λ, an
integer vector s ∈ Znq , and a probability distribution χ on Zq, let Aq,s,χ be the distribution over
Znq × Zq obtained by choosing a ∈ Znq uniformly at random, and an error term e ← χ, and

outputting the pair (a, b = aT s + e) ∈ Znq ×Zq. The error distribution χ is typically taken to be
the discrete Gaussian probability distribution DZ,σ defined previously; However, as suggested
in [BCD+16] and as we shall see in Section 6.1, other alternative distributions of χ can be taken.
Briefly speaking, the (decisional) learning with errors (LWE) assumption [Reg09] says that, for
sufficiently large security parameter λ, no probabilistic polynomial-time (PT) algorithm can
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distinguish, with non-negligible probability, Aq,s,χ from the uniform distribution over Znq × Zq.
This holds even if A sees polynomially many samples, and even if the secret vector s is drawn
randomly from χn [ACPS09].

The LWR problem [BPR12] is a “derandomized” variant of the LWE problem. Let D be
some distribution over Znq , and s← D. For integers q ≥ p ≥ 2 and any x ∈ Zq, denote

bxep = bp
q
xe. (1)

Then, for positive integers n and q ≥ p ≥ 2, the LWR distribution An,q,p(s) over Znq ×
Zp is obtained by sampling a from Znq uniformly at random, and outputting

(
a,
⌊
aT s

⌉
p

)
∈

Znq × Zp. Briefly speaking, the (decisional) LWR assumption says that, for sufficiently large
security parameter, no PPT algorithm A can distinguish, with non-negligible probability, the
distribution An,q,p(s) from the distribution (a ← Znq , buep) where u ← Zq. This holds even if
A sees polynomially many samples. An efficient reduction from the LWE problem to the LWR
problem, for super-polynomial large q, is provided in [BPR12]. Let B denote the bound for any
component in the secret s. It is recently shown that, when q ≥ 2mBp (equivalently, m ≤ q/2Bp),
the LWE problem can be reduced to the (decisional) LWR assumption with m independently
random samples [BGM+16]. Moreover, the reduction from LWE to LWR is actually independent
of the distribution of the secret s.

For the positive integer m that is polynomial in the security parameter λ, let n , ϕ(m)
denote the toties of m, and K , Q(ζm) be the number field obtained by adjoining an abstract
element ζm satisfying Φm(ζm) = 0, where Φm(x) ∈ Z[x] is the m-th cyclotomies polynomial of
degree n. Moreover, let R , OK be the ring of integers in K. Finally, given a positive prime
q = poly(λ) such that q ≡ 1 (mod m), define the quotient ring Rq , R/qR.

We briefly review the RLWE problem, and its hardness result [LPR10, LPR13b, DD12]. In
this work, we focus on a special case of the RLWE problem defined in [LPR10]. Let n ≥ 16
be a power-of-two and q = poly(λ) be a positive prime such that q ≡ 1 (mod 2n). Given
s← Rq, a sample drawn from the RLWE distribution An,q,σ,s over Rq×Rq is generated by first
choosing a← Rq, e← DZn,σ, and then outputting (a,a · s + e) ∈ Rq ×Rq. Roughly speaking,
the (decisional) RLWE assumption says that, for sufficiently large security parameter λ, no
PPT algorithm A can distinguish, with non-negligible probability, An,q,σ,s from the uniform
distribution over Rq×Rq. This holds even if A sees polynomially many samples, and even if the
secret s is drawn randomly from the same distribution of the error polynomial e [DD12,ACPS09].
Moreover, as suggested in [ADPS16], alternative distributions for the error polynomials can be
taken for the sake of efficiency while without essentially reducing security.

Recently, a polynomial-time (quantum) reduction from worst-case ideal lattice problems
directly to the decision version of Ring-LWE is presented in [PRS17]. In particular, the reduction
works for any modulus and any number field. Besides the above special version of the RLWE
problem [LPR10], another suggested version of the RLWE problem is defined over the polynomial
ring Rn = Z[x]/Φn+1(x), where n+ 1 is a safe prime and Φn+1(x) = xn + xn−1 + · · ·+ x+ 1 is
the (n+ 1)-th cyclotomic polynomial. This ring has a wider range of n to choose from.
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3 Key Consensus with Noise

Alice
σ1 ∈ Zq

(k1, v)← Con(σ1, params)

Bob
σ2 ∈ Zq

k2 ← Rec(σ2, v, params)

v

≈

Figure 2: Brief depiction of KC, where k1, k2 ∈ Zm, v ∈ Zg and |σ1 − σ2|q ≤ d.

Before presenting the definition of key consensus (KC) scheme, we first introduce a new function
|·|t relative to arbitrary positive integer t ≥ 1: |x|t = min{x mod t, t−x mod t}, ∀x ∈ Z, where
the result of modular operation is represented in {0, ..., (t− 1)}. For instance, | − 1|t = min{−1
mod t, (t + 1) mod t} = min{t − 1, 1} = 1. In the following description, we use |σ1 − σ2|q to
measure the distance between two elements σ1, σ2 ∈ Zq.

Definition 3.1. A KC scheme KC = (params,Con,Rec), briefly depicted in Figure 2, is specified
as follows.

• params = (q,m, g, d, aux) denotes the system parameters, where q,m, g, d are positive in-
tegers satisfying 2 ≤ m, g ≤ q, 0 ≤ d ≤ b q2c, and aux denotes some auxiliary values that
are usually determined by (q,m, g, d) and could be set to be a special symbol ∅ indicating
“empty”.

• (k1, v) ← Con(σ1, params): On input of (σ1 ∈ Zq, params), the probabilistic polynomial-
time conciliation algorithm Con outputs (k1, v), where k1 ∈ Zm is the shared-key, and
v ∈ Zg is a hint signal that will be publicly delivered to the communicating peer to help the
two parties reach consensus.

• k2 ← Rec(σ2, v, params): On input of (σ2 ∈ Zq, v, params), the deterministic polynomial-
time reconciliation algorithm Rec outputs k2 ∈ Zm.

Correctness: A KC scheme is correct, if it holds k1 = k2 for any σ1, σ2 ∈ Zq such that
|σ1 − σ2|q ≤ d.

Security: A KC scheme is secure, if k1 and v are independent, and k1 is uniformly distributed
over Zm, whenever σ1 ← Zq. The probability is taken over the sampling of σ1 and the
random coins used by Con.

3.1 Efficiency Upper Bound of KC

The following theorem reveals an upper bound on the parameters q (dominating security and
efficiency), m (parameterizing range of consensus key), g (parameterizing bandwidth), and d
(parameterizing error rate), which allows us to take balance on these parameters according to
different priorities.

Theorem 3.1. If KC = (params,Con,Rec) is a correct and secure key consensus scheme, and

params = (q,m, g, d, aux), then 2md ≤ q
(

1− 1
g

)
.
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Before proceeding to prove Theorem 3.1, we first prove the following propositions.

Proposition 3.1. Given params = (q,m, g, d, aux) for a correct and secure KC scheme. For
any arbitrary fixed σ1 ∈ Zq, if Con(σ1, params) outputs (k1, v) with positive probability, then the
value k1 is fixed w.r.t. the (v, σ1). That is, for any random coins (r, r′), if Con(σ1, params, r) =
(k1, v) and Con(σ1, params, r′) = (k′1, v), then k1 = k′1.

Proof. Let σ2 = σ1, then |σ1−σ2|q = 0 ≤ d. Then, according to the correctness of KC, we have
that k1 = k2 = Rec(σ2, v) = Rec(σ1, v). However, as Rec is a deterministic algorithm, k2 is fixed
w.r.t. (σ1, v). As a consequence, k1 is also fixed w.r.t. (σ1, v), no matter what randomness is
used by Con. �

Proposition 3.2. Given params = (q,m, g, d, aux) for a KC scheme, for any v ∈ Zg, let
Sv be the set containing all σ1 such that Con(σ1, params) outputs v with positive probability.
Specifically,

Sv =
{
σ1 ∈ Zq | Pr

[
(k1, v

′)← Con(σ1, params) : v′ = v
]
> 0
}
.

Then, there exists v0 ∈ Zg such that |Sv0 | ≥ q/g.

Proof. For each σ1 ∈ Zq, we run Con(σ1, params) and get a pair (k1, v) ∈ Zm × Zg satisfying
σ1 ∈ Sv. Then, the proposition is clear by the pigeonhole principle. �

of Theorem 3.1. From Proposition 3.2, there exists a v0 ∈ Zg such that |Sv0 | ≥ q/g. Note that,
for any σ1 ∈ Sv0 , Con(σ1, params) outputs v0 with positive probability.

For each i ∈ Zm, let Ki denote the set containing all σ1 such that Con(σ1, params) outputs
(k1 = i, v = v0) with positive probability. From Proposition 3.1, Ki’s form a disjoint partition
of Sv0 . From the independence between k1 and v, and the uniform distribution of k1, (as we
assume the underlying KC is secure), we know Pr[k1 = i | v = v0] = Pr[k1 = i] > 0, and so Ki is
non-empty for each i ∈ Zm. Now, for each i ∈ Zm, denote by K ′i the set containing all σ2 ∈ Zq
such that Rec(σ2, v0, params) = i. As Rec is deterministic, K ′i’s are well-defined and are disjoint.

From the correctness of KC, for every σ1 ∈ Ki, |σ2 − σ1|q ≤ d, we have σ2 ∈ K ′i. That is,
Ki + [−d, d] ⊆ K ′i.

We shall prove that Ki + [−d, d] contains at least |Ki|+ 2d elements. If Ki + [−d, d] = Zm,
then m = 1, which is a contradiction (we exclude the case of m = 1 in the definition of KC as it is
a trivial case). If there exists an x ∈ Zm such that x /∈ Ki + [−d, d], we can see Zm as a segment
starting from the point x by arranging its elements as x, (x+1) mod m, (x+2) mod m, . . . , (x+
m− 1) mod m. Let l be the left most element in Ki + [−d, d] on the segment, and r be the right
most such element. Then Ki+[−d, d] contains at least |Ki| elements between l and r inclusively
on the segment. Since l + [−d, 0] and r + [0, d] are subset of Ki + [−d, d], and are not overlap
(because x /∈ Ki + [−d, d]), the set Ki + [−d, d] contains at least |Ki|+ 2d elements.

Now we have |Ki|+ 2d ≤ |K ′i|. When we add up on both sides for all i ∈ Zm, then we derive
|Sv0 |+ 2md ≤ q. By noticing that |Sv0 | ≥ q/g, the theorem is established. �

3.2 Construction and Analysis of OKCN

The key consensus scheme, named OKCN, is presented in Algorithm 1.5 An illustration diagram
is given in Figure 3. Some explanations for implementation details are given below.

5Note that, for the general case of OKCN, the Con is probabilistic. When OKCN is used for key exchange or
public-key encryption, the randomness can be derived from transcripts.
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Algorithm 1 OKCN: Symmetric KC with Noise

1: params = (q,m, g, d, aux), aux = {q′ = lcm(q,m), α = q′/q, β = q′/m}
2: procedure Con((σ1, params)) . σ1 ∈ [0, q − 1]
3: e← [−b(α− 1)/2c, bα/2c]
4: σA = (ασ1 + e) mod q′

5: k1 = bσA/βc ∈ Zm
6: v′ = σA mod β
7: v = bv′g/βc . v ∈ Zg
8: return (k1, v)
9: end procedure

10: procedure Rec(σ2, v, params) . σ2 ∈ [0, q − 1]
11: k2 = bασ2/β − (v + 1/2)/ge mod m
12: return k2

13: end procedure

Define σ′A = ασ1+e. Note that it always holds σ′A < q′. However, in some rare cases, σ′A could
be a negative value; for example, for the case that σ1 = 0 and e ∈ [−b(α− 1)/2c,−1]. Setting
σA = σ′A mod q′, in line 4, is to ensure that σA is always a non-negative value in Zq′ , which
can be simply implemented as follows: if σ′A < 0 then set σA = σ′A + q′, otherwise set σA = σ′A.
Considering potential timing attacks, conditional statement judging whether σ′A is negative or
not can be avoided by a bitwise operation extracting the sign bit of σ′A. In specific, suppose σ′A
is a 16-bit signed or unsigned integer, then one can code σA = σ′A + ((σ′A >> 15)&1) ∗ q′ in C
language. The same techniques can also be applied to the calculation in line 11.

In lines 5 and 6, (k1, v
′) can actually be calculated simultaneously by a single command

div in assembly language. In line 11, the floating point arithmetic can be replaced by integer
arithmetic. If m is small enough, such as 2 or 3, the slow complex integer division operation
can be replaced by relative faster conditional statements.

The value v + 1/2, in line 11, estimates the exact value of v′g/β. Such an estimation can
be more accurate, if one chooses to use the average value of all v′g/β’s such that bv′g/βc = v.
Though such accuracy can improve the bound on correctness slightly, the formula calculating
k2 becomes more complicated.

The following fact is direct from the definition of | · |t.

Fact 3.1. For any x, y, t, l ∈ Z where t ≥ 1 and l ≥ 0, if |x − y|q ≤ l, then there exists θ ∈ Z
and δ ∈ [−l, l] such that x = y + θt+ δ.

Theorem 3.2. Suppose that the system parameters satisfy (2d+ 1)m < q
(

1− 1
g

)
where m ≥ 2

and g ≥ 2. Then, the OKCN scheme is correct.

Proof. Suppose |σ1 − σ2|q ≤ d. By Fact 3.1, there exist θ ∈ Z and δ ∈ [−d, d] such that
σ2 = σ1 + θq + δ. From line 4 and 6 in Algorithm 1, we know that there is a θ′ ∈ Z, such that
ασ1 + e + θ′q′ = σA = k1β + v′. And from the definition of α, β, we have α/β = m/q. Taking
these into the formula of k2 in Rec (line 11 in Algorithm 1), we have

k2 = bασ2/β − (v + 1/2)/ge mod m (2)

= bα(θq + σ1 + δ)/β − (v + 1/2)/ge mod m (3)
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Figure 3: An illustration diagram of OKCN

=

⌊
m(θ − θ′) +

1

β
(k1β + v′ − e) +

αδ

β
− 1

g
(v + 1/2)

⌉
mod m (4)

=

⌊
k1 +

(
v′

β
− v + 1/2

g

)
− e

β
+
αδ

β

⌉
mod m (5)

Notice that |v′/β − (v + 1/2)/g| = |v′g − β(v + 1/2)|/βg ≤ 1/2g. So

∣∣∣∣
(
v′

β
− v + 1/2

g

)
− e

β
+
αδ

β

∣∣∣∣ ≤
1

2g
+
α

β
(d+ 1/2).

From the assumed condition (2d + 1)m < q(1 − 1
g ), we get that the right-hand side is strictly

smaller than 1/2; Consequently, after the rounding, k2 = k1. �

Theorem 3.3. OKCN is secure. Specifically, when σ1 ← Zq, k1 and v are independent, and
k1 is uniform over Zm, where the probability is taken over the sampling of σ1 and the random
coins used by Con.

Proof. Recall that q′ = lcm(q,m), α = q′/q, β = q′/m. We first demonstrate that σA is subject
to uniform distribution over Zq′ . Consider the map f : Zq×Zα → Zq′ ; f(σ, e) = (ασ+e) mod q′,
where the elements in Zq and Zα are represented in the same way as specified in Algorithm 1. It
is easy to check that f is an one-to-one map. Since σ1 ← Zq and e← Zα are subject to uniform
distributions, and they are independent, σA = (ασ1 + e) mod q′ = f(σ1, e) is also subject to
uniform distribution over Zq′ .

In the similar way, defining f ′ : Zm × Zβ → Zq′ such that f ′(k1, v
′) = βk1 + v′, then

f ′ is obviously a one-to-one map. From line 6 of Algorithm 1, f ′(k1, v
′) = σA. As σA is

distributed uniformly over Zq′ , (k1, v
′) is uniformly distributed over Zm × Zβ, and so k1 and v′

are independent. As v only depends on v′, k1 and v are independent. �
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Algorithm 2 OKCN power 2

1: params : q = 2q̄, g = 2ḡ,m = 2m̄, d, aux = {(β = q/m = 2q̄−m̄, γ = β/g = 2q̄−m̄−ḡ)}
2: procedure Con(σ1, params)
3: k1 = bσ1/βc
4: v = b(σ1 mod β)/γc
5: return (k1, v)
6: end procedure
7: procedure Rec(σ2, v, params)
8: k2 = bσ2/β − (v + 1/2)/ge mod m
9: return k2

10: end procedure

Algorithm 3 OKCN simple

1: params : q = 2q̄, g = 2ḡ,m = 2m̄, d, where ḡ + m̄ = q̄
2: procedure Con(σ1, params)

3: k1 =
⌊
σ1
g

⌋

4: v = σ1 mod g
5: return (k1, v)
6: end procedure
7: procedure Rec(σ2, v, params)

8: k2 =
⌊
σ2−v
g

⌉
mod m

9: return k2

10: end procedure

3.2.1 Special Parameters, and Performance Speeding-Up

The first and the second line of Con (line 3 and 4 in Algorithm 1) play the role in transforming
a uniform distribution over Zq to a uniform distribution over Zq′ . If one chooses q, g,m to be
power of 2, i.e., q = 2q̄, g = 2ḡ,m = 2m̄ where q̄, ḡ, m̄ ∈ Z, then such transformation is not
necessary, and the random noise e used in calculating σA in Algorithm 1 is avoided. In this case
Con and Rec can be simplified to Algorithm 2. The following corollary is straightforward.

Corollary 3.1. If q and m are power of 2, and d, g,m satisfy 2md < q
(

1− 1
g

)
, then the KC

scheme described in Algorithm 2 is both correct and secure.

If we take ḡ + m̄ = q̄, Algorithm 2 can be further simplified into the variant depicted in
Algorithm 3, with the constraint on parameters is further relaxed.

Corollary 3.2. If m, g are power of 2, q = m ·g, and 2md < q, then the KC scheme described in
Algorithm 3 is correct and secure. Notice that the constraint on parameters is further simplified
to 2md < q in this case.

The proof of Corollary 3.2 is given in Appendix C.

21



4 Asymmetric Key Consensus with Noise

Alice
σ1

k1 ∈ Zm

v ← Con(σ1, k1, params)

Bob
σ2

k2 ← Rec(σ2, v, params)

v

≈

Figure 4: Brief depiction of AKC

As we shall see, for OKCN-based key exchange both the initiator and the responder play a
symmetric role in outputting the shared-key, in the sense that no one can pre-determine the
session-key before the KE protocol run. Though OKCN is well desirable for (authenticated)
key exchange, it is, however, not well suitable for directly achieving key transport and public-
key encryption. This motivates us to introduce asymmetric key consensus (AKC), as specified
below.

Definition 4.1. An asymmetric key consensus scheme AKC = (params,Con,Rec) is specified
as follows:

• params = (q,m, g, d, aux) denotes the system parameters, where q, 2 ≤ m, g ≤ q, 1 ≤
d ≤ b q2c are positive integers, and aux denotes some auxiliary values that are usually
determined by (q,m, g, d) and could be set to be empty.

• v ← Con(σ1, k1, params): On input of (σ1 ∈ Zq, k1 ∈ Zm, params), the probabilistic
polynomial-time conciliation algorithm Con outputs the public hint signal v ∈ Zg.

• k2 ← Rec(σ2, v, params): On input of (σ2, v, params), the deterministic polynomial-time
algorithm Rec outputs k2 ∈ Zm.

Correctness: An AKC scheme is correct, if it holds k1 = k2 for any σ1, σ2 ∈ Zq such that
|σ1 − σ2|q ≤ d.

Security: An AKC scheme is secure, if v is independent of k1 whenever σ1 is uniformly dis-
tributed over Zq. Specifically, for arbitrary ṽ ∈ Zg and arbitrary k̃1, k̃

′
1 ∈ Zm, it holds that

Pr[v = ṽ|k1 = k̃1] = Pr[v = ṽ|k1 = k̃′1], where the probability is taken over σ1 ← Zq and
the random coins used by Con.

When AKC is used as a building tool for key transport, k1 is taken uniformly at random
from Zm. However, when AKC is used for public-key encryption, k1 can be arbitrary value from
the space of plaintext messages. In any case, k1 can be generated offline, and can be input to
the party Alice.

Theorem 4.1. Let AKC be an asymmetric key consensus scheme with params = (q,m, d, g, aux).

If AKC is correct and secure, then 2md ≤ q
(

1− m
g

)
.
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Comparing the formula 2md ≤ q(1−m/g) in Theorem 4.1 with the formula 2md ≤ q(1−1/g)
in Theorem 3.1, we see that the only difference is a factor m in g. This indicates that, on the
same values of (q,m, d), an AKC scheme has to use a bigger bandwidth parameter g compared
to KC.

Before proving Theorem 4.1, we first adjust Proposition 3.2 to the AKC setting, as following.

Proposition 4.1. Given params = (q,m, g, d, aux) for an correct and secure AKC scheme,
then there exists v0 ∈ Zg such that |Sv0 | ≥ mq/g.

Proof. If k1 is taken uniformly at random from Zm, AKC can be considered as a special KC
scheme by treating k1 ← Zm; v ← Con(σ1, k1, params) as (k1, v) ← Con(σ1, params). Conse-
quently, Proposition 3.1 holds for this case.

Denote S′v
4
= {(σ1, k1) ∈ Zq × Zm | Pr [v′ ← Con(σ1, k1, params) : v′ = v] > 0}. Then, Sv de-

fined in Proposition 3.2 equals to the set containing all the values of σ1 appeared in (σ1, ·) ∈ S′v.
We run Con(σ1, k1, params) for each pair of (σ1, k1) ∈ Zq × Zm. By the pigeonhole principle,
there must exist a v0 ∈ Zg such that |S′v0 | ≥ qm/g. For any two pairs (σ1, k1) and (σ′1, k

′
1) in

S′v0 , if σ1 = σ′1, from Proposition 3.1 we derive that k1 = k′1, and then (σ1, k1) = (σ′1, k
′
1). Hence,

if (σ1, k1) and (σ′1, k
′
1) are different, then σ1 6= σ′1, and so |Sv0 | = |S′v0 | ≥ mq/g. �

Proof of Theorem 4.1. By viewing AKC, with k1 ← Zq, as a special KC scheme, all the reasoning
in the proof of Theorem 3.1 holds true now. At the end of the proof of Theorem 3.1, we derive
|Sv0 | + 2md ≤ q. By taking |Sv0 | ≥ mq/g according to Proposition 4.1, the proof is finished.
�

4.1 Construction and Analysis of AKCN

Algorithm 4 AKCN: Asymmetric KC with Noise

1: params = (q,m, g, d, aux), where aux = ∅.
2: procedure Con(σ1, k1, params) . σ1 ∈ [0, q − 1]
3: v = bg (σ1 + bk1q/me) /qe mod g
4: return v
5: end procedure
6: procedure Rec(σ2, v, params) . σ2 ∈ [0, q − 1]
7: k2 = bm(v/g − σ2/q)e mod m
8: return k2

9: end procedure

The AKCN scheme, referred to as asymmetric key consensus with noise, is depicted in Al-
gorithm 4. We note that, in some sense, AKCN could be viewed as the generalization and
optimization of the consensus mechanism proposed in [LPR10] for CPA-secure public-key en-
cryption. For AKCN, we can offline compute and store k1 and gbk1q/me in order to accelerate
online performance.

Theorem 4.2. Suppose the parameters of AKCN satisfy (2d + 1)m < q
(

1− m
g

)
. Then, the

AKCN scheme described in Algorithm 4 is correct.
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Proof. From the formula generating v, we know that there exist ε1, ε2 ∈ R and θ ∈ Z, where
|ε1| ≤ 1/2 and |ε2| ≤ 1/2, such that

v =
g

q

(
σ1 +

(
k1q

m
+ ε1

))
+ ε2 + θg

Taking this into the formula computing k2 in Rec, we have

k2 = bm(v/g − σ2/q)e mod m

=

⌊
m

(
1

q
(σ1 + k1q/m+ ε1) +

ε2

g
+ θ − σ2

q

)⌉
mod m

=

⌊
k1 +

m

q
(σ1 − σ2) +

m

q
ε1 +

m

g
ε2

⌉
mod m

By Fact 3.1 (page 19), there exist θ′ ∈ Z and δ ∈ [−d, d] such that σ1 = σ2 + θ′q + δ. Hence,

k2 =

⌊
k1 +

m

q
δ +

m

q
ε1 +

m

g
ε2

⌉
mod m

Since |mδ/q +mε1/q +mε2/g| ≤ md/q +m/2q +m/2g < 1/2, k1 = k2. �

Theorem 4.3. The AKCN scheme is secure. Specifically, v is independent of k1 when σ1 ← Zq.

Proof. For arbitrary ṽ ∈ Zg and arbitrary k̃1, k̃
′
1 ∈ Zm, we prove that Pr[v = ṽ|k1 = k̃1] =

Pr[v = ṽ|k1 = k̃′1] when σ1 ← Zq.
For any (k̃, ṽ) in Zm × Zg, the event (v = ṽ | k1 = k̃) is equivalent to the event that

there exists σ1 ∈ Zq such that ṽ = bg(σ1 + bk̃q/me)/qe mod g. Note that σ1 ∈ Zq satisfies
ṽ = bg(σ1 + bk̃q/me)/qe mod g, if and only if there exist ε ∈ (−1/2, 1/2] and θ ∈ Z such that
ṽ = g(σ1 + bk̃q/me)/q + ε − θg. That is, σ1 = (q(ṽ − ε)/g − bk̃q/me) mod q, for some ε ∈
(−1/2, 1/2]. Let Σ(ṽ, k̃) = {σ1 ∈ Zq | ∃ε ∈ (−1/2, 1/2] s.t. σ1 = (q(ṽ − ε)/g − bk̃q/me) mod q}.
Defining the map φ : Σ(ṽ, 0) → Σ(ṽ, k̃), by setting φ(x) =

(
x− bk̃q/me

)
mod q. Then φ is

obviously a one-to-one map. Hence, the cardinality of Σ(ṽ, k̃) is irrelevant to k̃. Specifically, for

arbitrary ṽ ∈ Zg and arbitrary k̃1, k̃
′
1 ∈ Zm, it holds that

∣∣∣Σ(ṽ, k̃1)
∣∣∣ =

∣∣∣Σ(ṽ, k̃′1)
∣∣∣ = |Σ(ṽ, 0)|

Now, for arbitrary ṽ ∈ Zg and arbitrary k̃ ∈ Zm, when σ1 ← Zq we have that Pr[v = ṽ | k1 =

k̃] = Pr
[
σ1 ∈ Σ(ṽ, k̃) | k1 = k̃

]
= |Σ(ṽ, k̃)|/q = |Σ(ṽ, 0)|/q. The right-hand side only depends

on ṽ, and so v is independent of k1. �

4.1.1 Simplified Variants of AKCN for Special Parameters

We consider the parameters q = g = 2q̄,m = 2m̄ for positive integers q̄, m̄. Then the two round-
ing operations in line 3 of Con (in Algorithm 4) can be directly eliminated, since only integers
are involved in the computation. We have the following variant described in Algorithm 5. Note
that, in Algorithm 5, the modular and multiplication/division operations can be implemented
by simple bitwise operations.

For the protocol variant presented in Algorithm 5, its correctness and security can be proved
with a relaxed constraint on the parameters of (q, d,m), as shown in the following corollary.

Corollary 4.1. If q and m are power of 2, and d, m and q satisfy 2md < q, then the AKCN
scheme described in Algorithm 5 is correct and secure.
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Algorithm 5 AKCN power 2

1: params : q = g = 2q̄,m = 2m̄, aux = {G = q/m}
2: procedure Con(σ1, k1, params)
3: v = (σ1 + k1 ·G) mod q, where k1 ·G can be offline computed
4: return v
5: end procedure
6: procedure Rec(σ2, v, params)
7: k2 = b(v − σ2)/Ge mod m
8: return k2

9: end procedure

Algorithm 6 AKCN simple

1: params = (q,m, g, d, aux), where q = 2q̄, g = 2ḡ, m = 2m̄, and q = gm (i.e., ḡ + m̄ = q̄)
2: procedure Con(σ1, k1, params) . σ1 ∈ [0, q − 1]
3: v = b(k1g + σ1) /me mod g . k1g/m can be offline computed
4: return v
5: end procedure
6: procedure Rec(σ2, v, params) . σ2 ∈ [0, q − 1]
7: k2 = b(mv − σ2)/ge mod m
8: return k2

9: end procedure

Proof. For correctness, suppose |σ1 − σ2|q ≤ d, then there exit δ ∈ [−d, d] and θ ∈ Z such
that σ2 = σ1 + θq + δ. From the formula calculating v, there exists θ′ ∈ Z such that v =
σ1 + k12q̄−m̄ + θ′q. Taking these into the formula computing k2, line 7 of Rec in Algorithm 5,
we have

k2 = b(v − σ1 − δ − θq) /2q̄−m̄e mod m

= b(k12q̄−m̄ − δ)/2q̄−m̄e mod m

=
(
k1 − bδ/2q̄−m̄e

)
mod m

If 2md < q, then |δ/2q̄−m̄| < 1/2, so that k1 = k2.
For security, as a special case of the generic AKCN scheme in Algorithm 4, the security of

the AKCN scheme in Algorithm 5 directly follows from that of Algorithm 4. �

Corollary 4.2. If q, m and g all are power of 2 satisfying q = mg, and d, m and g satisfy
m+ 2d < g, then the AKCN-simple described in Algorithm 6 is correct and secure.

Proof. For correctness, suppose |σ1 − σ2|q ≤ d, then there exit δ ∈ [−d, d] and θ ∈ Z such that
σ2 = σ1 + θq + δ. From the formula calculating v, there exist θ′ ∈ Z and ε ∈ (−1/2, 1/2] such
that v = σ12−m̄ + k12ḡ−m̄ + ε+ θ′g. Taking these into the formula computing k2, line 7 of Rec
in Algorithm 5, we have

k2 = bk1 + (mε− δ)/ge mod m

If m+ 2d < g, then |k1 + (mε− δ)/g| < 1/2, so that k1 = k2.
As a special case of the AKCN scheme, the security of the AKCN-simple scheme in Algo-

rithm 6 directly follows from that of Algorithm 4. �
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Initiator
seed← {0, 1}κ

A = Gen(seed) ∈ Zn×n
q

X1 ← χn×lA

Y1 = ⌊AX1⌉p

Responder

A = Gen(seed)
X2 ← χn×lB

Y2 = ⌊ATX2⌉p
ϵ← [−q/2p, q/2p− 1]n×lA

Σ2 = YT
1 X2 + ⌊ϵTX2⌉p

(K2,V)← Con(Σ2, params)

Σ1 = XT
1 Y2

K1 ← Rec(Σ1,V, params)

seed,Y1 ∈ Zn×lA
p

Y2 ∈ Zn×lB
p ,V ∈ ZlA×lB

g

Figure 5: LWR-based key exchange from KC, where K1,K2 ∈ ZlA×lBm and |K1| = |K2| =
lAlB|m|.

5 LWR-Based Key Exchange from KC and AKC

In this section, we present the applications of OKCN and AKCN to key exchange protocols
based on LWR.6 The LWR-based key exchange (KE) is depicted in Figure 5. Denote by
(n, lA, lB, q, p,KC, χ) the system parameters, where p|q, and p and q are chosen to be power
of 2. Let KC = (params = (p,m, g, d, aux),Con,Rec) be a correct and secure key consensus
scheme, χ be a small noise distribution over Zq, and Gen be a pseudo-random generator (PRG)
generating the matrix A from a small seed. For presentation simplicity, we assume A ∈ Zn×nq

to be square matrix. The length of the random seed, i.e., κ, is typically set to be 256.
The actual session-key is derived from K1 and K2 via some key derivation function KDF .

For presentation simplicity, the functions Con and Rec are applied to matrices, meaning that
they are applied to each of the coordinates respectively.

For presentation simplicity, we describe the LWR-based key exchange protocol from a KC
scheme in Figure 5. But it can be trivially adapted to work on any correct and secure AKC
scheme, which is also described in Figure 6. In this case, the responder user Bob simply chooses
K2 ∈ ZlA×lBm for PKE where K2 corresponds to the arbitrary plaintext message (or K2 ← ZlA×lBm

for KEM), and the output of Con(Σ2,K2, params) is simply defined to be V. For presentation
simplicity, in the following security definition and analysis we also simply assume that the output
of the PRG Gen is truly random (which is simply assumed to be a random oracle in [ADPS16]).
In the actual implementation, ε ← [−q/2p, q/2p − 1]n×lA can be computed by the responder
with a PRG from another fresh random seed seed′, or with a PRF from another static random

6Note that AKCN-based KE is actually key transport. But for presentation simplicity, we do not make
distinction between them in this work.
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Initiator
seed← {0, 1}κ

A = Gen(seed) ∈ Zn×nq

X1 ← χn×lA

Y1 = bAX1ep

Responder

K2 ∈ ZlA×lB
m

A = Gen(seed)
X2 ← χn×lB

Y2 = bATX2ep
ε← [−q/2p, q/2p− 1]n×lA

Σ2 = YT
1 X2 + bεTX2ep

V← Con(Σ2,K2, params)

Σ1 = XT
1 Y2

K1 ← Rec(Σ1,V, params)

seed,Y1 ∈ Zn×lAp

Y2 ∈ Zn×lBp ,V ∈ ZlA×lB
g

Figure 6: LWR-based key exchange from AKC, where K1,K2 ∈ ZlA×lBm and |K1| = |K2| =
lAlB|m|.

seed and the protocol transcript. Note that for the case that q and p are power-of-two and p|q,
the computation of ε is simple.

On the role of random lifting with ε. We use random lifting with ε to lift YT
1 X2 from

Zp to Zq. This way, the same protocol structure can be applied to any KC or AKC scheme
(particularly, OKCN and AKCN in this work). We also note that, if we only aim for KE from
AKCN or its variants, such a random lifting may not be necessary. As the generation of ε
is simple (particularly for the case of p and q are power-of-two), we preferred to the random
lifting approach for its generic protocol structure that can be instantiated with any KC or AKC
scheme.

5.1 Security Proof of LWR-Based Key Exchange

Definition 5.1. A KC or AKC based key exchange protocol from LWR is secure, if for any
sufficiently large security parameter λ and any PT adversary A,

∣∣Pr[b′ = b]− 1
2

∣∣ is negligible, as
defined w.r.t. game G0 specified in Algorithm 40.7

7For presentation simplicity, we simply assume K0
2 ← ZlA×lBm when the key exchange protocol is implemented

with AKC. However, when the AKC-based protocol is interpreted as a public-key encryption scheme, K0
2 and K1

2

correspond to the plaintexts, which are taken independently at random from the same (arbitrary) distribution
over ZlA×lBm .
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Algorithm 7 Game G0

1: A← Zn×nq

2: X1 ← χn×lA

3: Y1 = bAX1ep
4: X2 ← χn×lB

5: ε← {−q/2p . . . q/2p− 1}n×lA
6: Y2 = bATX2ep
7: Σ2 = b( qpY1 + ε)TX2ep . Σ2 = YT

1 X2 + bεTX2ep = b( qpY1 + ε)TX2ep
8:
(
K0

2,V
)
← Con(Σ2, params)

9: K1
2 ← ZlA×lBm

10: b← {0, 1}
11: b′ ← A(A,Y1,Y2,K

b
2,V)

Before starting to prove the security, we first recall some basic properties of the LWR as-
sumption. The following lemma is derived by a hybrid argument, similar to that of LWE
[PVW08,BCD+16].

Lemma 5.1 (LWR problem in the matrix form). For positive integer parameters (λ, n, q ≥
2, l, t), where n, q, l, t all are polynomial in λ satisfying p|q, and a distribution χ over Zq, denote

by L
(l,t)
χ the distribution over Zt×nq ×Zt×lp generated by taking A← Zt×nq ,S← χn×l and outputting

(A, bASep). Then, under the assumption on indistinguishability between Aq,s,χ (with s ← χn)
and U(Znq × Zp) within t samples, no PT distinguisher D can distinguish, with non-negligible

probability, between the distribution L
(l,t)
χ and U(Zt×nq × Zt×lp ) for sufficiently large λ.

Algorithm 8 Game G0

1: A← Zn×nq

2: X1 ← χn×lA

3: Y1 = bAX1ep
4: X2 ← χn×lB

5: ε← {−q/2p . . . q/2p− 1}n×lA
6: Y2 = bATX2ep
7: Σ2 = b( qpY1 + ε)TX2ep
8:
(
K0

2,V
)
← Con(Σ2, params)

9: K1
2 ← ZlA×lBm

10: b← {0, 1}
11: b′ ← A(A,Y1,Y2,K

b
2,V)

Algorithm 9 Game G1

1: A← Zn×nq

2: X1 ← χn×lA

3: Y1 ← Zn×lAp

4: X2 ← χn×lB

5: ε← {−q/2p . . . q/2p− 1}n×lA
6: Y2 = bATX2ep
7: Σ2 = b( qpY1 + ε)TX2ep
8:
(
K0

2,V
)
← Con(Σ2, params)

9: K1
2 ← ZlA×lBm

10: b← {0, 1}
11: b′ ← A(A,Y1,Y2,K

b
2,V)
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Algorithm 10 Distinguisher D
1: procedure D(A,B) . A ∈ Zn×nq ,B ∈ Zn×lAp

2: Y1 = B
3: X2 ← χn×lB

4: ε← {−q/2p . . . q/2p− 1}n×lA
5: Y2 = bATX2ep
6: Σ2 = b( qpY1 + ε)TX2ep
7:

(
K0

2,V
)
← Con(Σ2, params)

8: K1
2 ← ZlA×lBm

9: b← {0, 1}
10: b′ ← A(A,Y1,Y2,K

b
2,V)

11: if b′ = b then
12: return 1
13: else
14: return 0
15: end if
16: end procedure

Theorem 5.1. If (params,Con,Rec) is a correct and secure KC or AKC scheme, the key ex-
change protocol described in Figure 5 is secure under the (matrix form of) LWR assumption.

Proof. The proof is analogous to that in [Pei14,BCD+16]. The general idea is that we construct
a sequence of games: G0, G1 and G2, where G0 is the original game for defining security. In every
move from game Gi to Gi+1, 0 ≤ i ≤ 1, we change a little. All games Gi’s share the same PT
adversary A, whose goal is to distinguish between the matrices chosen uniformly at random and
the matrices generated in the actual key exchange protocol. Denote by Ti, 0 ≤ i ≤ 2, the event
that b = b′ in Game Gi. Our goal is to prove that Pr[T0] < 1/2+negl, where negl is a negligible
function in λ. For ease of readability, we re-produce game G0 below. For presentation simplicity,
in the subsequent analysis, we always assume the underlying KC or AKC is correct. The proof
can be trivially extended to the case that correctness holds with overwhelming probability (i.e.,
failure occurs with negligible probability).

Lemma 5.2. |Pr[T0]−Pr[T1]| < negl, under the indistinguishability between L
(lA,n)
χ and U(Zn×nq ×

Zn×lAp ).

Proof. Construct a distinguisher D, in Algorithm 10, who tries to distinguish L
(lA,n)
χ from

U(Zn×nq × Zn×lAp ).

If (A,B) is subjected to L
(lA,n)
χ , thenD perfectly simulatesG0. Hence, Pr

[
D
(
L

(lA,n)
χ

)
= 1
]

=

Pr[T0]. On the other hand, if (A,B) is chosen uniformly at random from Zn×nq × Zn×lAp , which

is denoted as (AU ,BU ), then D perfectly simulates G1. So Pr[D(AU ,BU ) = 1] = Pr[T1]. Hence,

|Pr[T0]− Pr[T1]| =
∣∣∣Pr[D(L

(lA,n)
χ ) = 1]− Pr[D(AU ,BU ) = 1]

∣∣∣ < negl. �
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Algorithm 11 Game G1

1: A← Zn×nq

2: X1,E1 ← χn×lA

3: Y1 ← Zn×lAp

4: X2 ← χn×lB

5: ε← {−q/2p . . . q/2p− 1}n×lA
6: Y2 = bATX2ep
7: Σ2 = b( qpY1 + ε)TX2ep
8:
(
K0

2,V
)
← Con(Σ2, params)

9: K1
2 ← ZlA×lBm

10: b← {0, 1}
11: b′ ← A(A,Y1,Y2,K

b
2,V)

Algorithm 12 Game G2

1: A← Zn×nq

2: X1,E1 ← χn×lA

3: Y1 ← Zn×lAp

4: X2 ← χn×lB

5: ε← {−q/2p . . . q/2p− 1}n×lA
6: Y2 ← Zn×lBp

7: Σ2 ← ZlA×lBp

8:
(
K0

2,V
)
← Con(Σ2, params)

9: K1
2 ← ZlA×lBm

10: b← {0, 1}
11: b′ ← A(A,Y1,Y2,K

b
2,V)

Lemma 5.3. |Pr[T1] − Pr[T2]| < negl, under the indistinguishability between L
(lB ,n+lA)
χ and

U(Z(n+lA)×n
q × Z(n+lA)×lB

p ).

Proof. As Y1 and ε are subjected to uniform distribution in G1, qpY1 +ε is subjected to uniform

distribution over Zn×lAq . Based on this observation, we construct the following distinguisher D′
presented in Algorithm 13.

First observe that Y′1 = ( qpY1 +ε) ∈ Zn×lAq follows the uniform distribution U(Zn×lAq ), where

Y1 ← Zn×lAq and ε← [−q/2p, q/2p− 1]n×lA . If (A′,B) is subject to L
(lB ,n+lA)
χ , A′ ← Z(n+lA)×n

q

corresponds to A ← Zn×nq and Y′1 = q
pY1 + ε in G1; And S ← χn×lB in generating (A′,B)

corresponds to X2 ← χn×lB in G1. In this case, we re-write

B = bA′Sep =

⌊(
AT

Y′T1

)
X2

⌉

p

=

(
bATX2ep
bY′T1 X2ep

)
=

(
Y2

Σ2

)

Hence Pr
[
D′
(
L

(lB ,n+lA)
χ

)
= 1
]

= Pr[T1].

On the other hand, if (A′,B) is subject to uniform distribution U(Z(n+lA)×n
q × Z(n+lA)×lB

p ),
then A,Y′1,Y2,Σ2 all are also uniformly random; So, the view of D′ in this case is the same
as that in game G2. Hence, Pr [D′ (A′,B) = 1] = Pr[T2] in this case. Then, |Pr[T1]− Pr[T2]| =
|Pr[D′(L(lB ,n+lA)

χ ) = 1]− Pr[D′(U(Z(n+lA)×n
q × Z(n+lA)×lB

p )) = 1]| < negl. �

Lemma 5.4. If the underlying KC or AKC is secure, Pr[T2] = 1
2 .

Proof. Note that, in Game G2, for any 1 ≤ i ≤ lA and 1 ≤ j ≤ lB,
(
K0

2[i, j],V[i, j]
)

only depends
on Σ2[i, j], and Σ2 is subject to uniform distribution. By the security of KC, we have that, for
each pair (i, j), K0

2[i, j] and V[i, j] are independent, and K0
2[i, j] is uniform distributed. Hence,

K0
2 and V are independent, and K0

2 is uniformly distributed, which implies that Pr[T2] = 1/2.
�

This finishes the proof of Theorem 5.1. �
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Algorithm 13 Distinguisher D′

1: procedure D′(A′,B) where A′ ∈ Z(n+lA)×n
q ,B ∈ Z(n+lA)×lB

p

2: Denote A′ =

(
AT

Y′T1

)
. A ∈ Zn×nq ,Y′T1 = ( qpY1 + ε)T ∈ ZlA×nq

3: Denote B =

(
Y2

Σ2

)
. Y2 ∈ Zn×lBp ,Σ2 ∈ ZlA×lBp

4:
(
K0

2,V
)
← Con(Σ2, params)

5: K1
2 ← ZlA×lBm

6: b← {0, 1}
7: b′ ← A(A, bY′1ep,Y2,K

b
2,V)

8: if b′ = b then
9: return 1

10: else
11: return 0
12: end if
13: end procedure

5.2 Analysis of Correctness and Error Rate

For any integer x, let {x}p denote x − q
pbxep, where bxep = bpqxe. Then, for any integer x,

{x}p ∈ [−q/2p, q/2p − 1], hence {x}p can be naturally regarded as an element in Zq/p. In
fact, {x}p is equal to x mod q/p, where the result is represented in [−q/2p, q/2p − 1]. When
the notation {·}p is applied to a matrix, it means {·}p applies to every element of the matrix
respectively.

We have Σ2 = YT
1 X2 + bεTX2ep = bAX1eTp X2 + bεTX2ep = p

q (AX1 − {AX1}p)TX2 +

bεTX2ep. And Σ1 = XT
1 Y2 = XT

1 bATX2ep = p
q (XT

1 ATX2 −XT
1 {ATX2}p). Hence,

Σ2 −Σ1 =
p

q
(XT

1 {ATX2}p − {AX1}Tp X2) + bεTX2ep mod p

=

⌊
p

q
(XT

1 {ATX2}p − {AX1}Tp X2 + εTX2)

⌉
mod p

The general idea is that X1,X2, ε, {ATX2}p and {AX1}p are small enough, so that Σ1 and
Σ2 are close. If |Σ1 − Σ2|p ≤ d, the correctness of the underlying KC guarantees K1 = K2.
For given concrete parameters, we numerically derive the probability of |Σ2 − Σ1|p > d by
numerically calculating the distribution of XT

1 {ATX2}p − ({AX1}Tp X2 − εTX2) for the case of
lA = lB = 1, then applying the union bound. The independency between variables indicated by
the following Theorem 5.2 can greatly simplify the calculation.

Let Inv(X1,X2) denote the event that there exist invertible elements of ring Zq/p in both
vectors X1 and X2. Inv(X1,X2) happens with overwhelming probability in our application.

Lemma 5.5. Consider the case of lA = lB = 1. For any a ∈ Zq/p,x ∈ Znq/p, denote Sx,a =

{y ∈ Znq/p | xTy mod (q/p) = a}. For any fixed a ∈ Zq/p, conditioned on Inv(X1,X2) and

XT
1 ATX2 mod (q/p) = a, the random vectors {ATX2}p and {AX1}p are independent, and are

subjected to uniform distribution over SX1,a, SX2,a respectively.

Proof. Under the condition of Inv(X1,X2), for any fixed X1 and X2, define the map φX1,X2 :
Zn×nq → Znq/p × Znq/p, such that A 7→ ({AX1}p, {ATX2}p).
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We shall prove that the image of φX1,X2 is S = {(y1,y2) ∈ Znq/p × Znq/p | XT
2 y1 = XT

1 y2

mod (q/p)}. Denote X1 = (x1,X
′T
1 )T and y2 = (y2,y

′T
2 )T . Without loss of generality, we

assume x1 is invertible in the ring Zq/p. For any (y1,y2) ∈ S, we need to find an A such that
φX1,X2(A) = (y1,y2).

From the condition Inv(X1,X2), we know that there exists an A′ ∈ Z(n−1)×n such that
{A′X2}p = y′2. Then, we let a1 = x−1

1 (y1 −A′TX′1) mod (q/p), and A = (a1,A
′T ). Now we

check that φX1,X2(A) = (y1,y2).

{AX1}p =

{(
a1 A′T

)(x1

x′1

)}

p

= {x1a1 + A′TX′1}p = y1

{ATX2}p =

{(
aT1
A′

)
X2

}

p

=

{(
aT1 X2

A′X2

)}

p

=

{(
x−1

1 (yT1 −X′T1 A)X2

A′X2

)}

p

=

{(
x−1

1 (XT
1 y2 −X′T1 y′2)

y′2

)}

p

=

{(
y2

y′2

)}

p

= y2

Hence, if we treat Zn×nq and S as Z-modules, then φX1,X2 : Zn×nq → S is a surjective

homomorphism. Then, for any fixed (X1,X2), ({AX1}p, {ATX2}p) is uniformly distributed
over S. This completes the proof. �

Theorem 5.2. Under the condition Inv(X1,X2), the following two distributions are identical:

• (a,X1,X2, {AX1}p, {ATX2}p), where A← Zn×nq , X1 ← χn, X2 ← χn, and a = XT
1 ATX2 mod

(q/p).

• (a,X1,X2,y1,y2), where a← Zq/p,X1 ← χn, X2 ← χn, y1 ← SX2,a, and y2 ← SX1,a.

Proof. For any ã ∈ Zq/p, X̃1, X̃2 ∈ Supp(χn), ỹ1, ỹ2 ∈ Znq/p, we have

Pr[a = ã,X1 = X̃1,X2 = X̃2, {AX1}p = ỹ1, {ATX2}p = ỹ2 | Inv(X1,X2)]

= Pr[{AX1}p = ỹ1, {ATX2}p = ỹ2 | a = ã,X1 = X̃1,X2 = X̃2, Inv(X1,X2)]

Pr[a = ã,X1 = X̃1,X2 = X̃2 | Inv(X1,X2)]

From Lemma 5.5, the first term equals to Pr[y1 ← SX̃2,ã
; y2 ← SX̃1,ã

: y1 = ỹ1,y2 = ỹ2 |
a = ã,X1 = X̃1,X2 = X̃2, Inv(X1,X2)].

For the second term, we shall prove that a is independent of (X1,X2), and is uniformly
distributed over Zq/p. Under the condition of Inv(X1,X2), the map Zn×nq → Zq/p, such that

A 7→ XT
1 ATX2 mod (q/p), is a surjective homomorphism between the two Z-modules. Then,

Pr[a = ã | X1 = X̃1,X2 = X̃2, Inv(X1,X2)] = p/q. Hence, under the condition of Inv(X1,X2), a
is independent of (X1,X2), and is distributed uniformly at random. So the two ways of sampling
result in the same distribution. �

We design and implement the following algorithm to numerically calculate the distribution of
Σ2−Σ1 efficiently. For any c1, c2 ∈ Zq, a ∈ Zq/p, we numerically calculate Pr[XT

1 {ATX2}p = c1]

and Pr[{AX1}Tp X2 − εTX2 = c2,X
T
1 ATX2 mod (q/p) = a], then derive the distribution of

Σ2 −Σ1.
As Inv(X1,X2) occurs with overwhelming probability, for any event E, we have |Pr[E] −

Pr[E|Inv(X1,X2)]| < negl. For simplicity, we ignore the effect of Inv(X1,X2) in the following
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calculations. By Theorem 5.2, Pr[XT
1 {ATX2}p = c1] = Pr[X1 ← χn,y2 ← Znq/p; X

T
1 y2 =

c1]. This probability can be numerically calculated by computer programs. The probability
Pr[{AX1}Tp X2 − εTX2 = c2,X

T
1 ATX2 mod (q/p) = a] can also be calculated by the similar

way. Then, for arbitrary c ∈ Zq,

Pr[Σ1 −Σ2 = c] = Pr[XT
1 {ATX2}p − {AX1}Tp X2 + εTX2 = c]

=
∑

c1−c2=c
a∈Zq/p

Pr[XT
1 {ATX2}p=c1,{AX1}TpX2−εTX2=c2|XT

1 ATX2 mod (q/p)=a]·
Pr[XT

1 ATX2 mod (q/p)=a]

=
∑

c1−c2=c
a∈Zq/p

Pr[XT
1 {ATX2}p=c1|XT

1 ATX2 mod (q/p)=a]·
Pr[{AX1}TpX2−εTX2=c2|XT

1 ATX2 mod (q/p)=a] Pr[XT
1 ATX2 mod (q/p)=a]

=
∑

a∈Zq/p
c1−c2=c

Pr[XT
1 {ATX2}p = c1, c1 mod (q/p) = a] Pr[{AX1}TpX2 − εTX2 = c2,XT

1 ATX2 mod (q/p) = a]

Pr[XT
1 ATX2 mod (q/p) = a]

=
∑

a∈Zq/p

c1−c2=c
c1 mod (q/p)=a

Pr[XT
1 {ATX2}p = c1] Pr[{AX1}Tp X2 − εTX2 = c2,X

T
1 ATX2 mod (q/p) = a]

Pr[XT
1 ATX2 mod (q/p) = a]

By Theorem 5.2, conditioned on Inv(X1,X2) and XT
1 ATX2 mod (q/p) = a, XT

1 {ATX2}p is
independent of {AX1}Tp X2 − εTX2, which implies the second equality. Our code and scripts
are available from Github http://github.com/OKCN.

5.3 Parameter Selection and Evaluation

It is suggested in [ADPS16, BCD+16] that rounded Gaussian distribution can be replaced by
discrete distribution that is very close to rounded Gaussian in the sense of Rényi divergence
[BLL+15].

Definition 5.2 ( [BLL+15]). For two discrete distributions P,Q satisfying Supp(P )

⊆ Supp(Q), their a-order Rényi divergence is Ra(P ||Q) =
(∑

x∈Supp(P )
P (x)a

Q(x)a−1

) 1
a−1

.

Lemma 5.6 ( [BLL+15]). Letting a > 1, P and Q are two discrete distributions satisfying
Supp(P ) ⊆ Supp(Q), then we have

Multiplicativity: Let P and Q be two distributions of random variable (Y1, Y2). For i ∈ {1, 2},
let Pi and Qi be the margin distribution of Yi over P and Q respectively. If Y1 and Y2,
under P and Q respectively, are independent, then Ra(P ||Q) = Ra(P1||Q1) ·Ra(P2||Q2).

Probability Preservation: Let A ⊆ Supp(Q) be an event, then

Q(A) ≥ P (A)
a
a−1 /Ra(P ||Q).

Note that, when the underlying key derivation function KDF is modelled as a random
oracle (as in [BCD+16, ADPS16]), an attacker is considered to be successful only if it can
recover the entire consensus bits. Denote by E the event that a PT attacker can successfully
and entirely recover the bits of K1 = K2. By Lemma 5.6, we have that Prrounded Gaussian[E] >

Prdiscrete[E]a/(a−1)/R
n·(lA+lB)+lA·lB
a (χ||φ̄), where φ̄ is the rounded Gaussian distribution, and χ

is the discrete distribution.
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5.3.1 Proposed Parameters

dist. bits var.
probability of

order divergence
0 ±1 ±2 ±3 ±4 ±5 ±6

DR 16 2.00 18110 14249 6938 2090 389 44 3 500.0 1.0000270
DP 16 1.40 21456 15326 5580 1033 97 4 0 500.0 1.0000277

Table 5: Discrete distributions of every component in the LWR secret. We choose the standard
variances large enough to prevent potential combinational attacks.

n q p l m g distr. bw. err. |K|
Recommended 672 215 212 8 24 28 DR 16.19 2−30 256

Paranoid 832 215 212 8 24 28 DP 20.03 2−34 256

Table 6: Parameters for LWR-Based key exchange. “bw.” refers to the bandwidth in kilo-bytes.
“err.” refers to the overall error rate that is calculated by the algorithm developed in Section
5.2. “|K|” refers to the length of consensus bits.

5.3.2 Security Estimation

Similar to [ADPS16, BCD+16, CKLS16], we only consider the primal and dual attacks [CN11,
SE94] adapted to the LWR problem, which are briefly reviewed in Appendix E. Recently, Al-
brecht showed new variants against LWE with small secret [A17]. But as noted in [A17], it does
not violate the concrete security estimation of Frodo [BCD+16] and NewHope [ADPS16] as the
security evaluation in these works are very conservative.

We aim at providing parameter sets for long term security, and estimate the concrete security
in a more conservative way than [APS15] from the defender’s point of view. We first consider
the attacks of LWE whose secret and noise have different variances. Then, we treat the LWR
problem as a special LWE problem whose noise is uniformly distributed over [−q/2p, q/2p− 1].
In our security estimation, we simply ignore the difference between the discrete distribution and
the rounded Gaussian, on the following grounds: the dual attack and the primal attack only
concern about the standard deviation, and the Rényi divergence between the two distributions
is very small.

Scheme Attack m′ b C Q P

Recommended
Primal 665 459 143 131 104
Dual 633 456 142 130 103

Paranoid
Primal 768 584 180 164 130
Dual 746 580 179 163 129

Table 7: Security estimation of the parameters described in Table 6. “C, Q, P” stand for
“Classical, Quantum, Plausible” respectively. Numbers under these columns are the binary
logarithm of running time of the corresponding attacks. Numbers under “m′, b” are the best
parameters for the attacks.
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6 LWE-Based Key Exchange from KC and AKC

In this section, following the protocol structure in [Pei14, ADPS16, BCD+16], we present the
applications of OKCN and AKCN to key exchange protocols based on LWE.

Denote by (λ, n, q, χ,KC, lA, lB, t) the underlying parameters, where λ is the security param-
eter, q ≥ 2, n, lA and lB are positive integers that are polynomial in λ (for protocol symmetry, lA
and lB are usually set to be equal and are actually small constant). To save bandwidth, we chop
off t least significant bits of Y2 before sending it to Alice. Of course, we can chop off some least
significant bits from both Y1 and Y2. We mainly consider chopping off least significant bits
from Y2, as we want to optimize the ciphertext size when LWE-based KE is used for public-key
encryption.

Let KC = (params,Con,Rec) be a correct and secure KC scheme, where params is set to be
(q, g,m, d). The KC-based key exchange protocol from LWE is depicted in Figure 7, and the
actual session-key is derived from K1 and K2 via some key derivation function KDF . There,
for presentation simplicity, the Con and Rec functions are applied to matrices, meaning they are
applied to each of the coordinates separately. Note that 2tY′2 +2t−11 is an approximation of Y2,
so we have Σ1 ≈ XT

1 Y2 = XT
1 ATX2 + XT

1 E2, Σ2 = YT
1 X2 + Eσ = XT

1 ATX2 + ET
1 X2 + Eσ.8

As we choose X1,X2,E1,E2,Eσ according to a small noise distribution χ, the main part of Σ1

and that of Σ2 are the same XT
1 ATX2. Hence, the corresponding coordinates of Σ1 and Σ2 are

close in the sense of | · |q, from which some key consensus can be reached. The failure probability
depends upon the number of bits we cut off t, the underlying distribution χ and the distance
parameter d, which will be analyzed in detail in subsequent sections. In the following security
definition and analysis, we simply assume that the output of the PRG Gen is truly random.
For presentation simplicity, we have described the LWE-based key exchange protocol from a
KC scheme. But it can be straightforwardly adapted to work on any correct and secure AKC
scheme, which is also explicitly specified in Figure 8.

By a straightforward adaption (actually simplification) of the security proof of LWR-based
key exchange protocol in Section 5.1, we have the following theorem. The detailed proof of
Theorem 6.1 is presented in Appendix G.

Theorem 6.1. If (params,Con,Rec) is a correct and secure KC or AKC scheme, the key
exchange protocol described in Figure 7 is secure under the (matrix form of) LWE assump-
tion [PVW08, BCD+16].

6.1 Noise Distributions and Correctness

For a correct KC with parameter d, if the distance of corresponding elements of Σ1 and Σ2

is less than d in the sense of | · |q, then the scheme depicted in Figure 7 is correct. Denote
ε(Y2) = 2tbY2/2

tc+ 2t−11−Y2. Then

Σ1 −Σ2 = XT
1 (2tY′2 + 2t−11)−YT

1 X2 −Eσ

= XT
1 (Y2 + ε(Y2))−YT

1 X2 −Eσ

= XT
1 (ATX2 + E2 + ε(Y2))− (AX1 + E1)TX2 −Eσ

= XT
1 (E2 + ε(Y2))−ET

1 X2 −Eσ

8An alternative (equivalent) method is to set Y′2 = bY2/2
te, and in this case Σ1 = XT

1 2tY′2.
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Initiator
seed← {0, 1}κ

A = Gen(seed) ∈ Zn×nq

X1,E1 ← χn×lA

Y1 = AX1 + E1

Responder

A = Gen(seed)
X2,E2 ← χn×lB

Y2 = ATX2 + E2

Eσ ← χlA×lB

Σ2 = YT
1 X2 + Eσ

(K2,V)← Con(Σ2, params)

Σ1 = XT
1 (2

tY′2 + 2t−11)
K1 ← Rec(Σ1,V, params)

seed,Y1 ∈ Zn×lAq

Y′2 = bY2/2
tc ∈ Zn×lBdq/2te,V ∈ ZlA×lBg

Figure 7: LWE-based key exchange from KC, where K1,K2 ∈ ZlA×lBm and |K1| = |K2| =
lAlB|m|. 1 refers to the matrix which every elements are 1.

We consider each pair of elements in matrix Σ1,Σ2 separately, then derive the overall error
rate by union bound. Now, we only need to consider the case lA = lB = 1. In this case,
Xi,Ei,Yi, (i = 1, 2) are column vectors in Znq , and Eσ ∈ Zq.

If Y2 is independent of (X2,E2), then we can directly calculate the distribution of σ1 −σ2.
But now Y2 depends on (X2,E2). To overcome this difficulty, we show that Y2 is independent
of (X2,E2) under a condition of X2 that happens with very high probability.

Theorem 6.2. For any positive integer q, n, and a column vector s ∈ Znq , let φs denote the map

Znq → Zq : φs(x) = xT s. If there exits a coordinate of s which is not zero divisor in ring Zq,
then map φs is surjective.

Proof. Let us assume one coordinate of s, say s, has no zero divisor in ring Zq. Then the Zq → Zq
map between the two Zq-modules deduced by s: x 7→ sx, is injective, and thus surjective. Hence,
φs is surjective. �

For a column vector s composed by random variables, denote by F (s) the event that φs is
surjective. The following theorem gives a lower bound of probability of F (s), where s← χn. In
our application, this lower bound is very close to 1.

Theorem 6.3. Let p0 be the probability that e is a zero divisor in ring Zq, where e is subject to
χ. Then Pr[s← χn : F (s)] ≥ 1− pn0
Proof. From Theorem 6.2, if φs is not surjective, then all coordinates of s are zero divisors.
Then Pr[s← χn : ¬F (s)] ≤ pn0 , and the proof is finished. �

Theorem 6.4. If s, e← χn,A← Zn×nq ,y = As + e ∈ Znq , then under the condition F (s), y is
independent of (s, e), and is uniformly distributed over Znq .

Proof. For all ỹ, s̃, ẽ, Pr[y = ỹ | s = s̃, e = ẽ, F (s)] = Pr[As̃ = ỹ − ẽ | s = s̃, e = ẽ, F (s)].
Let A = (a1,a2, . . . ,an)T , ỹ − ẽ = (c1, c2, . . . , cn)T , where ai ∈ Znq , and ci ∈ Zq, for every
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Initiator
seed← {0, 1}κ

A = Gen(seed) ∈ Zn×nq

X1,E1 ← χn×lA

Y1 = b(AX1 + E1)/2
t1e

Responder

K2 ← ZlA×lBm

A = Gen(seed)
X2,E2 ← χn×lB

Y2 = b(ATX2 + E2)/2
t2e

Eσ ← χlA×lB

Σ2 = 2t1YT
1 X2 + Eσ

V← Con(Σ2,K2, params)

Σ1 = XT
1 (2

t2Y2)
K1 ← Rec(Σ1,V, params)

seed,Y1 ∈ Zn×lAdq/2t1e

Y2 ∈ Zn×lBdq/2t2e,V ∈ ZlA×lBg

Figure 8: LWE-based key exchange from AKC, where K1,K2 ∈ ZlA×lBm and |K1| = |K2| =
lAlB|m|. 1 refers to the matrix which every elements are 1.

1 ≤ i ≤ n. Since φs is surjective, the number of possible choices of ai, satisfying aTi · s̃ = ci, is

|Kerφs| = qn−1. Hence, Pr[As̃ = ỹ − ẽ | s = s̃, e = ẽ, F (s)] = (qn−1)n/qn
2

= 1/qn. Since the
right-hand side is the constant 1/qn, the distribution of y is uniform over Znq , and is irrelevant
of (s, e). �

We now begin to analyze the error rate of the scheme presented in Figure 7.
Denote by E the event |XT

1 (E2+ε(Y2))−ET
1 X2−Eσ|q > d. Then Pr[E] = Pr[E|F (S)] Pr[F (S)]+

Pr[E|¬F (S)] Pr[¬F (S)]. From Theorem 6.4, we replace Y2 = ATX2 + E2 in the event E|F (S)
with uniformly distributed Y2. Then,

Pr[E] = Pr[Y2 ← Znq : E|F (S)] Pr[F (S)] + Pr[E|¬F (S)] Pr[¬F (S)]

= Pr[Y2 ← Znq : E|F (S)] Pr[F (S)] + Pr[Y2 ← Znq : E|¬F (S)] Pr[¬F (S)]

+ Pr[E|¬F (S)] Pr[¬F (S)]− Pr[Y2 ← Znq : E|¬F (S)] Pr[¬F (S)]

= Pr[Y2 ← Znq : E] + ε

where |ε| ≤ Pr[¬F (S)]. In our application, p0 is far from 1, and n is very large, by Theorem 6.3,
ε is very small, so we simply ignore ε. If Y2 is uniformly distributed, then ε(Y2) is a centered
uniform distribution. Then, the distribution of XT

1 (E2 + ε(Y2)) − ET
1 X2 − Eσ can be directly

computed by programs.

6.1.1 Discrete Distributions

As noted in [ADPS16, BCD+16], sampling from rounded Gaussian distribution (i.e., sampling
from a discrete Gaussian distribution to a high precision) constitutes one of major efficiency
bottleneck. In this work, for LWE-based key exchange, we use the following two classes of
discrete distributions, which are specified in Table 8 and Table 9 respectively, where “bits”
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refers to the number of bits required to sample the distribution and “var.” means the standard
variation of the Gaussian distribution approximated. We remark that the discrete distributions
specified in Table 9 are just those specified and used in [BCD+16] for the LWE-based Frodo
scheme.

dist. bits var.
probability of

order divergence
0 ±1 ±2 ±3 ±4 ±5

D1 8 1.10 94 62 17 2 15.0 1.0015832
D2 12 0.90 1646 992 216 17 75.0 1.0003146
D3 12 1.66 1238 929 393 94 12 1 30.0 1.0002034
D4 16 1.66 19794 14865 6292 1499 200 15 500.0 1.0000274
D5 16 1.30 22218 15490 5242 858 67 2 500.0 1.0000337

Table 8: Discrete distributions proposed in this work, and their Rényi divergences.

dist. bits var.
probability of

order divergence
0 ±1 ±2 ±3 ±4 ±5 ±6

D̄1 8 1.25 88 61 20 3 25.0 1.0021674
D̄2 12 1.00 1570 990 248 24 1 40.0 1.0001925
D̄3 12 1.75 1206 919 406 104 15 1 100.0 1.0003011
D̄4 16 1.75 19304 14700 6490 1659 245 21 1 500.0 1.0000146

Table 9: Discrete distributions for Frodo [BCD+16], and their Rényi divergences

6.2 Instantiations, and Comparisons with Frodo

The comparisons, between the instantiations of our LWE-based KE protocol and Frodo, are
summarized in the following tables 10, 11 and 12. Note that, for presentation simplicity, we
take lA = lB = l for the sets of parameters under consideration. Also, for space limitation,
we use OKCN to denote OKCN-LWE in these tables. For “OKCN simple” proposed in Algo-
rithm 3, it achieves a tight parameter constraint, specifically, 2md < q. In comparison, the
parameter constraint achieved by Frodo is 4md < q. As we shall see, such a difference is one
source that allows us to achieve better trade-offs among error rate, security, (computational
and bandwidth) efficiency, and consensus range. In particular, it allows us to use q that is one
bit shorter than that used in Frodo. Beyond saving bandwidth, employing a one-bit shorter q
also much improves the computational efficiency (as the matrix A becomes shorter, and con-
sequently the cost of generating A and the related matrix operations are more efficient), and
can render stronger security levels simultaneously. Here, we briefly highlight one performance
comparison: OKCN-T2 (resp., Frodo-recommended) has 18.58kB (resp., 22.57kB) bandwidth,
887.15kB (resp., 1060.32kB) matrix A, at least 134-bit (resp., 130-bit) quantum security, and
error rate 2−39 (resp., 2−38.9).

The error probabilities for OKCN-LWE are derived by computing Pr
[
|Σ1[i, j]−Σ2[i, j]|q > d

]
,

for any 1 ≤ i ≤ lA and 1 ≤ j ≤ lB, and then applying the union bound. The concrete failure
probabilities are gotten by running the code slightly adjusted, actually simplified, from the open
source code of Frodo. The simplified code are available from Github http://github.com/OKCN.

The concrete security levels are calculated by running the same code of Frodo. For compar-
ison, the security levels of Frodo are presented in Appendix F.
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q n l m
g d

dist.
error rates

bw. (kB) |A| (kB) |K|
OKCN Frodo OKCN Frodo OKCN Frodo

Challenge 210 334 8 21 29 2 255 127 D1 2−47.9 2−14.9 6.75 139.45 64
Classical 211 554 8 22 29 2 255 127 D2 2−39.4 2−11.5 12.26 422.01 128

Recommended 214 718 8 24 210 2 511 255 D3 2−37.9 2−10.2 20.18 902.17 256
Paranoid 214 818 8 24 210 2 511 255 D4 2−32.6 2−8.6 22.98 1170.97 256

Paranoid-512 212 700 16 22 210 2 511 255 D̄4 2−33.6 2−8.3 33.92 735.00 512

Table 10: Parameters proposed for OKCN-LWE when t = 0 (i.e., without cutting off least
significant bits). “distr.” refers to the discrete distributions proposed in Table 8 and Table 9.
“bw.” means bandwidth in kilo-bytes (kB). “|A|” refers to the size of the matrix. |K| = l2 logm
denotes the length of consensus bits.

q n l m
g d

dist.
error rates bw. (kB) |A| (kB) |K|

OKCN Frodo OKCN Frodo OKCN Frodo OKCN Frodo

Challenge 211 352 8 21 22 2 383 255 D̄1 2−80.1 2−41.8 7.76 7.75 170.37 64
Classical 212 592 8 22 22 2 383 255 D̄2 2−70.3 2−36.2 14.22 14.22 525.70 128

Recommended 215 752 8 24 23 2 895 511 D̄3 2−105.9 2−38.9 22.58 22.57 1060.32 256
Paranoid 215 864 8 24 23 2 895 511 D̄4 2−91.9 2−33.8 25.94 25.93 1399.68 256

Table 11: Parameters of Frodo, and comparison with OKCN-LWE when t = 0. Here, “distr.”
refers to the discrete distributions specified in Table 9. Note that, on the parameters of Frodo,
OKCN-LWE achieves significantly lower error rates.

q n l m g t d dist. err. bw. (kB) |A| (kB) |K|
OKCN-T2 214 712 8 24 28 2 509 D5 2−39.0 18.58 887.15 256
OKCN-T1 214 712 8 24 28 1 509 D5 2−52.3 19.29 887.15 256

Table 12: Parameters proposed for OKCN-LWE with t least significant bits chopped off.

6.2.1 Benchmark

The work [SM16] introduces the Open Quantum Safe Project. liboqs is one part of this project.
liboqs provides the interface for adding new key exchange schemes, benchmark, and an easy way
to integrate to OpenSSL.

We fork the liboqs on Github and add our OKCN-LWR-Recommended and OKCN-LWE-
Recommended. Most of the source codes are modified from Frodo-Recommended provided in
liboqs.

We run benchmark of liboqs on Ubuntu Linux 16.04, GCC 5.4.0, Intel Core i7-4712MQ
2.30GHz, with hyperthreading and TurboBoost disabled, and the CPU frequency fixed to
2.30GHz (by following the instructions on http://bench.cr.yp.to/supercop.html). The
benchmark result (Table 14) shows that OKCN-LWR-Recommended and OKCN-LWE-Recommended
are faster than Frodo, and use smaller bandwidth.

7 Hybrid Construction of Key Exchange from LWE and LWR

By composing a CPA-secure symmetric-key encryption scheme, the LWE-based key exchange
protocols presented Section 6 can be used to construct public-key encryption (PKE) schemes,

39

http://bench.cr.yp.to/supercop.html


Scheme Attack
Rounded Gaussian Post-reduction

m′ b C Q P C Q P

Classical
Primal 477 444 138 126 100 132 120 95
Dual 502 439 137 125 99 131 119 94

Recommended
Primal 664 500 155 141 112 146 133 105
Dual 661 496 154 140 111 145 132 104

Paranoid
Primal 765 586 180 164 130 179 163 130
Dual 743 582 179 163 129 178 162 129

Paranoid-512
Primal 643 587 180 164 131 180 164 130
Dual 681 581 179 163 129 178 162 129

OKCN-T2
Primal 638 480 149 136 108 148 135 107
Dual 640 476 148 135 107 147 134 106

Table 13: Security estimation of the parameters described in Table 10 and Table 12. “Rounded
Gaussian” refers to the ideal case that noises and errors follow the rounded Gaussian distribution.
“Post-reduction” refers to the case of using discrete distributions as specified in Table 8.

by treating (A,Y1) (resp., X1) as the static public key (resp., secret key). Moreover, AKC-
based key-exchange protocol can be directly used as a CPA-secure PKE scheme. To further
improve the efficiency of the resultant PKE scheme, the observation here is we can generate
the ephemeral Y2 in the ciphertext with LWR samples. This results in the following hybrid
construction of key exchange from LWE and LWR in the public-key setting. For applications to
PKE, we focus on the AKC-based protocol construction. Denote by (nA, nB, lA, lB, q, p,KC, χ)
the system parameters, where p|q, and we choose p and q to be power of 2. The AKC-based
protocol from LWE and LWR is presented in Figure 9. To further reduce the size of Y1 public
key, some least significant bits can also be cut off from Y1.

The hybrid construction of key exchange from LWE and LWR is similar to the underlying
protocol in Lizard [CKLS16]. The Lizard PKE scheme uses our AKCN as the underlying
reconciliation mechanism, while our protocol is a general structure that can be implemented
with either KC or AKC. In order to improve efficiency, Lizard [CKLS16] is based on the variants,
referred to as spLWE and spLWR, of LWE and LWR with sparse secret. We aim at providing
parameter sets for long term security, and estimate the concrete security in a more conservative
way than [CKLS16] from the defender’s point of view.

7.1 Security and Error Rate Analysis

The security proof is very similar to LWE-based and LWR-based key exchanges in previous
sections, and is omitted here.

For the error probability, we have

Σ1 = XT
1 Y2 =

p

q
XT

1

(
ATX2 − {ATX2}p

)
=
p

q

(
XT

1 ATX2 −XT
1 {ATX2}p

)

Σ2 =
⌊
YT

1 X2

⌉
p

=
p

q

(
YT

1 X2 − {YT
1 X2}p

)
=
p

q
(XT

1 ATX2 + ET
1 X2 − {YT

1 X2}p)

Σ2 −Σ1 =
p

q

(
ET

1 X2 + XT
1 {ATX2}p − {ET

1 X2 + XT
1 ATX2}p

)
= bET

1 X2 + XT
1 {ATX2}pep

We can see that the distribution of Σ2−Σ1 can be derived from the distribution of E1X2 +
XT

1 {ATX2}p. From Theorem 6.4, we know that for almost all (with overwhelm probability)
given X2, the distribution of {ATX2}p is the uniform distribution over [−q/2p, q/2p)nA . The
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time(us) stdev cycle stdev bw. (B)

LWE Frodo recommended

Alice 0 1443.915 10.990 3313704 25236 11280
Bob 1940.616 12.809 4453734 29439 11288
Alice 1 170.109 3.655 390331 8317 -

LWR OKCN recommended

Alice 0 1161.154 11.839 2664789 27129 9968
Bob 1722.525 12.401 3953182 28400 8224
Alice 1 133.984 3.980 307404 9065 -

LWE OKCN recommended

Alice 0 1335.453 13.460 3064789 30871 9968
Bob 1753.240 14.293 4023632 32851 8608
Alice 1 146.162 3.528 335380 8035 -

Table 14: Benchmark of liboqs integrated with OKCN-LWE-Recommended. “time(us)” refers
to mean time that spent on each iteration. “cycle” refers to mean number of cpu cycles. “stdev”
refers to population standard deviation of time or cpu cycles. “bw. (B)” refers to bandwidth,
counted in bytes.

concrete error probability can then be derived numerically by computer programs. The codes
and scripts are available on Github http://github.com/OKCN.

7.2 Parameter Selection

For simplicity, we use the Gaussian distribution of the same variance (denote as σ2
s) for the noise

E1, secrets X1 and X2. We consider the weighted dual attack and weighted primal attack in
Section 5.3.

σ2
s nA nB q p l m g pk cipher err. |K|

Recommended 2.0 712 704 215 212 8 24 28 10.56 8.61 2−63 256

Paranoid 2.0 864 832 215 212 8 24 28 12.24 10.43 2−52 256

Table 15: Parameters for the hybrid construction of key exchange from LWE and LWR. “err.”
refers to the overall error probability. “|K|” refers to the length of consensus bits. “pk” refers to
the kilo-byte (kB) size of the public key pk = (A,Y1). “cipher” refers to the kB size of (Y2,V).

Scheme Attack
LWE LWR

m′ b C Q P m′ b C Q P

Recommended
Primal 699 464 144 131 105 664 487 151 138 109
Dual 672 461 143 131 104 665 483 150 137 109

Paranoid
Primal 808 590 181 165 131 856 585 180 164 130
Dual 789 583 179 163 130 765 579 178 162 129

Table 16: Security estimation of the parameters described in Table 15.
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Initiator
seed← {0, 1}κ
A← ZnB×nA

q

sk = X1 ← χnA×lA

E1 ← χnB×lA

Y1 = AX1 + E1 ∈ ZnB×lA
q

Responder

K2 ← ZlA×lB
m

A = Gen(seed)
X2 ← χnB×lB

Y2 = bATX2ep
Σ2 = bYT

1 X2ep
V← Con(Σ2,K2, params)

Σ2 = XT
1 Y2 mod p

K1 ← Rec(Σ1,V, params)

pk = (A,Y1)

Y2 ∈ ZnA×lB
p ,V ∈ ZlA×lB

g

Figure 9: AKC-based key exchange from LWE and LWR in the public-key setting, where pk =

(A,Y1) is fixed once and for all, K1,K2 ∈ ZlA×lBm and |K1| = |K2| = lAlB|m|.

8 RLWE-Based Key Exchange from KC and AKC

Denote by (λ, n, q, σ,KC) the system parameters, where λ is the security parameter, q ≥ 2 is
a positive prime number, σ parameterizes the discrete Gaussian distribution DZn,σ, n denotes
the degree of polynomials in Rq, and Gen a PRG generating a ∈ Rq from a small seed. Let
KC = (params,Con,Rec) be a correct and secure KC scheme, where params = (q, g,m, d). In
this section, we mainly consider m = 2. The KC-based key exchange protocol from RLWE is
depicted in Figure 10, where the actual session-key is derived from k1 and k2 via some key
derivation function KDF . As discussed in Section 5, a KC-based key exchange protocol can
be trivially extended to work on any correct and secure AKC scheme, which is also presented
in Figure 11, where k2 ← {0, 1}n for KEM (rep., k2 ∈ {0, 1}n corresponds to any plaintext for
PKE). When used for PKE, (seed,y1) corresponds to the public key, and x1 corresponds to the
secret key. In the protocol description, for presentation simplicity, the Con and Rec functions
are applied to polynomials, meaning they are applied to each of the coefficients respectively.
Also, for simplicity and symmetry, in the following analysis we assume the same number of tail
bits are chopped off from both y1 and y2 by setting t = t1 = t2 ≥ 0. In general, if we want to
optimize the size of public key (resp., ciphertext), we can set t1 > t2 (resp., t1 < t2).

On parameters and implementations. The protocol described in Figure 10 works on any hard
instantiation of the RLWE problem. But if n is power of 2, and prime q satisfies q mod 2n = 1,
then number-theoretic transform (NTT) can be used to speed up polynomial multiplication. The
performance can be further improved by using the Montgomery arithmetic and AVX2 instruction
set [ADPS16], and by carefully optimizing performance-critical routines (in particular, NTT) in
ARM assembly [AJS16,H14]. As in [ADPS16], the underlying noise distribution is the centered
binomial distribution Ψη (rather than rounded Gaussian distribution with the standard deviation
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Initiator
seed← {0, 1}κ

a = Gen(seed) ∈ Rq
x1, e1 ← DZn,σ

y1 = b(a · x1 + e1)/2
t1e

Responder

a = Gen(seed)
x2, e2 ← DZn,σ

y2 = b(a · x2 + e2)/2
t2e

e′2 ← DZn,σ

σ2 = 2t1y1 · x2 + e′2 ∈ Rq
(k2,v)← Con(σ2, params)

σ1 = 2t2y2 · x1 ∈ Rq
k1 ← Rec(σ1,v, params)

seed,y1 ∈ Rq

y2 ∈ Rq,v ∈ Rg

Figure 10: RLWE-based key exchange from KC, where k1,k2 ∈ Rq. The protocol instantiated
with OKCN specified in Algorithm 1 is referred to as OKCN-RLWE.

σ =
√
η/2), which is the sum of η independent centered binomial variables and can be rather

trivially sampled in hardware and software with much better protection against timing attacks.
We remark that the actual noise distribution is the composition of Ψη and the chopped bits
determined by t. When estimating the post-quantum security levels, we usually just assume
t = 0 (i.e., without considering the effect of t on the actual noise distribution); but sometimes we
also take this value into account by approximately treating the standard deviation of the noise as
σ′ =

√
(2σ2 + 2t−1)/2. This is based on the observation that no attacks known take advantage of

the information of different noise distributions. The concrete values of post-quantum security are
gotten by running the scripts provided by [ADPS16,BDK+17]. The parameters and performance
of OKCN-RLWE and AKCN-RLWE are summarized in Table 17 and 18.

On security analysis. The security definition and proof of the RLWE-based key exchange
protocol can be straightforwardly adapted from those for the KE protocol based on LWE or
LWR. Similar analysis is also given in [BDK+17]. NewHope achieves 255-bit post-quantum
security against the underlying lattice problem, but the actual use of its 256-bit shared key
may provide essentially lower security guarantee (in view of the quadratic speedup by Grover’s
search algorithm and the possibility of more sophisticated quantum attacks against symmetric-
key cryptography [KM10,KLL15]). In this sense, the 255-bit post-quantum security of NewHope
is actually overshot in reality. For RLWE-based KE protocols, we aim for about 256-bit post-
quantum security against both the underlying lattice problem and the shared key. This means
that the shared key should be of at least 256 bits.

On error rate analysis. The error rate analysis is a special case of that for MLWE-based key
exchange presented in Section 9. Note that the correctness of OKCN (resp., AKCN) requires
that (2d + 1)m < q(1 − 1

g ) (resp., (2d + 1)m < q(1 − 1
g )); This means that on the same

parameters (q,m, d), OKCN-RLWE with parameter g has the same error rate of AKCN-RLWE
with parameter g′ = mg. In this work, we set m = 2, and the concrete error rate values are
gotten by running the scripts provided in [ADPS16,BDK+17].
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Initiator
seed← {0, 1}κ

a = Gen(seed) ∈ Rq
x1, e1 ← DZn,σ

y1 = b(a · x1 + e1)/2
t1e

Responder

k2 ∈ Znm
a = Gen(seed)
x2, e2 ← DZn,σ

y2 = b(a · x2 + e2)/2
t2e

e′2 ← DZn,σ

σ2 = 2t1y1 · x2 + e′2 ∈ Rq
v← Con(σ2,k2, params)

σ1 = 2t2y2 · x1 ∈ Rq
k1 ← Rec(σ1,v, params)

seed,y1 ∈ Rq

y2 ∈ Rq,v ∈ Rg

Figure 11: RLWE-based key exchange from AKC, where k1,k2 ∈ Rq. The protocol instantiated
with AKCN in Algorithm 4 is referred to as AKCN-RLWE.

8.1 Combining AKCN with Lattice Code in D̃4

When implemented with the same parameters proposed in [ADPS16] for NewHope, as shown in
Table 17, OKCN-RLWE and AKCN-RLWE reach 1024 consensus bits, with a failure probability
around 2−40; Though it suffices, we suggest, for most applications of key exchange. In order for
reaching a negligible error rate, particularly for achieving a CCA-secure PKE scheme, we need
to further lower the error rate.

A straightforward approach to reducing the error rate is to use the technique of NewHope
by encoding and decoding the four-dimensional lattice D̃4.9 With such an approach, the error
rate can be lowered to about 2−61, but the shared-key size is reduced from 1024 to 256. AKCN-
RLWE equipped with this approach, referred to as AKCN-4:1, is presented and analyzed in
Appendix H. We note that, in comparison with NewHope-simple proposed in the subsequent
work [ADPS16b], AKCN-4:1 still has some performance advantage in bandwidth expansion;
specifically expanding 256 bits by AKCN-4:1 vs. 1024 bits by NewHope-simple compared to
that of NewHope.10

8.2 On the Independence of Errors in Different Positions

Another approach to reduce error rate is to employ error correction code (ECC). Unfortunately,
in general, the ECC-based approach can be more inefficient and overburdened than NewHope’s
approach. In this work, we make a key observation on RLWE-based key exchange, by proving
that the errors in different positions in the shared-key are independent when n is large. Based
upon this observation, we present a super simple and fast code, referred to as single-error
correction (SEC) code, to correct at least one bit error. By equipping OKCN/AKCN with the
SEC code, we present the (up-to-date) simplest RLWE-based key exchange from both OKCN

9Decoding the 24-dimensional Leech lattice is also recently considered in [Pop16], but is more complicated.
10The bandwidth expansion, for both AKCN-4:1 and NewHope-simple, can be further compressed but at the

price of losing operation simplicity.
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g d |K| bw.(B) per. nH err. pq-sec

OKCN-RLWE 24 2879 1024 4128 2−48 - 2−38 255
OKCN-RLWE 26 3023 1024 4384 2−52 - 2−42 255
AKCN-RLWE 24 2687 1024 4128 2−42 - 2−32 255
AKCN-RLWE 26 2975 1024 4384 2−51 - 2−41 255

OKCN-SEC 22 2303 765 3904 2−31 4 2−48.5 255
OKCN-SEC 23 2687 765 4032 2−42 4 2−70.5 255
OKCN-SEC 23 2687 837 4021 2−42 5 2−69.5 255
AKCN-SEC 24 2687 765 4128 2−42 4 2−70.5 255
AKCN-SEC 24 2687 837 4128 2−42 5 2−69.5 255

NewHope 22 - 256 3872 2−69 - 2−61 255
NewHope-Simple 22 - 256 4000 2−69 - 2−61 255
AKCN-4:1-RLWE 22 - 256 3904 2−69 - 2−61 255

Table 17: All the schemes in this table use the same parameters proposed for NewHope

[ADPS16]: (q = 12289, n = 1024,m = 21, t = 0, σ =
√

8, κ = 256,Ψ16). |K| refers to the
total binary length of consensus bits. bw. (B) refers to the bandwidth in bytes. err. refers to
failure probability. “nH” refers to the dimension of SEC code used. “per” refers to the per bit
error rate before applying the SEC code. “err.” refers to overall error rate. “pq-sec” refers to
the best known post-quantum attacks targeting the underlying lattice problem.

g t σ (σ′) |K|(SEC) bw.(pk,cipher) err.(SEC) pq-sec (t-sec)

OKCN-RLWE 24 2
√

8 (
√

9) 1024(765) 3392 (1440,1952) 2−28.1 (2−61) 255 (258)

σ =
√

8 23 2
√

8 (
√

9) 1024(765) 3264 (1440,1824) 2−24.8 (2−54.4) 255 (258)

23 1
√

8 (
√

8.5) 1024(765) 3520 (1568,1952) 2−33.4 (2−71.6) 255 (257)

24 1
√

8 (
√

8.5) 1024(765) 3648 (1568,2080) 2−37.8 (2−80.4) 255 (257)

OKCN-RLWE 22 2
√

6 (
√

7) 1024(765) 3136(1440,1696) 2−31.8 (2−68.4) 246 (250)

σ =
√

6 23 2
√

6 (
√

7) 1024(765) 3264 (1440,1824) 2−43.2 (2−91.2) 246 (250)

24 2
√

6 (
√

7) 1024(765) 3392(1440,1952) 2−49 (2−102.8) 246 (250)

23 1
√

6 (
√

6.5) 1024(765) 3520 (1568,1952) 2−60.6 (2−126) 246 (248)

24 1
√

6 (
√

6.5) 1024(765) 3648 (1568,2080) 2−68.9 (2−142.6) 246 (248)

AKCN-RLWE 25 2
√

8 (
√

9) 1024(765) 3520 (1440,2080) 2−28.1 (2−61) 255 (258)

σ =
√

8 24 2
√

8 (
√

9) 1024(765) 3392 (1440,1952) 2−24.8 (2−54.4) 255 (258)

24 1
√

8 (
√

8.5) 1024(765) 3648 (1568,2080) 2−33.4 (2−71.6) 255 (257)

25 1
√

8 (
√

8.5) 1024(765) 3776 (1568,2208) 2−37.8 (2−80.4) 255 (257)

AKCN-RLWE 23 2
√

6 (
√

7) 1024(765) 3264(1440,1824) 2−31.8 (2−68.4) 246 (250)

σ =
√

6 24 2
√

6 (
√

7) 1024(765) 3392(1440,1952) 2−43.2 (2−91.2) 246 (250)

25 2
√

6 (
√

7) 1024(765) 3520(1440,2080) 2−49 (2−102.8) 246 (250)

24 1
√

6 (
√

6.5) 1024(765) 3648 (1568,2080) 2−60.6 (2−126) 246 (248)

25 1
√

6 (
√

6.5) 1024(765) 3776 (1568,2208) 2−68.9 (2−142.6) 246 (248)

Table 18: Parameters for κ = 256, q = 12289, n = 1024, m = 2, nH = 4. “|K| (SEC)” refers
to the key size (resp., key size with SEC); “bw.(pk,cipher)” refers to the bandwidth in bytes
(including the size of pk = (y1, seed) and cipher = (y2,v)); “err.(SEC)” refers to the error rate
(resp., the error rate with SEC); “pq-sec” (resp., “t-sec”) refers to the security against the best
known quantum attacks against the underlying lattice problem without considering the effect of
t (resp., by heuristically viewing the standard deviation of the noise as σ′ =

√
(2σ2 + 2t−1)/2).
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and AKCN, which can be used for CCA-secure public-key encryption (e.g., for achieving 765-bit
shared-key with bandwidth 3392 bytes and error rate 2−73.2 at about 250-bit post-quantum
security).

Suppose f(x), g(x) are two polynomials of degree n, whose coefficients are drawn indepen-
dently from Gaussian. Let h(x) = f(x) · g(x) ∈ R[x]/(xn + 1). We show that for every two
different integers 0 ≤ c1, c2 < n, the joint distribution of (h[c1], h[c2]) will approach to the
two-dimensional Gaussian when n tends to infinity. Hence, for the basic construction of RLWE-
based key exchange from KC and AKC presented in Figure 10, it is reasonable to assume that
the error rates of any two different positions are independent when n is sufficiently large.

For representation simplicity, for any polynomial f , let f [i] denote the coefficient of xi.

Lemma 8.1. Suppose f(x), g(x) ∈ R[x]/(xn+1) are two n-degree polynomials whose coefficients
are drawn independently from N (0, σ2). Let h(x) = f(x) · g(x) ∈ R[x]/(xn + 1), where h(x) is
represented as an n-degree polynomial. For any two different integers 0 ≤ c1, c2 < n, the
characteristic function of the two-dimensional random vector (h[c1], h[c2]) ∈ R2 is

φc1,c2(t1, t2) = E
[
ei(t1h[c1]+t2h[c2])

]
= t1f

TAc1g + t2f
TAc2g (6)

=
n−1∏

k=0

(
1 + σ4

(
t21 + t22 + 2t1t2 cos

(
π(c1 − c2)

2k + 1

n

)))− 1
2

(7)

Proof. One can observe that t1h[c1] + t2h[c2] is equal to

t1


 ∑

i+j=c1

f [i]g[j]−
∑

i+j=c1+n

f [i]g[j]


+ t2


 ∑

i+j=c2

f [i]g[j]−
∑

i+j=c2+n

f [i]g[j]




= t1f
TAc1g + t2f

TAc2g. = fT (t1Ac1 + t2Ac2)g

Where f = (f [0], f [1], . . . , f [n− 1])T , g = (g[0], g[1], . . . , g[n− 1])T , and the notations Ac1 ,Ac2

are defined by

Ac =




1
...

1
−1

...

−1




The value 1 in the first row is in the c-th column.
As t1Ac1 + t2Ac2 is symmetric, it can be orthogonally diagonalize as PTΛP, where P

is orthogonal, and Λ is diagonal. Hence, φc1,c2(t1, t2) = E[exp(i(Pf)TΛ(Pg))]. Since P is
orthogonal, it keeps the normal distribution unchanged. Hence, (Pf)TΛ(Pg) equals to the sum
of n scaled products of two independent one-dimensional Gaussian.

Suppose λ1, λ2, . . . , λn are the eigenvalues of t1Ac1 + t2Ac2 , and φ is the characteristic func-
tion of the product of two independent one-dimensional standard Gaussian. Then we have

φc1,c2(t1, t2) =
n−1∏

k=0

φ(σ2λk) (8)
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From [Sim02], φ(t) = (1 + t2)−1/2. For λk, we further observe that

(t1Ac1 + t2Ac2)2 = (t21 + t22)I + t1t2(Ac1Ac2 + Ac2Ac1)

= (t21 + t22)I + t1t2(Gc2−c1 + Gc1−c2),

where

G =




1
1

. . .

1
−1




The characteristic polynomial of G is xn + 1. Hence, λk satisfies

λ2
k = t21 + t22 + 2t1t2 cos

(
π(c1 − c2)

2k + 1

n

)

By taking this into Equation 8, we derive the Equation 7. �

Theorem 8.1. For any fixed integers 0 ≤ c1, c2 < n, c1 6= c2, when n tends to infinity, the dis-

tribution of
(
h[c1]
σ2
√
n
, h[c2]
σ2
√
n

)
converges (in distribution) to the two-dimensional normal distribution

N (0, I2).

Proof. Let φ(t1, t2) denote the characteristic function of the random vector
(
h[c1]
σ2
√
n
, h[c2]
σ2
√
n

)
. Then,

for fixed t1, t2,

ln(φ(t1, t2)) = −1

2

n−1∑

k=0

ln

(
1 +

1

n

(
t21 + t22 + 2t1t2 cos

(
π(c1 − c2)

2k + 1

n

)))
(9)

= −1

2

n−1∑

k=0

[
1

n

(
t21 + t22 + 2t1t2 cos

(
π(c1 − c2)

2k + 1

n

))
+ rk

]
(10)

= −1

2

(
t21 + t22

)
− 1

2

n−1∑

k=0

rk, (11)

where rk is the Lagrange remainders. So, |rk| ≤ λ4
k/2n

2. Since λ2
k ≤ (|t1| + |t2|)2, we have

|rk| ≤ (|t1|+ |t2|)4/2n2.
When n tends to infinity, φ(t1, t2) converges pointwise to exp(−(t21 + t22)/2), which is the

characteristic function of the two-dimensional normal distribution N (0, I2). From Lévy’s con-

vergence theorem, we derive that the random vector
(
h[c1]
σ2
√
n
, h[c2]
σ2
√
n

)
converges in distribution to

the normal distribution N (0, I2). �

8.3 Reducing Error Rate with Single-Error Correction Code

Note that, for the basic protocol construction of RLWE-based key exchange from KC and AKC
presented in Figure 10, it has already achieved per-bit error rate of about 2−42. The observation
here is that, by Theorem 8.1 on the independence of error in different positions when n is large, if
we can correct one bit error the error rate will be greatly lowered. Towards this goal, we present
an variant of the Hamming code, referred to as single-error correction (SEC) code, which can
correct one-bit error in a very simple and fast way.
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8.3.1 Single-Error Correction Code

All the arithmetic operations in this section are over Z2. For a positive integer nH , denote
NH = 2nH , and define the matrix H as following, where for any i, 1 ≤ i ≤ NH − 1, the i-th
column of H just corresponds to the binary presentation of i.

HnH×(NH−1) =




1 0 1 0 1 0 1 · · · 0 1 0 1
0 1 1 0 0 1 1 · · · 0 0 1 1
0 0 0 1 1 1 1 · · · 1 1 1 1

· · ·
0 0 0 0 0 0 0 · · · 1 1 1 1




For arbitrary x = (x1, . . . , xNH−1) ∈ ZNH−1
2 , let pT = HxT . It is easy to check that the j-th

element of p is the exclusive-or of all xi’s satisfying the j-th least significant bit of i is 1, where
1 ≤ j ≤ nH and 1 ≤ i ≤ NH − 1. Specifically, the first element of p is the exclusive-or of all xi
that the least significant bit of i is 1, and the second element of p is the exclusive-or of all xi
that the second least significant bit of i is 1, and so on. Denote p = (p1, p2, . . . , pnH ). We can
combine the bits in p into a binary number p = 20p1 + 21p2 + . . . 2nH−1pnH . The construction
of H directly leads to the following proposition.

Proposition 8.1. If pT = HxT , and the Hamming weight of x is 1, then p is the subscript
index of the only 1 in x.

Algorithm 14 EncodeC(x = (x1, . . . , xNH−1))

1: x0 = ⊕NH−1
i=1 xi

2: pT = HxT

3: c = (x0,x,p)
4: return c

Algorithm 15 DecodeC(x0,x,p)

1: p = ⊕NH−1
i=0 xi

2: if p = 1 then
3: i = HxT ⊕ p . bitwise exclusive-or
4: xi = xi ⊕ 1
5: end if
6: return x = (x1, . . . , xNH−1)

The single-error correction code C is defined by

C =
{

(x0,x,p) ∈ Z2 × ZNH−1
2 × ZnH2 | x0 = ⊕NH−1

i=1 xi,p
T = HxT

}

The encoding algorithm is straightforward and depicted in Algorithm 14.
We now show that C can correct one bit error. Suppose x is encoded into c = (x0,x,p).

For some reasons, such as the noise in communication channel, the message c may be changed
into c′ = (x′0,x

′,p′). We only need to consider the case that at most one bit error occurs. If
x′0 equals to the parity bit of x′, then no error occurs in x0 and x. Otherwise, there is one bit
error in x′0 or x′, but p′ = p (as we assume there exists at most one bit error that has already
occurred in x′0 or x′). We calculate p′′ = Hx′T ⊕ p′T . In fact, p′′ = Hx′T ⊕ pT = H(x′T ⊕ xT ).
If the one-bit error occurs in x′, by Proposition 8.1, p′′ is the subscript index of the error bit. If
the one-bit error occurs on x′0, then x′ = x, and p′′ = H0 = 0. Hence, p′′ always equals to the
subscript index of the error bit.

The decoding algorithm is depicted in Algorithm 15. Note that, according to the special
form of H, the matrix multiplication HxT in both encoding and decoding can be done with
simple bit operations like bit shifts and bitwise exclusive-or (such an implementation is given
in Appendix I). Moreover, for AKCN-SEC and OKCN-SEC, the calculations in Lines 2-4 in
Algorithm 15 are executed only with probability around 2−40, so the decoding is extremely fast.
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8.3.2 AKC and KC with SEC code

Figure 12 depicts the AKC scheme equipped with the SEC code. Note that EncodeC can be
calculated off-line.

Alice
σA ∈ ZNH+nH

q

kA = EncodeC(x)
v← Con(σA,kA, params)

Bob
σB ∈ ZNH+nH

q

kB ← Rec(σB ,v, params)
x′ = DecodeC(kB)

v

≈

Figure 12: Depiction of AKC with SEC code, where kA,kB ∈ ZNH+nH
2 , |x| = |x′| = NH − 1. If

the Hamming distance between kA and kB is at most 1, then x = x′.

Alice
σA ∈ ZNH+nH

q

(kA,v)← Con(σA, params)
Denote kA as (x0,x = (x1, . . . , xNH−1),p)

v′ = EncodeC(x)⊕ kA

Bob
σB ∈ ZNH+nH

q

kB ← Rec(σB ,v, params)
x′ = DecodeC(kB ⊕ v′)

v,v′

≈

Figure 13: Depiction of application of SEC code to KC, where kA,kB ∈ ZNH+nH
2 . If kA and kB

have at most one different bit, then x = x′.

For KC equipped with the SEC code, we propose the algorithm depicted in Figure 13. Note
that Alice only needs to send nH + 1 bits of v′, as the second to the NH -th elements of v′ are
all zeros. Bob calculates x′ = DecodeC(kB ⊕ v′). In fact, kB ⊕ v′ = EncodeC(x) ⊕ (kA ⊕ kB).
Hence, if the Hamming distance between kA and kB is 1, then x′ = x. To prove security of the
algorithm in Figure 13, we need the following theorem.

Theorem 8.2. Let V = Z2 × {0 ∈ ZNH−1
2 } × ZnH2 , then ZNH+nH

2 = C⊕V, where
⊕

denotes
direct sum.

Proof. For any kA = (x0,x = (x1, . . . , xNH−1),p) ∈ ZNH+nH
2 , let c = EncodeC(x) and v′ =

c⊕ kA. We have the decomposition kA = c⊕ v′, where c ∈ C and v′ ∈ V.
Next, we prove V ∩ C = 0. If k = (x0,x,p) ∈ V ∩ C, then x = 0, which implies x0 = 0 and

pT = H0 = 0. Hence, k = 0. �

When kA is subjected to uniform distribution, then by Theorem 8.2, after the decomposition
of kA = c⊕v′ where c ∈ C and v′ ∈ V, c and v′ are subjected to uniform distribution in C and V
respectively. And c and v′ are independent. As both ZNH−1

2 → C and x 7→ EncodeC(x) are one-
to-one correspondence, we derive that x and v′ are independent, and x is uniformly distributed.
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The parameters and performances for OKCN-SEC and AKCN-SEC are summarized in Table 17
and 18.

8.3.3 KEM Specification of AKCN-SEC in the Public-Key Settiing

We divide the n-bit string k2 into ν = bn/(NH +nH)c blocks, then apply our SEC code in each
block. This means the actual shared-key is of size ν · (NH − 1) bits. Note that this approach
can also correct more than one bit errors, if at most one bit error occurs in each block.

Suppose the per bit error rate of k1 and k2 is p, then under the assumption that the errors
in different positions are independent, we can estimate that the overall heuristic error rate for
the actual shared-key is no larger than b n

NH+nH
cC2

NH+nH
p2.

Algorithm 16 (pk, sk)← KeyGen()

1: seed← {0, 1}κ
2: a := Gen(seed)
3: x1, e1 ← DZn,σ
4: y1 := b(ax1 + e1)/2t1e
5: return (pk := (seed,y1), sk := x1)

Algorithm 17 (ct, key)← Encaps(pk)

1: x2, e2, e
′
2 ← DZn,σ

2: a := Gen(seed)
3: y2 := b(ax2 + e2)/2t2e
4: σ2 := 2t1y1 · x2 + e′2
5: k′2 ← Z(NH−1)·bn/(NH+nH)c

2

6: k2 := EncodeC(k
′
2)

7: v← Con(σ2,k2, params)
8: return (ct := (y2,v), key := k′2)

Algorithm 18 key′ ← Decaps(sk, ct)

1: σ1 := 2t2y2 · x1

2: k1 := Rec(σ1,v, params)
3: k′1 := DecodeC(k1)
4: return key′ := k′1

Note: the above pseudo-codes describes how three algorithms work in general. Notice that
n · (NH − 1)/(NH + nH) may not be a positive integer in practice; in particular, it is not a
positive integer in our software implementation. In this case, some coefficients in v, σ1, σ2 will
not contribute to the generation of the shared secret key.

8.3.4 KEM Specification of OKCN-SEC in the Public-Key Setting

Algorithm 19 (pk, sk)← KeyGen()

1: seed← {0, 1}κ
2: a := Gen(seed)
3: x1, e1 ← DZn,σ
4: y1 := b(ax1 + e1)/2t1e
5: return (pk := (seed,y1), sk := x1)
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Algorithm 20 (ct, key)← Encaps(pk)

1: x2, e2, e
′
2 ← DZn,σ

2: a := Gen(seed)
3: y2 := b(ax2 + e2)/2t2e
4: σ2 := 2t1y1 · x2 + e′2
5: (k2,v)← Con(σ2, params)
6: parse the vector k2 into ∆ := bn/(NH +

nH)c blocks, say k
(1)
2 , · · · ,k(∆)

2 , each of size
NH + nH

7: parse every k
(i)
2 into the form

(
x

(i)
0 ∈ Z2,x

(i) ∈ Z(NH−1)
2 ,p(i) ∈ ZnH2

)

8: v′ :=
(
EncodeC(x

(i))⊕ k
(i)
1

)
i∈[∆]

9: return
(
ct := (y2,v,v

′), key :=
(
x(i)
)
i∈[∆]

)

Algorithm 21 key′ ← Decaps(sk, ct)

1: σ1 := 2t2y2 · x1

2: k1 := Rec(σ1,v, params)
3: parse the vector k1 into ∆ := bn/(NH +

nH)c blocks, say k
(1)
1 , · · · ,k(∆)

1 , each of
size NH + nH

4: parse the vector v′ into ∆ blocks, say
v′1, · · · ,v′∆, each of size NH + nH

5: return key′ :=
(
DecodeC(k

(i)
2 ⊕ v′i)

)
i∈[∆]

Note: the above pseudo-codes describe how three algorithms works in general. Notice that
n/(NH+nH) may not be a positive integer in practice; in particular, it is not a positive integer in
our software implementation. In this case, some coefficients in v, σ1, σ2,k1,k2 will not contribute
to the generation of the shared secret key.

8.4 Reducing Error Rate with Lattice Code in E8

In this section, we further consider the approach to lower the error rate, and develop new lattice
code in E8. We divide the coefficients of the polynomial σ1 and σ2 into n̂ = n/8 groups, where
each group is composed of 8 coefficients. In specific, denote R = Z[x]/(x8 +1), Rq = R/qR,K =
Q[x]/(x8 + 1) and KR = K ⊗R ' R[x]/(x8 + 1). Then the polynomial σ1 can be represented as
σ1(x) = σ0(xn̂) + σ1(xn̂)x+ · · ·+ σn̂−1(xn̂)xn̂−1, where σi(x) ∈ Rq for i = 0, 1, . . . n̂. σ2 can be
divided in the same way. Then we only need to construct the reconciliation mechanism for each
σi(x), and finally combine the keys together. To do this, we need to first introduce the lattice
E8 and its encoding and decoding.

8.4.1 Combining AKCN with Lattice Code in E8

We construct lattice E8 from the Extended Hamming Code in dimension 8, which is denoted
as H8 for presentation simplicity. H8 refers to the 4-dimension linear subspace of 8-dimension
linear space Z8

2.
H8 = {c ∈ Z8

2 | c = zH mod 2, z ∈ Z4}
where

H =




1 1 1 1 0 0 0 0
0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1
0 1 0 1 0 1 0 1



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The encoding algorithm is straightforward: given a 4-bit string k1, calculate k1H. This op-
eration can be done efficiently by bitwise operations. We combine this encoding with AKCN (for
the special case of m = 2), which is referred to as AKCN-E8-RLWE for presentation simplicity.
The complete algorithm is shown in Algorithm 22.11 In this work, we focus on the combination
of AKCN with encoding/decoding in E8, and the extension to OKCN is straightforward.

Algorithm 22 AKCN-E8: Con with encoding in E8

1: procedure Con(σ1 ∈ Z8
q ,k1 ∈ Z4

2, params)

2: v =
⌊
g
q

(
σ1 + q−1

2 (k1H mod 2)
)⌉

mod g12

3: return v
4: end procedure

The decoding algorithm finds the solution of the closest vector problem (CVP) for the lattice
E8. For any given x ∈ R8, CVP asks which lattice point in E8 is closest to x. Based on the struc-
ture of E8, we propose an efficient decoding algorithm. Let C = {(x1, x1, x2, x2, x3, x3, x4, x4) ∈
Z8

2 | x1 +x2 +x3 +x4 = 0 mod 2}. In fact, C is spanned by the up most three rows of H. Hence,
E8 = C ∪ (C + c), where c = (0, 1, 0, 1, 0, 1, 0, 1) is the last row of H. For a given x ∈ R8, to
solve CVP of x in E8, we solve CVP of x and x − c in C, and then choose the one that has
smaller distance.

Algorithm 23 AKCN-E8: Rec with decoding in E8

1: procedure Rec(σ2 ∈ Z8
q ,v ∈ Z8

g, params)

2: k2 = DecodeE8

(⌊
q
gv
⌉
− σ2

)

3: return k2

4: end procedure

Then we consider how to solve CVP in C. For an x ∈ R8, we choose (x1, x2, x3, x4) ∈ Z4
2, such

that (x1, x1, x2, x2, x3, x3, x4, x4) is closest to x. However, x1+x2+x3+x4 mod 2 may equal to 1.
In such cases, we choose the 4-bit string (x′1, x

′
2, x
′
3, x
′
4) such that (x′1, x

′
1, x
′
2, x
′
2, x
′
3, x
′
3, x
′
4, x
′
4) is

secondly closest to x. Note that (x′1, x
′
2, x
′
3, x
′
4) has at most one-bit difference from (x1, x2, x3, x4).

The detailed algorithm is depicted in Algorithm 24. Considering potential timing attack, all
the “if” conditional statements can be implemented by constant time bitwise operations. In
practice, Decode00

C and Decode01
C are implemented as two subroutines.

For algorithm 24, in DecodeE8 , we calculate costi,b, where i = 0, 1, . . . , 7, b ∈ {0, 1}, which
refer to the contribution to the total 2-norm when xi = b. Decode00

C solves the CVP in lattice
C, and Decode01

C solves the CVP in lattice C + c. Then we choose the one that has smaller
distance. Decodeb0b1C calculates the ki, i = 0, 1, 2, 3 such that q−1

2 (k0 ⊕ b0, k0 ⊕ b1, k1 ⊕ b0, k1 ⊕
b1, k2 ⊕ b0, k2 ⊕ b1, k3 ⊕ b0, k3 ⊕ b1) is closest to x. We use mind and mini to find the second
closest vector. Finally, we check the parity to decide which one should be returned.

11For simplicity, we assume q is a prime and directly use q−1
2

in Con (rather than bq/2e). The construction and
analysis can be trivially changed to work with q+1

2
in Con. Also, when q is an even number (e.g., power-of-two),

it should be q
2
.
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Algorithm 24 Decoding in E8 and C

1: procedure DecodeE8(x ∈ Z8
q)

2: for i = 0 . . . 7 do
3: costi,0 = |xi|2q
4: costi,1 = |xi − q−1

2 |2q
5: end for
6: (k00,TotalCost00)← Decode00

C (costi∈0...7,b∈{0,1})

7: (k01,TotalCost01)← Decode01
C (costi∈0...7,b∈{0,1})

8: if TotalCost00 < TotalCost01 then
9: b = 0

10: else
11: b = 1
12: end if
13: (k0, k1, k2, k3)← k0b

14: k2 = (k0, k1 ⊕ k0, k3, b)
15: return k2

16: end procedure
17: procedure Decodeb0b1C (costi∈0...7,b∈{0,1} ∈ Z8×2)
18: mind = +∞
19: mini = 0
20: TotalCost = 0
21: for j = 0 . . . 3 do
22: c0 ← cost2j,b0 + cost2j+1,b1

23: c1 ← cost2j,1−b0 + cost2j+1,1−b1
24: if c0 < c1 then
25: ki ← 0
26: else
27: ki ← 1
28: end if
29: TotalCost← TotalCost + cki
30: if c1−ki − cki < mind then
31: mind ← c1−ki − cki
32: mini ← i
33: end if
34: end for
35: if k0 + k1 + k2 + k3 mod 2 = 1 then
36: kmini ← 1− kmini
37: TotalCost← TotalCost +mind
38: end if
39: k = (k0, k1, k2, k3)
40: return (k,TotalCost)
41: end procedure
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The following theorem gives a condition of success of the encoding and decoding algorithm
in Algorithm 22 and Algorithm 23. For simplicity, for any σ = (x0, x1, . . . , x7) ∈ Z8

q , we define

‖σ‖2q,2 =
∑7

i=0 |xi|2q .

Theorem 8.3. If ‖σ1−σ2‖q,2 ≤ (q−1)/2−
√

2
(
q
g + 1

)
, then k1 and k2 calculated by Con and

Rec are equal.

Proof. The minimal Hamming distance of the Extended Hamming code H8 is 4. Hence, the

minimal distance in the lattice we used is 1
2

√(
q−1

2

)2
× 4 = (q − 1)/2.

We can find ε, ε1 ∈ [−1/2, 1/2]8,θ ∈ Z8 such that

⌊
q

g
v

⌉
− σ2 =

q

g
v + ε− σ2 =

q

g

(
g

q

(
σ1 +

q − 1

2
k1H

)
+ ε+ θg

)
+ ε1 − σ2

= (σ1 − σ2) +
q − 1

2
k1H +

q

g
ε+ ε1 + θq

Hence, the bias from q−1
2 k1H is no larger than ‖σ1 − σ2‖q,2 + q

g‖ε‖ +
√

2 ≤ ‖σ1 − σ2‖q,2 +
√

2
(
q
g + 1

)
. If this value is less than the minimal distance (q−1)/2, the decoding will be correct,

which implies k1 = k2.

Parameters and implementation. The parameters and performance of AKCN-E8 are given
in Table 23. We provide a script to calculate the concrete error rate. For AKCN-E8-256, the
deviation in our parameter set (σ =

√
21) is quite large, which requires more many random bits

to sample. However, the generation of random bits costs a lot of time. Frodo uses a table to
generate a discrete distribution that is very close to the rounded Gaussian. However, in our
parameter set for AKCN-E8-256, the table will be too large to sample efficiently. Hence, we
propose the distribution Ba,b, where a and b are two integers.

Algorithm 25 Sample r from Ba,b

1: r ←∑a
i=1 getOneRandomBit() + 2 ∗∑b

i=1 getOneRandomBit()−
(
a
2 + b

)

The variation of r in Algorithm 25 is a
4 + b, and the expect value of r is 0. By the central

limit theorem, the distribution of r is close to a discrete Gaussian. In our implementation, we
choose a = 24, b = 15, and the summation of the random bits are calculated by fast bit counting.
Recall that the Renyi divergence increases as a increases. Hence, B24,15 and rounded Gaussian
of variance 21 are more close compared to Ψ16 and rounded Gaussian of variance 8. We use a
larger a than NewHope so that the potential security decline can be smaller, although no attacks
known make use of the information of different noise distributions.
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|K| n q σ (σ′) g t pq-sec (t-sec) err pk (B) cipher (B) bw. (B)

AKCN-E8-256 256 512 12289
√

21 (
√

22) 26 2 128 (129) 2−34 800 1152 1952

AKCN-E8-512 512 1024 12289
√

8 (
√

10) 24 3 255 (262) 2−63.3 1440 1920 3360

σ =
√

8 512 1024 12289
√

8 (
√

9) 24 2 255 (258) 2−98 1568 2048 3616

512 1024 12289
√

8 (
√

10) 25 3 255 (262) 2−81.6 1440 2048 3488

512 1024 12289
√

8 (
√

9) 25 2 255 (258) 2−124.4 1568 2176 3744

512 1024 12289
√

8 (
√

9) 26 2 255 (258) 2−138.7 1568 2304 3872

AKCN-E8-512 512 1024 12289
√

6 (
√

10) 24 4 246 (262) 2−35.6 1312 1792 3104

(σ =
√

6) 512 1024 12289
√

6 (
√

8) 24 3 246 (255) 2−109.4 1440 1920 3360

512 1024 12289
√

6 (
√

10) 25 4 246 (262) 2−47.2 1312 1920 3232

512 1024 12289
√

6 (
√

8) 23 3 246 (255) 2−60.7 1440 1792 3232

512 1024 12289
√

6 (
√

8) 25 3 246 (255) 2−138.4 1440 2048 3488

Table 19: Parameters for AKCN-E8-RLWE. “pk(B)” refers to the size of (y1, seed) in bytes;

“cipher(B)” refers to the size of (y2,v). The underlying noise distribution is Ψη with σ =
√
η/2;

“pq-sec” (resp., “t-sec”) refers to the security against the best known quantum attacks against
the underlying lattice problem without considering the effect of t (resp., by heuristically viewing
the standard deviation of the noise as σ′ =

√
(2σ2 + 2t−1)/2).

8.5 On the Desirability of OKCN/AKCN-SEC and OKCN/AKCN-E8

Compared to NewHope, OKCN/AKCN-SEC and OKCN/AKCN-E8 are more desirable, on the
following grounds:

• To our knowledge, OKCN/AKCN-SEC schemes are the simplest RLWE-based KE pro-
tocols with error probability that can be viewed negligible in practice, which are better
suitable for hardware or software implementations than encoding and decoding the four-
dimensional lattice D̃4. Note that SEC can be implemented with simple bit operations.
Moreover, with probability about 1−2−40, the decoding only involves the XOR operations
in Line-1 of Algorithm 14, which is extremely simple and fast.

• AKCN-SEC can be directly transformed into a CPA-secure PKE scheme for encrypting
837-bit messages, while AKCN4:1-RLWE and NewHope-simple are for encrypting 256-bit
messages.

• It is more desirable to have KE protocols that directly share or transport keys of larger
size. On the one hand, it is commonly expected that, in the post-quantum era, symmetric-
key cryptographic primitives like AES need larger key sizes, in view of the quadratic
speedup by Grover’s search algorithm and the possibility of more sophisticated quantum
attacks [KM10, KLL15] against symmetric-key cryptography. Indeed, to our knowledge,
the post-quantum security of NewHope is evaluated as a stand-alone protocol, without
considering possible quantum attacks targeting the use of shared-key. On the other hand,
in some more critical application areas than public commercial usage, larger key size
actually has already been mandated nowadays. Note that for NewHope, AKCN4:1-RLWE,
and NewHope-simple, if we want a 512-bit shared-key (which is necessary for ensuring 256-
bit post-quantum security) they have to use a polynomial of degree 2048 which can be
significantly less efficient.

• As clarified, the SEC approach fails only when there are more than one bit errors in some
block, and is versatile in the sense: the smaller (resp., larger) is the block size nH , the
lower the error probability (resp., bandwidth expansion) will be.
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Initiator
seed← {0, 1}κ

a = Gen(seed) ∈ Rq
x1 ← χn

y1 = ba · x1ep

Responder

a = Gen(seed)
x2 ← χn

y2 = ba · x2ep
ε← [−q/2p, q/2p− 1]n

σ2 = y1 · x2 + bε · x2ep ∈ Rp
(k2,v)← Con(σ2, params)

σ1 = y2 · x1 ∈ Rp
k1 ← Rec(σ1,v, params)

seed,y1 ∈ Rp

y2 ∈ Rp,v ∈ Rg

Figure 14: RLWR-based key exchange from KC

• OKCN/AKCN-SEC and OKCN/AKCN-E8 are more versatile and flexible than NewHope,
allowing more useful trade-offs among the parameters and performance.

• OKCN/AKCN-SEC vs. OKCN/AKCN-E8. OKCN/AKCN-SEC has larger key size and
is simpler. In comparison, on the system parameters, OKCN/AKCN-E8 can have lower
error rate, smaller bandwidth and stronger security simultaneously, but at the price of more
complicated implementation. We may prefer OKCN/AKCN-SEC, from the viewpoint of
system simplicity and easy implementation.

8.6 Extension to RLWR-Based KE

As a direct extension of the LWR-based KE presented in Section 5, the ring-LWR (RLWR)
based KE protocols are depicted in Figure 14 and 15. For simplicity, we assume p and q are
power-of-two, and p|q. The SEC and E8 lattice-code can also be applied to further reduce the
error probability.

9 MLWE-Based Key Exchange from KC and AKC

Recall that R = Z[X]/(Xn+ 1), and Rq = R/qR. Let l be a positive integer parameter. Let Sη
denote a distribution on all elements w ∈ R such that ‖w‖∞ ≤ η.13 The Module-LWE (MLWE)
problem is introduced in [LS15], which is a generalization of the RLWE problem. We make use
of the definitions described in [BDK+17].

13A typical instantiation of Sη, as proposed in [BDK+17], is based on the following centered binomial distribu-
tion: sample (a1, · · · , aη, b1, · · · , bη)← {0, 1}2η, and output

∑η
i=1(ai − bi).
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Initiator
seed← {0, 1}κ

a = Gen(seed) ∈ Rq
x1 ← χn

y1 = ba · x1ep

Responder

k2 ∈ Znm
a = Gen(seed)

x2 ← χn

y2 = ba · x2ep
ε← [−q/2p, q/2p− 1]n

σ2 = y1 · x2 + bε · x2ep ∈ Rp
v← Con(σ2,k2, params)

σ1 = y2 · x1 ∈ Rp
k1 ← Rec(σ1,v, params)

seed,y1 ∈ Rp

y2 ∈ Rp,v ∈ Rg

Figure 15: RLWR-based key exchange from AKC

• MLWE distribution. The MLWE distribution is defined on Rlq ×Rq induced by pairs

(ai,bi), where ai ← Rlq is uniform and b = aTi s + ei with s← Slη common to all samples
and ei ← Sη fresh for every sample.

• MLWE assumption. The MLWE problem consists in recovering s from polynomially
many samples chosen from the MLWE distribution. More precisely, for an algorithm A,
we define

Advmlwe
h,l,η (A) = Pr

[
x = s :

A← Rh×lq ; (s, e)← Slη × Shη ;

b← As + e; x← A(A,b);

]
.

We say that the (t, ε) MLWEh,l,η hardness assumption holds if no algorithm A running in
time at most t has an advantage greater than ε.

9.1 Generic Construction of MLWE-Based KE

Let KC = (Con,Rec, params) be a correct and secure KC or AKC scheme with parameters
params = (q,m, g, d), where m = 2 in this section. When Con and Rec are applied to a poly-
nomial in Rq, they are applied to each coefficients of the polynomial respectively. The generic
construction of key exchange from MLWE is described in Figure 16 and Figure 17. When being
cased into the public-key setting, its specification is given in Section 9.1.1. We remark that
the underlying AKC (resp., KC) can be any one of AKCN, AKCN4:1, AKCN-SEC, AKCN-E8
(resp., OKCN, OKCN-SEC, OKCN-E8). Here, for simplicity and symmetry, we assume the
same number of tail bits are chopped off from both Y1 and Y2 by setting t = t1 = t2 ≥ 0.

The construction of MLWE-based KE is a direct adaptation of the LWE-based KE from
KC/AKC presented in Figure 7 in Section 6. When m = 2 and g is power-of-two, the AKCN-
based implementation is actually the CPA-secure Kyber scheme proposed in [BDK+17]. The
parameters and performance of OKCN-MLWE and AKCN-MLWE are presented in Table 23. In
practice, we prefer to use the parameter set OKCN-MLWE-PKE-1, which is also the parameter

57



Initiator
seed← {0, 1}κ

A = Gen(seed) ∈ Rl×lq

X1,E1 ← Sl×1
η

Y1 = b(AX1 + E1)/2
t1e

Responder

A = Gen(seed)
X2,E2 ← Sl×1

η ,Eσ ← Sη
Y2 =

⌊
(ATX2 + E2)/2

t2
⌉

Σ2 = 2t1YT
1 X2 + Eσ

(K2,V)← Con(Σ2, params)

Σ1 = XT
1 (2

t2Y2)
K1 = Rec(Σ1,V, params)

seed,Y1

Y2,V

Figure 16: Generic construction of OKCN-MLWE

set used in our actual implementation. We note that, when η = 2, there may be potential
combinational attacks, but the much larger η′ voids such potential combinational attacks.

9.1.1 KEM Specificiation of OKCN-MLWE in Public-Key Setting

When being casted into the public-key setting, the specification of OKCN-MLWE is given below.
The adaption to the specification of AKCN-MLWE is straightforward, and is specified in Section
9.1.2. For presentation simplicity, we simply set the resultant shared-key to be K = K1 = K2. In
actual implementation of KEM, the shared-key is derived from K and the interaction transcript
via some key derivation function (e.g., a cryptographic hash function or HMAC, etc).

Algorithm 26 (pk, sk)← KeyGen(1κ)

1: seed← {0, 1}κ
2: A := Gen(seed)
3: X1,E1 ← Sl×1

η

4: Y1 := b(AX1 + E1)/2t1e
5: return (pk := (seed,Y1), sk := X1)

Algorithm 27 (ct, key)← Encaps(pk)

1: X2,E2 ← Sl×1
η ,Eσ ← Sη

2: A := Gen(seed)
3: Y2 := b(ATX2 + E2)/2t2e
4: Σ2 := 2t1YT

1 X2 + Eσ

5: (K2,V)← Con(Σ2, params)
6: return (ct := (Y2,V), key := K2)

Algorithm 28 key′ ← Decaps(sk, ct)

1: Σ1 := XT
1 (2t2Y2)

2: K1 := Rec(Σ1,V, params)
3: return key′ := K1
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Initiator
seed← {0, 1}κ

A = Gen(seed) ∈ Rl×lq

X1,E1 ← Sl×1
η

Y1 = b(AX1 + E1)/2
t1e

Responder

K2 ← Znm
A = Gen(seed)

X2,E2 ← Sl×1
η ,Eσ ← Sη

Y2 =
⌊
(ATX2 + E2)/2

t2
⌉

Σ2 = 2t1YT
1 X2 + Eσ

V← Con(Σ2,K2, params)

Σ1 = XT
1 (2

t2Y2)
K1 = Rec(Σ1,V, params)

seed,Y1

Y2,V

Figure 17: Generic construction of AKCN-MLWE, where m = 2 in this work

9.1.2 KEM Specificiation of AKCN-MLWE in Public-Key Setting

Algorithm 29 (pk, sk)← KeyGen()

1: seed← {0, 1}κ
2: A := Gen(seed)
3: X1,E1 ← Sl×1

η

4: Y1 := b(AX1 + E1)/2t1e
5: return (pk := (seed,Y1), sk := X1)

Algorithm 30 (ct, key)← Encaps(pk)

1: K2 ← Znm
2: X2,E2 ← Sl×1

η ,Eσ ← Sη
3: A := Gen(seed)
4: Y2 := b(ATX2 + E2)/2t2e
5: Σ2 := 2t1YT

1 X2 + Eσ

6: V← Con(Σ2,K2, params)
7: return (ct := (Y2,V), key := K2)

Algorithm 31 key′ ← Decaps(sk, ct)

1: Σ1 := XT
1 (2t2Y2)

2: K1 := Rec(Σ1,V, params)
3: return key′ := K1

9.2 Error Rate Analysis and Parameter Selection

Denote ε2 = ATX2 + E2 − 2tb(ATX2 + E2)/2te, and ε1 = AX1 + E1 − 2tb(AX1 + E1)/2te.
Then we have

Σ1 −Σ2 = XT
1 (2tY2)− (2tYT

1 X2 + Eσ) (12)

= 2tXT
1 b(ATX2 + E2)/2te − 2tb(AX1 + E1)/2teX2 + Eσ (13)
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= XT
1 (ATX2 + E2 − ε2)− ((AX1 + E1 − ε1) +Eσ) (14)

= XT
1 (E2 − ε2) + (E1 − ε1)TX2 + E2 (15)

From MLWE assumption, (A,ATX2 + E2) is indistinguishable with (A,U), where U is
subjected to the uniform distribution, εi(i = 1, 2) should be closed to U − 2tbU/2te. We can
roughly regard each coefficients of polynomials in U − 2tbU/2te as uniform distribution over
[−2t−1, 2t−1]n.

Then we can calculate the standard deviation of each coefficients of polynomials in Σ2−Σ1,
denote it as s. We have

s2 = 2nlσ2

(
σ2 +

(1 + 2t)2 − 1

12

)
+ σ2 (16)

In case that Sη corresponds to uniform distribution over [−η, η], we have

s2 = 2nl
(1 + 2η)2 − 1

12

(
(1 + 2η)2 − 1

12
+

(1 + 2t)2 − 1

12

)
+

(1 + 2η)2 − 1

12
(17)

For AKCN-E8-MLWE, by the Central Limit Theorem, each coefficient of the polynomials in
Σ2 −Σ1 is close to a Gaussian distribution. From Theorem 8.3, the AKCN-E8-MLWE scheme
is correct with probability

Pr

[
d′ ← χ2(8) :

√
d′ ≤

(
q − 1

2
−
√

2

(
q

g
+ 1

))
/s

]
(18)

9.3 Parameter Selection and Comparison

The parameters and performance of SKCN-MLWE and AKCN-MLWE are presented in Table 20
and Table 21 respectively. There, “pq-sec” refers to the best known quantum attack against the
underlying lattice problem w.r.t. t = 0. The concrete security values are gotten by running the
scripts provided in [BDK+17]. We believe that chopping off t least significant bits from Y1 and
Y2 can essentially strengthen the security in reality (particularly for ephemeral key exchange or
transport). More parameters are given in Appendix L.

Note that the security is proved with t1 = 0, but in the actual implementation we set
t1 = t2 = t as in Kyber [BDK+17]. We made this choice based on the following considerations:

• Setting t1 = t2 = t > 0 minimizes the bandwidth, without sacrificing the actual security
in any meaningful way (a detailed explanation is given in [BDK+17]).

• Symmetry in protocol structure is always a desirable feature in practice.

Of course, if one strictly concerns about provable security, we can always implement the
protocol with t1 = 0. On the same parameters, with t1 = 0 the error probability is further
lowered while the bandwidth (specifically, the size of Y1) is accordingly increased.

|K| n q η g t l pq-sec err pk (B) cipher (B) bw. (B)

SKCN-MLWE-KE-light 256 256 7681 5 23 4 2 102 2−36.2 608 672 1280
SKCN-MLWE-PKE-light 256 256 7681 5 23 3 2 102 2−105.5 672 736 1408

SKCN-MLWE-KE-Recommended 256 256 7681 2 24 4 3 147 2−76.1 896 992 1888
SKCN-MLWE-PKE-Recommended 256 256 7681 2 22 3 3 147 2−166.4 992 1024 2016

SKCN-MLWE-KE-Paranoid 512 512 7681 8 24 1 2 248 2−60.8 1568 1792 3360

Table 20: Parameters for SKCN-MLWE. KE refers to parameters aimed for ephemeral key
exchange, and PKE to parameters aimed for CCA-secure public-key encryption.

60



|K| n q η g t l pq-sec err pk (B) cipher (B) bw. (B)

AKCN-MLWE-KT-light 256 256 7681 5 23 4 2 102 2−36.2 608 704 1312
AKCN-MLWE-PKE-light 256 256 7681 5 23 3 2 102 2−105.5 672 768 1440

Kyber-light 256 256 7681 5 23 2 2 102 2−145 736 832 1568
AKCN-MLWE-KT-Recommended 256 256 7681 2 24 4 3 147 2−67.1 896 992 1888

AKCN-MLWE-PKE-Recommended 256 256 7681 2 23 3 3 147 2−166.4 992 1056 2048
Kyber-Recommended 256 256 7681 4 23 2 3 161 2−142.7 1088 1152 2240

AKCN-MLWE-KT-Paranoid 512 512 7681 8 26 1 2 248 2−64.1 1568 1920 3488
Kyber-Paranoid 256 256 7681 3 23 2 4 218 2−169 1440 1536 2976

Table 21: Parameters for AKCN-MLWE, and comparisons with Kyber. KT refers to parameters
aimed for ephemeral key transport, and PKE to parameters aimed for CCA-secure public-key
encryption.

9.3.1 Comparison with Kyber

Kyber is based on MLWE, and is AKC-based key transport protocol. In Kyber, Y1 =
⌊
2dt(AX1 + E1)/q

⌉
,

Y2 =
⌊
2du(ATX2 + E2)/q

⌉
, Σ2 = bqY1/2

dteTX2 + Eσ, Σ1 = XT
1 bqY2/2

due, where dt, du are
non-negative integers. The underlying AKC mechanism of KYBER is essentially AKCN (Algo-
rithm 4). Note that Rec(σ2, v, params) = bm · (bqv/ge/q−σ2/q)e mod m in KYBER, compared
to Rec(σ2, v, params) = bm · (v/g − σ2/q)e mod m in AKCN.

In comparison, we present both SKCN-based key exchange and AKCN-based key transport.
Moreover, the underlying key building tools: SKCN and AKCN, appeared in the literature
since November 2016 https://arxiv.org/abs/1611.06150. In fact, the SKCN-MLWE and
AKCN-MLWE protocols are the MLWE-based instantiations of SKCN-LWE and AKCN-LWE
presented there. On all the chosen parameters, we can see that SKCN-MLWE protocols have
better performance than their AKCN-MLWE counterparts. Below, we briefly compare AKCN-
MLWE and Kyber.

• For AKCN-MLWE-PKE-light and Kyber-light, they both achieve 102-bit post-quantum
security, but AKCN-MLWE-PKE-light (resp., Kyber-light) has bandwidth of 1440 bytes
(resp., 1568 bytes) at the failure rate 2−105 (resp., 2−145). As the post-quantum security
level is for 102 bits and 105 > 102, we suggest an error probability of 2−105 already suffices
for 102-bit post-quantum security. Also, three (resp., two) least significant bits are chopped
off with AKCN-MLWE-PKE-light (resp., Kyber-light), which means that AKCN-MLWE-
PKE-light can have stronger security than Kyber-light in reality. In addition, we also
present parameters for ephemeral key establishment with remarkably lower bandwidth:
1280 (resp., 1312) bytes for SKCN-MLWE-KE-light (resp., AKCN-MLWE-KT-light).

• For AKCN-MLWE-PKE-Recommended and Kyber-Recommended, they both have enough
margins for 128-bit post-quantum security, where AKCN-MLWE-PKE (resp., Kyber-
Recommended) has 147 (resp., 161) bit post-quantum security w.r.t. t = 0 at failure
rate of 2−166.4 << 2−147 (resp., 2−142.7 >> 2−161). Notice that three (resp., two) least
significant bits are chopped off with AKCN-MLWE-PKE-Recommended (resp., Kyber-
Recommended). AKCN-MLWE-PKE-Recommended has bandwidth of 2048 bytes, com-
pared with 2240 bytes of Kyber-Recommended. In addition, we also present recommended
parameters for ephemeral key establishment: 1888 bytes at failure rate 2−76.1 (resp., 2−67.1)
for SKCN-MLWE-KE-Recommended (resp., AKCN-MLWE-KT-Recommended).

• AKCN-MLWE-KE-Paranoid and Kyber-Paranoid are somewhat incomparable. AKCN-
MLWE-KE-Paranoid is for ephemeral key establishment, which achieves 512-bit shared
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key at 248-bit post-quantum security and failure rate of 2−64. In comparison, Kyber-
Paranoid is for achieving 256-bit shared key at post-quantum security of 218 and failure
rate of 2−169. We remark that 256-bit shared-key may only ensure about 128-bit security
in the quantum world, in view of the quadratic speedup by Grover’s search algorithm
and the recent advances of more sophisticated quantum attacks against symmetric-key
cryptography.

9.4 Implementation

In this section, we concentrate our introduction on the KEM implementation of the OKCN-
MLWE scheme.14 Almost all the implementations of our schemes with this submission follow
the same designing principles. The suggested parameters for the implementation of OKCN-
MLWE KEM scheme are:

n = 256, q = 6781, l = 3, g = 25, t = 4,m = 2, η = 2.

9.4.1 Generation of Noise Polynomials

In our implementation, each coefficient of the noise polynomial is drawn independently from the
centered binomial distribution of parameter η = 2 (instead of the discrete Gaussian distribution),
mostly due to the difficulty of implementing a discrete Gaussian sampler efficiently. To obtain
such a noise polynomial, we first expand a seed of 31 + 1 = 32 bytes into a uniform random
array of length 128 bytes, and each byte is applied to generate two indepenent coefficients in the
obvious manner. Note that although each coefficient of the noise polynomial corresponds to some
integer in the interval [q− η, q+ η], we could compress each coefficient so that dlog(1 + 2η)e = 3
bits suffices to represent each coefficient of the noise polynomial. Such observation enables us
to represent the secret key (i.e., the X1 in Algorithm 26) in a compact manner.

9.4.2 The Keys and Ciphertext

In our implementation of OKCN-MLWE KEM, every public key is a pair (Y1, seed). Here, Y1

is a truncated vector consisting of l = 3 truncated polynomial, each of size

l · n · (d1 + log qe − t)/8 = 960

bytes, whereas the seed to generate the public matrix A ∈ R3×3
q is of size 32− 1 = 31 bytes.

As noted before, a secret key is a small polynomial, which is of size l ·n ·dlog(1+2η)e/8 = 288
bytes. Each ciphertext is a pair (Y2,V). Here, Y2 is a truncated vector, and hence is of size
960 bytes. Conversely, the array V is of size n · g/8 = 160 bytes.

9.4.3 Encoding/Decoding of Objects

In addition to the random seed, we need to convert four types of numerical objects into character
strings in our implementation, i.e., the truncated polynomial (or more precisely, the truncated
vector), the noise polynomial, the signal, and the final shared key. Note that although each
could be seen as an n-dimensional “vector” in the space Zn, their coefficients are of different
sizes in nature. Nevertheless, each vector could be divided into n/8 = 32 consecutive blocks,

14Some parts of the implementations are inspired by [BDK+17,ADPS16].
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each with 8 coefficients, and each block could be encoded/decoded in the similar manner. Such
observation enables us to define two general procedures, compress, decompress in the io.h file,
which could handle all the foregoing objects and thus simplify our implementation significantly.

Take the signal vector V = (v0, v1, · · · , vn−1)T for instance. It consists of 32 blocks, and
each coefficient vi = vi,0vi,1vv,2· · ·vi,4 ∈

{
0, 1, · · · , 25 − 1

}
. It is routine to see that each block

could be encoded into five bytes, as the following indicates:

vi,0vi+1,0 · · · vi+7,0, vi,1vi+1,1 · · · vi+7,1, · · · , vi,4vi+1,4 · · · vi+7,4.

The decoding procedure is defined in the appropriate manner.
It should be stressed that the coefficients of each noise polynomial fall into the interval

[q − η, q + η] during computation. Hence, we should shift these coefficients into an appropriate
interval, and then encode each block into dlog (1 + 2η)e = 3 bytes; similarly, shifting operation
is necessary after the decoding process.

9.4.4 NTT Technique

In our implementation, the NTT technique is applied to speeding up the polynomial multipli-
cation operations. In particular, the negative wrapped convolution method [LMPR08] is used
to avoid the use of the trivial doubling technique in Zq/〈xn + 1〉. The Montgomery reduced
algorithm [M85], i.e., the REDC algorithm, is also applied so as to make it more efficient, with
R = 218.

Moreover, by setting the parameters in an appropriate manner, both the NTT transform
and the inverse NTT transform could be conducted by invoking the same procedure, i.e., the
Poly-NTT-transform procedure in polynomial.h file. This makes our implementation more com-
pact and more readable.

9.5 Applications to CCA-Secure PKE

The transformation from AKCN-MLWE to CCA-secure KEM is specified in detail in [BDK+17].
A CCA-secure KEM from OKCN-MLWE, which is instantiated from [HHK17], is presented in
Section J. In this section, we present new construction of CCA-secure PKE scheme from AKCN-
MLWE. The extensions to schemes based on RLWE, LWE and LWR are straightforward.

For schemes based on MLWE, LWE and LWR, the security parameter κ is set to be 256.15

Let G : {0, 1}∗ → {0, 1}κ × {0, 1}p1(κ), where p1 is a positive polynomial, and H : {0, 1}∗ →
{0, 1}κ be two cryptographic hash functions (or any secure key derivation functions). Let
KDF{0, 1}∗ → Kae be a secure key derivation function, where Kae is the key space of AEAD. We
write (X2,E2,Eσ)← Sample(1κ; r1) to denote the process of sampling the noises: X2,E2 ← Sl×1

η

and Eσ ← Sη, using randomness r1 ∈ {0, 1}p1(κ). Let SE = (Kse,Enc,Dec) be an AEAD scheme,
as specified in Section 2.1, and M ∈ {0, 1}∗ be the message to be encrypted. The key-generation
algorithm, the encryption algorithm E and the decryption algorithm D of the PKE scheme from
AKCN-MLWE are specified in Algorithm 32, Algorithm 33 and Algorithm 34 respectively.

Some comments are in order. The design of the PKE scheme combines techniques from
[FO13,D02,TU16,HHK17], but with the following modifications and considerations.

• We explicitly use authenticated encryption (rather than any one-time CCA-secure symmetric-
key encryption), which is mandated in (and is thus well compatible with) some prominent

15For schemes based on RLWE, we may suggest κ = 512.
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existing standards like TLS1.3. In actual implementations, we recommend to use AES-
GCM, or Chacha for light-weight implementations.

• The value $ is sent in plain in [TU16,HHK17], which plays an essential role for provable
security in the quantum random oracle model. In our design, it is encrypted with AE. On
the one hand, we suggest it is more prudent to get it encrypted in reality. On the other
hand, this value will also be used for other purposes in our design of AKE to be presented
in the subsequent section. Though encrypting it with any (one-time) CCA-secure SE
scheme might be problematic, encrypting it with AEAD can only strengthen the security
in reality. Formal analysis will be conducted in a separate work.

• The underlying key for AEAD is set to be H(S, c1). This allows more flexible implemen-
tations (e.g., when the random coins for KEM are generated with part of plaintexts as
input), and is well compatible with the use of the PKE scheme in more complex systems
like AKE.

• When composing a CCA-secure KEM with AEAD, decrypting the AEAD ciphertext using
a valid key or a fault key can have performance differences, which may cause potential
side channel attacks. Our design tries to hide such performance differences.

Algorithm 32 (pk, sk)← KeyGen(1κ)

1: z← {0, 1}κ
2: seed← {0, 1}κ
3: A := Gen(seed)
4: X1,E1 ← Sl×1

η

5: Y1 := b(AX1 + E1)/2t1e
6: return (pk := (seed,Y1), sk := {X1, z, pk})

Algorithm 33 ct← Epk(M)

1: A := Gen(seed)a

2: S← {0, 1}κ
3: ($, r1) = G(pk,S)b

4: (X2,E2,Eσ)← Sample(1κ; r1)
5: Y2 := b(ATX2 + E2)/2t2e
6: Σ2 := 2t1YT

1 X2 + Eσ

7: V← Con(Σ2, S, params)
8: K = KDF (S, c1), where c1 = (Y2,V)
9: c2 = EncK(H, $||M)c

10: return ct := (c1, c2)

aA can be directly specified as part of pk and sk in place of seed.
bIn practice, we may recommend the variant of ($, r1) = Ĝ(pk,S,M ′), where M ′ is part

of M .
cThe associated data H contains a (possibly empty) subset of c1 and some public values

determined from the application context. For simplicity, we usually do not explicitly specify
the associated data.

64



Algorithm 34 Dsk(ct = (c1, c2))

1: A := Gen(seed)
2: Σ1 := XT

1 (2t2Y2)
3: S̃ := Rec(Σ1,V, params)
4: K′ = KDF (S̃, c1)
5: M̄ = DecK′(c2)
6: S̄ = H(z, c1)
7: if M̄ = ⊥ then
8: S′ = S̄
9: else

10: S′ = S̃a

11: end if
12: ($′, r′1) = G(pk,S′)
13: (X′2,E

′
2,E

′
σ)← Sample(1κ; r′1)

14: Y′2 := b(ATX′2 + E′2)/2t2e
15: Σ′2 := 2t1YT

1 X′2 + E′σ
b

16: V′ ← Con(Σ′2, S
′, params)

17: rephrase M̄ = (ω′,M ′) if M̄ 6= ⊥
18: if (Y2 6= Y′2

∨
V 6= V′

∨
ω′ 6= $′

∨
M̄ = ⊥) thenc

19: return ⊥
20: else
21: return M ′

22: end if

aThis is to hide the performance difference between M̄ = ⊥ and M̄ 6= ⊥.
bWe are unaware of any vulnerability without performing Step 15-16. If these steps are removed,

the condition of V = V′ is also removed.
cThe condition whether ω′ = $′ can be checked just after Step 12. We refrain from doing so to be

against potential side-channel attacks.

9.6 Applications to Privacy-Preserving AKE

In this section, we present a new construction for AKE, referred to as concealed non-malleable
key-exchange (CNKE). We present its generic construction, clarify its design rationales, and
finally give concrete instantiations from AKCN-MLWE. CNKE is carefully designed, with the
following goals: (1) computational efficiency; (2) privacy protection; (3) well compatible with
existing standards like TLS1.3; and (4) robust non-malleability.

9.6.1 Abstraction of Key-Exchange and Key-Transport

An ephemeral two-round key-exchange (KE) protocol Π consists of the following algorithms:

• Par: On a security parameter 1κ, the probabilistic polynomial-time (PPT) procedure Par
outputs the parameters params.16 Denote by params← Par(1κ).

16In reality, Par is implicit or provided by a higher-level protocol, when the KE protocol is used as a building
block in a complex system.
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• MI : A PPT procedure used by the initiator player I to generate the first-round message
and the associated secret state. Denote by (MI ,SI) ← MI(params), where MI is the
first-round message to be sent to the responder in plain, while SI is some secret state kept
by I in private.17

• MR: A PPT procedure used by the responder player R to generate the second-round
message, the associated secret state and the shared-key. Denote by (MR,SR,KR) ←
MR(params,MI), where MR is the second-round message to be sent to the initiator in
plain, KR is the derived shared-key, and SR is some secret state kept by R in private.18

• KI : A polynomial-time procedure used by the initiator to derive the shared-key. Denote by
KI = KI(params,MR,MI ,SI).

19 Without loss of generality, we assume KI ,KR ∈ {0, 1}κ.

An ephemeral two-round key-transport (KT) protocol is identical to the above ephemeral
KE protocol, except that: (MR,SR) ← MR(params,MI ,KR), where MR is the second-round
message to be sent to the initiator in plain, KR ← {0, 1}κ is the shared-key to be transported,
and SR is some secret state kept by R in private. Specifically, the shared-key KR is set by the
responder.

Definition 9.1. A KE or KT protocol Π is sound, if it satisfies the following two conditions:

Completeness For any sufficiently large security parameter κ, it holds that KI = KR with
overwhelming probability. The probability is taken over the random coins used in Par, MI ,
MR and KI .

Security Denote by Trans the execution transcript including (params,MI ,MR). The follow-
ing two distributions are computationally indistinguishable: {Trans,KR} and {Trans, K̄},
where K̄ ← {0, 1}κ.

Traditional Diffie-Hellman, and the various KE protocols based on OKCN, are instantiations
of sound KE; while the protocols based on AKCN are instantiations of KT.

9.6.2 Basic Construction of CNKE

Let (KenGen, E ,D) be a CCA-secure PKE scheem,20 and Π = (Par,MI ,MR,KI) be a sound s
(ephemeral) KE or KT protocol, where KeyGen and Par can have overlaps. Denote by IA (resp.,
IB) the identity information of the initiator (resp., responder), which consists of information
like identity, public key, and certification, etc. Denote by (PKA, SKA) ← KeyGen(1κ) (resp.,
(PKA, SKA) ← KeyGen(1κ)) the public key and secret key of IA (resp., IB). We assume the
responder’s identity information IB is known to the initiator in advance (e.g, in the client/server
setting). For instance, the responder’s identity information can be sent to the initiator in the
parameter negotiation stage prior to the protocol run. Let KDF : {0, 1}∗ → {0, 1}κ × {0, 1}κ
be a secure key derivation function, and params ← Par(1κ), which are assumed to have been
negotiated between the communicating players before the protocol run. The basic version of the
privacy-preserving AKE protocol works as follows, which is also depicted in Figure 18:

17In the public-key setting, MI (resp., SI) corresponds to the public key (resp., secret key).
18Usually, the secret-state SR is erased after the shared-key is derived.
19The procedure KI is usually deterministic, but can also be probabilistic in general.
20In practice, we prefer to the hybrid construction of combining CCA-secure KEM and authenticated encryption

for the CCA-secure PKE.
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IA:
PKA
SKA

IB:
PKB
SKB

cA = EPKB (rA,MA, IA)

cB = EPKA(rB,MB)

Figure 18: Brief depiction of CNKE, where (K,K ′) = KDF (IA, IB , rA, rB ,MA,MB ,KA, cA, cB)

Round-1: The initiator IA takes rA ← {0, 1}κ, computes (MA,SA) ← MI(params), and cA =
EPKB (rA,MA, IA).21 It sends cA to IB, and keeps (rA,SA) in private.

Round-2: The responder IB computes (rA,MA, rA) = DSKB (cA),22 (MB,SB,KB)← MR(params,MA)
if Π is KE (or, takes KB ← {0, 1}κ, and computes (MB,SB) ← MR(params,MA,KB) if
Π is KT), takes rB ← {0, 1}κ, and computes cB = EPKA(rA,MB, auxB) where auxB can be
an empty string.23 Then, it computes (K,K ′) = KDF (IA, IB, rA, rB,MA,MB,KB, auxK),
where K serves as the session-key while K ′ can be used for mutual authentication within
the protocol run, and auxK is some (possibly empty) auxiliary information.24 Finally, it
sends cB to IA, and keeps (K,K ′) in private but erases all the other secret states.

Initiator key derivation: IA computes (rB,MB, auxB) = DSKA(cB),25 KA = KI(params,MB,MA,SA),
and (K,K ′) = KDF (IA, IB, rA, rB,MA,MB,KA, auxK). The session-key is set to be K.

Some comments about the above basic construction are in order. Firstly, identity privacy is
now considered to be an important privacy to be protected, and is mandated in some standards
like TLS1.3, EMV, etc. Secondly, by using ephemeral KE or KT protocol, it is computationally
more efficient, and is better suitable for implementations by low-power clients.26 Thirdly, for
efficiency considerations, we can only encrypt some parts of each of {MA,MB, IA}, as long as
the rest sent in plain does not breach ID-privacy or recover MA or MB with non-negligible
probability. Finally, a more robust variant (but unnecessary for provable security) is to derive
the session-key K from (IA, IB, rA, rB,MA,MB,KA = KB) and the whole session transcript.

The construction, when using OKCN-MLWE as the underlying ephemeral KE, is illustrated
in Figure 19. Note that if the underlying CCA-secure PKE is implemented with CCA-secure
KEM or PKE from OKCN/AKCN-MLWE, seed can be part of public key or system parameters,
and is no need to be encrypted in cA.

9.6.3 Design Rationale of CNKE, and the Actual Design

We demonstrate the design rationales of CNKE with some concrete attacks, which lead us to
the actual design and implementation.

21In actual implementation, some parts of MA could be part of public key or system parameters, which are
not necessary to be encrypted.

22In case the decryption outputs “⊥”, it aborts.
23Depending on the application scenarios, auxB can include the responder’s identity information IB .
24In practice, we may suggest auxB includes (cA, cB).
25In case the decryption outputs “⊥”, it aborts.
26For provable security in the eCK model, the random coins for generating MA (resp., MB) are derived from

a fresh random string rcA and the static secret-key of IA (resp., a random string rcB and the static secret-key of
IB).
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IA:
PKA
SKA

IB:
PKB
SKB

cA = EPKB (rA, seed,Y1, IA)

cB = EPKA(rB,Y2,V)

Figure 19: Basic Structure of CNKE from OKCN/AKCN-MLWE

If IA is not encrypted, and suppose (IA, IB) are not put into the input of KDF, there is
unknown key share (UKS) attack. The UKS attack works as follows: a man-in-the-middle (MIM)
adversary IC intercepts (IA, cA), and changes it to (IC , cA) that is sent to IB. After receiving
cB encrypted with the public key of IC by IB, it decrypts cB and re-encrypts the plaintext
into c′B with the public key of IA. With such an attack, IA considers it is communicating
with IB, while IB thinks it is communicating with IC , but these two (unmatched) sessions are
of the same session-key. As users’ identity information is not put into the input of KDF for
Kyber.AKE [BDK+17], this attack also demonstrates that the design of Kyber.AKE is specific
to its CCA-secure KEM mechanism. For implementation generality and security robustness, we
may suggest to put users’ identity information into the input of KDF for Kyber.AKE, as well
as to encrypt client identity information with a symmetric-key encryption.

If MA or MB is not encrypted, there could be malleating attacks, as the underlying ephemeral
KE/KT protocol is not secure against adaptive attacks. Specifically, by malleating these compo-
nents, an MIM adversary can cause two unmatching sessions to have related ephemeral KE/KT
messages. Then, as the sessions are unmatching, the adversary is allowed to expose any secret
states of one session to be against another one.

Suppose a MIM adversaryA learns the secret key SKB of IB. After intercepting cA from IA, it
decrypts cA with SKB, and then re-encrypts into c′A with the public key SKB. Supposing (cA, cB)
is not put into the input KDF or explicit mutual authentication (e.g., via MACK′) is not added,
this attack causes two sessions to have different transcripts but have the same session-key. To
be against this type of attacks, we suggest to put (cA, cB) into KDF or explicit authenticate
the session transcript via MACK′ . If the underlying CCA-secure PKE is implemented with the
combination of CCA-secure KEM and a CCA-secure symmetric-key encryption scheme SE, we
suggest the following method:

• The random coins for the CCA-secure KEM run by one player, as well as the key materials
rA and rB, are derived from a random string, the public keys, and the transcript, on
which the resultant PKE becomes deterministic. The underlying symmetric encryption is
recommended to be authenticated encryption, e.g., AES-GCM. But the random coins used
for the ephemeral KE/KT protocol should be derived from another independent random
string and the transcript (particularly, the public key of the player itself).27 Moreover, as
we shall see, the random strings rA and rB can be implicitly transported without being
encrypted with the symmetric-key encryption, which further reduces the bandwidth.

27In general, the random coins for PKE and KE/KT can be derived from the same random seed. But for
CCA-secure KEM via the FO-transformation, the random coins used for KEM and those for ephemeral KE/KT
should be independent.
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Now, suppose the PKE is built by composing CCA-secure KEM and AEAD. Suppose a MIM
adversary A exposes the underlying key for AEAD from the secret state of one player, which can
be allowed in the underlying security model, it can use the exposed key to change the AEAD
ciphertext part, which again causes two sessions to have different transcripts but have related
key materials. To be against this type of attack and to provide robust non-malleability, we let
the identity information and ephemeral KE/KT component (which are encrypted with AEAD)
are put into the input for deriving the random coins for KEM.28 Note that we have already
make the key materials rA and rB getting encrypted with AEAD to be related to the KEM
part. This way, the KEM part and the AEAD part are non-malleably combined, which provides
robust resistance to MIM attacks and to secrecy exposure.

The basic construction lacks perfect forward security (PFS). To add PFS and add explicit
mutual authentication, IB additionally sends τB = MACK′(0) in the second round, and IA sends
τA = MACK′(1) in an extra third round. In this case, we suggest auxK includes (cA, cB).29 In
order to be compatible with TLS1.3, in the actual implementation we prefer to use the Finish
mechanism of TLS1.3. Based on [Z16], the analysis of CNKE will be given in a separate work
soon.

9.6.4 Instantiation of CNKE from AKCN-MLWE

Let G : {0, 1}∗ → {0, 1}κ × {0, 1}p(κ), GA : {0, 1}∗ → {0, 1}pA(κ), GB : {0, 1}∗ → {0, 1}κ ×
{0, 1}pB(κ) and H : {0, 1}∗ → {0, 1}κ be cryptographic hash functions (or any secure key deriva-
tion functions), where p(·), pA(·) and pB(·) are positive polynomials. Let KDF : {0, 1}∗ → Kae

be a key derivation function, where Kae is the key space of the underlying AEAD scheme. Let
SE = (Kse,Enc,Dec) be an AEAD scheme, as specified in Section 2.1. The public and secret
keys of each player of IA and IB are the same as in Algorithm 32 in Section 9.5. Denote by
pkA = (seed,YA) and skA = {XA, zA, pkA} the public and secret keys of the initiator player IA,
and by pkB = (seed,YB) and skB = {XB, zB, pkB} the public and secret key of responder player
IB. For simplicity and symmetry, we assume both players, as well as the underlying ephemeral
AKCN/OKCN-MLWE, use the same parameters params and the same matrix A derived from
seed. We also abuse the notation Sample for generating noises of varied length. Also, for sim-
plicity, we assume that for each player the same number of least significant bits are cut off from
both the static public key and the ephemeral MLWE-samples: tA (resp., tB) for IA (resp., IB).

28Unlike the FO-transformation proposed in [FO13,D02], it is no need to put all the plaintexts into the input
for deriving random coins of KEM. With this approach, we are unaware of meaningful attacks even ifMA and/or
MB are sent in plain.

29Alternatively, τB = MACK′(cB , cA, trB), τA = MACK′(trB , cA, cB) or τA = MACK′(trB , cA, cB , τB), etc,
where trB is an empty string or the negotiation transcript prior to session run (e.g., for forwarding IB to IA or
for negotiating parameters). We remark that, if the CCA-secure PKE is built via the combination of CCA-secure
KEM and an AEAD scheme, the explicit MAC mechanism can be waived. In these cases, auxK can be empty.
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Algorithm 35 Round-1 run by IA
1: A := Gen(seed)
2: sktA ← {0, 1}κ
3: rktA = GA(sktA , IA)
4: (Xkt

A ,E
kt
A )← Sample(1κ; rktA )

5: Ykt
A := b(AXkt

A + Ekt
A )/2tAe

6: skemA ← {0, 1}κ
7: (rA, r

kem
A ) = G(skemA , IB,Y

kt
A )

8: (Xkem
A ,Ekem

A ,Ekem
(σ,A))← Sample(1κ; rkemA )

9: Ykem
A := b(ATXkem

A + Ekem
A )/2tAe

10: Σkem
A := 2tBYT

BXkem
A + Ekem

(σ,A)

11: Vkem
A ← Con(Σkem

A , skemA , params)
12: Kae

A = KDF (skemA , ckemA ), where ckemA = (Ykem
A ,Vkem

A )
13: caeA = EncKae

A
(HA, rA||IA||Ykt

A )a

14: Send cA := (ckemA , caeA ) to IB

aThe associated data HA depends on the application scenarios, which can contain a (possibly empty)
subset of {ckemA , IB} and the transcript up to now.
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Algorithm 36 Round-2 run by IB upon receiving cA = (ckemA , caeA )

1: A := Gen(seed)
2: sktB ← {0, 1}κ
3: (kktB , r

kt
B ) = GB(sktB , IB)

4: (Xkt
B ,E

kt
B ,E

kt
(σ,B))← Sample(1κ; rktB )

5: Ykt
B := b(ATXkt

B + Ekt
B )/2tBe

6: Σkt
B := 2tA(Ykt

A )TXkt
B+Ekt

(σ,B)

7: Vkt
B ← Con(Σkt

B , k
kt
B , params)

8: Σkem
B := XT

B(2tAYkem
A )

9: s′kemA := Rec(Σkem
B ,Vkem

A , params)
10: K′aeA = KDF (s′kemA , ckemA )
11: M̄A = DecK′aeA (caeA )

12: if M̄A 6= ⊥ then
13: rephrase M̄A = (r′A, IA,Y

′kt
A )

14: (r′′A, r
′kem
A ) = G(s′kemA , IB,Y

′kt
A )a

15: else
16: (r′′A, r

′kem
A ) = G(zB, cA)b

17: end if
18: (X′kemA ,E′kemA ,E′kem(σ,A))← Sample(1κ; r′kemA )

19: Y′kemA := b(ATX′kemA + E′kemA )/2tAe
20: Σ′kemA := 2tBYT

BX′kemA + E′kem(σ,A)

21: V′kemA ← Con(Σ′kemA , s′kemA , params)
22: if (Y′kemA 6= Ykem

A

∨
V′kemA 6= Vkem

A

∨
r′A 6= r′′A

∨
M̄A = ⊥) then

23: return ⊥
24: end if
25: skemB ← {0, 1}κ
26: (rB, r

kem
B ) = G(skemB , IA,Y

kt
B ,V

kt
B )

27: (Xkem
B ,Ekem

B ,Ekem
(σ,B))← Sample(1κ; rkemB )

28: Ykem
B := b(ATXkem

B + Ekem
B )/2tBe

29: Σ′kemB := 2tAYT
AXkem

B + Ekem
(σ,B)

30: Vkem
B ← Con(Σ′kemB , skemB , params)

31: Kae
B = KDF (skemB , ckemB ), where ckemB = (Ykem

B ,Vkem
B )

32: caeB = EncKae
B

(HB, rB||Ykt
B ||Vkt

B )

33: KB = KDF (r′A, rB, k
kt
B ,Y

′kt
A ,Ykt

B ,V
kt
B , IA, IB)

34: cfB = EncKB
(HfB,FinishB), where FinishB = H(cA, cB, trs)

c

35: Send {cB, cfB} to IA, where cB = (ckemB , caeB )

aIn actual implementation, (s′kemA , IB ,Y
′kt
A ) and (zB , cA) may be padded into the same size. In

case M̄A = ⊥ or r′A 6= r′′A, we can simply abort here. We refrain from doing so to be against potential
side-channel attacks.

bThis step is to hide the performance difference between M̄A = ⊥ and M̄A 6= ⊥, in order to be
against potential side-channel attacks.

cSpecifically, finishB is the hash of the transcript up to now, where trs includes transcript de-
termined from the context, e.g., parameter negotiation transcript, players’ identity and IP-address
information, etc.
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Algorithm 37 Round-3 run by IA upon receiving (cB, c
f
B)

1: Σ′kemA := XT
A(2tBYkem

B )
2: s′kemB := Rec(Σ′kemA ,Vkem

B , params)
3: K′aeB = KDF (s′kemB , ckemB )
4: M̄B = DecK′aeB (caeB )

5: if M̄B 6= ⊥ then
6: rephrase M̄B = (r′B,Y

′kt
B ,V′ktB )

7: (r′′B, r
′kem
B ) = G(s′kemB , IA,Y

′kt
B ,V′ktB )

8: else
9: (r′′B, r

′kem
B ) = G(zA, cB)

10: end if
11: (X′kemB ,E′kemB ,E′kem(σ,B))← Sample(1κ; r′kemB )

12: Y′kemB := b(ATX′kemB + E′kemB )/2tBe
13: Σ′kemB := 2tAYT

AX′kemB + E′kem(σ,B)

14: V′kemB ← Con(Σ′kemB , s′kemB , params)
15: if (Y′kemB 6= Ykem

B

∨
V′kemB 6= Vkem

B

∨
r′B 6= r′′B

∨
M̄B = ⊥) then

16: return ⊥
17: end if
18: Σ′ktB := (Xkt

A )T (2tBY′ktB )
19: k′ktB := Rec(Σ′ktB ,V′ktB , params)
20: KA = KDF (rA, r

′
B, k

′kt
B ,Ykt

A ,Y
′kt
B ,V′ktB , IA, IB)

21: Finish′B = DecKA
(cfB)

22: if Finish′B is incorrect then
23: return ⊥
24: end if
25: FinishA = H(cA, cB, c

f
B, trs)

26: cfA = EncKA
(HfA,FinishA||mA), where mA ∈ {0, 1}∗ is the application data

27: Send cfA to IB

The values rA and rB play multiple roles: (1) serving as the key materials in session-key
derivation; (2) non-malleably attaching the KEM ciphertexts to the AEAD ciphertexts; and (3)
being resistant to adversary in the quantum random oracle model. In the FO-transformation
variants [TU16,HHK17], these values are sent in plain, while get encrypted with AEAD in our
construction. Note that the concrete instantiation of CNKE from AKCN-MLWE is actually
a secure channel establishment protocol, where the session-key KA = KB has already been
used within the session run. The CNKE protocol is carefully designed to have the following
advantages:

• By using ephemeral AKCN-MLWE for transporting kktB , it is computationally more effi-
cient, and is more applicable to client/server setting with low-power clients.

• Robust resistance to MIM malleating attacks, to secrecy exposure, and to side-channel
attacks.
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Initiator
seed← {0, 1}κ

A = Gen(seed) ∈ Rl×lq

X1 ← Sl×1
η

Y1 = bAX1ep

Responder

A = Gen(seed)
X2 ← Sl×1

η

Y2 =
⌊
ATX2

⌉
p

ε← ([−q/2p, q/2p− 1]n)l×1

Σ2 = YT
1 X2 + bεTX2ep

(K2,V)← Con(Σ2, params)

Σ1 = XT
1 Y2 ∈ Rp

K1 = Rec(Σ1,V, params)

seed,Y1 ∈ Rl×1
p

Y2 ∈ Rl×1
p ,V ∈ Rg

Figure 20: MLWR-based key exchange from KC

• Privacy protection. Identity privacy is deemed to be an important privacy issue, and is
mandated by some prominent standards like TLS1.3, EMV, etc. Concealing the compo-
nents of the ephemeral KT protocol not only strengthens security, but is also useful for
privacy protection.

• Well compatible with TLS1.3, by explicitly using AEAD (that is mandated by TLS1.3)
and using the Finish mechanism of TLS1.3 for mutual authentications.

9.7 Extension to MLWR-Based KE

As a direct extension of the LWR-based KE presented in Section 5, the MLWR based KE
protocols are depicted in Figure 20 and 21. For simplicity, we assume p and q are power-of-two,
and p|q. The transformations to CCA-secure PKE and to CNKE are also applicable to these
protocols.

Acknowledgement. We are grateful to Leixiao Cheng, Yuan Li and Qin Luo for great as-
sistance, and to Sauvik Bhattacharya, Jintai Ding, Vadim Lyubashevsky, Chris Peikert, Peter
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[LS15] A. Langlois and D. Stehlé. Worst-case to Average-case Reductions for Module Lat-
tices. Des. Codes Cryptography, 75(3): 565-599, 2015.

[LP11] R. Lindner and C. Peikert. Better Key Sizes (and Attacks) for LWE-Based Encryp-
tion. CT-RSA 2011: 319-339.

[LMPR08] V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen. SWIFFT: A Mmodest-
Proposal for FFT Hashing., FSE 2008: 54-72.

[LPR10] V. Lyubashevsky, C. Peikert, and O. Regev. On Ideal Lattices and Learning with
Errors over Rings. EUROCRYPT 2010: 1-23.

[LPR13b] V. Lyubashevsky, C. Peikert, and O. Regev. A Toolkit for Ring-LWE Cryptography.
EUROCRYPT 2013: 35-54

[M85] P. Montgomery. Modular Multiplication Without Trial Division. Mathematics of
Computation, vol. 44, 519521, 1985.

[PRS11] K. G. Paterson, T. Ristenpart, and T. Shrimpton. Tag Size Does Matter: Attacks
and Proofs for the TLS Record Protocol. ASIACRYPT 2011: 372-389.

[Pei09] C. Peikert. Public-Key Cryptosystems from the Worst-Case Shortest Vector Prob-
lem. STOC 2009: 333-342.

[Pei14] C. Peikert. Lattice Cryptography for the Internet. PQCrypto 2014: 197-219.

[Pei16] C. Peikert. A Decade of Lattice Cryptography. In Foundations and Trends in
Theoretical Computer Science, Volume 10, Issue 4, pages 283-424, 2016.

[PRS17] C. Peikert, O. Regev and N. Stephens-Davidowitz. Pseudorandomness of Ring-LWE
for Any Ring and Modulus. STOC 2017: 461-473.

[PVW08] C. Peikert, V. Vaikuntanathan, and B. Waters. A Framework for Efficient and
Composable Oblivious Transfer. CRYPTO 2008: 554-571.

76



[Pop16] A.V. Poppelen, Cryptographic Decoding of the Leech Lattice. Cryptology ePrint
Archive, Report 2016/1050, 2016.
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Algorithm 38 Key consensus scheme in Frodo

1: procedure Con(σ1, params) . σ1 ∈ [0, q)

2: v =
⌊
2−B̄+1σ1

⌋
mod 2

3: k1 =
⌊
2−B̄σ1

⌉
mod 2B

4: return (k1, v)
5: end procedure
6: procedure Rec(σ2, v, params) . σ2 ∈ [0, q)

7: find x ∈ Zq closest to σ2 s.t.
⌊
2−B̄+1x

⌋
mod 2 = v

8: k2 =
⌊
2−B̄x

⌉
mod 2B

9: return k2

10: end procedure

A Consensus Mechanism of Frodo

Let the modulo q be power of 2, which can be generalized to arbitrary modulo using the tech-
niques in [Pei14]. Let integer B be a power of 2. B < (log q) − 1, B̄ = (log q) − B (note that
m = 2B in our notations). The underlying KC mechanism implicitly in Frodo is presented in
Figure 38.

Claim A.1 ( [BCD+16], Claim 3.2). If |σ1−σ2|q < 2B̄−2, then Rec(σ2, v) = k1. i.e. the scheme
in Algorithm 38 is correct.

This claim is equivalence to require 4md < q.

B Consensus Mechanism of NewHope

Note that, for the consensus mechanism of NewHope, the rec procedure is run both in Con and
in Rec, and a random bit b is used in Con corresponding to the dbl trick in [Pei14].

C Proof of Corollary 3.2

Proof. For correctness, supposing |σ1 − σ2|q ≤ d, by Fact 3.1, there exist θ ∈ Z and δ ∈ [−d, d]
such that σ2 = σ1 + θq + δ. Taking this into line 8 of Algorithm 3, i.e., the formula computing
k2, we have

k2 = b(σ1 − v + θq + δ)/ge mod m

= (k1 + θm+ bδ/ge) mod m.

If 2md < q, then |δ/g| ≤ d/g < 1/2, so that k2 = k1 mod m = k1.
For security, as a special case of generic scheme described in Algorithm 1, the security of

Algorithm 3 follows directly from that of Algorithm 1. �

D On KC/AKC vs. Fuzzy Extractor

Our formulations of KC and AKC are abstractions of the core ingredients of previous construc-
tions of KE and PKE from LWE/RLWE. As we shall see in the subsequent sections, the design
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Algorithm 39 NewHope Consensus Mechanism

1: procedure Decode(x ∈ R4/Z4) . Return a bit k such that kg is closest to x + Z4

2: v = x− bxe
3: return k = 0 if ‖v‖1 ≤ 1, and 1 otherwise
4: end procedure
5:

6: HelpRec(x, b) = CVPD̃4

(
2r

q (x + bg)
)

mod 2r . b corresponds to the dbl trick [Pei14]

7: rec
(
x ∈ Z4

q ,v ∈ Z4
2r
)

= Decode
(

1
qx− 1

2rBv
)

8:

9: procedure Con(σ1 ∈ Z4
q , params)

10: b← {0, 1}
11: v← HelpRec(σ1, b)
12: k1 ← rec(σ1,v)
13: return (k1,v)
14: end procedure
15:

16: procedure Rec(σ2 ∈ Z4
q ,v ∈ Z4

2r , params)
17: k2 ← rec(σ2,v)
18: end procedure
19:

and analysis of KE and PKE from LWE, LWR and RLWE can be reduced to KC and AKC.
We also note that KC and AKC are similar to fuzzy extractor proposed in [DORS08], which
extracts shared-keys from biometrics and noisy data. In this section, we make some discussions
on the relationship between KC/AKC and fuzzy extractor.

The differences between the definitions of KC/AKC and that of fuzzy extractor lie mainly in
the following ways. Firstly, AKC was not considered within the definitional framework of fuzzy
extractor. Secondly, the metric | · |q we use in defining KC and AKC was not considered for
fuzzy extractor. Thirdly, in the definitions of KC and AKC, the algorithm Rec (corresponding
Rep for fuzzy extractor) is mandated to be deterministic, while in the formulation of fuzzy
extractor it is probabilistic. Fourthly, in the formulation of fuzzy extractor [DORS08], w, R
and P (corresponding σ1, k and v in KC/AKC) are binary strings; while in the definitions of
KC/AKC, the corresponding values σ1 ∈ Zq, k ∈ Zm and v ∈ Zg have more structured ranges,
which are helpful in deriving the exact upper bound. Finally, for the security of KC and AKC,
we require that the signal value v be independent of the shared-key k1 (that can be subject to
arbitrary distribution for AKC); roughly speaking, in the definition of fuzzy extractor [DORS08],
it is required that the joint distribution (R,P ) be statistically close to (Ul, P ) where R ∈ {0, 1}l
and Ul is the uniform distribution over {0, 1}l.

A generic upper bound on the length of key extracted by fuzzy extractor is proposed in
[DORS08, Appendix C]. In comparison, the upper bounds for KC and AKC proved in this work
are more versatile and precise w.r.t. the metric | · |q. For example, the effect of the length of
the signal v, i.e., the bandwidth parameter g, is not considered in the upper bound for fuzzy
extractor, but is taken into account in the upper bounds for KC and AKC.

A generic construction of fuzzy extractor from secure sketch, together with a generic con-
struction of secure sketch for transitive metric spaces, is proposed in [DORS08]. We note that
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(Zq, | · |q) can be naturally seen as a transitive matric space. Compared to the secure sketch
based generic constructions of fuzzy extractor, our constructions of KC and AKC are direct and
more efficient.

In spite of some similarities between KC/AKC and fuzzy extractors, we remark that before
our this work the relation between fuzzy extractor and KE from LWE and its variants is actually
opaque. Explicitly identifying and formalizing KC/AKC and reducing lattice-based cryptosys-
tems to KC/AKC in a black-box modular way, with inherent bounds on what could or couldn’t
be done, cut the complexity of future design and analysis of these cryptosystems.

E Overview of the Primal and Dual Attacks

This section is almost verbatim from [ADPS16]. The dual attack tries to distinguish the distri-
bution of LWE samples and the uniform distribution. Suppose (A,b = As+e) ∈ Zm×nq ×Zmq is a
LWE sample, where s and e are drawn from discrete Gaussian of variance σ2

s and σ2
e respectively.

Then we choose a positive real c ∈ R, 0 < c ≤ q, and construct Lc(A) = {(x,y/c) ∈ Zm×(Z/c)n |
xTA = yT mod q}, which is a lattice with dimension m+n and determinant (q/c)n. For a short
vector (x,y) ∈ Lc(A) found by the BKZ algorithm, we have xTb = xT (As + e) = c ·yT s + xTe
mod q. If (A,b) is an LWE sample, the distribution of the right-hand side will be very close
to a Gaussian of standard deviation

√
c2‖y‖2σ2

s + ‖x‖2σ2
e , otherwise the distribution will be

uniform. ‖(x,y)‖ is about δm+n
0 (q/c)

n
m+n , where δ0 is the root Hermite factor. We heuristically

assume that ‖x‖ =
√

m
m+n ‖(x,y)‖, and ‖y‖ =

√
n

m+n ‖(x,y)‖. Then we can choose c = σe/σs

that minimizes the standard deviation of xTb. The advantage of distinguishing xTb from uni-
form distribution is ε = 4 exp(−2π2τ2), where τ =

√
c2‖y‖2σ2

s + ‖x‖2σ2
e/q. This attack must

be repeated R = max{1, 1/(20.2075bε2)} times to be successful.
The primal attack reduces the LWE problem to the unique-SVP problem. Let Λw(A) =

{(x,y, z) ∈ Zn × (Zm/w)× Z | Ax + wy = zb mod q}, and a vector v = (s, e/w, 1) ∈ Λw(A).
Λw(A) is a lattice of d = m+ n+ 1 dimensions, and its determinant is (q/w)m. From geometry
series assumption, we can derive ‖b∗i ‖ ≈ δd−2i−1

0 det(Λw(A))1/d. We heuristically assume that
the length of projection of v onto the vector space spanned by the last b Gram-Schmidt vectors

is about
√

b
d ‖(s, e/w, 1)‖ ≈

√
b
d (nσ2

s +mσ2
e/w

2 + 1). If this length is shorter than ‖b∗d−b‖,
this attack can be successful. Hence, the successful condition is

√
b
d (nσ2

s +mσ2
e/w

2 + 1) ≤
δ2b−d−1

0

( q
w

)m/d
. We know that the optimal w balancing the secret s and the noise e is about

σe/σs.
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F Security Estimation of the Parameters of Frodo

Scheme Attack
Rounded Gaussian Post-reduction

m′ b C Q P C Q P

Classical
Primal 549 442 138 126 100 132 120 95
Dual 544 438 136 124 99 130 119 94

Recommended
Primal 716 489 151 138 110 145 132 104
Dual 737 485 150 137 109 144 130 103

Paranoid
Primal 793 581 179 163 129 178 162 129
Dual 833 576 177 161 128 177 161 128

Table 22: Security estimation of the parameters proposed for Frodo in [BCD+16], as specified
in Table 11.

G Security Analysis of LWE-Based Key Exchange

Definition G.1. A KC or AKC based key exchange protocol from LWE is secure, if for any
sufficiently large security parameter λ and any PT adversary A,

∣∣Pr[b′ = b]− 1
2

∣∣ is negligible, as
defined w.r.t. game G0 specified in Algorithm 40.

Algorithm 40 Game G0

1: A← Zn×nq

2: X1,E1 ← χn×lA

3: Y1 = AX1 + E1

4: X2,E2 ← χn×lB

5: Y2 = ATX2 + E2

6: Eσ ← χlA×lB

7: Σ2 = YT
1 X2 + Eσ

8:
(
K0

2,V
)
← Con(Σ2, params)

9: K1
2 ← ZlA×lBm

10: b← {0, 1}
11: b′ ← A(A,Y1, bY2/2

tc,Kb
2,V)

Before starting to prove the security, we first recall some basic properties of the LWE as-
sumption. The following lemma is derived by a direct hybrid argument [PVW08,BCD+16].

Lemma G.1 (LWE in the matrix form). For positive integer parameters (λ, n, q ≥ 2, l, t), where

n, q, l, t all are polynomial in λ, and a distribution χ over Zq, denote by L
(l,t)
χ the distribution over

Zt×nq × Zt×lq generated by taking A ← Zt×nq ,S ← χn×l,E ← χt×l and outputting (A,AS + E).
Then, under the standard LWE assumption on indistinguishability between Aq,s,χ (with s← χn)
and U(Znq ×Zq), no PT distinguisher D can distinguish, with non-negligible probability, between

the distribution L
(l,t)
χ and U(Zt×nq × Zt×lq ) for sufficiently large λ.

Theorem G.1. If (params,Con,Rec) is a correct and secure KC or AKC scheme, the key
exchange protocol described in Figure 7 is secure under the (matrix form of) LWE assumption.
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Proof. The proof is similar to, but actually simpler than, that in [Pei14,BCD+16]. The general
idea is that we construct a sequence of games: G0, G1 and G2, where G0 is the original game for
defining security. In every move from game Gi to Gi+1, 0 ≤ i ≤ 1, we change a little. All games
Gi’s share the same PT adversary A, whose goal is to distinguish between the matrices chosen
uniformly at random and the matrices generated in the actual key exchange protocol. Denote by
Ti, 0 ≤ i ≤ 2, the event that b = b′ in Game Gi. Our goal is to prove that Pr[T0] < 1/2 + negl,
where negl is a negligible function in λ. For ease of readability, we re-produce game G0 below.
For presentation simplicity, in the subsequent analysis, we always assume the underlying KC
or AKC is correct. The proof can be trivially extended to the case that correctness holds with
overwhelming probability (i.e., failure occurs with negligible probability).

Algorithm 41 Game G0

1: A← Zn×nq

2: X1,E1 ← χn×lA

3: Y1 = AX1 + E1

4: X2,E2 ← χn×lB

5: Y2 = ATX2 + E2

6: Eσ ← χlA×lB

7: Σ2 = YT
1 X2 + Eσ

8:
(
K0

2,V
)
← Con(Σ2, params)

9: K1
2 ← ZlA×lBm

10: b← {0, 1}
11: b′ ← A(A,Y1, bY2/2

tc,Kb
2,V)

Algorithm 42 Game G1

1: A← Zn×nq

2: X1,E1 ← χn×lA

3: Y1 ← Zn×lAq

4: X2,E2 ← χn×lB

5: Y2 = ATX2 + E2

6: Eσ ← χlA×lB

7: Σ2 = YT
1 X2 + Eσ

8:
(
K0

2,V
)
← Con(Σ2, params)

9: K1
2 ← ZlA×lBm

10: b← {0, 1}
11: b′ ← A(A,Y1, bY2/2

tc,Kb
2,V)

Lemma G.2. |Pr[T0] − Pr[T1]| < negl, under the indistinguishability between L
(lA,n)
χ and

U(Zn×nq × Zn×lAq ).

Proof. Construct a distinguisher D, in Algorithm 43, who tries to distinguish L
(lA,n)
χ from

U(Zn×nq × Zn×lAq ).

Algorithm 43 Distinguisher D
1: procedure D(A,B) . A ∈ Zn×nq ,B ∈ Zn×lAq

2: Y1 = B
3: X2,E2 ← χn×lB

4: Y2 = ATX2 + E2

5: Eσ ← χlA×lB

6: Σ2 = YT
1 X2 + Eσ

7:
(
K0

2,V
)
← Con(Σ2, params)

8: K1
2 ← ZlA×lBm

9: b← {0, 1}
10: b′ ← A(A,Y1, bY2/2

tc,Kb
2,V)

11: if b′ = b then
12: return 1
13: else
14: return 0
15: end if
16: end procedure
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If (A,B) is subject to L
(lA,n)
χ , then D perfectly simulates G0. Hence, Pr

[
D
(
L

(lA,n)
χ

)
= 1
]

=

Pr[T0]. On the other hand, if (A,B) is chosen uniformly at random from Zn×nq × Zn×lAq , which

are denoted as (AU ,BU ), then D perfectly simulates G1. So, Pr[D(AU ,BU ) = 1] = Pr[T1].

Hence, |Pr[T0]− Pr[T1]| =
∣∣∣Pr[D(L

(lA,n)
χ ) = 1]− Pr[D(AU ,BU ) = 1]

∣∣∣ < negl. �

Algorithm 44 Game G1

1: A← Zn×nq

2: X1,E1 ← χn×lA

3: Y1 ← Zn×lAq

4: X2,E2 ← χn×lB

5: Y2 = ATX2 + E2

6: Eσ ← χlA×lB

7: Σ2 = YT
1 X2 + Eσ

8:
(
K0

2,V
)
← Con(Σ2, params)

9: K1
2 ← ZlA×lBm

10: b← {0, 1}
11: b′ ← A(A,Y1, bY2/2

tc,Kb
2,V)

Algorithm 45 Game G2

1: A← Zn×nq

2: X1,E1 ← χn×lA

3: Y1 ← Zn×lAq

4: X2,E2 ← χn×lB

5: Y2 ← Zn×lBq

6: Eσ ← χlA×lB

7: Σ2 ← ZlA×lBq

8:
(
K0

2,V
)
← Con(Σ2, params)

9: K1
2 ← ZlA×lBm

10: b← {0, 1}
11: b′ ← A(A,Y1, bY2/2

tc,Kb
2,V)

Lemma G.3. |Pr[T1] − Pr[T2]| < negl, under the indistinguishability between L
(lB ,n+lA)
χ and

U(Z(n+lA)×n
q × Z(n+lA)×lB

q ).

Proof. As Y1 is subject to uniform distribution in G1, (YT
1 ,Σ2) can be regarded as an L

(lB ,lA)
χ

sample of secret X2 and noise Eσ. Based on this observation, we construct the following distin-
guisher D′.

Algorithm 46 Distinguisher D′

1: procedure D′(A′,B) where A′ ∈ Z(n+lA)×n
q ,B ∈ Z(n+lA)×lB

q

2: Denote A′ =

(
AT

YT
1

)
. A ∈ Zn×nq ,YT

1 ∈ ZlA×nq

3: Denote B =

(
Y2

Σ2

)
. Y2 ∈ Zn×lBq ,Σ2 ∈ ZlA×lBq

4:
(
K0

2,V
)
← Con(Σ2, params)

5: K1
2 ← ZlA×lBm

6: b← {0, 1}
7: b′ ← A(A,Y1, bY2/2

tc,Kb
2,V)

8: if b′ = b then
9: return 1

10: else
11: return 0
12: end if
13: end procedure

If (A′,B) is subject to L
(lB ,n+lA)
χ , A′ ← Z(n+lA)×n

q corresponds to A ← Zn×nq and Y1 ←
Zn×lAq in G1; and S ← χn×lB (resp., E ← χ(n+lA)×lB ) in generating (A′,B) corresponds to
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X2 ← χn×lB (resp., E2 ← χn×lB and Eσ ← χlA×lB ) in G1. In this case, we have

B = A′S + E =

(
AT

YT
1

)
X2 +

(
E2

Eσ

)

=

(
ATX2 + E2

YT
1 X2 + Eσ

)
=

(
Y2

Σ2

)

Hence Pr
[
D′
(
L

(lB ,n+lA)
χ

)
= 1
]

= Pr[T1].

On the other hand, if (A′,B) is subject to uniform distribution U(Z(n+lA)×n
q × Z(n+lA)×lB

q ),
then A,Y1,Y2,Σ2 all are also uniformly random; So, the view of D′ in this case is the same
as that in game G2. Hence, Pr [D′ (A′,B) = 1] = Pr[T2] in this case. Then |Pr[T1]− Pr[T2]| =
|Pr[D′(L(lB ,n+lA)

χ ) = 1]− Pr[D′(U(Z(n+lA)×n
q × Z(n+lA)×lB

q )) = 1]| < negl. �

Lemma G.4. If the underlying KC or AKC is secure, Pr[T2] = 1
2 .

Proof. Note that, in Game G2, for any 1 ≤ i ≤ lA and 1 ≤ j ≤ lB,
(
K0

2[i, j],V[i, j]
)

only depends
on Σ2[i, j], and Σ2 is subject to uniform distribution. By the security of KC, we have that, for
each pair (i, j), K0

2[i, j] and V[i, j] are independent, and K0
2[i, j] is uniform distributed. Hence,

K0
2 and V are independent, and K0

2 is uniformly distributed, which implies that Pr[T2] = 1/2.
�

This finishes the proof of Theorem G.1. �

H Construction and Analysis of AKCN-4:1

H.1 Overview of NewHope

By extending the technique of [PG13], in NewHope the coefficients of σ1 (i.e., the polynomial of
degree n) are divided into n/4 groups, where each group contains four coordinates. On the input
of four coordinates, only one bit (rather than four bits) consensus is reached, which reduces the
error rate to about 2−61 which is viewed to be negligible in practice.

Specifically, suppose Alice and Bob have σ1 and σ2 in Z4
q respectively, and they are close

to each other. One can regard the two vectors as elements in R4/Z4, by treating them as 1
qσ1

and 1
qσ2. Consider the matrix B = (u0,u1,u2,g) ∈ R4×4, where ui, 0 ≤ i ≤ 2, is the canonical

unit vector whose i-th coordinate is 1, and g = (1/2, 1/2, 1/2, 1/2)T . Denote by D̃4 the lattice
generated by B. Note that Z4 ⊂ D̃4 ⊂ R4. Denote by V the close Voronoi cell of the origin in
D̃4. In fact, V is the intersection of the unit ball in norm 1 and the unit ball in infinity norm
(the reader is referred to NewHope [ADPS16, Appendix C] for details). The following procedure
CVPD̃4

(x) returns the vector v such that Bv is closest to x, i.e., x ∈ Bv+V, where the distance
is measured in the Euclidean norm.
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Algorithm 47 CVPD̃4
in NewHope [ADPS16]

1: procedure CVPD̃4
(x ∈ R4)

2: v0 = bxe
3: v1 = bx− ge
4: k = 0 if ‖x− v0‖1 < 1 and 1 otherwise
5: (v0, v1, v2, v3)T = vk
6: return v = (v0, v1, v2, k)T + v3 · (−1,−1,−1, 2)T

7: end procedure

If σ1 is in the Voronoi cell of g, then the consensus bit is set to be 1, and 0 otherwise.
Hence, Alice finds the closest lattice vector of σ1 by running the CVPD̃4

procedure described in
Algorithm 47, and calculates their difference which is set to be the hint signal v. Upon receiving
v, Bob subtracts the difference from σ2. Since σ1 and σ2 are very close, the subtraction moves
1
qσ2 towards a lattice point in D̃4. Then Bob checks whether or not the point after the move
is in the Voronoi cell of g, and so the consensus is reached. Furthermore, to save bandwidth,
NewHope chooses an integer r, and discretizes the Voronoi cell of g to 24r blocks, so that only
4r bits are needed to transfer the hint information. To make the distribution of consensus bit
uniform, NewHope adds a small noise to σ1, similar to the dbl trick used in [Pei14]. The Con
and Rec procedures, distilled from NewHope, are presented in Algorithm 39 in Appendix B.

H.2 Construction and Analysis of AKCN-4:1

For any integer q and vector x = (x0, x1, x2, x3)T ∈ Z4
q , denote by ‖x‖q,1 the sum |x0|q + |x1|q +

|x2|q + |x3|q. For two vectors a = (a0, a1, a2, a3)T ,b = (b0, b1, b2, b3)T ∈ Z4, let a mod b denote
the vector (a0 mod b0, a1 mod b1, a2 mod b2, a3 mod b3)T ∈ Z4. The scheme of AKCN-4:1 is
presented in Algorithm 48.

Compared with the consensus mechanism of NewHope presented in Appendix B, AKCN-4:1
can be simpler and computationally more efficient. In specific, the uniformly random bit b used in
NewHope (corresponding the dbl trick in [Pei14]) is eliminated with AKCN-4:1, which saves 256
(resp., 1024) random bits in total when reaching 256 (resp., 1024) consensus bits. In addition,
as k1, as well as k1(q + 1)g, can be offline computed and used (e.g., for encryption, in parallel
with the protocol run), AKCN-4:1 enjoys online/offline speeding-up and parallel computing.

Theorem H.1. If ‖σ1 −σ2‖q,1 < q
(

1− 1
g

)
− 2, then the AKCN-4:1 scheme depicted in Algo-

rithm 48 is correct.

Proof. Suppose v′ = CVPD̃4
(g(σ1 + k1(q + 1)g)/q). Then, v = v′ mod (g, g, g, 2g), and so

there exits θ = (θ0, θ1, θ2, θ3) ∈ Z4 such that v = v′ + g(θ0, θ1, θ2, 2θ3)T . From the formula
calculating v′, we know there exits ε ∈ V, such that g(σ1 + k1(q + 1)g)/q = ε + Bv′. Hence,
Bv′ = g(σ1 + k1(q + 1)g)/q − ε.

From the formula computing x in Rec, we have x = Bv/g − σ2/q = Bv′/g − σ2/q +
B(θ0, θ1, θ2, 2θ3)T = k1g + k1g/q − ε/g + (σ1 − σ2)/q + B(θ0, θ1, θ2, 2θ3)T . Note that the last
term B(θ0, θ1, θ2, 2θ3)T ∈ Z4, and in line 7 of Algorithm 48 we subtract bxe ∈ Z4 from x, so the
difference between x− bxe and k1g in norm 1 is no more than 2/q + 1/g + ‖σ1 − σ2‖q,1/q < 1.
Hence, k2 = k1. �
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Algorithm 48 AKCN-4:1

1: procedure Con(σ1 ∈ Z4
q , k1 ∈ {0, 1}, params)

2: v = CVPD̃4
(g(σ1 + k1(q + 1)g)/q) mod (g, g, g, 2g)T

3: return v
4: end procedure
5: procedure Rec(σ2 ∈ Z4

q ,v ∈ Z3
g × Z2g, params)

6: x = Bv/g − σ2/q
7: return k2 = 0 if ‖x− bxe‖1 < 1, 1 otherwise.
8: end procedure

Theorem H.2. AKCN-4:1 depicted in Algorithm 48 is secure. Specifically, if σ1 is subject to
uniform distribution over Z4

q, then v and k1 are independent.

Proof. Let y = (σ1 + k1(q+ 1)g) mod q ∈ Z4
q . First we prove that y is independent of k1, when

σ1 ← Z4
q . Specifically, for arbitrary ỹ ∈ Z4

q and arbitrary k̃1 ∈ {0, 1}, we want to prove that

Pr[y = ỹ | k1 = k̃1] = Pr[σ1 = (ỹ − k1(q + 1)g) mod q | k1 = k̃1] = 1/q4. Hence, y and k1 are
independent.

For simplicity, denote by G the vector (g, g, g, 2g). Map φ : Z4 → Z3
g × Z2g is defined

by φ(w) = CVPD̃4
(gw/q) mod G. We shall prove that, for any θ ∈ Z4, φ(w + qθ) = φ(w).

By definition of φ, φ(w + qθ) = CVPD̃4
(gw/q + gθ) mod G. Taking x = gw/q + gθ into

Algorithm 47, we have CVPD̃4
(gw/q+ gθ) = CVPD̃4

(gw/q) + B−1(gθ). It is easy to check that

the last term B−1(gθ) always satisfies B−1(gθ) mod G = 0.
From the above property of φ, we have φ(y) = φ((σ1 + k1(q + 1)g) mod q) = φ(σ1 + k1(q +

1)g) = v. As k1 is independent of y, and v only depends on y, k1 and v are independent. �

I Implementing HxT in SEC with Simple Bit Operations

uint16_t getCode(uint16_t x)

{

uint16_t c, p;

c = (x >> 4) ^ x;

c = (c >> 2) ^ c;

p = ((c >> 1) ^ c) & 1;

x = (x >> 8) ^ x;

c = (x >> 2) ^ x;

p = (((c >> 1) ^ c) & 1) | (p << 1);

x = (x >> 4) ^ x;

p = (((x >> 1) ^ x) & 1) | (p << 1);

x = (x >> 2) ^ x;

p = (x & 1) | (p << 1);

return p;

}

Listing 1: An implementation of HxT with C language
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J CCA-Secure KEM from OKCN-MLWE

The transformation from AKCN-MLWE to CCA-secure KEM is specified in detail in [BDK+17].
Here, we present the CCA-secure KEM from OKCN-MLWE, which is instantiated from [HHK17].

For schemes based on MLWE, LWE and LWR, the security parameter κ is set to be 256.30 Let
G : {0, 1}∗ → {0, 1}κ×{0, 1}κ×{0, 1}p1(κ)×{0, 1}p2(κ), where p1 and p2 are positive polynomials,
and H : {0, 1}∗ → {0, 1}κ be two cryptographic hash functions (or any secure key derivation
function). We write (X2,E2,Eσ)← Sample(1κ; r1) to denote the process of sampling the noises:
X2,E2 ← Sl×1

η and Eσ ← Sη, using randomness r1 ∈ {0, 1}p1(κ). Denote by Con(Σ2, params; r2)

the process of running Con(Σ2, params) with randomness r2 ∈ {0, 1}p2(κ).

Algorithm 49 (pk, sk)← KeyGen(1κ)

1: z← {0, 1}κ
2: seed← {0, 1}κ
3: A := Gen(seed)
4: X1,E1 ← Sl×1

η

5: Y1 := b(AX1 + E1)/2t1e
6: return (pk := (seed,Y1), sk := {X1, z, pk})

Algorithm 50 (ct, key)← Encaps(pk)

1: S← {0, 1}κ
2: (k, $, r1, r2) = G(pk,S)
3: (X2,E2,Eσ)← Sample(1κ; r1)
4: A := Gen(seed)
5: Y2 := b(ATX2 + E2)/2t2e
6: Σ2 := 2t1YT

1 X2 + Eσ

7: (K2,V)← Con(Σ2, params; r2)
8: K = H(K2)⊕ Sa

9: return (ct := (Y2,V,K, $), key := H(k, ct))b

aA variant is to set K = H(K2, ct)⊕ S.
bIn practice, we may suggest to encrypt $ with the symmetric-key encryption scheme

to be composed with KEM.

30For schemes based on RLWE, we may suggest κ = 512.
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Algorithm 51 key′ ← Decaps(sk, ct = (Y2,V,K, $))

1: Σ1 := XT
1 (2t2Y2)

2: K1 := Rec(Σ1,V, params)
3: S′ = H(K1)⊕K
4: (k′, $′, r′1, r

′
2) = G(pk,S′)

5: (X′2,E
′
2,E

′
σ)← Sample(1κ; r′1)

6: A := Gen(seed) a

7: Y′2 := b(ATX′2 + E′2)/2t2e
8: Σ′2 := 2t1YT

1 X′2 + E′σ
9: (K′2,V

′)← Con(Σ′2, params; r′2)
10: if (Y2 = Y′2

∧
V = V′

∧
K1 = K′2

∧
$ = $′) thenb

11: key′ = H(k′, ct)
12: else
13: key′ = H(z, ct)
14: end if
15: return key′

aA can be directly specified as part of pk and sk in place of seed.
bThe condition whether $ = $′ can be checked just after Step 4. We refrain from doing

so to be against potential side-channel attacks.

K More Variants of CNKE

We can have more variants of CNKE:31

• Let G : {0, 1}∗ → {0, 1}κ × {0, 1}κ × {0, 1}p(κ), and set (rA, dA, r
kem
A ) = G(skemA , IB,Y

kt
A )

and (rB, dB, r
kem
B ) = G(skemB , IA,Y

kt
B ,V

kt
B ). The value dA (resp., dB) is sent by IA (resp.,

IB) in the second (resp., third) round, and is treated as a part of ckemA ) (resp., ckemB ). In
this case, rA (resp., rB) does not need to be sent explicitly. Specifically, in this case, we
set caeA = EncKae

A
(HA, IA||Ykt

A ||m0) and caeB = EncKae
B

(HB,Y
kt
B ||Vkt

B ).

• (rA,K
ae
A ) = KDF ′(skemA , ckemA ), and Kae

B = KDF ′(skemB , ckemB ). For instance, let G :
{0, 1}∗ → {0, 1}κ × {0, 1}p(κ), and set (dA, r

kem
A ) = G(skemA , IB,Y

kt
A ) and (dB, r

kem
B ) =

G(skemB , IA,Y
kt
B ,V

kt
B ). The value dA (resp., dB) is sent by IA (resp., IB) in the sec-

ond (resp., third) round, and is treated as a part of ckemA ) (resp., ckemB ). Let caeA =
EncKae

A
(HA, IA||Ykt

A ||m0) and caeB = EncKae
B

(HB,Y
kt
B ||Vkt

B ). In this case, rA (resp., rB)
is sent implicitly.

• A more aggressive variant is that: the values of rA and rB are removed from the AEAD
ciphertext parts caeA and caeB , but still kept in the input of KDF . To our knowledge, as
long as the session run is complete, it does not cause any meaningful vulnerability.

31All these variants are also applicable when using the CCA-secure KEMs proposed in [BDK+17,HHK17].
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L More Parameters of OKCN-MLWE and AKCN-MLWE

|K| n q η (η′) g t l pq-sec (t-sec) err pk (B) cipher (B) bw. (B)

OKCN-MLWE-KE-light 256 256 7681 5 (13) 23 4 2 102 (116) 2−36.2 608 672 1280
OKCN-MLWE-KE 256 256 7681 2 (10) 22 4 3 147 (183) 2−50.1 896 928 1824

OKCN-MLWE-PKE-light 256 256 7681 5 (9) 23 3 2 102 (111) 2−105.5 672 736 1408
OKCN-MLWE-PKE-1 256 256 7681 2 (10) 25 4 3 147 (183) 2−80.3 896 1024 1920

OKCN-MLWE-PKE-2 256 256 7681 2 (6) 22 3 3 147 (171) 2−166.4 992 1024 2016
AKCN-MLWE-PKE-light 256 256 7681 5 (9) 23 3 2 102 (111) 2−105.5 672 768 1440

AKCN-MLWE-PKE-1 256 256 7681 2 (10) 26 4 3 147 (183) 2−80.3 896 1056 1952
AKCN-MLWE-PKE-2 256 256 7681 2 (6) 23 3 3 147 (171) 2−166.4 992 1056 2048

OKCN-MLWE-Alt1 256 256 7681 4 22 2 3 161 (171) 2−142.7 1088 1120 2208
AKCN-MLWE-Alt1(Kyber) 256 256 7681 4 23 2 3 161 (171) 2−142.7 1088 1152 2240

OKCN-MLWE-Alt2 256 256 7681 4 22 3 3 161 2−71.9 992 1024 2016
OKCN-MLWE-Alt3 256 256 7681 4 24 3 3 161 2−109 992 1088 2080
OKCN-MLWE-Alt3 256 256 7681 4 24 4 3 161 2−34.5 896 992 1888

Table 23: Parameters for OKCN/AKCN-MLWE. η′ = η + 2t−1; “pq-sec (t-sec)” refers to the
best known quantum attack against the underlying lattice problem w.r.t. η (resp., η′).

|K| n q η g t l pq-sec err pk (B) cipher (B) bw. (B)

OKCN-MLWE-KE-l08 256 256 7681 8 24 3 2 108 2−62 672 768 1440
OKCN-MLWE-PKE-108 256 256 7681 8 24 1 2 108 2−120.1 800 896 1696
AKCN-MLWE-KEM-108 256 256 7681 8 24 3 2 108 2−54.9 672 768 1440
AKCN-MLWE-PKE-108 256 256 7681 8 24 1 2 108 2−106.3 800 896 1696

OKCN-MLWE-KE-120 256 256 7681 16 24 1 2 120 2−30.8 800 896 1696
OKCN-MLWE-KE-120-SEC 191 256 7681 16 24 1 2 120 2−66.6 800 904 1704

AKCN-MLWE-KEM-120 256 256 7681 16 24 1 2 120 2−27.4 800 896 1696
AKCN-MLWE-KEM-120-SEC 191 256 7681 16 24 1 2 120 2−60 800 896 1696

OKCN-MLWE-KE-147 256 256 7681 2 24 4 3 147 2−76.1 896 992 1888
OKCN-MLWE-KE-147-SEC 191 256 7681 2 24 4 3 147 2−157 896 1000 1896

OKCN-MLWE-PKE-147 256 256 7681 2 24 3 3 147 2−253.1 992 1088 2080
AKCN-MLWE-KEM-147 256 256 7681 2 24 4 3 147 2−67.1 896 992 1888

AKCN-MLWE-KEM-147-SEC 191 256 7681 2 24 4 3 147 2−139 896 992 1888
AKCN-MLWE-PKE-147 256 256 7681 2 24 3 3 147 2−222.6 992 1088 2080

OKCN-MLWE-KE-248 512 512 7681 8 24 0 2 248 2−68.2 1696 1920 3616
OKCN-MLWE-KE-248 512 512 7681 8 24 1 2 248 2−60.8 1568 1792 3360
OKCN-MLWE-KE-248 512 512 7681 8 24 3 2 248 2−28.9 1312 1536 2848
OKCN-MLWE-KE-248 512 512 7681 8 26 0 2 248 2−73.4 1696 2048 3744
OKCN-MLWE-KE-248 512 512 7681 8 26 1 2 248 2−65.3 1568 1920 3488

AKCN-MLWE-KEM-248 512 512 7681 8 24 1 2 248 2−53.7 1568 1792 3360
AKCN-MLWE-KEM-248 512 512 7681 8 24 2 2 248 2−44.5 1440 1664 3104
AKCN-MLWE-KEM-248 512 512 7681 8 24 3 2 248 2−25.7 1312 1536 2848
AKCN-MLWE-KEM-248 512 512 7681 8 26 0 2 248 2−72 1696 2048 3744
AKCN-MLWE-KEM-248 512 512 7681 8 26 1 2 248 2−64.1 1568 1920 3488

Table 24: More Parameters for OKCN/AKCN-MLWE. For SEC-aided OKCN/AKCN-MLWE,
nH = 4.
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|K| n q η g t l pq-sec err pk (B) cipher (B) bw. (B)

OKCN-MLWE-KE-120-SEC-1 191 256 7681 16 24 1 2 120 2−67.0 800 904 1704
OKCN-MLWE-KE-120-SEC-2 191 256 7681 16 23 1 2 120 2−60.2 800 872 1672
AKCN-MLWE-KEM-120-SEC 191 256 7681 16 24 1 2 120 2−60.2 800 896 1696

OKCN-MLWE-PKE-147-SEC-1 191 256 7681 2 24 4 3 147 2−157.6 896 1000 1896
OKCN-MLWE-PKE-147-SEC-2 191 256 7681 2 23 4 3 147 2−139.6 896 968 1864

AKCN-MLWE-PKE-147-SEC-1 191 256 7681 2 24 4 3 147 2−139.6 896 992 1888
AKCN-MLWE-PKE-147-SEC-2 191 256 7681 2 25 4 3 147 2−157.6 896 1024 1920

OKCN-MLWE-KE-248-SEC 464 512 7681 8 24 3 2 248 2−61.8 1312 1543 2855
OKCN-MLWE-PKE-248-SEC-1 464 512 7681 8 26 1 2 248 2−134.6 1568 1927 3495
OKCN-MLWE-PKE-248-SEC-2 464 512 7681 8 26 0 2 248 2−150.8 1696 2055 3751

AKCN-MLWE-KEM-248-SEC 464 512 7681 8 24 3 2 248 2−55.4 1312 1536 2848
AKCN-MLWE-PKE-248-SEC-1 464 512 7681 8 26 1 2 248 2−132.2 1568 1920 3488
AKCN-MLWE-PKE-248-SEC-2 464 512 7681 8 26 0 2 248 2−148 1696 2048 3744

Table 25: Recommended Parameters for SEC-aided OKCN/AKCN-MLWE, where nH = 4 for
OKCN/AKCN-MLWE-120/147 (resp., nH = 6 for OKCN/AKCN-MLWE-248).
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