DAGS: Key Encapsulation using
Dyadic GS Codes

Anonymized for Submission

Abstract. Code-based Cryptography is one of the main areas of interest
for the Post-Quantum Cryptography Standardization call. In this paper,
we introduce DAGS', a Key Encapsulation Mechanism (KEM) based on
Quasi-Dyadic Generalized Srivastava codes. The scheme is proved to be
IND-CCA secure in both Random Oracle Model and Quantum Random
Oracle Model. We believe that DAGS will offer competitive performance,
especially when compared with other existing code-based schemes, and
represent a valid candidate for post-quantum standardization.

Keywords: post-quantum cryptography, code-based cryptography, key
exchange.

1 Introduction

The availability of large-scale quantum computers is getting ever closer
to reality, and with it, all of the public-key cryptosystems currently in
use, which rely on number theory problems (e.g., factorization), and dis-
crete logarithm problems will become obsolete [41]. Therefore, it is of
extreme importance to be able to offer a credible alternative that can re-
sist attackers equipped with quantum technology. NIST’s call for papers
for post-quantum standardization is a further reassurance about the need
for solid post-quantum proposals.

Code-based cryptography is one of the main candidates for this task.
The area is based on the Syndrome Decoding Problem [11], which shows
no vulnerabilities to quantum attacks. Over the years, since McEliece’s
seminal work [32], many cryptosystems have been proposed, trying to

1 DAGS is not only an acronym but also one of the names for the Elder Futhark rune
pictured above. The shape of the rune recalls the dyadic property of the matrices
at the core of our scheme.

balance security and efficiency and in particular dealing with inherent
flaws such as the large size of the public keys. In fact, while McEliece’s
cryptosystem (based on binary Goppa codes) is still formally unbroken,
it features a key of several kilobytes, which has effectively prevented its
use in many applications.

There are currently two main trends to deal with this issue, and they
both involve structured matrices: the first, is based on “traditional” al-
gebraic codes such as Goppa or Srivastava codes; the second suggests
to use sparse matrices as in LDPC/MDPC codes. This work builds on
the former approach, initiated in 2009 by Berger et al. [10], who pro-
posed Quasi-Cyclic (QC) codes, and Misoczki and Barreto [33], suggesting
Quasi-Dyadic (QD) codes instead (later generalized to Quasi-Monoidic
(QM) codes [9]). Both proposals feature very compact public keys due
to the introduction of the extra algebraic structure, but unfortunately
this also leads to a vulnerability. Indeed, Faugere, Otmani, Perret and
Tillich [22] devised a clever attack (known simply as FOPT) which ex-
ploits the algebraic structure to build a system of equations, which can
successively be solved using Grobner bases techniques. As a result, the QC
proposal is definitely compromised, while the QD/QM approach needs to
be treated with caution. In fact, for a proper choice of parameters, it is
still possible to design secure schemes, using for instance binary Goppa
codes, or Generalized Srivastava (GS) codes as suggested by Persichetti
in [37].

Our Contribution. In this paper, we present DAGS, a Key Encapsu-
lation Mechanism (KEM) that follows the QD approach using GS codes.
KEMs are the primitive favored by NIST for Key Exchange schemes, and
can be used to build encryption schemes, for example using the Hybrid
Encryption paradigm introduced by Cramer and Shoup [19]. To the best
of our knowledge, this is the first code-based KEM that uses quasi-dyadic
codes. Another NIST submission, named BIG QUAKE [2], proposes a
scheme based on quasi-cyclic codes.

Our KEM achieves IND-CCA security following the recent framework by
Kiltz et al. [28], and features compact public keys and efficient encap-
sulation and decapsulation algorithms. We modulate our parameters to
achieve an efficient scheme, while at the same time keeping out of range
of the FOPT attack. We provide an initial performance analysis of our
scheme as well as access to our reference code; the team is currently

working at several additional, optimized implementations, using C+-,
assembly language, and hardware (FPGA).

Related Work. We show that our proposal compares well with other
post-quantum KEMs. These include the classic McEliece approach [4],
as well as more recent proposals such as BIKE [3] and the aforemen-
tioned BIG QUAKE. The “Classic McEliece” project is an evolution of
the well-known McBits [13](based on the work of Persichetti [38]), and
benefits from a well-understood security assessment but suffers from the
usual public key size issue. BIKE, a protocol based on QC-MDPC codes,
is the result of a merge between two independently published works with
similar background, namely CAKE [8] and Ouroboros [20] . The scheme
possesses some very nice features like compact keys and an easy imple-
mentation approach, but has currently some potential drawbacks. In fact,
the QC-MDPC encryption scheme on which it is based is susceptible to a
reaction attack by Guo, Johansson and Stankovski (GJS) [26], and thus
the protocol is forced to employ ephemeral keys. Moreover, due to its
non-trivial Decoding Failure Rate (DFR), achieving IND-CCA security
becomes very hard, so that the BIKE protocol only claims to be IND-
CPA secure.

Finally, BIG QUAKE continues the line of work of [10], and proposes to
use quasi-cyclic Goppa codes. Due to the particular nature of the FOPT
attack and its successors [24], it seems harder to provide security with
this approach, and the protocol chooses very large parameters in order to
do so. We will discuss attack and parameters in section 5.

More distantly-related are lattice-based schemes like NewHope [5] and
Frodo [15], based respectively on LWE and its Ring variant. While these
schemes are not necessarily a direct comparison term, it is nice to observe
that DAGS offers comparable performance.

Organization of the Paper. This paper is organized as follows. We
start by giving some preliminary notions in Section 2. We describe the
DAGS protocol in Section 3, and we discuss its provable security in Sec-
tion 4, showing that DAGS is IND-CCA secure in the Random Oracle
Model. Section 5 features a discussion about practical security, includ-
ing general decoding attacks (ISD) and the FOPT attack, and presents
parameters for the scheme. Performance details are given in Section 6.
Finally, we conclude in Section 7.

2 Preliminaries

2.1 Notation

We will use the following conventions throughout the rest of the paper:

a constant

a vector

a matrix

an algorithm or (hash) function

a set

Diag(a) the diagonal matrix formed by the vector a
I, the n x n identity matrix

< choosing a random element from a set or distribution

>x e e

2.2 Linear Codes

The Hamming weight of a vector & € [Fy is given by the number wt(x) of
its nonzero components. We define a linear code using the metric induced
by the Hamming weight.

Definition 1. An (n, k)-linear code C of length n and dimension k over
Fy is a k-dimensional vector subspace of Fy.

A linear code can be represented by means of a matrix G € IF’;X”,
called generator matriz, whose rows form a basis for the vector space
defining the code. Alternatively, a linear code can also be represented
as kernel of a matrix H € Fén_k)xn, known as parity-check matrix, i.e.
C ={c: Hc" = 0}. Thanks to the generator matrix, we can easily define
the codeword corresponding to a vector p € F’; as pG. Finally, we call

syndrome of a vector ¢ € Fy the vector HcT.

4

2.3 Structured Matrices and GS Codes

Definition 2. Given a ring R (in our case the finite field Fgm) and a
vector h = (ho,...,hn—1) € R", the dyadic matrizx A(h) € R™*" is the
symmetric matriz with components A;; = higj, where © stands for bitwise
exclusive-or on the binary representations of the indices. The sequence
h is called its signature. Moreover, A(t,h) denotes the matriz A(h)
truncated to its first t rows. Finally, we call a matriz quasi-dyadic if
it 1 a block matrix whose component blocks are t X t dyadic submatrices.

If n is a power of 2, then every 2F x 2¥ dyadic matrix can be described

recursively as
AB
v=(524)

2k—1 » 2k=1 dyadic matrix (and where any 1 x 1

where each block is a
matrix is dyadic).

Definition 3. Form,n,s,t € N and a prime power q, let aq, ..., a, and
wi,...,ws be n+ s distinct elements of Fgm, and z1,...,2, be nonzero
elements of Fgm. The Generalized Srivastava (GS) code of order st and
length n is defined by a parity-check matriz of the form:

Hy
Ho
H = .
H,
where each block is
Z21 Zn
a1 —w; oy — W
21 Zn
H = | (ar—wi)* " (an —wi)?
Z1 Zn
(a1 —wi)t " (an —wy)?

The parameters for such a code are the length n < ¢™ — s, dimension
k > n — mst and minimum distance d > st + 1. GS codes are part of the
family of Alternant codes, and therefore benefit of an efficient decoding
algorithm. Moreover, it can be easily proved that every GS code with
t =1 is a Goppa code. More information about this class of codes can be
found in [31, Ch. 12, §6].

3 DAGS

In this section we introduce the three algorithms that form DAGS — a
key-encapsulation mechanism based on Quasi-Dyadic GS codes. System
parameters are the code length n and dimension k, the values s and ¢
which define a GS code, the cardinality of the base field ¢ and the degree
of the field extension m. In addition, we have k = k' + k", where k' is
arbitrary and is set to be “small”. In practice, the value of &’ depends on
the base field and is such that a vector of length k' provides at least 256
bits of entropy. This also makes the hash functions (see below) easy to
compute, and ensures that the overhead due to the IND-CCA2 security
in the QROM is minimal.

The key generation process uses the following fundamental equation

1 1 1 1
=4 — 4. 1
hi@j h; + hj + hg ()

to build the signature h = (hg,...,h,—1). This is then used to form a
Cauchy matrix, i.e. a matrix C'(u,v) with components Cj; = ﬁ The
matrix is then successively powered (element by element) forming several
blocks which are superimposed and then multiplied by a random diagonal
matrix. It is easy to see that this matrix is equivalent to a parity-check
matrix for a GS code (by a row permutation) as described in Definition 3,
where for ease of notation we use u and v to denote the vectors of elements
wi, ..., ws and ai,...,ay,, respectively. Finally, the resulting matrix is
projected onto the base field and row-reduced to systematic form to form
the public key.

The process is described in detail below: note that this is essentially
the same as in [37], to which we refer the reader for more details about
dyadic GS codes and the key generation process.

Algorithm 1. Key Generation

1.

10.
11.
12.

Generate dyadic signature h. To do this:
(a) Choose random non-zero distinct kg and h; for j = 2,1 =0,..., [log ™.
(b) Form the remaining elements using (1).

(c) Return a selection? of blocks of dimension s up to length n.

. Build the Cauchy support. To do this:

(a) Choose a random? offset w <> Fym.

(b) Set w; = 1/h; +w and vj = 1/hj +1/hg+w fori =0,...,5s -1
and j =0,...,n—1.

(c¢) Set u = (ug,...,us—1) and v = (vg,...,Vp—1).
Form Cauchy matrix H; = C(u,v).

Build blocks H;, i = 1,...4, by raising each element of H, to the
power of i.

Superimpose blocks to form matrix H.

Choose random elements z; i Fym with the restriction z;s4; = z;s for
1=0,....,n9—1,57=0,...,5s— 1.

Form H = H - Diag(z).

Transform H into alternant form*: call this H'.

Project H onto F, using the co-trace function: call this Hpgge.
Write Hpgse in systematic form (M | I,_g).

The public key is the generator matrix G = (I | M7T).

The private key is the alternant matrix H'.

The encapsulation and decapsulation algorithms make use of two hash

functions G : IF];/ — F'g and H : IF];/ — F’;/, the former with the task of
generating randomness for the scheme, the latter to provide “plaintext
confirmation” as in [28]. The shared symmetric key is obtained via another
hash function K : {0,1}* — {0,1}¢, where £ is the desired key length.

2 Making sure to exclude any block containing an undefined entry.

3 See Appendix A for restrictions about the choice of the offset.
4 See §2 and §6 of [31, Ch. 12].

Algorithm 2. Encapsulation

1. Choose m ﬁFz‘/.

2. Compute 7 = G(m) and d = H(m).

3. Parse r as (p || o) then set u = (p || m).

4. Generate error vector e of length n and weight w from o.
5. Compute ¢ = puG + e.

6. Compute k = K(m).

7. Output ciphertext (¢, d); the encapsulated key is k.

The decapsulation algorithm consists mainly of decoding the noisy
codeword received as part of the ciphertext. This is done using the al-
ternant decoding algorithm described in [31, Ch. 12, §9] and requires
the parity-check matrix to be in alternant form (hence the nature of the
private key).

Algorithm 3. Decapsulation

—

Input private key, i.e. parity-check matrix H' in alternant form.
Use H' to decode ¢ and obtain codeword p/G and error €’.
Output L if decoding fails or wt(e’) # w

Recover g/ and parse it as (p' || m/).

Compute ' = G(m/) and d' = H(m/').

Parse ' as (p” || o).

Generate error vector €’ of length n and weight w from o’.

Ife #e'Vvp #p"vd+#d output L.

© ® N s ot N

Else compute k = K(m/).

—_
e

The decapsulated key is k.

DAGS is built upon the McEliece encryption framework, with a no-
table exception. In fact, we incorporate the “randomized” version of
McEliece by Nojima et al. [36] into our scheme. This is extremely benefi-
cial for two distinct aspects: first of all, it allows us to use a much shorter
vector m to generate the remaining components of the scheme, greatly

improving efficiency. Secondly, it allows us to get tighter security bounds.
Note that our protocol differs slightly from the paradigm presented in [28],
in the fact that we don’t perform a full re-encryption in the decapsulation
algorithm. Instead, we simply re-generate the randomness and compare
it with the one obtained after decoding. This is possible since, unlike a
generic PKE, McEliece decryption reveals the randomness used, in our
case e (and p). It is clear that if the re-generated randomness is equal to
the retrieved one, the resulting encryption will also be equal. This allows
us to further decrease computation time.

The selection of the parameters for the scheme will be discussed in Sec-
tion 5.4.

4 KEM Security

In this section, we discuss some aspects of provable security, and in par-
ticular we show that DAGS satisfies the notion of IND-CCA security for
KEMs, as defined below.

Definition 4. The adaptive chosen-ciphertext attack game for a KEM
proceeds as follows:

1. Query a key generation oracle to obtain a public key pk.

2. Make a sequence of calls to a decryption oracle, submitting any string
¢ of the proper length. The oracle will respond with Decaps(sk, c).

3. Query an encryption oracle. The oracle runs Encaps(pk) to generate
a pair (k,€), then chooses a random b € {0,1} and replies with the
“challenge” ciphertext (k*, &) where k* =k if b =1 or k* is a random
string of length £ otherwise.

4. Keep performing decryption queries. If the submitted ciphertext is c*,
the oracle will return L.

5. Output b* € {0,1}.

The adversary succeeds if b* = b. More precisely, we define the advantage
of A against KEM as

1
AdvINDCOA (A N) = |Pr[b* = b] — 3l (2)

We say that a KEM is secure if the advantage Adv%\gj)\;CCA of any
polynomial-time adversary A in the above CCA attack model is negligible.

Before discussing the IND-CCA security of DAGS, we show that the
underlying PKE (i.e. Randomized McEliece, see [36]) satisfies a simple
property. This will allow us to get better security bounds in our reduction.

Definition 5. Consider a probabilistic PKE with randomness set R. We
say that PKE is vy-spread if for a given key pair (sk,pk), a plaintext m
and an element y in the ciphertext domain, we have

Prir &R |y = Encpi,(m,)] <277,
for a certain v € R.

The definition above is presented as in [28], but note that in fact this
corresponds to the notion of y-uniformity given by Fujisaki and Okamoto
in [25], except for a change of constants. In other words, a scheme is
~v-spread if it is 27 7-uniform.

It was proved in [17] that a simple variant of the (classic) McEliece
PKE is y-uniform for v = 27%, where k is the code dimension as usual
(more in general, v = ¢ * for a cryptosystem defined over F q)- We can
extend this result to our scheme as follows.

—k"
q

(i)

Proof. Let y be a generic vector of Fy. Then either y is a word at distance
w from the code, or it isn’t. If it isn’t, the probability of y being a valid
ciphertext is clearly exactly 0. On the other hand, suppose vy is at distance
w from the code; then there is only one choice of p and one choice of e that
satisfy the equation (since w is below the GV bound), i.e. the probability
of y being a valid ciphertext is exactly 1/ qk” -1/ (g), which concludes the
proof. O

Lemma 1. Randomized McFEliece is y-uniform for v =

We are now ready to present the security results.

Theorem 1. Let A be an IND-CCA adversary against DAGS that makes
at most qro = qg + qic total random oracle queries® and qp decryption
queries. Then there exists an IND-CPA adversary B against PKE, run-
ning in approximately the same time as A, such that

IND-CCA — IND—-CPA
Advi s (A) <qro -2 7+3-AC|VPKE (B).
® Resp. ¢¢ queries to the random oracle G and gx queries to the random oracle K.

10

Proof. The thesis is a consequence of the results presented in Section 3.3
of [28]. In fact, our scheme follows the KEM:. framework that consists of
applying two generic transformations to a public-key encryption scheme.
The first step consists of transforming the IND-CPA encryption scheme
into a OW-PCVA (i.e. Plaintext and Validity Checking) scheme. Then,
the resulting scheme is transformed into a KEM in a “standard” way.
Both proofs are obtained via a sequence of games, and the combination
of them shows that breaking IND-CCA security of the KEM would lead to
break the IND-CPA security of the underlying encryption scheme. Note
that Randomized McEliece, instantiated with Quasi-Dyadic GS codes,
presents no correctness error (the value ¢ in [28]), which greatly simplifies
the resulting bound. O

The value d included in the KEM ciphertext does not contribute to
the security result above, but it is a crucial factor to provide security in
the Quantum Random Oracle Model (QROM). We present this in the
next theorem.

Theorem 2. Let A be a quantum IND-CCA adversary against DAGS
that makes at most qro = qg + g total quantum random oracle queries’
and qp (classical) decryption queries. Then there exists a OW-CPA ad-
versary B against PKE, running in approrimately the same time as A,

such that

Advilanr C“A(A) < 8aro - \/ 4RO - \/ AdVOW -CPA(B).

Proof. The thesis is a consequence of the results presented in Section 4.4
of [28]. In fact, our scheme follows the QKEM:. framework that consists of
applying two generic transformations to a public-key encryption scheme.
The first step transforming the IND-CPA encryption scheme into a OW-
PCVA (i.e. Plaintext and Validity Checking) scheme, is the same as in
the previous case. Now, the resulting scheme is transformed into a KEM
with techniques suitable for the QROM. The combination of the two
proofs shows that breaking IND-CCA security of the KEM would lead to
break the OW-CPA security of the underlying encryption scheme. Note,
therefore, that the IND-CPA security of the underlying PKE has in this
case no further effect on the final result, and can be considered instead
just a guarantee that the scheme is indeed OW-CPA secure. The bound

6 Same as in Theorem 1.

11

obtained is a “simplified” and “concrete” version (as presented by the
authors) and, in particular, it is easy to notice that it does not depend
on the number of queries gy presented to the random oracle H. The
bound is further simplified since, as above, the underlying PKE presents
no correctness error. O

5 Practical Security and Parameters

Having proved that DAGS satisfies the notion of IND-CCA security for
KEMs, we now move onto a treatment of practical security issues. In
particular, we will briefly present the hard problem on which DAGS is
based, and then discuss the main attacks on the scheme and related se-
curity concerns.

5.1 Hard Problems from Coding Theory

Most of the code-based cryptographic constructions are based on the
hardness of the following problem, known as the (g-ary) Syndrome De-
coding Problem (SDP).

Problem 1. Given an (n— k) x n full-rank matrix H and a vector y, both
defined over Iy, and a non-negative integer w, find a vector e € Fy of
weight w such that Hel = y.

The corresponding decision problem was proved to be NP-complete
in 1978 [11], but only for binary codes. In 1994, A. Barg proved that this
result holds for codes over all finite fields ([6], in Russian, and [7, Theorem
4.1]).

In addition, many schemes (including the original McEliece proposal)
require the following computational assumption.

Assumption 1 The public matriz output by the key generation algorithm
is computationally indistinguishable from a uniformly chosen matriz of
the same size.

The assumption above is historically believed to be true, except for
very particular cases. For instance, there exists a distinguisher (Faugere
et al. [21]) for cryptographic protocols that make use of high-rate Goppa
codes (like the CFS signature scheme [18]). Moreover, it is worth men-
tioning that the “classical” methods for obtaining an indistinguishable

12

public matrix, such as the use of scrambling matrices S and P, are rather
outdated and unpractical and can introduce vulnerabilities to the scheme
as per the work of Strenzke et al. ([42,43]). Thus, traditionally, the safest
method (Biswas and Sendrier, [14]) to obtain the public matrix is simply
to compute the systematic form of the private matrix.

5.2 Decoding Attacks

The main approach for solving SDP is the technique known as Informa-
tion Set Decoding (ISD), first introduced by Prange [40]. Among several
variants and generalizations, Peters showed [39] that it is possible to ap-
ply Prange’s approach to generic g-ary codes. Other approaches such as
Statistical Decoding [29,34] are usually considered less efficient. Thus,
when choosing parameters, we will focus mainly on defeating attacks of
the ISD family.

Hamdaoui and Sendrier in [27] provide non-asymptotic complexity es-
timates for ISD in the binary case. For codes over [y, instead, a bound
is given in [35], which extends the work of Peters. For a practical evalua-
tion of the ISD running times and corresponding security level, we used
Peters’s ISDFQ script[1].

Quantum Speedup. Bernstein in [12] shows that Grover’s algorithm
applies to ISD-like algorithms, effectively halving the asymptotic expo-
nent in the complexity estimates. Later, it was proven in [30] that several
variants of ISD have the potential to achieve a better exponent, however
the improvement was disappointingly away from the factor of 2 that could
be expected. For this reason, we simply treat the best quantum attack
on our scheme to be “traditional” ISD (Prange) combined with Grover
search.

5.3 FOPT

While, as we discussed above, recovering a private matrix from a public
one can be in general a very difficult problem, the presence of extra struc-
ture in the code properties can have a considerable effect in lowering this
difficulty.

A very effective structural attack was introduced by Faugere, Ot-

mani, Perret and Tillich in [22]. The attack (for convenience referred
to as FOPT) relies on the simple property (valid for every linear code)

13

H -G" =0 to build an algebraic system, using then Grébner bases tech-
niques to solve it. The special properties of alternant codes are fundamen-
tal, as they contribute to considerably reduce the number of unknowns of
the system.

The attack was originally aimed at two variants of McEliece, intro-
duced respectively in [10] and [33]. The first variant, using quasi-cyclic
codes, was easily broken in all proposed parameters, and falls out of the
scope of this paper. The second variant, instead, only considered quasi-
dyadic Goppa codes. In this case, most of the parameters proposed have
also been broken, except for the binary case (i.e. base field Fg). This was,
in truth, not connected to the base field per se, but rather depended on the
fact that, with a smaller base field, the authors provided a much higher
extension degree m, as they were keeping constant the value ¢ = 2'6.
As it turns out, the extension degree m plays a key role in the attack,
as it defines the dimension of the solution space, which is equal, in fact,
exactly to m — 1. In a successive paper [23], the authors provide a theo-
retical complexity bound for the attack, and point out that any scheme
for which this dimension is less or equal to 20 should be within the scope
of the attack.

Since GS codes are also alternant codes, the attack can be applied to
our proposal as well. In the case of GS codes, though, there is one impor-
tant difference to keep in mind. In fact, as shown in [37], the dimension
of the solution space is defined by mt — 1, rather than m — 1 as for Goppa
codes. This provides greater flexibility when designing parameters for the
code, and it allows, for example, to keep the extension degree m small.

Recently, an extension of the FOPT attack appeared in [24]. The au-
thors introduce a new technique called “folding”, and show that it is
possible to reduce the complexity of the FOPT attack to the complex-
ity of attacking a much smaller code (the “folded” code), thanks to the
strong properties of the automorphism group of the alternant codes in
use. The attack turns out to be very efficient against Goppa codes, as it
is possible to recover a folded code which is also a Goppa code. The paper
features two tables with several sets of parameters, respectively for signa-
ture schemes, and encryption schemes. The parameters are either taken
from the original papers, or generated ad hoc. While codes designed to
work for signature schemes turn out to be very easy to attack (due to their
particular nature), the situation for encryption is more complex. Despite
a refinement in the techniques used to solve the algebraic system, some

14

of the parameters could not be solved in practice, and even the binary
Goppa codes of [33], with their relatively low dimension of 15, require a
considerably high computational effort (at least 2'%° operations).

It is not clear how the attack performs against GS codes, since the
authors didn’t present any explicit result against this particular family
of codes, nor attempted to decode GS codes specifically. Thus, an attack
against GS codes would use generic techniques for Alternant codes, and
wouldn’t benefit from the speedups which are specific to (binary) Goppa
codes. Furthermore, the authors do not propose a concrete bound, but
only provide experimental results. For these reasons, and until an accurate
complexity analysis for an attack on GS codes is available, we choose to
attain to the latest measurable guidelines (those suggested in [23]) and
choose our parameters such that the dimension of the solution space for
the algebraic system is strictly greater than 20. We hope that this work
will encourage further study into FOPT and folding attacks in relation
to GS codes.

5.4 Parameter Selection

To choose our parameters, we have to first keep in mind all of the remarks
from the previous sections about decoding and structural attacks. For
FOPT, we have the condition mt > 21. This guarantees at least 128
bits of security according to the bound presented in [23]. On the other
hand, for ISD to be computationally intensive we require a sufficiently
large number w of errors to decode: this is given by st/2 according to the
minimum distance of GS codes.

In addition, we tune our parameters to optimize performance. In this
regard, the best results are obtained when the extension degree m is as
small as possible. This, however, requires the base field to be large enough
to accommodate sufficiently big codes (against ISD attacks), since the
maximum size for the code length n is capped by ¢™ — s. Realistically,
this means we want ¢™ to be at least 2'2, and an optimal choice in this
sense seems to be ¢ = 26, m = 2. Finally, note that s is constrained to be
a power of 2, and that odd values of ¢ seem to offer best performance.

Putting all the pieces together, we are able to present three set of pa-
rameters, in the following table. These correspond to three of the security
levels indicated by NIST, which are related to the hardness of performing
a key search attack on three different variants of a block cipher, such as

15

AES (with key-length respectively 128, 192 and 256). As far as quantum
attacks are concerned, we claim that ISD with Grover (see above) will
usually require more resources than a Grover search attack on AES for
the circuit depths suggested by NIST (parameter MAXDEPTH). Thus,
classical security bits are the bottleneck in our case, and as such we choose
our parameters to provide 128, 192 and 256 bits of classical security for
security levels 1, 3 and 5 respectively (first column).

We also included the estimated complexity of the structural attack
(column FOPT), which is at least greater than 128 bits in all cases.

Table 1: Suggested DAGS Parameters.

’Security Level‘FOPTH q ‘m‘ n ‘ k ‘k" s ‘ t ‘ w ‘
128 > 128 2° [2| 832 [416 |43]2* |13] 104
2
2

192 > 128 26 1216 | 512 | 43| 2° | 11| 176
256 > 128 26 2112 | 704 | 43 | 26 | 11 | 352

For practical reasons, during the rest of the paper we will refer to
these parameters respectively as DAGS_1, DAGS_3 and DAGS_5.

6 Performance Analysis

6.1 Components

For DAGS_3 and DAGS_5, the finite field Fy6 is built using the polynomial
2% + 2 + 1 and then extended to Fyi2 using 22 4+ x + o, where « is the
primitive element of Fys. For DAGS_1, we build Fys using #° +z2? +1 and
then extend it to Fowo via 22 + oz + a.

DAGS computations are detailed as follows:

Key generation:

Two polynomial multiplications in F,m and two in F,.
Six polynomial inversions in F,m and four in F,.
Two polynomial squarings in Fgm and two in IF,.

Two polynomial additions in Fy» and two in [Fy.

AR

One random generation of a polynomial in Fgm.

16

Encapsulation:

1. Ome polynomial multiplication in F,.

2. One polynomial addition in F,.

3. One random generation of a polynomial in [F,.
4

. One hash function computation.
Decapsulation:

Three polynomial multiplications in Fgm.
One polynomial power in Fym.
One polynomial addition in Fgm.

One random generation of a polynomial in [Fy.

AR S

One hash function computation.

6.2 Measurements

In Table 2 we recall the flow between two parties P; and Ps in a standard
Key Exchange protocol derived from a KEM.

Table 2: KEM-based Key Exchange flow

P1 P2
(pk, sk) <+ KEM.KeyGen

pk

(k,c) «+ KEM.Encaps(pk)

K/l + KEM.Decaps(c, sk)

Shared Key := k

When instantiated with DAGS, the public key is given by the gener-
ator matrix G. The non-identity block M7 is k x (n — k) = k x mst and
is dyadic of order s, thus requires only kmst/s = kmt elements of the
base field for storage. The private key is given by the alternant matrix H’
which is composed of stn elements of Fym. Finally, the ciphertext is the
pair (¢,d), that is, a g-ary vector of length n plus 256 bits. This leads to
the following measurements (in bytes).

17

Table 3: Memory Requirements.

Parameter Set H Public Key | Private Key | Ciphertext

DAGS_1 6760 432640 952
DAGS_3 8448 1284096 944
DAGS.5 11616 2230272 1616

Table 4: Communication Bandwidth.

Message Transmitted Size

Flow Message DAGS.1 | DAGS.3 | DAGS.5
P, — Py G 6760 8448 11616
Py — Py (c,d) 552 944 1616

We would like to mention that the representation of the private key
offers a significant tradeoff between time and space. In fact, it would be
possible to store as private key just the defining vectors u,v and z, and
then compute the alternant form (step 8. of the key generation algorithm)
during decapsulation. Doing so would reduce the private key size to a few
kilobytes”, but would also significantly slow down the decapsulation al-
gorithm. Thus, we have opted to store H' instead and save computation
time, although this obviously results in a very large private key: this is
generally the better option when using static keys, and in software imple-
mentations. However, in other situations (e.g. hardware) where private
key size is relevant, the alternative representation might be preferable.
Therefore we signal this as an implementor’s choice.

6.3 Comparison

We thought it useful to provide a comparison with other recently-proposed
code-based KEMs (and in particular, NIST submissions). In the following
table, we present data for Classic McEliece, BIKE and BIG QUAKE with
regards to memory requirements, for the highest security level (256 bits
classical). We did not deem necessary, on the other hand, to provide a
comparison in terms of implementation timings, as reference implemen-
tations are designed for clarity, rather than performance.

" Namely, s + n + no elements of Fym, leading to, approximately, 1, 2 and 3 Kb for
DAGS_1, DAGS_3 and DAGS_5 respectively.

18

Table 5: Memory Requirements.

Parameter Set H Public Key | Private Key | Ciphertext

Classic McEliece 1047319 13908 226
BIKE-1 8187 548 8187
BIKE-2 4093 548 4093
BIKE-3 9032 565 9032

BIG QUAKE 149800 41804 492
DAGS_5 11616 2230272 1616

It is easy to see that the public key is much smaller than Classic
McEliece and BIG QUAKE, and of the same order of magnitude of BIKE.
With regards to the latter, note that, for the same security level, the total
communication bandwidth is also of the same order of magnitude, and
it is in fact even smaller for the case of BIKE-1 and BIKE-3. This is
because, while the size of the public key is slightly less than a DAGS key,
DAGS uses much shorter codes, and as a consequence the ciphertext is
considerably smaller than a BIKE ciphertext. Moreover, for the purposes
of a fair comparison, we remark that BIKE uses ephemeral keys, has a
non-negligible decoding failure rate, and only claims IND-CPA security,
all factors that can restrict its use in various applications. It is also evident
that our choice of private key currently gives a much larger size than all
the other schemes. However, we have discussed above how, should it be
necessary, the size of the private key can be greatly reduced, again to the
same order of magnitude (just a bit larger) than a BIKE private key.

7 Conclusion

In this paper, we presented DAGS, a Key Encapsulation Mechanism based
on Quasi-Dyadic Generalized Srivastava codes. We proved that DAGS is
IND-CCA secure in the Random Oracle Model, and in the Quantum
Random Oracle Model. Thanks to this feature, it is possible to employ
DAGS not only as a key-exchange protocol (for which IND-CPA would
be a sufficient requirement), but also in other contexts such as Hybrid
Encryption, where IND-CCA is of paramount importance.

In terms of performance, DAGS compares well with other code-based
protocols, as shown by Table 5 and the related discussion (above). An-
other advantage of our proposal is that it doesn’t involve any decoding

19

error. This is particularly favorable in a comparison with some lattice-
based schemes like [16], [5] and [15], as well as BIKE. No decoding error
allows for a simpler formulation and better security bounds in the IND-
CCA security proof.

As is the case in most code-based protocols, all the objects involved
in the computations are vectors of finite fields elements, which in turn
are represented as binary strings; thus computations are fast. The cost
of computing the hash functions is minimized thanks to the parameter
choice that makes sure the input p is only 256 bits. As a result, we expect
our scheme to be implemented efficiently on multiple platforms.

The current reference code for the scheme is available at the repository
https://git.dags-project.org/dags/dags. Our team is currently at work to
complete various implementations that could better showcase the poten-
tial of DAGS in terms of performance. These include code prepared with
x86 assembly instructions (AVX) as well as a hardware implementation
(FPGA) etc. A hint at the effectiveness of DAGS can be had by looking
at the performance of the scheme presented in [17], which also features
an implementation for embedded devices. In particular, we expect DAGS
to perform especially well in hardware, due to the nature of the compu-
tations of the McEliece framework.

Finally, we would like to highlight that a DAGS-based Key Exchange
features an “asymmetric” structure, where the bandwidth cost and com-
putational effort of the two parties are considerably different. In particu-
lar, in the flow described in Table 2, the party P2 benefits from a much
smaller message and faster computation (the encapsulation operation),
whereas P; has to perform a key generation and a decapsulation (which
includes a run of the decoding algorithm), and transmit a larger message
(the public matrix). This is suitable for traditional client-server appli-
cations where the server side is usually expected to respond to a large
number of requests and thus benefits from a lighter computational load.
On the other hand, it is easy to imagine an instantiation, with reversed
roles, which could be suitable for example in Internet-of-Things (IoT) ap-
plications, where it would be beneficial to lesser the burden on the client
side, due to its typical processing, memory and energy constraints. All in
all, our scheme offers great flexibility in key exchange applications, which
is not the case for traditional key exchange protocols like Diffie-Hellman.

In light of all these aspects, we believe that DAGS is a promising
candidate for post-quantum cryptography standardization as a key en-
capsulation mechanism.

20

References

CU D=

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

http://christianepeters.wordpress.com/publications/tools/.
https://bigquake.inria.fr/.

https://bikesuite.org.

https://classic.mceliece.org/.

Erdem Alkim, Léo Ducas, Thomas Poppelmann, and Peter Schwabe. Post-
quantum key exchange - a new hope. Cryptology ePrint Archive, Report
2015/1092, 2015. http://eprint.iacr.org/2015/1092.

A. Barg. Some new NP-complete coding problems. Probl. Peredachi Inf., 30:23-28,
1994. (in Russian).

A. Barg. Complexity issues in coding theory. Electronic Colloguium on Computa-
tional Complexity (ECCC), 4(46), 1997.

Paulo SLM Barreto, Shay Gueron, Tim Gueneysu, Rafael Misoczki, Edoardo Per-
sichetti, Nicolas Sendrier, and Jean-Pierre Tillich. Cake: Code-based algorithm for
key encapsulation.

. Paulo SLM Barreto, Richard Lindner, and Rafael Misoczki. Monoidic codes in

cryptography. PQCrypto, 7071:179-199, 2011.

T. P. Berger, P.-L. Cayrel, P. Gaborit, and A. Otmani. Reducing Key Length of
the McEliece Cryptosystem. In AFRICACRYPT, pages 77-97, 2009.

E. Berlekamp, R. McEliece, and H. van Tilborg. On the inherent intractability of
certain coding problems (corresp.). Information Theory, IEEE Transactions on,
24(3):384 — 386, may 1978.

Daniel J. Bernstein. Grover vs. McEliece, pages 73—-80. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2010.

Daniel J. Bernstein, Tung Chou, and Peter Schwabe. Mcbits: Fast constant-time
code-based cryptography. In Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
volume 8086 LNCS, pages 250-272, 12 2013.

B. Biswas and N. Sendrier. Mceliece cryptosystem implementation: Theory and
practice. In PQCrypto, pages 47-62, 2008.

Joppe Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria
Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take off the ring!
practical, quantum-secure key exchange from LWE. Cryptology ePrint Archive,
Report 2016/659, 2016. http://eprint.iacr.org/2016,/659.

Joppe W Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. Post-quantum
key exchange for the tls protocol from the ring learning with errors problem. In
Security and Privacy (SP), 2015 IEEE Symposium on, pages 553-570. IEEE, 2015.
Pierre-Louis Cayrel, Gerhard Hoffmann, and Edoardo Persichetti. Efficient imple-
mentation of a cca2-secure variant of McEliece using generalized Srivastava codes.
In Proceedings of PKC 2012, LNCS 7293, Springer-Verlag, pages 138-155, 2012.
N. Courtois, M. Finiasz, and N. Sendrier. How to achieve a mceliece-based digital
signature scheme. In ASTACRYPT, pages 157174, 2001.

R. Cramer and V. Shoup. Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput.,
33(1):167-226, January 2004.

Jean-Christophe Deneuville, Philippe Gaborit, and Gilles Zémor. Ouroboros: A
simple, secure and efficient key exchange protocol based on coding theory. In Tanja
Lange and Tsuyoshi Takagi, editors, PQCrypto 2017, volume 10346 of LNCS, pages
18-34. Springer, 2017.

21

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

J.-C. Faugere, V. Gauthier-Umaifia, A. Otmani, L. Perret, and J.-P. Tillich. A dis-
tinguisher for high rate mceliece cryptosystems. In Information Theory Workshop
(ITW), 2011 IEEE, pages 282 —286, oct. 2011.

J.-C. Faugere, A. Otmani, L. Perret, and J.-P. Tillich. Algebraic cryptanalysis of
mceliece variants with compact keys. In EUROCRYPT, pages 279-298, 2010.
J.-C. Faugere, A. Otmani, L. Perret, and J.-P. Tillich. Algebraic Cryptanalysis of
McEliece Variants with Compact Keys — Towards a Complexity Analysis. In SCC
’10: Proceedings of the 2nd International Conference on Symbolic Computation
and Cryptography, pages 45—-55, RHUL, June 2010.

Jean-Charles Faugere, Ayoub Otmani, Ludovic Perret, Frédéric De Portzamparc,
and Jean-Pierre Tillich. Structural cryptanalysis of mceliece schemes with compact
keys. Designs, Codes and Cryptography, 79(1):87-112, 2016.

E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric en-
cryption schemes. In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO
’99, volume 1666 of LNCS, pages 537-554. Springer, 1999.

Qian Guo, Thomas Johansson, and Paul Stankovski. A Key Recovery Attack on
MDPC with CCA Security Using Decoding Errors, pages 789-815. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2016.

Yann Hamdaoui and Nicolas Sendrier. A non asymptotic analysis of in-
formation set decoding. Cryptology ePrint Archive, Report 2013/162, 2013.
http://eprint.iacr.org/2013/162.

Dennis Hofheinz, Kathrin Hévelmanns, and Eike Kiltz. A modular analysis of the
Fujisaki-Okamoto transformation. Cryptology ePrint Archive, Report 2017/604,
2017. http://eprint.iacr.org/2017/604.

A. Al Jabri. A Statistical Decoding Algorithm for General Linear Block Codes,
pages 1-8. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

Ghazal Kachigar and Jean-Pierre Tillich. Quantum information set decoding al-
gorithms. In Tanja Lange and Tsuyoshi Takagi, editors, PQCrypto 2017, volume
10346 of LNCS, pages 69-89. Springer, 2017.

F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes,
volume 16. North-Holland Mathematical Library, 1977.

R. J. McEliece. A public-key cryptosystem based on algebraic coding theory. Deep
Space Network Progress Report, 44:114—116, January 1978.

R. Misoczki and P. S. L. M. Barreto. Compact mceliece keys from goppa codes.
In Selected Areas in Cryptography, pages 376-392, 2009.

R. Niebuhr. Statistical Decoding of Codes over Fq, pages 217-227. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2011.

R. Niebuhr, E. Persichetti, P.-L. Cayrel, S. Bulygin, and J. Buchmann. On lower
bounds for information set decoding over U, and on the effect of partial knowledge.
Int. J. Inf. Coding Theory, 4(1):47-78, January 2017.

R. Nojima, H. Imai, K. Kobara, and K. Morozov. Semantic security for the
McEliece cryptosystem without random oracles. Des. Codes Cryptography, 49(1-
3):289-305, 2008.

Edoardo Persichetti. Compact mceliece keys based on quasi-dyadic srivastava
codes. Journal of Mathematical Cryptology, 6(2):149-169, 2012.

Edoardo Persichetti. Secure and anonymous hybrid encryption from coding the-
ory. In Philippe Gaborit, editor, Post-Quantum Cryptography: 5th International
Workshop, PQCrypto 2013, Limoges, France, June 4-7, 2018. Proceedings, pages
174-187, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

22

39. C. Peters. Information-set decoding for linear codes over F,. In PQCrypto, LNCS,
pages 81-94, 2010.

40. E. Prange. The use of information sets in decoding cyclic codes. IRE Transactions,
1T-8:55-S9, 1962.

41. P. W. Shor. Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM Journal on Computing, 26(5):1484-1509,
1997.

42. F. Strenzke. A timing attack against the secret permutation in the mceliece pke.
In PQCrypto, pages 95-107, 2010.

43. F. Strenzke, E. Tews, H. G. Molter, R. Overbeck, and A. Shoufan. Side channels
in the mceliece pkc. In PQCrypto, pages 216229, 2008.

A Note on the choice of w

In this section we point out some considerations about the choice of the
offset w during the key generation process.

The usual decoding algorithm for alternant codes, for example as in
[31], relies on the special form of the parity-check matrix (H;; = yjzné-fl).
The first step is to recover the error locator polynomial o(x), by means
of the euclidean algorithm for polynomial division; then it proceeds by
finding the roots of o. There is a 1-1 correspondence between these roots
and the error positions: in fact, there is an error in position ¢ if and only
if o(1/z;) = 0.

Of course, if one of the x;’s is equal to 0, it is not possible to find the
root, and to detect the error.

Now, the generation of the error vector is random, hence we can as-
sume the probability of having an error in position i to be around st/2n;
since the codes give the best performance when mst is close to n/2, we
can estimate this probability as 1/4m, which is reasonably low for any
nontrivial choice of m; however, we still argue that the code is not fully
decodable and we now explain how to adapt the key generation algorithm
to ensure that all the x;’s are nonzero.

As part of the key generation algorithm we assign to each x; the value
L;, hence it is enough to restrict the possible choices for w to the set {a €
Fgm|o # 1/hi+1/ho, i = 0,...,n—1}. In doing so, we considerably restrict
the possible choices for w but we ensure that the decoding algorithm works
properly.

23

