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Abstract
Oblivious Transfer (OT) is a simple, yet fundamental primitive which

suffices to achieve almost every cryptographic application. In a recent
work (Latincrypt ‘15), Chou and Orlandi (CO) present the most efficient,
fully UC-secure OT protocol to date and argue its security under the CDH
assumption. Unfortunately, a subsequent work by Genc et al. (Eprint
‘17) exposes a flaw in their proof which renders the CO protocol insecure.
In this work, we make the following contributions: We first point out
two additional, previously undiscovered flaws in the CO protocol and
then show how to patch the proof with respect to static and malicious
corruptions in the UC model under the stronger Gap Diffie-Hellman
(GDH) assumption. With the proof failing for adaptive corruptions even
under the GDH assumption, we then present a novel OT protocol which
builds on ideas from the CO protocol and can be proven fully UC-secure
under the CDH assumption. Interestingly, our new protocol is actually
significantly more efficient (roughly by a factor of two) than the CO
protocol. This improvement is made possible by avoiding costly redundancy
in the symmetric encryption scheme used in the CO protocol. Our ideas
can also be applied to the original CO protocol, which yields a similar gain
in efficiency.
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1 Introduction
In multi-party computation (MPC), a set of nmutually distrustful parties engages
in a distributed protocol to evaluate a function f in such a way that every honest
party learns the output of f , but no malicious party learns anything about the
inputs of the honest parties. MPC is one of the oldest and most well-studied
fields within in cryptography, as it allows to securely implement a wide array of
cryptographic applications. Recently, there has been a particular interest in so-
called two-party computation (2PC) protocols which consider the important case
of n = 2, i.e., two parties jointly running an MPC protocol. Notable works on 2PC



include [Yao82, DN00, Nie07, Lin03, HK07, Lin09]. An underlying primitive of
great importance to 2PC is oblivious transfer (OT). In OT, two parties, a sender
and a receiver, engage in a protocol that shall satisfy the following properties:
The sender holds n messages (m0, ...,mn−1) and wishes to transfer exactly one of
them to the receiver. The receiver chooses the message mi that it wants to learn
by submitting the index i to the protocol. The protocol is deemed secure if the
receiver learns nothing about the messagesmj 6=i and the sender does not learn the
value i. OT was introduced independently by Rabin [Rab81] and Wiesner [Wie83]
and has since been extensively studied [Kil88, Cré87, NP01, Bea98]. Indeed,
one can show that many cryptographic tasks can be reduced (via MPC) to the
apparently simple primitive of OT [Kil88, IPS08].
Since most protocols for MPC and 2PC that call an OT protocol in a black-box
fashion require many calls to this protocol, there has recently been a significant
interest in the design of efficient OT extension protocols [Bea96a], where a large
number of OT executions can be obtained from a smaller number of “base”
OT executions and symmetric key operations. Examples are [Nie07, Lar14,
ALSZ16, KOS15]. Making these base OTs as efficient as possible presents a
strong motivation for efficient OT protools. Further, in any scenario where
parties want to perform 2PC (or more generally, MPC) between a large number
of distinct parties, each pair of parties has to run an expensive OT extension
protocol (including between 128 and 180 base OTs). A second issue is that
while some OT extension protocols offer security against malicious adversaries,
in all known OT extension protocols, the receiver must commit to its vector of
choice values at the beginning of the protocol. However, in many cases, one is
actually interested in OT protocols that remain secure even when the receiver
may choose what messages it wants to obtain from the sender in an adaptive
fashion. Motivated by the importance of OT, we propose in this work the most
efficient, fully UC-secure OT protocol to date.

1.1 Existing Protocols and Our Contribution

Existing Protocols. The most efficient protocol (OTco) meeting the (now com-
mon) standard of full UC-security [Can01] was recently proposed by CO [CO15].
For m executions, it requires only 2 +m modular exponentiations for the sender
and 2m modular exponentiations for the receiver. The communication complex-
ity of the protocol is 32(m+ 1) bytes for the group elements that need to be sent.
Additionally, mn ciphertexts must be transmitted. The security of their protocol
is based on the CDH assumption. [CO15] also give a highly optimized imple-
mentation of their protocol which can be found at http://orlandi.dk/simpleOT.
Unfortunately, a subsequent work by Genc et al. [GIR17] uncovers a flaw in the
proof of CO which renders the protocol insecure.
Our Contribution. The outline of our paper is as follows. We begin by stating
two additional flaws in OTco that were not noticed in [GIR17]. As a warm-up, we
show how, using the Gap DH (GDH) assumption, we can patch OTco to satisfy
security against static and malicious corruptions in the UC model. However,
even under the GDH assumption, we are not able to prove OTco secure for fully
adaptive corruptions that may occur at any point during the protocol execution.
As our main contribution, we then present a novel OT protocol OT∗ which
builds on ideas from OTco, but can be proven fully UC-secure under the CDH
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assumption. Surprisingly, we find that OT∗ avoids redundancy in the ciphertexts
which is necessary for the original proof in [CO15]. This greatly improves the
efficiency of our protocol over OTco since its main bottleneck stems from the mn
ciphertexts that need to be sent. We improve the (asymptotic) communication
complexity over OTco by a factor of at least two, depending on the message length
` and security parameter λ. Concretely (again, for m executions of our protocol),
we improve the complexity from 256(m+ 1) +nm(`+λ) bits to 512m+nm` bits.
For the interesting case of single bit messages, our protocol offers an asymptotic
improvement by a factor of λ (say, λ = 128) in communication complexity
over OTco. With the proof in [CO15] being broken, our protocol is the most
efficient fully UC-secure 1-out-of-n OT protocol, while requiring only the CDH
assumption. As an independent contribution, we believe that our thorough and
detailed security analysis in the UC model may serve as a roadmap to future
endeavours in designing UC-secure OT protocols.
Our Techniques. At a high level, the problem in the proof for fully adaptive
corruptions in OTco stems from the fact that in an adaptive corruption scenario,
the internal state of the corrupted party must be simulated and output to
the environment. The structure of OTco prohibits the efficient computation
of the correct state in the special case where the sender is corrupted at the
beginning of the protocol and the receiver is corrupted after the protocol has
been completed. More precisely, in OTco, a statically corrupted sender may
choose its first round message as group element S = gy where y is not known
to the simulator. Unfortunately, the simulator only learns which message was
chosen by the receiver once it becomes corrupted. On the other hand, it must
be able to forge a state (of the receiver) which matches previously simulated
messages, regardless of the receivers choice, i.e., it must be able to equivocate
the choice of the receiver once it becomes corrupted. In OTco, this requires
knowledge of y. We further elaborate on these issues in Section 3. Our fix to
this problem is to add a new random oracle G to OTco which is called by both
parties on the element S, resulting in output T = gt, i.e., T = G(S). We then
carefully restructure OTco so as to include T, resulting in our new protocol OT∗.
Since the simulator controls the random oracle, it knows the value of t and can
now resolve the above issue of equivocation.

1.2 Related Work
Previous works examine OT protocols in various security models and setup
assumptions. In the MPC setting, it is desirable to consider models which
allow to reason about the security of protocols when composed with themselves
or other protocols in arbitrary concurrent or sequential executions. Exam-
ples are [GH08, RKP09, Gar04, DNO09, PVW07]. Before the notion of UC
security was established, various different approaches were followed. Beaver
proves in [Bea96b, Bea98] the security of an oblivious transfer protocol in a
full-simulation proof against adaptive adversaries, which resembles a proof in
the UC model against adaptive adversaries. To achieve adaptive security, Beaver
defines the requirement of the OT being “content-equivocable”, which is closely
related to the notion of “non-committing encryption” (NCE) we use in this work.

For OTco and OT∗, we require NCE for a secret key encryption scheme.
In [CFGN96, CLOS02], NCE and similar notions are required from public key
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encryption schemes. Notably, in the public key setting, achieving NCE is much
costlier than for the symmetric setting. Garay et al. [GWZ09] address this
problem by introducing the new notion somewhat non-committing encryption
(SNCE), where the opening of a ciphertext is limited to a set possible decryptions.
They show how to use this notion to construct fully UC-secure OTs from statically
UC-secure OTs.

Choi et al. give [CDMW09] a compiler from semi-honest UC-secure OT
to fully UC-secure OT. Abdalla et al. [ABB+13] build UC-secure OT from
Smooth projective hash function friendly non interactive-commitments. Blazy et
al. [BC15] give an generic compiler for UC-secure OT from a collision-resistant
chameleon hash scheme and a CCA encryption scheme accepting a smooth
projective hash function. Blazy et al. [BC16] show how to construct UC-secure
OT from Structure-Preserving Smooth Projective Hashing. Finally, Blazy et
al. [BCG17] build UC-secure OT from Quasi-Adaptive Non-Interactive Zero-
Knowledge Proofs.

Some OT protocols assume the secure erasure of data. In the secure erasure
model it is allowed to delete subsets of the state of a party, such that in the
case of adaptive corruptions, the adversary is not able to learn the full state of
the corrupted party. Garay [Gar04] proposes an OT protocol which is secure
assuming secure erasure in the UC Model under the strong RSA assumption or
the DSA assumption. Choi et al. [CKWZ13] propose UC-secure OT under the
DLIN or SXDH assumption under a single, global CRS in the erasure model.
Prior to Abdalla et al.’s result [ABP17], the assumption of secure erasure was
avoided, due to being hard to guarantee.

Figure 1.2 depicts a comparison of some known OT protocols with our new
protocol OT∗. Protocols OTco, OT∗, the combination of protocol [PVW08] with
the compiler [GWZ09] and [BC15] achieve full UC security. [NP01] achieves one
sided security against a static adversary (however, not in the UC model) and
[PVW08] achieves security against static corruptions with maliciously behaving
corrupted parties in the UC model. The combination of protocol [PVW08] with
the compiler [GWZ09] and [BC15] are proven secure in the CRS model.

Protocol model assumption computational cost communication cost/(in bits)
m times

(
n
1
)

[NP01] ROM DDH (n+ 2m,nm, 2m,nm+m) (n+m,nm`)/256(n+m) + nm`
OTco ROM, AC GDH (3m+ 2, nm+ 2m+ n− 4, 1, (n+ 1)m) (m+ 1, nm(`+ λ))/256(m+ 1) + nm(`+ λ)
OT∗ ROM, AC CDH (5m,m2 + 2mn− 4m,m, (n+ 3)m) (2m,nm`)/512m+ nm`

One time
(
n
1
)

[PVW08]+ [GWZ09] CRS DDH, DCR (O(n),O(n),O(n),O(n)) (O(n),O(nλ))
[BC15] CRS DDH (O(n),O(n),O(n),O(n)) (n+ 9 log2(n) + 4,−)/256n+ 2304 log2(n) + 4
OTco ROM, AC GDH (5, 2n− 2, 1, n+ 1) (2, n`)/256(n+ 1) + n(`+ λ)
OT∗ ROM, AC CDH (5, 3n− 4, 1, n+ 3) (2, n`)/512 + n`

One time
(2

1
)

[PVW08] CRS DDH (14, 7, 1) (8,−)/2048
[NP01] ROM DDH (5, 2, 2, 3) (2, 2`)/514 + log2(n)`
OTco ROM, AC GDH (5, 3, 1, 3) (2, 2(`+ λ))/512 + 2(`+ λ)
OT∗ ROM, AC CDH (5, 3, 1, 5) (2, 2`)/512 + 2`

Figure 1: Overview of OT protocols. The abbreviations in column model
denote the following: AC = Authenticated Channels, CRS = Common Reference
String , ROM=Random Oracle Model. In columns computational cost and
communication cost the cost is grouped in tuples as follows: (#modular
exponentiations, #multiplications, #modular inversions, #hashes) and (#group
elements, #ciphertexts), respectively. The communication cost in bits is com-
puted for λ = 128 andM = {0, 1}`.
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Concurrent Work. In work concurrent and independent to our own, Barreto
et al. [BDD+17] also show an OT protocol that meets UC security under adap-
tive corruptions and under the CDH assumption. Interestingly, their protocol
follows from a more general framework for UC-secure OT and therefore uses
an approach completely different from our own. Notably, their framework can
also be instantiated under post-quantum secure assumptions. However, the
protocol of [BDD+17] requires a much higher amount of group exponentiations
than OT∗ and also has a significantly higher communication complexity. More
precisely, to perform a

(
n
1
)
-OT, they need to perform O(n) exponentiations,

whereas OT∗ needs to perform only a total of 5 exponentiations and O(n) group
multiplications which are much more efficient. Furthermore, their protocol needs
to communicate O(n) additional group elements compared to our protocol, in
which only 2 group elements need to be exchanged regardless of n. In particular,
for the important case of

(2
1
)
-OT, our protocol is more efficient than the protocol

in [BDD+17] (by a factor of about 1.5) in terms of communication complexity.

2 Preliminaries
2.1 Notation

Algorithms. Let λ denote the security parameter. We say that an algorithm
is a PPT algorithm, if it runs in probabilistic polynomial time (in λ). We
assume implicitly that any algorithm receives the unary representation 1λ of
the security parameter as input as its first argument. We denote by s $← S the
uniform sampling of the variable s from the (finite) set S. All our algorithms
are (unless stated otherwise) probabilistic and written in uppercase letters A,B.
To indicate that algorithm A runs on some inputs (x1, x2, ...) and returns y, we
write y $← A(x1, x2, ...). If additionally, A has access to an algorithm B (via
oracle access) during its execution, we write y $← AB(x1, x2, ...). We denote with
H(S,Ri)(X) the hash query H(S,Ri,X). A group generating algorithm GGen is
a PPT algorithm that outputs (G, g, p)← GGen(1λ), where G is a cyclic group
of prime order p and g is a generator of G. All group elements, apart from the
generator g, are written in uppercase letters X,Y.
Security Games. We use code-based security games [BR04]. In game G, an
adversary A interacts with a challenger that answers oracle queries issued by A.
It has a main procedure and (possibly zero) oracle procedures which describe
how oracle queries are answered. We denote the output of a game G between a
challenger and an adversary A via GA. A is said to win if GA = 1. We define the
advantage of A in G as AdvG

A := Pr[GA = 1]. We say that winning a game G is
hard if for every PPT algorithm A, AdvG

A = negl(λ).
The Computational Diffie-Hellman Problem. We briefly recap the well-
known Computational Diffie-Hellman (CDH) problem. The CDH Game cdh is
depicted in Figure 2.
The Gap Diffie-Hellman Problem. Next, we introduce the so-called so
called Gap Diffie-Hellman problem. In the Gap Diffie-Hellman Game gap
depicted in Figure 3, the adversary A must also solve a CDH challenge, but is
additionally given access to an oracle DH that decides the DDH problem.
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cdhA

00 G $← GGen(λ)
01 x, y $← Zp
02 (X,Y) := (gx, gy)
03 Z $← A(X,Y)
04 Return Z = gxy

Figure 2: Computational Diffie-Hellman Game cdh, relative to adversary A.

gdhA

00 G $← GGen(λ)
01 x, y $← Zp
02 (X,Y) := (gx, gy)
03 Z $← ADH(·,·)(X,Y)
04 Return Z = gxy

DH(X,Y,Z) :
05 Return Z = gxy

Figure 3: Gap Diffie-Hellman Game gdh, relative to adversary A.

Properties of the Encryption Scheme. We briefly introduce the a relevant
notion for the symmetric encryption scheme that we will be using in our proof.

Definition 2.1 (Symmetric Encryption Scheme). A symmetric encryption
scheme is a triple (E,D) = (KG(·),E(·, ·),D(·, ·)). The key generation algo-
rithm takes as input a security parameter 1λ and outputs a key k $← K. The
encryption algorithm takes as inputs a key k ∈ K and a message m ∈ M and
outputs a ciphertext e ∈ C. The decryption algorithm D(·, ·) takes as input
a ciphertext e ∈ C and a key k ∈ K and outputs a message M ′ ∈ M. For
correctness we require that ∀M ∈M,∀k ∈ K : D(k,E(k,M)) = M. Furthermore,
we require that any ciphertext e ∈ C can be decrypted with any key k ∈ K, i.e.,
that D(e, k) ∈M.

Definition 2.2 (Non-Committing). We say a symmetric encryption scheme
(E,D) is non-committing if there exist PPT algorithms S1, S2, which are allowed
to share a state, such that for all PPT algorithms A, M ∈M, and k0

$← K, e0
$←

E(k0,M), e1
$← S1(1λ), k1

$← S2(e1,M), we have∣∣∣∣Pr[b = b′ | b′ $← A(eb, kb)]−
1
2

∣∣∣∣ = negl(λ).

Random Oracle Model. As the original work of [CO15], our results are
stated in the random oracle model [BR93]. Concretely, we model the hash
functions H : G3 −→ K and G : G −→ G as random oracles.
The OTco Protocol. Chou and Orlandi’s (CO) protocol OTco is depicted in
Figure 1 (here, we write the protocol for an m-fold

(
n
1
)
-OT). From lines 1 to

6 random keys for each message the sender holds are generated. The receiver
learns a subset of size m keys and thus can decrypt a subset of size m of the
ciphertexts sent in step 8.
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Sender Receiver
Input: (M0,0, ...,Mm−1,n−1) Input: (c0, ..., cm−1)
Output: none Output:(M ′0, ...,M ′m−1)

1. y $← Zp S = gy T = gy
2

xi
$← Zp ∀i ∈ [m]

2. S−→ if S 6∈ G : abort;
3. if ∃Ri 6∈ G : abort R0,...,Rm−1←−−−−−−−− ∀i ∈ [m] : Ri = Scigxi

4. ∀i ∈ [m], ∀j ∈ [n]: ∀i ∈ [m] :
5. ki,j = H(S,Ri)

(
Ry
i T−j

)
kRi

= H(S,Ri)(Sxi)
6. = H(S,Ri)

(
g(ci−j)y2

gxiy
)

= H(S,Ri)(gxiy)
7. ei,j ← E(ki,j ,Mi,j)
8. (e0,0,...,em−1,n−1)−−−−−−−−−−−−→
9. M ′i = D(kRi

, ei,ci
) ∀i ∈ [m]

Table 1: Protocol OTco

Efficiency. The computational cost of protocol OTco for m > 2, n > m, is
composed as follows. The sender performs 2 and m modular exponentiations in
steps 1 and 5, respectively, n − 2 + nm multiplications in step 5 and a single
inversion in step 5. The receiver performs m modular exponentiations in steps 3
and 5, respectively and 2m− 2 multiplications in step 3.
In total both the sender and receiver perform modular 3m+ 2 exponentiations,
nm+ 2m+ n− 4 multiplications and one modular inversion.
The communication cost is composed of m+ 1 group elements (S,R0, ...,Rm−1)
and nm ciphertexts (e0,0, ..., em−1,n−1).
Further in step 5 the sender performs nm queries to H and the receiver performs
m queries to H. In contrast to COs proof of OTco we do not require the encryption
scheme to be robust (c.f. [CO15]). Therefore we cut down the bit complexity of
each ciphertext by a factor of at least 2, depending on the size of the message
space.

3 Shortcomings of COs Protocol
Protocol OTco [CO15] contains three flaws which prohibit a successful proof in
the Universal Composability Framework.
Flaw 1. The first flaw as pointed out in [GIR17] invalidates COs proof against
a corrupted sender. Namely, in COs proof the simulator Sim does not correctly
simulate the behavior of an honest receiver running the protocol in the real world
against a malicious sender S∗ that actively deviates from the protocol specification.
Concretely, S∗ can issue hash queries to a random oracle H programmed by
the simulator Sim. The proof requires Sim to extract the secret messages
~M = (M0,0, ...,Mm−1,n−1) from corresponding ciphertexts (e0,0, ..., em−1,n−1)
obtained from S∗. In a real execution of the protocol, the ciphertext ei,j is the
result of an encryption under some key ki,j , i.e., ei,j = E(Mi,j , ki,j). Therefore,
Sim has to extract the correct decryption key ki,j to decrypt ei,j . Each key ki,j
in the protocol specification is the result of a hash query to H(S,Ri)(U),U ∈ G.
Using a special property called robustness (c.f. [CO15]), every ciphertext can
be decrypted only under the correct key ki,j that was previously obtained from
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a call to H. By exhaustive testing, Sim can therefore determine the unique
key ki,j that decrypts ei,j for all i ∈ [n], j ∈ [m]. Unfortunately, Sim can
not distinguish queries of the form ki,j = H(S,Ri)

(
Ry
i T−j

)
from queries of the

form k′ = H(S,Ri)(U), where ∀i ∈ [n], j ∈ [m] : U 6= Ry
i T−j . This allows a

malicious adversary to encrypt Mi,j with k′ = H(S,Ri)(U) instead of ki,j without
Sim noticing. Sim then decrypts the ciphertext ei,j with the (unique) key k′.
However, the honest receiver in the real world can not compute k′ and thus is
not able to decrypt the ciphertext ei,j .
Resolution of Flaw 1. In order to resolve this issue, Sim must compute its
decryption keys indistinguishable from the honest receiver. Therefore, Sim must
be able to distinguish hash queries of the form H(S,Ri)

(
Ry
i T−j

)
from queries

of the form H(S,Ri)
(
U

)
, where ∀i ∈ [n], j ∈ [m] : U 6= Ry

i T−j . Orlandi [Orl17]
suggests that the GDH assumption can be used to resolve this flaw. Indeed, we
provide a revised proof under the GDH assumption in Section 4.
Flaw 2. The second flaw lies in the proof that no malicious receiver can learn
more than m messages. CO argue that such an attacker can be used to break the
CDH assumption. Unfortunately, their reduction proof is only sketched. They
argue as follows.
Under the assumption that there exists a PPT adversary A engaging with a
honest sender in the OTco protocol and outputs at least m+ 1 correct messages
at the end of the protocol, CO show how to construct a PPT algorithm B, which
wins the cdh game. They argue that B can extract the solution to any given
CDH challenge from A, by running A three times. In each run, A queries H, by
assumption, on at least two queries of the form: H(S,Ri)(U0) and H(S,Ri)(U1),
where U0 = Ry

i T−j0 and U1 = Ry
i T−j1 , for some i ∈ [m], j0 6= j1 ∈ [n].

However, they do not provide an explanation of how algorithm B simulates
an honest sender to A. Essential to simulating, B has to provide an efficient
simulation of random oracle H to A. In particular, queries H(S,Ri)(Ry

i T−j)
must be answered with keys ki,j such that D(ki,j , ei,j) = Mi,j . Again, Sim can
not distinguish queries of the form H(S,Ri)

(
Ry
i T−j

)
from queries of the form

H(S,Ri)(U), where ∀i ∈ [n], j ∈ [m] : U 6= Ry
i T−j . Therefore, B has to guess for

each of the m queries (H(S,Ri)(U0), ...,H(S,Ri)(Um−1)), the value j ∈ [n] such
that Ul = Ry

i T−j (it needs to do so for each l ∈ [m]). If m runs of the protocol
are executed in parallel, this incurs a multiplicative loss of at least 1

nm .

Resolution of Flaw 2. We resolve this flaw in Lemma 5.2, by proving security
under the stronger GDH assumption.
Flaw 3. The third flaw lies in the proof that the protocol remains secure even
if the receiver is adaptively corrupted. In the case of an adaptively corrupted
party, the simulator must forge, upon corruption of the party, a state of the
corrupted party. This state must be forged, such that the environment machine
can not distinguish whether the provided state comes from the honest receiver
which has knowledge of the receivers input before the execution, or from the
simulator which learns the input upon corruption. Further, the simulator must
be able to forge such a state, even if the sender is statically corrupted and the
receiver is corrupted after the execution finished.
CO do not show how to create an internal state of the receiver for the latter
case. More precisely, they do not show how to compute a value xi such that
the previously sent values Ri can be explained as Ri = Scigxi . Here, S = gy is
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the first round message sent by the statically corrupted sender and therefore,
the simulator does not know y. The problem with the simulator of CO is that
it samples x′i $← Zp and then outputs Ri = gx

′
i as the second round message of

the protocol before it learns ci (recall that it only learns ci upon corruption of
the receiver, after the protocol is completed). Now, it must be able to explain
Ri as Ri = Scigxi , for some xi. This means, the simulator must compute xi
such that x′i = yci + xi. However, from this equation, we can easily recover y
as y = (x′i − xi)/ci, which means that our adapted simulator could be used to
break the discrete logarithm assumption.
Handling of Flaw 3. Unfortunately we do not see a possibility of resolving
Flaw 3 while keeping OTco unchanged. We provide a proof for a weaker security
notion (static corruptions) in Theorem 4.3. However, as our main contribution,
we mend the aforementioned problem by adding a random oracle G to the protocol
description and thereby attaining greater flexibility in our security proof. This
is achieved by having both parties compute group element T = gt as T = G(S).
Our simulator now makes extensive use of the fact that by programming G at
point S, it knows the value t. We describe our approach in detail in Section 5.

4 Revised Proof of COs Protocol
In this section we review the security proof of OTco and prove security of OTco
for static, malicious corruptions under the Gap Diffie-Hellman assumption.

Lemma 4.1 (Sender can not extract receivers choice values). No (computa-
tionally unbounded) S∗ on input Ri, can guess ci with probability greater than
1/n.

Proof. Same proof as in COs paper [CO15].

Lemma 4.2 (Receiver can not extract more than m messages). In the random
oracle model, no PPT algorithm A, engaging in the role of the receiver in an
execution of OTco, can output m+ 1 or more messages if the Gap Diffie-Hellman
Game gdh is hard to win. Moreover, if there exists such a PPT algorithm A
with advantage ε in outputting at least m+ 1 messages then there exists an PPT
algorithm B with advantage ε3 in winning the gdh game.

Proof. Let A be an adversary which engages with a honest sender in the OTco
protocol and outputs at least m+ 1 correct messages at the end of the protocol.
We show how to construct an adversary B, which uses A as a subroutine, to break
the gdh assumption. B receives as input a GDH challenge (A = ga,B = gb) $← G
and runs A three times.
To simulate the first step of the protocol, B sends in the first run S = A, in
the second run S = B and in the third run S = AB. We show below how B
simulates the first run of A, the second and the third run follow in a similar
fashion.
To answer queries to H, B does the following. Before B learns the values
(R0, ...,Rm−1), B returns H(V,W)(U) $← K, where V,W,U ∈ G. Once A returns
group elements (R0, ...,Rm−1), B computes ∀i ∈ [m], j ∈ [m] : ei,j ← S1(1λ). B
aborts if Ri 6∈ G for any group element (R0, ...,Rm−1).
To make the previously answered hash queries consistent with the encryptions, B
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checks for each previous hash query H(V,W)(U), whether V = S and there exists
an i ∈ [m] such that W = Ri. If so, B tests whether DH(A,RiS−j ,U) = 1 for
any j ∈ [n]. If B finds such a j then B overwrites ei,j = E(H(S,Ri)(U),Mi,j).
Then B sends (e0,0, ..., en−1,m−1) to A.
To simulate all future hash queries H(S,Ri)(U) correctly, B tests whether
DH(A,RiS−j ,U) = 1 for any j ∈ [n]. If the latter is true for some index j then
B returns H(S,Ri)(U) = S2(ei,j ,Mi,j), else B returns a random group element.
By assumption, A outputs m+ 1 messages. Therefore, A has to perform m+ 1
distinct queries H(S,Ri)(U), with DH(A,RiS−j ,U) = 1. Since, there are only m
values Ri, there will be two hash queries H(S,Ri)(U0) and H(S,Ri)(U1) such that
DH(A,RiS−j0 ,U0) = 1 and DH(A,RiS−j1 ,U1) = 1. Once B observes two such
queries, it saves the group elements (U0, U1) and indices (j0, j1) and aborts
the execution of A. From both group elements (U0,U1), as well as the indices
(j0, j1), ga2 can be extracted as follows:(U0

U1

) 1
j1−j0 =

(g−j0a
2+xiy

g−j1a2+xiy

) 1
j1−j0 = ga

2
(1)

In the second run, B extracts gb2 . In the third run B extracts g(a+b)2 . With
group elements (ga2

, gb
2
, g(a+b)2), B computes gab as follows:(g(a+b)2

ga2gb2

) 1
2 = gab (2)

It is easy to see that if A has advantage ε in outputting at least m+ 1 messages
then B has advantage ε3 in winning the gdh game. Moreover, B’s simulation is
efficient.

4.1 UC Security

Ideal Functionality. OTco aims to implement the ideal functionality F−OT
depicted in Figure 4.1. In the Universal Composability Framework security of a
protocol is proven by showing that a protocol implements an ideal functionality.
The minus in the name F−OT results from a weakening of the standard ideal
Functionality for OT, such that a receiver is allowed to input its choice values
adaptively.

Functionality F−OT(n,m, `)
F−OT interacts with a sender S and a receiver R.

• The functionality receives the messages (M0,0, ...,Mm−1,n−1) from S,
where for all i, j : Mi,j ∈ {0, 1}`.

• The functionality receives the choice values (c0, ..., cm−1) ∈ Zmn from
R.

• The functionality returns the messages M0,c0 , ...,Mm−1,cm−1 to R.

• R may input the choice values in an adaptive fashion, i.e., it can input
the choice values ci one by one and learn the message Mi,ci

before
choosing the next index.
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As a warm-up, we present a security proof of the OTco in the UC model for active
(i.e., malicious), static corruptions under the Gap Diffie-Hellman assumption.
We remark that it is also possible to show that security holds even if the receiver
remains statically corrupted and the sender is corrupted in a completely adaptive
fashion (also under the GDH assumption). However, since the arguments are
lengthy and very similar to the ones presented in Section 5, we focus here only
on the case of statically corrupted parties.

Theorem 4.3 (UC Security). OTco securely realizes F−OT(n,m, `) under the
following conditions.

Corruption Model: Any active, static corruption.
Hybrid Functionalities: We model H as a random oracle and we assume an
authenticated channel (but not confidential) between the parties;
Computational Assumptions: We assume that the symmetric encryption
scheme (E,D) satisfies Definition 2.2 and that the Gap Diffie-Hellman game
gdh is hard to win.

Statically Corrupted Sender and Uncorrupted Receiver. We show
how to construct a simulator SimS∗ for the case of a statically corrupted sender
S∗ and an uncorrupted receiver. SimS∗ has access to F−OT, simulates an execution
of protocol OTco to S∗ and has to simulate random oracle H.
SimS∗ proceeds as follows: For all V,W,U ∈ G, it initializes H(V,W)(U) = ⊥.
To answer queries to H before learning the value S, SimS∗ tests whether
H(V,W)(U) = ⊥. If so, SimS∗ sets H(V,W)(U) $← K. SimS∗ returns H(V,W)(U).
Once S∗ returns the group element S, SimS∗ checks if S ∈ G and aborts otherwise.
To simulate the second step of the protocol, SimS∗ chooses random xi

$← Zp,
computes Ri = gxi , ∀i ∈ [m] and sends the group elements (R0, ...,Rm−1)
to S∗. Further, SimS∗ sets ∀i ∈ [m],∀j ∈ [n]: ki,j $← K. To make previous
queries to H consistent with keys ki,j , SimS∗ checks for each previous query
H(V,W)(U) whether V = S and there exists an i ∈ [n], j ∈ [m] such that
W = Ri and DH(S,RiS−j ,U) = 1. If SimS∗ finds such i, j then SimS∗ overwrites
ki,j = H(S,Ri)(U).
To simulate further queries of the form H(V,W)(U), SimS∗ again first checks
whether H(V,W)(U) = ⊥ (otherwise, it returns H(V,W)(U)). SimS∗ checks
whether both V = S and there exists an i ∈ [n] such that W = Ri. If this
is the case, SimS∗ tests whether DH(S,RiS−j ,U) = 1 for any j ∈ [n]. If
SimS∗ finds such a j then SimS∗ sets H(S,Ri)(U) = ki,j . Otherwise, SimS∗ sets
H(V,W)(U) $← K. SimS∗ then returns H(V,W)(U).
Once SimS∗ receives ciphertexts (e0,0, ..., en−1,m−1) from S∗, it computes ∀i ∈
[m],∀j ∈ [n]: Mi,j = D(ki,j , ei,j) and sends (M0,0, ...,Mn−1,m−1) to F−OT.
To prove that no PPT distinguisher Env can tell the real world view apart from
the simulated view, we argue as follows.
The distribution of the elements ~R sent by SimS∗ is indistinguishable from a
real execution of the protocol. This follows from Lemma 4.1. Also, it is easy
to see that SimS∗ perfectly simulates replies for queries to H, even if they are
used as keys for encryption. Moreover, if SimS∗ aborts after learning the value S
then SimS∗ behaves exactly like the honest receiver. It remains to argue that the
messages ~M that SimS∗ extracts are identically distributed to the messages that
an honest receiver computes in a real execution of the protocol. This follows
directly from the fact that the keys derived by an honest receiver are identically
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distributed as in SimS∗ ’s simulation, since given a ciphertext e ∈ C and a key
k ∈ K, M ← D(e, k) is fully determined.
Statically Corrupted Receiver and Uncorrupted Sender. We show
how to construct a simulator SimR∗ for the (statically) corrupted receiver R∗
and a sender which is not corrupted. SimR∗ has access to F−OT, simulates an
execution of protocol OTco to R∗, has to simulate random oracle H and has to
create a state for the sender which is consistent with values ( ~M,S, ~R, ~e).
SimR∗ works as follows: For all V,W,U ∈ G, i ∈ [m], it initializes H(V,W)(U) =
⊥ and ci = ⊥.
To simulate the first step of the protocol, SimR∗ chooses random y ∈ Zp, computes
S = gy and sends the group element S to R∗.
To answer queries to H, before learning the values (R0, ...,Rm−1), SimR∗ tests
whether H(V,W)(U) = ⊥. If so, H(V,W)(U) $← K. SimR∗ then returns H(V,W)(U).
Once R∗ returns the group elements (R0, ...,Rm−1), SimR∗ checks if for all i ∈ [m],
Ri ∈ G and aborts otherwise.
To simulate the third step of the protocol, SimR∗ computes ∀i ∈ [m], j ∈ [m] :
ei,j ← S1(1λ).
To make the previously answered hash queries consistent with ciphertexts ei,j ,
SimR∗ checks for each previous query H(V,W)(U) whether V = S and there exist
i ∈ [n], j ∈ [m] such that W = Ri and U = Ry

i S−jy. If so, SimR∗ checks whether
ci = ⊥. In this case, it sets ci = j and inputs ci to F−OT, which returns Mi,j .
Then SimR∗ overwrites ei,j = E(H(S,Ri)(U),Mi,j). If ci 6= ⊥, SimR∗ aborts.
To finish simulating the third step of the protocol, SimR∗ sends (e0,0, ..., en−1,m−1)
to R∗.
To simulate further queries of the form H(V,W)(U), SimR∗ again first checks
whether H(V,W)(U) = ⊥ (otherwise, it returns H(V,W)(U)). SimR∗ tests whether
V = S and there exists an i ∈ [n], j ∈ [m] such that W = Ri and U = Ry

i S−jy.
In this case, if ci = ⊥, it sets ci = j and inputs ci to F−OT, which returns Mi,j

(it aborts when ci 6= ⊥). SimR∗ sets H(S,Ri)(U) = S2(ei,j ,Mi,j). If V 6= S or
∀i : W 6= Ri, SimR∗ sets H(V,W)(U) $← K. SimR∗ then returns H(V,W)(U).
Once for all i ∈ [m], ci 6= ⊥, SimR∗ outputs all messages Mi,j .
To prove that no PPT distinguisher Env can tell the real world view apart from
the simulated view, we argue as follows.
Clearly, the distribution of the group element S sent by SimR∗ is indistinguishable
from a real execution of the protocol. The distribution of the ciphertexts ~e
sent by SimR∗ and the replies for queries to H are indistinguishable from a real
execution of the protocol, due to the non-committing property of the encryption
scheme (E,D). Moreover, if SimR∗ aborts after learning the values (R0, ...,Rm−1)
then SimR∗ behaves exactly like the honest sender in the real world. If SimR∗

aborts at a later point in the simulation then there are two random oracle queries
H(S,Ri)(U0) and H(S,Ri)(U1) such that U0 = Ry

i S−j0y and U1 = Ry
i S−j1y,

where j0 6= j1 ∈ [n]. In this case, R∗ can be used to win the gdh game, which
follows from a proof similar to the one of Lemma 4.2.

5 Our Protocol
In this section, we present our new OT protocol OT∗. In comparison to the
protocol OTco, running the protocol m times in parallel does not present any
efficiency gain. Therefore, we define FOT for only a single OT in Figure 4
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Functionality FOT(n, `)
FOT interacts with a sender S and a receiver R.

• The functionality receives the messages (M0, ...,Mn−1) from S, where
for all j : Mj ∈ {0, 1}`.

• The functionality receives the choice value c ∈ Zn from R.

• The functionality returns the message Mc to R.

Figure 4: Ideal Functionality FOT.

accordingly.
Ideal Functionality. OT∗ aims to implement the ideal functionality FOT
depicted in Figure 4.
The Protocol. OT∗ is depicted in Figure 2. In comparison to COs protocol,
we chose to change the computation of the individual encryption keys and
added an additional random oracle G. This allows us to prove security under
the Computational Diffie-Hellman assumption, in contrast to the stronger Gap
Diffie-Hellman assumption.

Sender Receiver
Input: (M0, ...,Mn−1) Input: c ∈ [n]
Output: none Output:M ′

1. y $← Zp S = gy x $← Zp
2. S−→ if S 6∈ G : abort;
3. T = G(S) T = G(S)
4. if R 6∈ G : abort R←− R = Tcgx

5. ∀j ∈ [n]:
6. kj = H(S,R)

(
RyT−jy

)
kR = H(S,R)(Sx)

7. = H(S,R)
(
g(c−j)tygxy

)
= H(S,R)(gxy)

8. ej ← E(kj ,Mj)
9. (e0,...,en−1)−−−−−−−−→
10. M ′ = D(kR, ec)

Table 2: Protocol OT∗. The value t is not known to any party. The depicted
representation is for clarification only.
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Efficiency. The computational cost of protocol OT∗ for is composed as
follows. The sender performs 1 and 2 modular exponentiations in steps 1 and 6,
respectively, 2n−2 multiplications in step 6 and 1 inversion in step 6. The receiver
performs 1 and 1 modular exponentiation in steps 4 and 6, respectively and
n− 2 multiplications in step 4. In total both the sender and the receiver perform
5 modular exponentiations, 3n − 4 multiplications and one inversions. The
communication cost is composed of 2 group elements (S,R) and n ciphertexts ~e.
Further, both the sender and the receiver query G each a single time in step 3.
In step 6 the sender queries H n times and the receiver queries H one time.

5.1 Proof
Lemma 5.1 (Sender can not extract receivers choice values). No (computa-
tionally unbounded) S∗ on input R can guess c with probability greater than
1/n.

Proof. Same proof as in COs paper [CO15].

Lemma 5.2 (Receiver can not extract more than m messages). In the random
oracle model, no PPT algorithm A, engaging in the role of the receiver in
an execution of OT∗ and making at most qH queries to H can output 2 or
more messages if the Computational Diffie-Hellman game cdh is hard to win.
Moreover, if A has advantage ε in outputting at least 2 messages then there exists
an PPT algorithm B with advantage 1

q2
H
n2 ε in winning the gdh game.

Proof. Let A be an adversary which engages with a honest sender in the OT∗
protocol and outputs at least 2 correct messages at the end of the protocol. We
show how to construct an adversary B, which uses A as a subroutine, to break
the cdh game. B receives as input a CDH challenge (A = ga,B = gb) $← G.
For all U,V,W,Z ∈ G, B initializes both G(Z) = ⊥, H(V,W)(U) = ⊥. To
simulate the first step of the protocol, B sends the group element S = A to A.
To answer queries of the form G(U), where U ∈ G, B does the following. It first
checks whether U = S. If so, it sets G(U) = B. Otherwise, it sets G(U) $← G.
It then returns G(U).
To answer queries to H, B first draws four random indices o0, o1

$← [qH ]; j0, j1
$←

[n], where o0 6= o1, j0 6= j1. Before B learns the value R, B checks for each
incoming query H(V,W)(U) whether H(V,W)(U) = ⊥. If so, B sets H(V,W)(U) $←
K. B then returns H(V,W)(U). Once A returns the group element R, B checks
if R ∈ G and aborts otherwise.
To simulate the third step of the protocol, B computes ∀j ∈ [m] : ej ← S1(1λ).
To make the previously answered queries consistent with the ciphertexts ej , B
checks for each previous query H(V,W)(U), whether both V = S and W = R.
If the query is of the above form, B checks whether the current query is the
o0th or o1th query to H. If so, B overwrites ej0 = E(H(S,R)(U),Mj0) or ej1 =
E(H(S,R)(U),Mj1), respectively.
To finish simulating the third step of the protocol, B sends (e0, ..., en−1) to A.
To simulate future queries H(V,W)(U) correctly, B again first checks whether
H(V,W)(U) = ⊥ (otherwise, it returns H(V,W)(U) $← K). Then B checks
whether both V = S and W = R. If the query is of the above form, B checks
whether the current query is the o0th or o1th query to H. If so, B returns
H(S,R)(U) = S2(ej0 ,Mj0) or H(S,R)(U) = S2(ej1 ,Mj1), respectively. B aborts
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after the max(o0, o1)th query to H.
By assumption, A outputs 2 messages. Therefore, A has to perform 2 distinct
queries H(S,R)(g−j

′
0abgax) and H(S,R)(g−j

′
1abgax), where j′0, j′1 ∈ [n]. If j′0 = j0

and j′1 = j1 then from both group elements (U0,U1), as well as the indices j0
and j1, gab can be extracted as follows:

(U0

U1

) 1
j1−j0 =

(g−j′0ab+ax
g−j

′
1ab+ax

) 1
j1−j0 = gab (3)

If A has advantage ε in outputting at least 2 messages and given that A asks
U0,U1 of the above form, the probability of B in winning the cdh game is
made up of correctly guessing the hash queries H(S,R)(U0) and H(S,R)(U1), i.e.,
correctly guessing the indices o0, o1 ∈ [qH ] as well as correctly guessing the
corresponding indices j0, j1 ∈ [n]. Combining terms, we obtain that

Advcdh
B = 1(

qH

2
)(
n
2
)ε ≥ 1

q2
Hn

2 ε.

Moreover, B’s simulation is efficient.

Theorem 5.3 (UC Security). OT∗ securely realizes FOT(n, `) under the fol-
lowing conditions.

Corruption Model: any active, adaptive corruption;
Hybrid Functionalities: we model H and G as random oracles and we assume
an authenticated channel (but not confidential) between the parties;
Computational Assumptions: We assume that (E,D) satisfies Definition 2.2
and that the Computational Diffie-Hellman game cdh is hard to win.

Depending on the corruption type, the tasks of a simulator differ. In the case
of statically corrupted parties, the simulator must simulate an execution of the
protocol to the corrupted parties, simulate both random oracles H,G, extract
the input of the corrupted parties and forward this input to FOT. In the case
of adaptive corruptions, the simulator learns upon corruption the input of the
corrupted party. The simulator must come up with a transcript of the protocol
and an internal state of this party such that the transcript and the state match
the input according to the protocol specification. Adaptive corruptions can occur
at any time. The later the corruption, the heavier the cost of the simulator to
forge a valid state. Therefore, the hardest case to simulate are post-execution
corruptions. For the honest sender, the internal state consists (of some subset of,
depending on the point of corruption) of the randomness y used to generate S
(i.e., S = gy), the vector of messages ~M , and the vector of keys ~k. For the honest
receiver, the internal state consists of some subset of the internal randomness x
used to generate R, the choice value c, the key kR, and the output message M ′.
We have to create a distinct simulator for each possible combination of corruptions.
To this end, we incrementally describe simulators SimS∗ ,Sim4, and Sim∇ which
build on each other and cover all the cases in which the sender is corrupted prior
to or simultaneously as the receiver. Analogous (but simpler) arguments can be
used to argue for the remaining cases in which the receiver is corrupted prior
to the sender. We begin by describing SimS∗ for the case where the sender is
statically corrupted and the receiver is not corrupted. Building on SimS∗ , we
describe simulator Sim4 that handles the case where the sender is statically
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corrupted and the receiver is corrupted in a post execution fashion, i.e., after
the protocol has been completed. Next, we transform Sim4 into a simulator
Sim. that emulates Sim4 internally and handles cases in which the sender can
be corrupted at any point in the protocol, but the receiver is only corrupted
once the protocol has been completed. Finally, we construct Sim∇, which again
emulates Sim. internally and handles any case of corruption in which the sender
is corrupted prior to or at the same time as the receiver. We remark that in our
arguments, we do not call the simulators in a black-box fashion, as we sometimes
require knowledge of the internal randomness that simulators generate during
their runs.
Statically Corrupted Sender and Uncorrupted Receiver. We show
how to construct a simulator SimS∗ for the case of a statically corrupted sender
S∗ and a receiver which is not corrupted. SimS∗ has access to FOT, simulates an
execution of protocol OT∗ to S∗, and has to simulate both random oracles H
and G.
SimS∗ proceeds as follows: For all V,W,U,Z ∈ G, it initializes G(Z) = ⊥,
H(V,W)(U) = ⊥ and r[U] = ⊥.
To answer queries of the form G(U) before learning the value S, SimS∗ tests
whether G(U) = ⊥ (otherwise, it returns G(U)). If so, it samples r[U] $← Zp
and sets G(U) = gr[U]. It then returns G(U).
To answer queries of the form H(V,W)(U) before seeing the value S, SimS∗ tests
whether H(V,W)(U) = ⊥. If so, SimS∗ sets H(V,W)(U) $← K. SimS∗ then returns
H(V,W)(U).
Once S∗ returns the group element S, SimS∗ checks if S ∈ G and aborts otherwise.
It then checks for each previous query G(U) whether U = S. If so, it sets
t := r[U].
To answer queries of the form G(U), after learning the value S, SimS∗ does as
follows. It first checks whether G(U) = ⊥ (otherwise, it returns G(U)). If so, it
tests whether U = S. If so, it samples t $← Zp and sets G(U) = gt. Otherwise,
it sets G(U) $← G. It then returns G(U).
To simulate the second step of the protocol, SimS∗ chooses random x $← Zp,
computes R = gx, and sends the group element R to S∗. Further, SimS∗ sets
∀j ∈ [n]: kj $← K. To make previous queries to H consistent with keys kj ,
SimS∗ checks for each previous query H(V,W)(U) whether there exists a j ∈ [m]
such that V = S, W = R, and U = S−jtSx. If SimS∗ finds such j then SimS∗

overwrites kj = H(S,R)(U).
To simulate further queries of the form H(V,W)(U), SimS∗ again first checks
whether H(V,W)(U) = ⊥ (otherwise, it returns H(V,W)(U)). SimS∗ checks
whether there exists a j ∈ [m] such that V = S, W = R and U = S−jtSx.
If SimS∗ finds such j then SimS∗ sets H(S,R)(U) = kj . Otherwise, SimS∗ sets
H(V,W)(U) $← K. SimS∗ then returns H(V,W)(U).
Once, S∗ returns the values (e0, ..., en−1), SimS∗ extracts the message vector ~M
by computing ∀j ∈ [n] : Mj = D(kj , ej) and forwards the values (M0, ...,Mn−1)
to FOT.
To prove that no PPT distinguisher Env can tell the real world view apart from
the simulated view, we argue as follows.
The distribution of the group element R sent by SimS∗ is indistinguishable from
a real execution of the protocol. This follows from Lemma 5.1. Also, it is easy
to see that SimS∗ perfectly simulates replies for queries to H, even if they are

16



used as keys for encryption. Moreover, if SimS∗ aborts after learning the value
S then SimS∗ behaves exactly like the honest receiver. The messages ~M that
SimS∗ extracts are identically distributed to the messages that an honest receiver
computes in a real execution of the protocol. This follows directly from the
fact that the keys derived by an honest receiver are identically distributed as in
SimS∗ ’s simulation, since given a ciphertext e ∈ C and a key k ∈ K, M ← D(e, k)
is fully determined. The choice value c is in both worlds statistically hidden
from the sender.
Statically Corrupted Sender and Post-Execution Corrupted Re-
ceiver. We show how to construct a simulator Sim4 for the case of a statically
corrupted sender S∗ and a post-execution adaptively corrupted receiver. Simula-
tor Sim4 has access to FOT and SimS∗ , simulates an execution of protocol OT∗
to S∗, has to simulate random oracles H and G, as well as the transcript to both
parties, and has to create a state for the receiver which is consistent with values
(c,M ′,S,R, ~e).
Sim4 works as follows: To simulate protocol OT∗ to S∗, Sim4 emulates internally
simulator SimS∗ . Sim4 forwards all messages sent from S∗ to SimS∗ and redirects
the responses accordingly.
To simulate both random oracles H and G to the parties, Sim4 uses simulator
SimS∗ , Sim4 forwards all queries sent from the parties to SimS∗ and redirects
the responses accordingly.
When the receiver gets corrupted after the protocol has been completed, the sim-
ulator learns c andM ′. To create a state which is consistent with (c,M ′,S,R, ~e),
Sim4 forwards the internal state (x′ := x− ct, kR, c,M ′) to Env.
It is straight forward to verify that given SimS∗ , Sim4’s simulation is indistin-
guishable from a real execution of the protocol in the same corruption scenario.
Intermediate Sim.. We show how to construct a simulator Sim. for the case of
(adaptive) corruption of the sender which takes place at any point in the protocol.
However, we still assume that the receiver’s corruption takes place after the
protocol is completed. Since we have already argued for the case of the statically
corrupted sender, we will now assume that the sender is corrupted only after
the beginning of the protocol. Sim. has access to FOT and internally emulates
the steps of Sim4. At a high level, Sim. works as follows: It engages with Sim4
as a statically corrupted sender by providing it with a transcript of an honest
sender who faithfully executes OT∗1. It forwards all of Sim4’s queries to FOT and
returns FOT’s respective answers. Similarly, it answers all random oracle queries
by querying Sim4. When the sender actually becomes corrupted, Sim. outputs
the state of the sender that it has been simulating thus far. It then bridges
the transition to a corrupted sender from Sim4’s view by making the corrupted
senders queries from this point forward fit the transcript that it has generated
so far. From this point on, Sim. acts only as a relay between the corrupted
sender and receiver, Sim4, and FOT. Since we have already shown that Sim4
provides a perfect simulation in the case of a receiver that is corrupted after the
protocol execution has terminated, it directly follows that Sim.’s simulation is
also perfect. We show in the following how to smoothly implement the transition
described above.
To simulate an honest sender, Sim. first samples y $← Zp, computes S = gy

1Note that executing the protocol honestly is a valid strategy for a statically corrupted
sender
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and sends the group element S to Sim4. Sim4 now returns a group element
R. To simulate the last round of the protocol, Sim. queries the random oracle
H on values kj = H(S,R)(RyT−jy),∀j ∈ [n], and computes the values ej ←
S1(1λ),∀j ∈ [n]. It sends the values ~e to Sim4.
When the sender becomes corrupted, Sim. learns the input (M0, ...,Mn−1) of
the sender. We make the following case distinction:

• Corruption of the sender occurs before ~e was sent: Sim. computes ~k as
described above outputs as internal state (y,~k, ~M) to the environment.

• Corruption occurs after ~e was sent: In this case, Sim. sets ∀j ∈ [n] : kj =
H(S,R)(RyT−jy) = S2(ei,j ,Mi,j) (thereby reprogramming the random
oracle on these values). It then outputs (y,~k, ~M) to the environment.

Given our arguments for Sim4’s simulation from above as well as the non-
committing property of (E,D), it is straight-forward to verify that Sim. also
provides a view to Env that cannot be distinguished from a real execution of the
protocol.
Final Simulator Sim∇. We show how to construct a simulator Sim∇ for the
case where the sender is adaptively corrupted and the receiver is adaptively
corrupted. The corruption of the receiver must take place after the sender is
corrupted (or at the same time). Simulator Sim∇ has access to FOT and internally
emulates the steps of Sim.. The high level idea of Sim∇ is the same as for Sim.:
Sim∇ acts as a relay for all communication between an adaptively corrupted
sender and Sim. and in this way uses Sim. to provide a perfect simulation of
an honest receiver until the receiver becomes corrupted. When the receiver
becomes corrupted, Sim∇ internally completes a run of the protocol for Sim.

in which the receiver is post execution corrupted (note that in reality, at this
point, both parties are corrupted). To do so, it provides Sim. with dummy
values for the sender side and simply emulates the remaining steps at this
point in the protocol of the simulator Sim., given these dummy values from the
sender. Note that this is possible, because Sim∇ internally emulates Sim. and
therefore knows its internal randomness. It completes the internal run of Sim.

by simulating a corruption of the receiver by the environment after the protocol
has been completed. When Sim. outputs its internal state (x, kR, c,M ′), Sim∇
extracts from it the necessary values and outputs them to Env. Correctness and
indistinguishability of Sim∇’s simulation follow directly from Sim.’s properties.
We now argue for the cases of adaptive receiver corruption which occurs prior
to sender corruption. The structure of our proof for this case is analogous as
for the inverse case, but we only show the argument up the case in which the
receiver is statically corrupted and the sender is corrupted in a post execution
fashion as the remaining cases follow in a rather straight-forward fashion.
Statically Corrupted Receiver and Uncorrupted Sender. We show
how to construct a simulator SimR∗ for the case of a statically corrupted receiver
R∗ and a sender which is corrupted after the execution of the protocol finished.
SimR∗ has access to FOT, simulates an execution of protocol OT∗ to R∗, has to
simulate random oracles H and G and has to create a state for the sender which
is consistent with values ( ~M,S,R, ~e).
SimR∗ works as follows: For all V,W,U,Z ∈ G, it initializes G(Z) = ⊥,
H(V,W)(U) = ⊥ and c = ⊥.
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To answer queries of the form G(U),U ∈ G, SimR∗ does as follows. It first checks
whether G(U) = ⊥ (otherwise, it returns G(U)). If so, it sets G(U) $← G. It
then returns G(U).
To answer queries to H, before learning the value R, SimR∗ tests whether
H(V,W)(U) = ⊥. If so, H(V,W)(U) $← K. SimR∗ then returns H(V,W)(U). Once
R∗ returns the group element R, SimR∗ checks whether R ∈ G and aborts
otherwise.
To simulate the first step of the protocol, SimR∗ samples y $← Zp, computes
S = gy and sends the group element S to R∗.
To simulate the third step of the protocol, SimR∗ computes ∀j ∈ [n] : ej ← S1(1λ).
To make the previously answered hash queries consistent with ciphertexts ej ,
SimR∗ checks for each previous query H(V,W)(U) whether there exist j ∈ [n],
such that V = S,T = G(S),W = R, and U = RyT−jy. If so, SimR∗ checks
whether c = ⊥. In this case, it sets c = j and inputs c to FOT, which returns
Mj . Then SimR∗ overwrites ej = E(H(S,R)(U),Mj). If c 6= ⊥, SimR∗ aborts.
To finish simulating the third step of the protocol, SimR∗ sends (e0, ..., en−1) to
R∗.
To simulate further queries of the form H(V,W)(U), SimR∗ again first checks
whether H(V,W)(U) = ⊥ (otherwise, it returns H(V,W)(U)). SimR∗ tests whether
there exist j ∈ [n], T = G(S) such that V = S, W = R and U = RyT−jy. In
this case, SimR∗ checks whether c = ⊥(otherwise it aborts). If so, it sets c = j
and inputs c to FOT, which returns Mc. SimR∗ sets H(S,R)(U) = S2(ei,j ,Mi,j).
If both W 6= R and V 6= S, SimR∗ sets H(V,W)(U) $← K. SimR∗ then returns
H(V,W)(U).
Once c 6= ⊥, SimR∗ outputs message Mc.
To prove that no PPT distinguisher Env can tell the real world view apart from
the simulated view, we argue as follows.
Clearly, the distribution of the elements (S, ~e) sent by SimR∗ is indistinguishable
from a real execution of the protocol. Also, it is easy to see that SimR∗ perfectly
simulates replies for queries to H, even if they are used as keys for encryption.
Moreover, if SimR∗ aborts after learning the value R then SimR∗ behaves exactly
like the honest sender. The value c that SimR∗ extracts is identical to the choice
value of an honest receiver. If SimR∗ aborts at a later point in the simulation
then there are two random oracle queries H(S,R)(U0) and H(S,R)(U1) such that
U0 = RyT−j0y and U1 = RyT−j1y, where j0 6= j1 ∈ [n]. In this case, R∗ can
be used to win the cdh game, which follows from a proof similar to the one of
Lemma 5.2.
Statically Corrupted Receiver and Post-Ex. Corrupted Sender.
We show how to construct a simulator Sim� for the case of a statically corrupted
receiver R∗ and a sender which is corrupted after the execution of the protocol
finished. Sim� has access to FOT and SimR∗ , simulates an execution of protocol
OT∗ to R∗, has to simulate random oracles H and G and has to create a state
for the sender which is consistent with values ( ~M,S,R, ~e).
To simulate protocol OT∗ and both random oracles H and G to R∗, Sim� uses
simulator SimS∗ as follows. Sim� forwards all messages sent from R∗ to SimS∗

and vice versa.
When the sender gets corrupted after Sim� sends messages (e0, ..., en−1) then,
to create a state which is consistent with messages (S,R, ~M, e0, ..., en−1), Sim�
forwards the state (y,~k, ~M) to the environment machine.
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The state produced by Sim� is indistinguishable from the state created by the
honest sender.
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