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Abstract. Fully homomorphic encryption over the integers (FHE-OI) is currently the only alternative
to lattice-based FHE. FHE-OI includes a family of schemes whose security is based on the hardness of
different variants of the approximate greatest common divisor (AGCD) problem. The majority of these
works is based on the noise-free variant of AGCD which is potentially weaker than the general one. In
particular, the noise-free variant relies on the hardness of factoring and is thus vulnerable to quantum
attacks.
A lot of effort was made to port techniques from second generation lattice-based FHE (using tensoring)
to FHE-OI. Gentry, Sahai and Waters (Crypto 13) showed that third generation techniques (which were
later formalized using the “gadget matrix”) can also be ported. In this work, we propose a comprehensive
study of applying third generation FHE techniques to the regime of FHE-OI. We present and analyze
a third generation FHE-OI based on decisional AGCD without the noise-free assumption. We proceed
to showing a batch version of our scheme where each ciphertext can encode a vector of messages and
operations are performed coordinate-wise. We use a similar AGCD variant to Cheon et al. (Eurocrypt
13) who suggested the batch approach for second generation FHE, but we do not require the noise-free
component or a subset sum assumption. However, like Cheon et al., we do require circular security for
our scheme, even for bounded homomorphism. Lastly, we discuss some of the obstacles towards efficient
implementation of our schemes and discuss a number of possible optimizations.

1 Introduction

In homomorphic encryption (HE), it is possible to transform a ciphertext Enc(x) into Enc(f(x))
for some class of functions in a public manner, i.e. without any secret information and with-
out compromising the security of the encrypted message. Rivest, Adleman and Dertouzos [28]
proposed the notion of fully homomorphic encryption (FHE) where the scheme is homomor-
phic w.r.t any efficiently computable f . This will allow to outsource computation to third
parties without compromising security. In an exciting breakthrough, Gentry [20] presented
the first candidate FHE scheme that was based on ideal lattices. Very shortly afterwards, van
Dijk, Gentry, Halevi and Vaikuntanathan [31] proposed a scheme with a similar structure to
Gentry’s but one that was based on a different hardness assumption, namely the hardness of
the approximate greatest common divisor problem (AGCD) [23]. In AGCD, the attacker’s
goal is to find a hidden prime p given arbitrarily (polynomially) many samples of random
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“near multiples” of p, i.e. samples of the form qp + r where q is chosen randomly from an
appropriate domain, and r � p is random noise. In the AGCD schemes, the basic elements
are integers rather than lattice vectors, and the scheme was referred to as FHE over the
integers (henceforth FHE-OI).

Lattice based FHE developed and new schemes with better security and efficiency guar-
antees emerged [2, 4–6] in the lattice domain; this is sometimes called second generation
FHE. A sequence of works on FHE-OI showed that many of these techniques can be applied
in that regime as well, resulting in schemes with comparable efficiency to the lattice set-
ting [9,15–17]. In particular, Cheon et al. [9] showed how to encrypt a vector of messages in
a single ciphertext, similarly to the [3,4,30] SIMD approach. In the batch setting, when per-
forming a homomorphic operation, the operation is performed in parallel on all coordinates
of the respective message vectors. This allows to increase the throughput of the scheme while
preventing the ciphertext size from growing too much. This was later improved by Coron,
Lepoint and Tibouchi [15] who presented a “scale invariant” version of the batch scheme,
again showing that the scale invariance notion from [2] can be applied in the FHE-OI setting.

These last two works [9,15], however, deviate from the original formulation of the AGCD
assumption in a number of aspects: (i) In order to allow batched ciphertexts, they change p
from being prime to being a product of primes, so as to allow encoding of multiple messages
using the Chinese Remainder Theorem. Furthermore, they required a circular secure variant
of the assumption, where indistinguishability holds even for elements of the form qp+ r+m
where m depends on the factors of p. We discuss circular security further when we talk about
our batch scheme below. (ii) Rather than just assuming that finding p is hard, they assume
that the samples qp+ r are indistinguishable from uniform samples over some domain. This
is now known as decisional AGCD. (iii) Only in [9]: They require that the problem remains
hard even if a single multiple of p without noise is known, i.e. some x0 = q0p. This is known
as the noise free variant. However, they show that if this element is given, then there is a
reduction from the original AGCD problem to the new decisional batch AGCD. (iv) They
make an additional subset sum assumption.

Gentry, Sahai and Waters [21] proposed a new family of techniques for lattice based
FHE, sometimes referred to as third generation FHE. They showed how to decrease the size
of the public parameters and the asymptotic complexity of performing a single homomorphic
multiplication. It was later shown that this approach can be used to weaken the hardness
assumption of the scheme and achieve better parameters [1,7] and even for implementations
[11, 18, 24]. It was observed in [21] that their techniques can be applied also to FHE-OI.
Subset sum was no longer required, but a batched scheme was not introduced. It is important
to mention that third generation FHE is lacking in terms of information rate. Whereas in
second generation FHE, a (post-evaluation) ciphertext of length ` can encrypt Ω(`) bits of
information, in third generation scheme only o(`) bits are possible while maintaining full
homomorphism.

Although having a noise free element simplifies the schemes, its impact on security is
unclear. On one hand, it allows to reduce from the hardness of the search AGCD all the
way to batch decision. On the other hand, it gives the adversary additional information
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that might be harmful for security. One setting where this additional information is known
to be harmful is for post-quantum security. In post quantum security, we are interested
in schemes that can be run on standard classical computers, but which are secure even
against adversaries that have a quantum computer. This corresponds to a situation where
the majority of the population cannot afford a quantum computer, but big organizations or
governments can, and the simple user would still like to maintain security even against these
quantum capabilities. Since factoring can be solved using a quantum computer [29], noise
free AGCD is not post quantum secure. On the other hand, Cheon and Stehlé [10] showed
that (non batched) decisional AGCD without the noise free element is at least as hard as
the learning with errors (LWE) problem, which is widely regarded as post quantumly secure.
We note that even though a similar statement for the batch variant is not known, the [10]
result increases our confidence in its post quantum security.

1.1 Our Results

We construct third generation FHE-OI schemes, with and without batching capabilities,
based on decisional AGCD (without a noise free element). More accurately, we construct
leveled FHE: a parameterized homomorphic encryption scheme, such that for any polynomial
depth bound d = poly(λ) there is a proper setting of parameters such that the scheme can
evaluate all depth d circuits. Leveled FHE schemes can be converted to plain FHE using
Gentry’s bootstrapping principle [20], albeit at the cost of making an additional hardness
assumption (the circular security of the scheme). Since the use of bootstrapping is identical
to previous schemes in the literature, we leave it out of this paper and focus on constructing
the leveled schemes.

Our first scheme is non-batched, i.e. each ciphertext encrypts a single bit message, and
is based on decisional AGCD. This scheme is similar to the [21] proposed construction and
is presented in Section 3. Our second scheme is batched and is based on batched decisional
AGCD in addition to a circular security assumption (similarly to [9,15] as mentioned above).
This scheme is presented in Section 4. Known attacks against the batched AGCD problem
work less well than for the classical AGCD problem: this problem can potentially offer a
higher degree of security (cf. [19]).

Both schemes enjoy the same noise propagation features as the LWE scheme of [1,7,21]:
In all known FHE candidates, the limitation on the homomorphism depth stems from noise
accumulation. Upon encryption, ciphertexts contain a certain amount of noise (appropriately
defined), and performing homomorphic operations increases the noise. For correct decryption,
the noise has to be below a predefined threshold, hence the limitation on the number of
operations. In our scheme, the noise grows by a poly(λ) factor with every multiplication
or logical NAND operation (the exact polynomial depends on the choice of parameters).
Furthermore, the noise growth is asymmetric as in [21], i.e. only the noise of one of the two
operands grows by a polynomial factor, and the noise of the other does not grow at all. This
means that we can apply similar optimizations such as the ones in [1, 7].

Finally, in Section 5, we discuss a number of possible optimizations. We show that using
the subset sum assumption we can reduce the public key size, using techniques inspired by
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Coron et al. [16]. We show that at the last steps of the homomorphic evaluation, we do not
have to pay the full cost of multiplication. We then show that instead of binary decomposition
of the ciphertext, which is a major ingredient in [21] (and even earlier in [5]), one can use
decomposition over a larger index, specifically roughly polynomial in the security parameter.
This will reduce the ciphertext size and the evaluation complexity, but will increase the
noise growth. Lastly we discuss the limitations in choosing the actual parameters for future
implementation.

1.2 Our Techniques

Let p be a secret prime sampled from the appropriate distribution, and consider a sequence
of samples of the form xi = qip+ri, where qi is again sampled uniformly across some properly
defined domain, and ri is chosen uniformly across a “small” domain so that |ri| � p. The
decisional AGCD assumption is that the xi’s are computationally indistinguishable from a
uniform element modulo a known parameter N ≈ qmaxp (in fact, the parameters are chosen
so that first N is selected and then the distribution qi’s is chosen so that the maximum is
approximately equal to N/p). Consider adding a few of the xi’s together, for example taking
two such samples, x1, x2 and letting y = x1 + x2. Then y = (q1 + q2)p+ (r1 + r2), and it has
a similar structure to the original x’s. However, not exactly: First of all, the noise r1 + r2
is bigger than the original r. Secondly, and as it turns out more importantly, now y might
be bigger than the modulus N . Looking ahead, this will translate to ciphertext size growth
during homomorphic evaluation, a side effect that we need to prevent. Note that the first
intuition of taking the result modulo N does not help here. While the ciphertext size will
be reduced, the structure might be lost as well since y (mod N) = y − kN for some integer
k. The solution, as presented already in [31], is to consider the first sample x0 = q0p + r0
as the modulus. Since we know that y cannot be much larger than N (since it is just the
sum of a small number, say 2, of xi’s), this means that k is not so large, and therefore y
(mod x0) = y − kx0 = (q1 + q2 − kq0)p + (r1 + r2 − kr0) both lies in the right domain,
which we will now define to be integers modulo x0, and has the right structure. We note
that the aforementioned error free variant is simply taking r0 = 0 which simplifies many of
the computations ahead since there will not be an r0 contribution to the noise term.

A Modified Distribution. The situation here is more challenging than [31], though. For se-
curity purposes we would like to argue that xi (mod x0) is indistinguishable from a uniform
element modulo x0. However, this is actually not true since xi and x0 are of similar magni-
tudes and therefore small elements have a higher probability of appearing in xi (mod x0).
We therefore consider the conditional probability distribution of xi conditioned on xi < x0.
This distribution is indeed indistinguishable from uniform modulo x0. We will therefore use
rejection sampling to sample the xi’s: we will sample according to the AGCD distribution,
and if we are above x0, we will discard the sample and repeat. This will result in a distribu-
tion of xi that both has the structure that we desire and is indistinguishable from uniform
modulo x0. The only remaining problem is that perhaps we get x0 that is so small that we
will reject too often thus increasing the computational complexity of generating the xi’s.
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There are a number of ways to avoid this problem, we chose to just apply rejection sampling
to the choice of x0 itself and condition on it being larger than N/2, which implies that xi
will be rejected with probability at most 1/2. We note that if x0 was error free, this process
would not be needed since xi (mod x0) would have been distributed exactly like a fresh
AGCD sample with q uniformly modulo qmax. The formal analysis of this process appears in
Lemma 2.3.

Our Basic Scheme. Now that we have our building blocks, we can construct a GSW-style
homomorphic encryption scheme (as formulated by [1]). Consider the operation of taking a
number c modulo x0 and decomposing it into its binary representation, which is a binary
column vector of dimension dlog x0e. We denote this operation by G−1(c) (for reasons that
will become clear later), if c is a row vector, then G−1(c) is a binary matrix. The complement
of this operation is linear, i.e. there is a vector g s.t. g · G−1(c) = c (mod x0) for all c.
Therefore, we can devise a scheme where in order to encrypt a bit m, we produce a ciphertext
which is a row vector of the form c = mg + qp + r, but which is still computationally
indistinguishable from a uniform vector over Zx0 . Such a ciphertext can be generated using
standard methods from a public key containing a sequence of xi’s: in a nutshell, a random
subset sum of the xi’s will preserve the structure and produce a “fresh” xi, although with
somewhat larger noise, which is indistinguishable from uniform even given the public key due
to the leftover hash lemma. One has to take special care when reducing modulo x0 that the
additional kr0 term does not become too large. Such a ciphertext can be decrypted by first
multiplying by G−1(p/2), and then reducing modulo p, which results in mp/2 + rG−1(p/2).
Since G−1(·) always output a binary vector, then if r is short enough then rG−1(p/2) is
only slightly longer. So long as the norm of rG−1(p/2) is smaller than p/4, we will decrypt
the correct bit. Homomorphic evaluation is performed as in [1] by computing c1G

−1(c2)
(mod x0) which results in a ciphertext of the form c = m1m2g+q′p+(r1G

−1(c2)+m1r2+kr0).
Thus we have a noise growth very similar to GSW style encryption, but with an additional
term that depends on r0 are comes from taking the result modulo x0. We therefore need to
take into account in our analysis a bound on the modulus k so that we can bound the noise
growth. Note that if x0 had been noise free, this complication does not arise. See Section 3
for the full details, parameters and analysis.

A Batched Variant. The previous scheme only allows to encode a single bit in a ciphertext
vector. This is of course a significant efficiency constraint. We show how to encode multiple
bits in a single ciphertext vector using the Chinese Remainder Theorem (CRT), inspired
by previous works such as [9]. We will now consider a batched AGCD distribution with
samples of the form xi = qiπ + ri, where π is now a composite π =

∏
i∈[`] pi, and the noise

ri is defined as the number modulo π s.t. |ri (mod pj)| � pj. Namely, ri is not a short
element by itself, but rather its CRT coefficients with respect to the pj’s are short. The
batched AGCD hardness assumption again asserts that these samples are indistinguishable
from random modulo some known N . We will use our modified distribution defined above
to again generate x0 and a distribution over xi s.t. xi (mod x0) has the right form and is
indistinguishable from uniform. Now consider a ciphertext of the form c = mg + qπ + r,
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except now m itself is not a bit, but rather its CRT representation is a sequence of bits.
Namely, m (mod pj) = mj for some bit mj. Decryption can be performed in analogous way
to the basic scheme, multiplying by G−1(pj) and reducing modulo pj will allow to recover
mj. Similarly homomorphic operations are performed in the exact same manner as before,
since e.g. multiplying two “CRT containers” m,m′ will result in element-wise multiplication
in each slot corresponding to a factor pj.

This still leaves open the question of how to generate ciphertexts with the aforementioned
structure. It is not a problem to encrypt zero by generating c′ = qπ+r as above. In the basic
scheme this was enough since we could just take mg + c′ (mod x0) and get our ciphertext.
Here, we cannot even generate, given the sequence of mj, the CRT representation m without
using secret information (that is, the factorization of π). We solve this problem by considering
a set of messages that span the message space, and placing their encryptions as a part of the
public key. Specifically, consider m∗j s.t. m∗j = 0 (mod pj′) if j 6= j′ and m∗j = 1 (mod pj)
and let c∗j = m∗jg + q∗jπ + r∗j . The c∗` vectors can be generated during the key generation
process using the factorization of π. Now, in order to encrypt a sequence of bits {mj}j, we
take

∑
jmjc

∗
j +c′ (mod x0), where c′ is a freshly generated zero encryption as defined above.

One can verify that this will indeed encrypt the right message.

We were able to solve the functionality problem, but we can no longer base security on
batch AGCD, since in order to generate the public key we can no longer use the xi alone
without additional private information. Unfortunately, we do not know how to resolve this
problem and we make the explicit assumption that the batch AGCD remains hard even when
the c∗j vectors are published as a part of the public key. In order to increase our confidence in
the validity of this additional assumption, we show that it can be stated as assuming circular
security for a different scheme which is CPA secure. A circular secure encryption scheme is
one that can securely encrypt functions of its own secret key. This notion has been entangled
in the FHE literature due to the batching technique which requires circular security in order
to transform from leveled FHE to unbounded FHE. It is commonly believed that “normal”
encryption schemes should be circular secure unless they are intentionally weakened. Clearly
this vague definition does not provide a strong guarantee and there are ongoing attempts to
come up with more natural schemes that are not circular secure. Yet, by showing that the
security of our scheme relates to the circular security of a CPA secure scheme (which is in
turn secure under batch AGCD), we can at least deduce that breaking our scheme will imply
a surprising result in the study of encryption. We note that a similar assumption was made
in previous works [9, 15] but without an explicit proof of the relation to circular security.
Formally, we consider the very encryption scheme which takes m ∈ Z (or some restriction
thereof) and encrypts it as c = mg + c′ (mod x0), where c′ is as above. We do not provide
a decryption algorithm since we do not require functionality for this scheme, only security,
but we consider the secret key to be the factorization of π. This scheme can be shown to be
CPA secure under batch AGCD on one hand, and on the other our m∗j can be written as a
function of the secret key of this scheme. Therefore if this auxiliary scheme is circular secure
for any function of the secret key, then our scheme is CPA secure.

For the formal statement and analysis of this scheme, see Section 4.
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Optimizations Towards Practicality. In Section 5 we analyze parameters and suggested opti-
mizations towards implementation of our schemes. Let us only mention here that one of the
serious constraints appears to be the length of the ciphertext which now becomes a log(x0)
dimensional vector. We find that this can be mitigated by considering a G−1(·) function that
does not perform binary decomposition but rather decomposes relative to a larger radix B.
This will have a negative effect on the noise growth, but will decrease the ciphertext size
to log(x0)/ log(B) which might enhance performance substantially. This optimization was
considered in the lattice setting as well, but we believe that it will be much more effective
in our setting.

2 Preliminaries

We denote the parameters of our encryption schemes by Greek letters (η, ρ, γ, τ, λ, etc.),
where λ is always the security parameter. Scalars are denoted by lowercase Latin characters
(p, q, x, y, r, etc.), whereas vectors are denoted by lowercase bold English letters (x,y, r,q,
etc.). Finally matrices are denoted by uppercase English letters. For any integer, z, or any
vector of integers z, we denote by [z]p or [z]p the value in (−p/2, p/2] which is the remainder
of z or of each coordinate of z when divided by p. For a vector z, we denote the norm ‖z‖ to
be the infinity norm of the vector, or the size of the maximum entry, ‖z‖ := ‖z‖∞ = max

zi in z
|zi|.

All logarithms mentioned in this paper are base two, unless stated otherwise. We note that
for all a,b ∈ Zn it holds that

‖[a± b]p‖ ≤ ‖[a]p‖+ ‖[b]p‖ . (1)

Computational Indistinguishability. Distribution ensembles {D0,λ}λ, {D1,λ}λ are computa-
tionally indistinguishable if for every polynomial time algorithm A it holds that∣∣Pr[AD0,λ(1λ) = 1]− Pr[AD1,λ(1λ)] = 1

∣∣ ≤ negl(λ),

where the oracle Db,λ is one that returns a fresh sample from Db,λ on every call.

Bit Decomposition. For some n ∈ Z, define the gadget vector, g = (1, 2, 4, ..., 2n) and the
gadget function g−1 : Z∩[0, 2n+1)→ {0, 1}n+1 to be the function that computes the (n+1)-th
bit decomposition of any integer. For some integer, z, the function is defined as g−1(z)T =
vT = (v0, v1, ..., vn) where vi ∈ {0, 1} such that z = 〈g,v〉. By extension we define the
augmented gadget function G−1 : (Z ∩ [0, 2n+1))k → {0, 1}(n+1)×k to be the function that
computes the (n + 1)-th bit decomposition of every integer in a vector, z, of dimension k,
and arranges them as vector columns of an (n+1)×k binary matrix which we denote G−1(z).
Hence, g ·G−1(z) = z.

CRT Representation. We recall the Chinese Remainder Theorem over the integers, which
we use during the construction of the batch version of the scheme.
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Definition 2.1. Given k pair-wise co-prime integers p = (p1, ..., pk), let π =
∏k

i=1 pi.
For k integers mi ∈ Zpi, we define the CRT representation of m = (m1, ...,mk) with re-
spect to p, to be the unique field element m ∈ Zπ such that [m]pi = mi; we write m =
CRTp1,...,pk(m1, ...,mk) and recall that given p and m, CRTp(m) is an efficiently computable
ring isomorphism from

∏
Zpi to Zπ.

Leftover Hash Lemma. A family H of hash functions from X to Y , both finite sets, is said
to be 2-universal if for all distinct x, x′ ∈ X,Prh←H[h(x) = h(x′)] = 1/|Y |. A distribu-
tion D is ε-uniform if its statistical distance from the uniform distribution is at most ε,
where the statistical distance between two distributions D1, D2 over a finite domain X is
1
2

∑
x∈X |D1(x)−D2(x)|.

Lemma 2.1 (Simplified Leftover Hash Lemma (LHL) [22]). Let H be a family of 2-
universal hash functions from X to Y . Suppose that h← H and x← X are chosen uniformly
and independently. Then, (h, h(x)) is 1

2

√
|Y |/|X|-uniform over H× Y .

We present the following version of the LHL, specifically adapted to our scheme.

Lemma 2.2. Set x = (x1, ..., xm) ← ZmM uniformly and independently, set S ← {0, 1}m×n
for some n; and let y = x · S (mod M). Then (x,y) is 1/2

√
M/2m-uniform over Zm+n

M .

Proof. Consider the following hash function family H ⊆ {0, 1}m×n → ZnM . Each function
h ∈ H is parametrized by the coordinates of x ∈ ZmM . Now, given any S ∈ {0, 1}m×n,
we define h(S) = x · S (mod M) ∈ ZnM . We have that the function family is 2-universal.
Therefore by Lemma 2.1, (h, h(S)) is 1/2

√
M/2m-uniform over Zm+n

M . ut

2.1 Homomorphic Encryption

A homomorphic (public-key) encryption scheme HE = (HE.Setup,HE.Keygen,HE.Enc,HE.Dec,
HE.Eval) with message space M is a 4-tuple of ppt algorithms as follows (λ is the security
parameter):

– Key generation (pk, sk)←HE.Keygen(1λ): Outputs a public encryption key pk and a
secret decryption key sk.

– Encryption c←HE.Enc(pk, µ): Using the public key pk, encrypts a message µ ∈M into
a ciphertext c.

– Decryption µ←HE.Dec(sk, c): Using the secret key sk, decrypts a ciphertext c to recover
the message µ ∈M.

– Homomorphic evaluation ĉ←HE.Eval(C, (c1, . . . , c`), pk): Using the public key pk, ap-
plies a circuit C : M` →M to c1, . . . , c`, and outputs a ciphertext ĉ.

A homomorphic encryption scheme is said to be secure if it is semantically secure. It is
(perfectly) correct w.r.t a class of circuits C, if for any efficiently computable circuit C ∈ C
and any set of inputs µ1, . . . , µ`, letting (pk, sk)←HE.Keygen(1λ) and ci←HE.Enc(pk, µi), it
holds that HE.Dec(sk,HE.Eval(C, (c1, . . . , c`), pk)) = C(µ1, . . . , µ`). The scheme is compact if
the decryption circuit’s size only depends on λ. The scheme is leveled fully homomorphic if
for every L = poly(λ) it can be instantiated so that it can evaluate all depth L circuits.
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2.2 Approximate GCD (AGCD)

Variants of the Approximate GCD problem have been used for homomorphic encryption in a
number of previous works [9,10,15–17,21,31]. In this work, we consider the decisional noisy
variant, both in the standalone and batch regimes (definitions follow). We also show that
the decisional noisy variant implies the hardness of “size-bounded” decisional AGCD which
had been defined and used implicitly in the noise-free setting but to our knowledge not in
the noisy setting.

We start by defining the distribution that underlies the AGCD problem. Essentially, this
is a distribution over “near multiples” of a hidden parameter p, followed by a definition of
the (standalone) AGCD problem.

Definition 2.2. The distribution Dγ,ρ(p), parameterized by integers γ, ρ and a η-bit prime
p, is supported over γ-bit integers and defined as follows.

Dγ,ρ(p) = {sample q ← Z ∩ [0, 2γ/p), r ← Z ∩ (−2ρ, 2ρ) : Output x = p · q + r} (2)

Definition 2.3 ((ρ, η, γ)-AGCD [9, 31]). The (ρ, η, γ)-AGCD problem is to find p given
oracle access to Dγ,ρ(p), where p is a random η-bit prime. The decisional AGCD problem is
to distinguish between Dγ,ρ(p) and the uniform distribution on [0, 2γ)∩Z, given oracle access
to both distributions.

We note that these definitions are valid even if p is a non-prime odd integer, and our results
carry over to this case as well.

The batched version is defined similarly, except with multiple p’s. We start by defining a
noise distribution via CRT representation, followed by the batch AGCD problem definition.

Definition 2.4. Let p1, ..., pl be η-bit primes. We define the following distribution:

Φρ(p1, ..., pl) = {r = CRTp1,...,pl(r1, ..., rl)|ri ← Z ∩ (−2ρ, 2ρ)} . (3)

Definition 2.5 ((ρ, η, Γ )-l-AGCD). Let ρ, η, Γ, l be parameters instantiated as a function

of the security parameter. Let p1, ..., pl be random η-bit sized primes and define π =
l∏

i=1

pi.

Given oracle access to the distribution

Xρ,Γ (p1, ..., pl) = {qπ + r|r ← Φρ(p1, ..., pl), q ← Z ∩ [0, 2Γ/π)} ,

output at least one of p1, ..., pl. The decisional version is to distinguish between Xρ,Γ (p1, ..., pl)
and the uniform distribution on Z ∩ [0, 2Γ ).

We note that for l = 1 we get exactly the non-batched version, so this is a strict generaliza-
tion.
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Size Bounded AGCD. The distributionDγ,ρ(p) defined above (and respectively Xρ,Γ (p1, ..., pl)
in the batch variant) produces elements of varying length. For functionality purposes, we
would like to perform arithmetics with a single modulus x0 in our scheme, and this mod-
ulus must itself be ≈ q0p (and respectively for the batch version). In some previous works
[9, 13, 15–17, 25], this was done by defining the modulus as a special noise free element
x0 = q0p. However, this could potentially weaken security and in particular makes the scheme
vulnerable to quantum attacks (since factoring x0 reveals p). Sampling x0 from the distri-
bution Dγ,ρ(p) itself was proposed already in [15,31], the former work only in the context of
search AGCD, and the latter with an ad-hoc (unmentioned) circular security assumption.
Recall that the standalone AGCD is a special case of the batched version, and therefore it
is sufficient to take care of the latter.

We start by defining truncated versions of distributions, i.e. a distribution conditioned
on some external condition.

Definition 2.6. Let X be a distribution supported over Z and let k ∈ Z. The distribution
X(≤k) is the distribution X conditioned on X ≤ k. If Pr[X ≤ k] = 0 then X(≤k) is undefined.
Analogously we can define X(≥k).

Via rejection sampling it is easy to see that if X is efficiently sampleable and Pr[X ≤ k] is
noticeable then X(≤k) is efficiently sampleable up to negligible statistical distance.

Lemma 2.3. Let (ρ, η, γ), l be as in the l-AGCD problem. For any polynomial t, we define
the following distributions.

– The distribution ~Xt = (x0, x1, . . . , xt) where x0 ← Xρ,Γ (p1, ..., pl)
(≥2Γ /2) and for i > 0,

xi ← Xρ,Γ (p1, ..., pl)
(≤x0).

– The distribution ~Ut = (u0, u1, . . . , ut) where u0 is uniform over [2Γ/2, 2Γ ) ∩ Z and for
i > 0, ui is uniform over [0, u0) ∩ Z.

It holds that under the (ρ, η, Γ )-l-AGCD assumption, both distributions are efficiently sam-
pleable, up to negligible statistical distance, and computationally indistinguishable for any
polynomial t.

Proof. Let U be the uniform distribution over [0, 2Γ ) ∩ Z. Then an equivalent formulation

for ~Ut is to set u0 ← U (≥2Γ /2) and for i > 0, ui ← U (≤u0). In this formulation, ~Ut is efficiently
sampleable given oracle access to U and using rejection sampling, since for u0 the rejection
probability is at most 1/2 and since u0 ≥ 2Γ/2, the same holds for the rest of the ui’s. Note
that in expectation only a constant number of samples of U is required to sample each ui.

Replacing U with Xρ,Γ (p1, ..., pl) implies the distribution ~Xt. Since U and Xρ,Γ (p1, ..., pl)
are computationally indistinguishable under (ρ, η, Γ )-l-AGCD, it implies that applying the
same rejection sampler but with Xρ,Γ (p1, ..., pl) samples instead of U samples will efficiently

sample from ~Xt and furthermore that the resulting distribution is indistinguishable from
~Ut. ut
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3 Our Basic Scheme

In this section we will describe the full construction of our decomposed homomorphic encryp-
tion scheme, we will analyze it for correctness and efficiency and finally prove its underlying
security.

3.1 Construction

We recall that for a specific η-bit odd integer p, we use the distribution from Definition 2.2
over γ-bit integers.

HE.Keygen(1λ): We generate the public parameters params = {γ, ρ, η, τ} according to the
security parameter λ and the parameter constraints in Section 3.3. Sample uniformly an
η-bit integer p. Using Eq. (2) and via rejection sampling first sample an integer x0 ←
(Dγ,ρ(p))(≥2

γ−1) and then τ integers {xi}1≤i≤τ ← (Dγ,ρ(p))(≤x0), such that (x0, x1, . . . , xτ )←
~Xτ , as in Definition 2.6. We write x = (x1, ..., xτ ), we let pk = (params,x, x0) and sk = p.

HE.Enc(pk,m): We randomly sample a matrix S← {0, 1}τ×γ and we compute

c = [m · g + xS]x0

which is a vector of dimension γ = dlog x0e.

HE.Eval(pk, C, c1, ...ct): Given t ciphertexts and a binary circuit C with t input bits, compute
all the operations in the circuit over the integers and output the resulting integer modulo x0.
For pairwise ciphertexts, we compute the operations HE.Mult(c1, c2) and HE.Nand(c1, c2) in
the following manner.

cmult = HE.Mult(c1, c2)

= [c1G
−1(c2)]x0 . (4)

We similarly define the homomorphic nand operation.

cnand = HE.Nand(c1, c2)

= [g − c1G
−1(c2)]x0 .

Furthermore, our scheme allows for addition gates, HE.Add, only in the case when it is
known that at most one of the plaintext messages is 1. In this case we perform the addition,
between two ciphertexts, in the following way

cadd = HE.Add(c1, c2)

= [c1 + c2]x0 .

11



HE.Dec(sk, c) : We have that sk = p. Hence, as mentioned earlier, this procedure simply
computes f = c · g−1(p/2) (mod p) and outputs the following

m←

{
1 if |f | ≥ p/4

0 if |f | < p/4
.

3.2 Correctness and Noise Analysis

In this section we prove the correctness of our scheme and at the same time make a parallel
analysis of the size of the noise component in the different relevant algorithms. Finally we
present the optimal parameters as a function of the circuit depth.

Theorem 3.1. For a boolean circuit, C, of depth d, for (sk, pk) ← HE.Keygen(1λ) and
c← HE.Eval(C, c1, ..., ct) such that ci = HE.Enc(pk,mi), where mi ∈ {0, 1}. We have that

HE.Dec(sk, c) = C(m1, ...,mt) .

Remark 3.1. We note that we did not present the most general description of the boolean
circuit to be evaluated. We mention a circuit of depth d, without considering the different
effect of nand and add gates. Our description assumes only nand gates in the circuit.
If we had a circuit with add gates, then its depth could be larger since the add gates
contribute less to the growth of the noise of the ciphertext, as we will see below.

After the encryption procedure, HE.Enc, the resulting ciphertext is a vector of dimension
dlog x0e = γ with each entry being an integer in [−x0/2, x0/2). We now formally define the
noise component of a ciphertext and analyze the size.

Definition 3.1 (Noise Component HE). For any ciphertext c, we define its noise com-
ponent to be rm,p(c) = [c−mg]p and define its size to be the norm rm,p(c) = ‖rm,p(c)‖. Note
that we consider rm,p(c) over Z and not over Zp.

In the following lemma we first give an upper bound on the size of the noise of a fresh
ciphertext and then an upper bound on the noise growth during the evaluation function for
the multiplication, nand and addition functions.

Lemma 3.1 (Noise Size). Let (pk, sk) ← HE.Keygen(1λ). Let c1, c2 be two ciphertexts,
respectively encrypting messages m1,m2 ∈ {0, 1}, we define

B = max{rm1,p(c1), rm2,p(c2)} .

The following holds

1. Given a fresh encryption c = HE.Enc(pk,m), the noise component, rm,p(c) has norm
rm,p(c) ≤ τ2ρ+1.

2. For cmult = HE.Mult(c1, c2) and cnand = HE.Nand(c1, c2), we have that rmmult,p(cmult) =
rmnand,p(cnand) ≤ (2γ + 1)B, where mmult = m1m2 and mnand = 1−m1m2.
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3. For cadd = HE.Add(c1, c2), we have that rmadd,p(cadd) ≤ 2B+2ρ+1, where madd = m1+m2.

Proof. 1. Let pk = (x0,x) = (r0 + q0 · p, r + q · p). Given

c = [mg + xS]x0
= mg + rS + qS · p+ kx0

the noise component is rm,p(c) = rS + kr0, where k is the multiple of x0 = r0 + q0 · p
that is added after the mod x0 operation on the ciphertext. The first term comes from the
matrix operation with the public key vector, xS = qSp+rS, and has size ‖rS‖ ≤ τ2ρ. The
second term derives from the modx0 operation on the ciphertext. Since the ciphertext
cannot grow by more than τ · x0 in each coordinate, then we have that ‖k‖ ≤ τ , such
that ‖kr0‖ ≤ τ2ρ. Thus the claim follows and rm,p(c) ≤ τ2ρ+1.

2. Let c1, c2, B and cmult be as in the statement of the lemma. Then we have

‖rmmult,p(cmult)‖ = ‖[cmult −mmultg]p‖
= ‖[[c1 ·G−1(c2)]x0 −mmultg]p‖
= ‖[c1 ·G−1(c2) + kmultx0 −mmultg]p‖
≤ ‖[c1 ·G−1(c2)−mmultg]p‖+ ‖[kmultx0]p‖ ,

where the last inequality comes from Eq. (1). Now ‖kmult‖ ≤ γ and [x0]p = r0,
3 hence

‖rmmult,p(cmult)‖ ≤ ‖[c1 ·G−1(c2)−mmultg]p‖+ γ · 2ρ

≤ ‖[m1c2 + (c1 −m1g)G−1(c2)−mmultg]p‖+ γ · 2ρ

≤ ‖[m1m2g +m1(c2 −m2g) + (c1 −m1g)G−1(c2)−mmultg]p‖+ γ · 2ρ

≤ ‖m1[c2 −m2g]p‖+ ‖[c1 −m1g]p‖ · ‖G−1(c2)‖+ γ · 2ρ

≤ rm2,p(c2) + rm1,p(c1)γ + γ · 2ρ

≤ B +Bγ + γ · 2ρ

since mmult = m1m2 by definition. Since r0 ≤ 2ρ ≤ B, we get

rmmult,p(cmult) ≤ B + γB + γ2ρ

≤ (2γ + 1)B ,

which is exactly what we need. Analogously, the nand operation causes the same
increase in the size of the noise. This proves the statement.

3 In order to upper bound kmult we know that ‖c1 ·G−1(c2)‖ ≤ ‖c1‖ · γ ≤ x0/2 · γ since c1 ∈ [−x0/2, x0/2). Thus
for each coordinate 1 ≤ i ≤ l of cmult we have that

−x0/2 ≤ [(c1 ·G−1(c2))[i]]x0

= (c1 ·G−1(c2))[i]− kmult[i]x0 ≤ x0/2 . (5)

Hence, on the one hand we have −x0/2 ≤ (c1 ·G−1(c2))[i]− kmult[i]x0, which gives kmult[i] ≤ (γ + 1)/2. On the
other hand we have that (c1 ·G−1(c2))[i]− kmult[i]x0 ≤ x0/2, which gives (γ − 1)/2 < kmult[i]. Thus we conclude
that ‖kmult‖ ≤ γ.
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3. Let c1, c2, B and cadd be as in the statement of the lemma. Then we have

‖rmadd,p(cadd)‖ = ‖[cadd −maddg]p‖
= ‖[[c1 + c2]x0 −m1g −m2g]p‖
= ‖[c1 −m1g + c2 −m2g − kaddx0]p‖
≤ ‖[c1 −m1g]p‖+ ‖[c2 −m2g]p‖+ ‖[kaddx0]p‖
≤ ‖rm1,p(c1)‖+ ‖rm2,p(c2)‖+ ‖kaddr0‖
≤ rm1,p(c1) + rm2,p(c2) + 2ρ+1

since in this case ‖c1 + c2‖ ≤ 2x0, thus ‖kadd‖ ≤ 2. This proves the statement.
ut

Generalizing the statement in 2, let us assume that we want to compute a circuit of depth
d on ciphertexts whose noise components are bounded by B. The output ciphertext, cd, an
encryption of md, will have a noise component with norm rmd,p(cd) ≤ (2γ + 1)dB. We now
prove decryption correctness.

Lemma 3.2 (Correctness Homomorphic Decryption). For any vector c ∈ Zγx0 and
any m ∈ Z2, if rm,p(c) < p/(4γ) then HE.Dec(sk, c) = m.

Proof. Assume that for a ciphertext c ∈ Zγx0 we have rm,p(c) < p/(4γ), then during decryp-
tion, we have that

f = c · g−1(p/2) (mod p)

= mgg−1(p/2) + rm,p(c)g−1(p/2)

≤ m(p/2) + γrm,p(c) ,

where by assumption γ‖rm,p(c)‖ < p/4. So by the decryption algorithm, if |f | ≤ m(p/2) +
γrm,p(c) < p/4 then it necessarily means that m = 0. Whereas if instead |f | ≤ m(p/2) +
γrm,p(c) and |f | > p/4 then it must be the case that m = 1, or else γrm,p(c) > p/4. Hence
in any case we get HE.Dec(sk, c) = m, which implies decryption correctness. ut

As mentioned earlier, one of the most important features of homomorphic operations is
the size of the noise component, which must be somewhat controlled and, in our scheme,
must be at all times less than p/(4γ) in order for the ciphertext to decrypt correctly. This can
give us mathematically an upper bound on the number of operations that we can perform,
relative to some given parameters. Indeed, we can show the relationship between η−ρ and the
depth of the evaluation circuit d. Given that our scheme is not initially fully homomorphic,
but only leveled-homomorphic, we must be able to compute η − ρ given the circuit depth,
d. This is proved in the next lemma.

Lemma 3.3. Given a circuit of depth d and the parameters (τ, γ), correctness of the HE
scheme implies that the following inequality is satisfied.

η − ρ > (d+ 1) log γ + log τ +O(1) . (6)
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Proof. Let us assume that the given circuit is of depth d, then in the worst-case scenario,
a single ciphertext will undergo at most d multiplications with co-factor of the same noise
level. Hence we know that if cd is the output of the circuit, then ‖rmd,p(cd)‖ ≤ (2γ + 1)dB
by Lemma 3.1. We also know by Lemma 3.2 that the following inequality must hold for
decryption correctness

‖rmd,p(cd)‖ < p/(4γ) < 2η/(4γ)

and we can get a bound for η−ρ. More specifically we have that logB < (η−2)−d log(2γ+
1) − log γ. If we assume that B is the size of the noise of the input ciphertexts, which are
fresh out of the encryption procedure, then B = τ2ρ+1 by Lemma 3.1 and

(η − 2)− d log(2γ + 1)− log γ > logB

⇒ (η − 2)− d log(2γ + 1)− log γ − log τ > ρ+ 1

⇒ η − ρ > (d+ 1) log γ + log τ +O(1)

as required. ut

Remark 3.2. Note that if instead, we are given the parameters, {ρ, η, τ, γ}, one can derive
d, an upper bound for the depth of the circuit, by rearranging Eq. (6) as follows

d <
(η − 2)− (ρ+ 1) log τ

log(2γ + 1)
.

3.3 Parameters

We present the constraints on the parameters needed in order for the HE scheme to be correct
and secure against known attacks. Let d be the depth of the circuit used to evaluate the data
and let λ be the security parameter.

– ρ is the bit-length of the noise components ri’s of the public key elements xi’s; ρ = ω(λ),
to protect against brute-force attacks on the noise [8, 13, 17];

– η is the bit-length of the secret key p; η = Ω(ρ + (d + 1) log γ + log τ) in order to have
correctness of the evaluation circuit (Lemma 3.3);

– γ is the bit-length of the elements of the public key, the xi’s; γ ≥ Ω( λ
log λ

(η−ρ)2) and γ >

η2, to thwart different lattice reduction attacks on the AGCD as studied in [10, 19] such
as the orthogonal lattice attacks [27, 31], the simultaneous Diophantine approximation
attack [26,31] and the multivariate polynomial approach in [12,23].

– τ is the number of xi’s in the public key; τ = γ + Ω(λ), which is derived from the
constraints given by the Leftover Hash Lemma in Section 2, needed in the security proof
below. We note that the constraint requires that 1/2

√
x0/2τ be negligible, where γ =

dlog x0e.
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3.4 Semantic Security

To prove the security of this scheme, we cannot use the same techniques as in DGHV because
the use of the gadget vector causes the message to be encrypted in a higher bit, and thus
the LSB predictor procedure used in [31] fails to output the correct bit. For this reason, we
reduce the security of this scheme to the decisional AGCD problem instead. Hence, simply
stated, we prove that our scheme is CPA secure under the decisional AGCD assumption.

Theorem 3.2. The above HE scheme is CPA secure under the (ρ, η, γ)-decisional AGCD
assumption.

Proof. For pk = (params,x, x0)← HE.Keygen(1λ) and cb = HE.Enc(pk, b), where b← {0, 1},
pk′ = (params,u, u0) where u0 ← ([0, 2γ)∩Z)(≥2

γ−1) and u← U([0, u0)∩Z)τ , we prove that
(pk, cb) and (pk′,v), where v← Zγu0 , are computationally indistinguishable. In other words,
for every polynomial time algorithmA,

∣∣Pr[A(1λ, pk, cb) = 1]− Pr[A(1λ, pk′,v) = 1]
∣∣ = negl(λ).

In order to do this we will use a three step hybrid argument and use Lemmas 2.2 and 2.3,
for l = 1, to show indistinguishability between each hybrid. For simplicity we use the no-
tation in Lemma 2.3, where we sample from the distributions ~Xτ = (x0, x1, . . . , xτ ) and
~Uτ = (u0, u1, . . . , uτ ).

Hybrid 0: We define the distribution (pk, cb) in the following way, let pk = (params,x, x0)←
HE.Keygen(1λ), such that (x0, x1, . . . , xτ )← ~Xτ , and let cb = HE.Enc(pk, b) = [bg + xS]x0 for
b← {0, 1}. In this case, (pk, cb) is distributed exactly as in our HE scheme.

Hybrid 1: We define the distribution (pk, cb) as follows, let pk = (params,u, u0), such that

(u0, u1, . . . , uτ ) ← ~Uτ , and let cb = HE.Enc(pk, b) = [bg + uS]u0 . Now, by Lemma 2.3 we

know that (pk, cb)H0 and (pk, cb)H1 are computationally indistinguishable because ~Xτ and
~Uτ are indistinguishable by the lemma. Hence we have∣∣∣∣Pr

H0

[A(1λ, pk, cb) = 1]− Pr
H1

[A(1λ, pk, cb) = 1]

∣∣∣∣ ≤ negl(λ) .

Hybrid 2: In this hybrid we define the distribution (pk, cb) as follows. Again, let pk =

(params,u, u0), where (u0, u1, . . . , uτ ) ← ~Uτ , and let cb = [bg + v]u0 , where v ← Zγu0 is
completely random. By the LHL in Lemma 2.2, the statistical distance between (u0,u,uS)
and (u0,u,v) is upper bounded by 1

2

√
u0/2τ = negl(λ). Finally, we know that cb ≡ v, hence

the probability of success for A in this hybrid is exactly 1/2 since v is completely random.
So we have that ∣∣∣∣Pr

H1

[A(1λ, pk, cb) = 1]− Pr
H2

[A(1λ, pk, cb) = 1]

∣∣∣∣ ≤ 1

2

√
u0/2τ .
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Thus we conclude that ∣∣∣∣Pr
H0

[A(1λ, pk, cb) = 1]− Pr
H2

[A(1λ, pk,v) = 1]

∣∣∣∣
≤ negl(λ) +

1

2

√
u0/2τ

= negl(λ)

as desired. ut

4 Batch Generalization Construction

In this section we present a batched version of our scheme, called BHE, which uses the CRT
representation to encrypt several messages at a time.

4.1 Overview

In this section we generalize our construction to allow for encryption of several messages at
the same time. Given the messages m = (m1, ...,ml) where mi ∈ {0, 1} we want to pack
these l ∈ Z messages into a single ciphertext. For this we will use the Chinese Remainder
Theorem (CRT). It follows from the CRT and from modular arithmetic that homomorphic
multiplication, i.e. mult , and hence the nand operation, will apply in parallel and
component-wise. Let us look at the general idea first. We sample l primes of η-bit length
p1, ..., pl and define π =

∏l
i=1 pi. Given x0 ∈ Z ∩ [0, 2Γ ) from the public key, the ciphertext

has the following structure:

c = [mg + r + qπ]x0

where we have thatm = CRTp1,...,pl(m1, ...,ml) for r = (r0, ..., rn) such that ri = CRTp1,...,pl(ri,1, ..., ri,l)
for ri,j ← Z ∩ (−2ρ, 2ρ) and finally q = (q1, ..., qn) such that qi ← Z ∩ [0, 2Γ/π).

This packing method still allows for homomorphic multiplication, in the same way as for
the single message construction,

c3 = BHE.Mult(c1, c2)

= [c1G
−1(c2)]x0 .

Finally, decryption happens in a very similar way, we compute fi = cg−1(pi/2) mod pi
for all 1 ≤ i ≤ l. Then for each fi if |fi| ≥ pi/4 output mi = 1, otherwise mi = 0.

4.2 The Batch Construction

BHE.Keygen(1λ) : We first generate the parameters params = {Γ, ρ, η, τ, l} according to
the security parameter λ and correctness as explained in Section 4.4 below. Then we sam-
ple l η-bit primes p1, ..., pl and let π =

∏l
i=1 pi. We define πi = π

pi
and we let yi =
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CRTp1,...,pl(0, ..., 1, ..., 0) = πi(π
−1
i mod pi) mod π where only the i-th coordinate is non-

zero. We will post encryptions of the yi as a part of the public key so as to allow public
encryption.

We sample (x0, x1, . . . , xτ )← ~Xτ , where ~Xτ is as defined in Lemma 2.3.
We denote x = (x1, ..., xτ ), r = (r1, ..., rτ ) and q = (q1, ..., qτ ). Thus by sampling l

matrices Wi ← {0, 1}τ×(Γ+1), the ciphertexts of the yi’s look like

yi = [yig + xWi]x0
= [yig + ri + qiπ]x0 (7)

where ri = rWi and qi = qWi. We set Y = (y1 ... yl). The public key is defined as
pk = (params, x0,x,Y) and the secret key as sk = (p1, ..., pl).

BHE.Enc(pk,m1, ...,ml): For mi ∈ {0, 1}, sample a matrix S← {0, 1}τ×Γ . Then we encrypt
the messages m = (m1, ...,ml) as follows:

c = [mY + xS]x0 .

BHE.Eval(pk, C, c1, ...ct): For any boolean circuit C we can homomorphically compute the
operations BHE.Mult and BHE.Nand in an almost identical manner as in the non batch
version. The former is computed as follows

cmult = BHE.Mult(c1, c2)

= [c1G
−1(c2)]x0

and the latter as

cnand = BHE.Nand(c1, c2)

= [g − c1G
−1(c2)]x0 .

BHE.Dec(sk, c): Given c we simply compute for each i = 1, ..., l, fi = c · g−1(pi/2) mod pi.
So for each fi if |fi| ≥ p/4 then mi = 1, otherwise mi = 0.

4.3 Correctness and Noise Analysis

The goal of this section is again to prove the correctness of our scheme.

Theorem 4.1. For a boolean circuit of depth d, C, for (sk, pk) ← BHE.Keygen(1λ) and
c ← BHE.Eval(C, c1, ..., ct) such that ci = BHE.Enc(pk,mi), where mi ∈ {0, 1}l. We have
that

BHE.Dec(sk, c) = C(m1, ...,mt) .
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Remark 3.1 also applies in this case.
We want to make an analysis of the noise components similar to the one in Section 3.2.

We will start by defining the noise component of the ciphertext for the batched version of
the scheme and then we will prove decryption correctness and show how the size behaves in
this batch version of the scheme. We first note that after encryption, BHE.Enc(pk,m), the
resulting ciphertext c is a vector of dimension dlog x0e = Γ with each entry being an integer
in [−x0/2, x0/2).

Definition 4.1 (Batch Noise Component). For any ciphertext c, we define its noise
components to be rm,pi(c) = [c − mg]pi for any i = 1, ..., l. Therefore its size is the norm
rm,pi(c) = ‖rm,pi(c)‖. Here m = CRTp1,...,pl(m1, ...,ml). We will further define the overall
noise component of a ciphertext c to be rm,π(c) = max

0≤i≤l
rm,pi(c). We consider rm,pi(c) over Z

and not over Zpi.

Lemma 4.1. Given a vector m ∈ {0, 1}l and a public key pk = (params,x,Y, x0), the
ciphertext is of the form c = BHE.Enc(pk,m) = [CRTp1,...,pl(m1g + r1, ...,mlg + rl) + q ·π]x0.

Proof. The encryption procedure computes

BHE.Enc(pk,m) = [mY + xS]x0

= [
l∑

i=1

(miyig +mirWi +miqWiπ) + xS]x0

= [CRTp1,...,pl(m1g, ...,mlg) +
l∑

i=1

(mirWi +miqWi · π) + xS]x0 ,

where the last steps is obtained by the linear nature of the CRT representation, which allows
for scalar multiplications and point-wise additions. Since x = r + q ·π, we have that for each
pi

l∑
i=1

(mirWi) +
l∑

i=1

(miqWi · π) + rS + qS · π

=
l∑

i=1

mi

τ∑
j=1

rj ·wj,i +
τ∑
j=1

rj · sj (mod pi)

= r̂i

where x = rj (mod pi) are vectors whose coordinates are in Φρ(p1, ..., pl), as in Eq. (3). So
by combining the two we get that c = mig + r̂i (mod pi) and hence

c = BHE.Enc(pk,m) = [CRTp1,...,pl(m1g + r1, ...,mlg + rl) + q · π]x0 (8)

as required. ut
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In the following lemma we first give an upper bound on the size of the noise of a fresh
ciphertext in the batch scheme and then an upper bound on the noise growth during the
evaluation function for the multiplication, nand and addition functions.

Lemma 4.2 (Batch Noise Size). Let (pk, sk)← BHE.Keygen(1λ). For any two ciphertexts
c1, c2 ∈ ZΓx0, encrypting messages m1,m2 ∈ {0, 1}l, we define B = max{rm1,π(c1), rm2,π(c2)}.
The following holds

1. Given a fresh encryption c = BHE.Enc(pk,m), the noise component, rm,π(c) has norm
rm,π(c) ≤ (l + 2)τ2ρ.

2. For cmult = BHE.Mult(c1, c2) and cnand = BHE.Nand(c1, c2), we have that rmmult,π(cmult) =
rmnand,π(cnand) ≤ (2Γ + 1)B, where mmult = m1m2 and mnand = 1−m1m2.

3. For cadd = BHE.Add(c1, c2), we have that rmadd,π(cadd) ≤ 2B + 2ρ+1, where madd =
m1 +m2.

Proof. 1. Let pk = (x0,x) = (r0 + q0 · π, r + q · π). From Eq. (8) we know that

c = [mg + r̂ + q̂ · π]x0
= mg + r̂ + q̂ · π + kx0

where r̂ =
∑l

i=1(mirWi) + rS and q̂ =
∑l

i=1(miqWi) + qS. Thus the noise component

is rm,π(c) = (
∑l

i=1mirWi) + rS + r0k, where k is the multiple of x0 that is added after
the mod x0 operation on the ciphertext. As we have seen in Lemma 4.1 the first term,
(
∑l

i=1mirWi), comes from the matrix operation mY such that ‖
∑l

i=1mirWi‖ ≤ lτ2ρ;
the second term of the noise above comes from the matrix operation with the public key
vector, xS = qSp + rS, with size ‖rS‖ ≤ τ2ρ. Finally, the last term derives from the
mod x0 operation on the ciphertext. We have that ‖k‖ ≤ τ , such that ‖r0k‖ ≤ τ2ρ. The
claim follows since

rm,π(c) ≤ lτ2ρ + τ2ρ + τ2ρ = (l + 2)τ2ρ (9)

as required.

20



2. Let c1, c2, B and cmult be as in the statement of the lemma. Then we have

‖rmmult,π(cmult)‖ =
l

max
i=1

(‖[cmult −mmultg]pi‖)

=
l

max
i=1

(‖[[c1G
−1(c2)]x0 −mmultg]pi‖)

=
l

max
i=1

(‖[c1G
−1(c2) + kmultx0 −mmultg]pi‖)

=
l

max
i=1

(‖[m1c2 + (c1 −m1g)G−1(c2) + kmultx0 −mmultg]pi‖)

=
l

max
i=1

(‖[m1m2g +m1(c2 −m2g) + (c1 −m1g)G−1(c2)

+ kmultx0 −mmultg]pi‖)

≤ l
max
i=1

(‖m1,i[c2 −m2g]pi‖+ ‖[c1 −m1g]pi‖ · Γ + ‖[kmultx0]pi‖)

≤ l
max
i=1

(rm2,pi(c2) + rm1,pi(c1) · Γ + ‖kmultr0,i‖)

≤ rm2,π(c2) + rm1,π(c1) · Γ + ‖kmult2ρ‖
≤ B +BΓ + ‖kmult‖2ρ ,

where mj,i is the i-th coordinate of mj and r0,i = [r0]p ≤ 2ρ such that x0 = r0 + q0 · π
and r0 ← Φρ(p1, ..., pl). In order to upper bound ‖kmult‖ we use a method analogous to
the one in Lemma 3.1 as described with Eq.(5) to conclude that ‖kmult‖ ≤ Γ . Hence we
get that

rmmult,π(cmult) ≤ B + ΓB + Γ2ρ

≤ (2Γ + 1)B ,

which is exactly what we need. Analogously, the nand operation causes the same
increase in the size of the noise. This proves the statement.

3. Let c1, c2, B and cadd be as in the statement of the lemma. Then we have

‖rmadd,π(cadd)‖ =
l

max
i=1

(‖[cadd −maddg]pi‖

=
l

max
i=1

(‖[c1 −m1g + c2 −m2g + kaddx0]pi‖)

≤ l
max
i=1

(‖[c1 −m1g]pi‖+ ‖[c2 −m2g]pi‖+ ‖[kaddx0]pi‖)

≤ l
max
i=1

(‖rm1,pi(c1)‖+ ‖rm2,pi(c2)‖+ ‖kmultr0,i‖)

≤ rm1,π(c1) + rm2,π(c2) + 2ρ+1

since we have that ‖c1 +c2‖ ≤ 2x0, thus ‖kadd‖ ≤ 2. As before we have that r0,i = [r0]p ≤
2ρ such that x0 = r0 + q0 · π and r0 ← Φρ(p1, ..., pl). This proves the statement. ut
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Generalizing the statement in 2, let us assume that we want to compute a circuit of depth
d on ciphertexts whose noise components are bounded by B. The output ciphertext, cd, an
encryption of md, will have a noise component with norm rmd,π(cd) ≤ (2Γ + 1)dB. We now
prove decryption correctness.

Lemma 4.3 (Correctness Homomorphic Decryption BHE). For any vector c ∈ ZΓx0
encrypting some messages m1, ...,ml ∈ Z2 under our scheme, such that m = CRTp1,...,pl(m1, ...,ml),
we have that if rm,pi(c) < pi/(4Γ ) for all i = 1, ..., l then HE.Dec(c) = (m1, ...,ml).

Proof. Assume that for a ciphertext c ∈ ZΓx0 we have rm,pi(c) < p/(4Γ ), then during decryp-
tion, we have that

fi = c · g−1(pi/2) (mod pi)

= mgg−1(pi/2) + rm,π(c)g−1(pi/2) (mod pi)

≤ mi(pi/2) + Γrm,pi(c)

where by assumption Γ‖rm,pi(c)‖ < pi/4 for all 1 ≤ i ≤ l. So by the decryption algorithm,
if |fi| ≤ mi(pi/2) + Γrm,pi(c) < pi/4 then it necessarily means that mi = 0. Whereas if
instead |fi| ≤ mi(pi/2) + Γrm,pi(c) and |f | > pi/4 then it must be the case that mi = 1, or
else Γrm,pi(c) > pi/4. Hence in any case we get that BHE.Dec(sk, c) = (m1, ...,ml), which
implies decryption correctness. ut

4.4 Parameters

Our BHE scheme uses the same parameters as the HE scheme except for

Γ is the bit-length of the elements of the public key, the xi’s, we change the symbol for
convenience;

l is both the number of messages in the batch and the number of primes in the secret key;

In the batched version of the decomposed scheme, some of the parameters differ since
we are now including several primes in the secret key. The following are the constraints on
the parameters needed in order for the BHE scheme to be correct and secure against known
attacks. Let d be the depth of the circuit used to evaluate the data.

– ρ = ω(λ), to protect against brute-force attacks on the noise [8, 13,17];
– η = Ω(ρ + (d + 1) logΓ + log τ + log l) in order to have correctness of the evaluation

circuit (Lemma 4.2);
– Γ ≥ Ω( λ

log λ
(η − ρ)2) and Γ > η2, to thwart different lattice reduction attacks on the

AGCD as studied in [10,12,19,23,26,27,31].
– τ = Γ +Ω(λ), which is derived from the constraints given by the Leftover Hash Lemma

in section 2, needed in the security proof in section 4.5.

Remark 4.1. The previous constraints are similar to those of Section 3.3 (with η depending
additionally on log l) and comes from the fact that there is no known attack on the (ρ, η, Γ )-
l-AGCD (Def. 2.5) that exploits the CRT structure [19, Sec. 2.1]: the best known attack is
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to attack the AGCD on a single prime p ∈ {p1, . . . , pl}. Thus, Γ has to be set larger than η2.
Informally, this shows that for the same parameters (Γ, η) as in Sec. 3, one can encrypt close
to l = η bits without increasing the ciphertext size while still maintening correctness. (Note
that the public key contains l additional ciphertexts compared to the scheme of Sec. 3.)

Remark 4.2. Note that we necessarily have that Γ ≥ l · η. When Γ = l · η (and thus l > η
by the previous remark), the l-AGCD distribution becomes

Xρ,Γ = Φρ = {r = CRTp1,...,pl(r1, ..., rl)|ri ← Z ∩ (−2ρ, 2ρ)} ,
i.e., a multiple of π is no longer added to the samples of Φρ. This distribution is at the core
of the multilinear maps of [14]. As far as we known, there is no known attack against this
distribution that exploits the additional structure (attacks on [14] comes from the zeroizing
parameter therein).

4.5 Security

In this section we would like to prove, similar to the non-batched version of the scheme, the
semantic security. Unfortunately, the assumption in Definition 2.5 is not enough to ensure the
security of the batched version of the scheme as it does not assure security when an encryption
of key dependent messages is published, needed to compute the CRT representation of a batch
of messages during the encryption procedure.

One way to go is to assume that even in spite of the new elements in the public key, the
vector x is still indistinguishable from uniform. This would allow us to apply the same proof
strategy as in the previous section. However, to increase our confidence in the validity of
this assumption, we show that one can view it as assuming circular security for a different
auxiliary scheme, one that we can actually prove secure under Definition 2.5. Furthermore,
since our auxiliary scheme is only used in the proof of security, we do not even require that
it is properly decryptable, only that it is CPA secure (we proved correctness for our actual
scheme).

In what follows we introduce our auxiliary encoding scheme, AHE, which encrypts large
messages, instead of the CRT representation of a batch of bits. We show that this scheme
can be extended to the BHE. We prove that AHE is secure under the decisional batch AGCD
assumption (Definition 2.5) and finally show that by adding the circular security assumption
to AHE, we can make the BHE scheme secure.

Auxiliary HE Scheme As explained above, we only require key generation and encryption
for this scheme.

AHE.Keygen(1λ): We first generate the parameters params = {Γ, ρ, η, τ, l, k} according to
the security parameter λ and correctness. Then we sample l η-bit primes p1, ..., pl and we
define π =

∏l
i=1 pi, as above. After this, using the distribution in Definition 2.4 and rejec-

tion sampling, we first sample an integer x0 ← (Xρ,Γ (p1, ..., pl))
(≥2Γ−1) and then τ integers

{xi}1≤i≤τ ← (Xρ,Γ (p1, ..., pl))
(≤x0), such that (x0, x1, . . . , xτ ) ← ~Xτ , as in Lemma 2.3. We

write x = (x1, ..., xτ ), r = (r1, ..., rτ ) and q = (q1, ..., qτ ). We let the message space be Zk for
some k ≤ π, the public key pk = (params, x0,x) and the secret key sk = (p1, ..., pl).
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AHE.Enc(pk,m): For a message m ∈ Zk, we sample a matrix S← {0, 1}τ×Γ and we compute

c = [mg + xS]x0 (10)

where again, c is a vector of dimension Γ = dlog x0e.

Remark 4.3. Given a message m ∈ Zπ, the ciphertext generated by the AHE.Enc is decrypt-
able in a similar way to BHE, where the secret key is the prime factorization of π. This only
works in the case that m = CRTp1,...,pl(m1, ...,ml).

Security of AHE We start by proving a lemma that will be useful in proving both of
the next two theorems. Simply said we prove that the structure xS mod x0, where x are
AGCD samples, is computationally indistinguishable from uniform. This will help us avoid
redundancy in the proofs of security of AHE and BHE since this structure is present in both
of the encryption algorithms.

Lemma 4.4. Let (x0, x1, . . . , xτ ) ← ~Xτ and (u0, u1, . . . , uτ ) ← ~Uτ as in Lemma 2.3, where
x = (x1, ..., xτ ) and u = (u1, ..., uτ ). Then for v ← ZΓu0 and S ← {0, 1}τ×Γ , the distribution
(x, x0, [xS]x0) is computationally indistinguishable from the distribution (u, u0,v).

Proof. For convenience we write pk = (x, x0) and pk′ = (u, u0). On the one hand, we
know by Lemma 2.3 that pk and pk′ are indistinguishable, so it follows that (pk, [xS]x0) is
indistinguishable from (pk′, [uS]u0) where S ← {0, 1}τ×Γ . On the other hand, we have by
the LHL from Lemma 2.2 that the statistical distance between (pk′, [uS]u0) and (pk′,v) for
v ← ZΓu0 is upper bounded by 1

2

√
u0/2τ = negl(λ). Hence by transitivity, (pk, [xS]x0) is

indistinguishable from (pk′,v) for v← ZΓu0 .
In other words, for every polynomial time algorithm A, we have that∣∣Pr[A(1λ,x, x0, [xS]x0) = 1]− Pr[A(1λ,u, u0,v) = 1]

∣∣ ≤ negl(λ) .

ut

Theorem 4.2. The above AHE scheme is CPA secure under the (ρ, η, Γ ) − l-decisional
AGCD assumption.

Proof. For pk = (params,x, x0) ← AHE.Keygen(1λ) and c = AHE.Enc(pk, b), where b ∈ Zk
is chosen by the adversary, pk′ = (params,u, u0), as in Lemma 4.4, we prove that (pk, c)
and (pk′,v), where v← ZΓu0 , are computationally indistinguishable.

In order to do this we will use a two step hybrid argument and use Lemma 4.4 to show
indistinguishability between the hybrids. Each hybrid is an interactive exchange between a
challenger, C, and a polynomial time adversary, A.

Hybrid 0: The adversary, A, gets pkH0 = pk from the challenger and then chooses a message
b ∈ Zk, which he sends back to the challenger. In turn, C computes c = AHE.Enc(pk, b) =
[bg + xS]x0 , which is then sent to the adversary. In this case, (pk, c) is distributed exactly as
in the AHE scheme.
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Hybrid 1: The adversary, A, gets pkH1 = pk′ from the challenger and then chooses a message
b ∈ Zk, which he sends back to the challenger. In turn, C computes c = [bg + v]u0 , which
is then sent to the adversary. Now, by Lemma 4.4 we know that (pk, c)H0 and (pk, c)H1 are
computationally indistinguishable because (pk, [xS]x0) is indistinguishable from (pk′, [uS]u0).
Finally, we know that c ≡ v, hence the probability of success for A in this hybrid is exactly
1/2 since v is completely random.

In other words, for every polynomial time algorithm A,∣∣Pr[A(1λ, pk, c) = 1]− Pr[A(1λ, pk′,v) = 1]
∣∣ = negl(λ) .

ut

Security of BHE As mentioned earlier, in order to prove security of BHE we must prove
first that it is an extension of the AHE scheme under specific conditions, mainly we have the
following definition.

Definition 4.2. Let E(ME , CE) be a public encoding scheme with message space ME and
ciphertext space CE . We say that E ′(ME ′ , CE ′) is an extension by ciphertext of E if for some
integer n there exists c1, ..., cn and function f : CnE ×ME ′ ← CE ′ such that for all m ∈ME ′,
E ′.Enc(pkE ′ ,m) = f(c1, ..., cn,m). Furthermore, E ′ is a public encryption scheme if decryption
is correct.

Lemma 4.5. The BHE public encryption scheme is an extension by ciphertext of the AHE
scheme.

Proof. Let (pk, sk)← AHE and let f : (ZΓx0)
l × {0, 1}l ← ZΓx0 be the function

f(c1, ..., cl,m) = [mC + xS]x0

where S ← {0, 1}τ×Γ and C = (c1...cl). Now in order to obtain exactly the BHE scheme
we must specify the ciphertexts used, which in this case are ci = AHE.Enc(pk, yi) where
yi = CRTp1,...,pl(0, ..., 0, 1, 0, ..., 0) = πi(π

−1
i mod pi). This can be done as long as the AHE

encryptions are done privately in the key generation process and we let pkBHE = (pk,C) for
C = (c1...cl) and we let skBHE = sk. Correctness of BHE follows by the previous section. ut

We now connect the circular security of AHE with the CPA security of BHE secure. We
start by defining the flavor of circular security we require. Note that this definition applies
to encoding schemes (that do not have decryption) and not just to encryption schemes.

Definition 4.3. A public key encoding scheme (Keygen,Enc) is weakly circular secure, if for
any polynomial sequence of functions fi from the secret key space to the message space, it
holds that (pk, {Encpk(fi(sk))}i) is computationally indistinguishable from (pk, {Encpk(0)}i).

The security of BHE follows by applying the circularity of AHE to account for the key
dependent information in Y and then applying the standard security argument. Hence we
show that

25



Theorem 4.3. If AHE is circular secure and the (ρ, η, Γ )−l−AGCD assumption holds, then
BHE is CPA secure.

Proof. Let us assume that AHE is circular secure, where we write S for the secret key space
and M for the message space. We then let the sequence of functions, fi : S → M, be the
following

fi(p1, ..., pl) = CRTp1,...,pl(0, ..., 1, ..., 0) .

We prove that for all polynomial time adversaries B, the probability of distinguishing in the
BHE scheme between an encryption of any message in {0, 1}l, c1, and a uniform vector is
negl(λ).

We proceed to prove this by using a hybrid argument. In each of the hybrids, some
form of a CPA game is played between a challenger A and an adversary B. Let (pk, sk) ←
AHE.Keygen(1λ) and let cb be the BHE ciphertext that B receives during the game after
choosing the message mb ∈ {0, 1}l. We have that pk = (params,x, x0) where (x, x0) =

(x0, ..., xτ )← ~Xτ and we let (u, u0) = (u0, u1, . . . , uτ )← ~Uτ as in Lemma 2.3.

Hybrid 0: In this Hybrid, the challenger A generates AHE encryptions of functions of the
secret key, ci = AHE.Enc(pk,mi), where mi = fi(p1, ..., pl). Then A generates the BHE public
key pk′ = (pk,Y), where Y = (c1...cl) and sends pk′ to B. By Lemma 4.5, we have that pk′

is distributed exactly as the public key in BHE.Keygen. The BHE-CPA game is then played
and B has some probability of success.

Hybrid 1: In this Hybrid, the challengerA generates AHE encryptions of zero, ci = AHE.Enc(pk,mi),
where mi = 0. Then A generates the public key pk′ = (pk,Y), where Y = (c1...cl) and sends
pk′ to B. The BHE-CPA game is then played and we claim that the probability of success for
B is negligibly close to the probability of success for B in Hybrid 0. Otherwise it would imply
that B can distinguish the AHE encryptions of key dependent messages from encryptions of
zero, contradicting the circular security assumption. Thus we have that∣∣∣∣Pr

H0

[B(1λ, pk′, cb) = 1]− Pr
H1

[B(1λ, pk′, cb) = 1]

∣∣∣∣ = negl(λ) .

Hybrid 2: In this Hybrid, the challengerA generates AHE encryptions of zero, ci = AHE.Enc(pk,mi),
where mi = 0. ThenA generates the public key pk′ = (params,u, u0,Y), where Y = (c1...cl)
and sends pk′ to B. Here A does not send B some encryption of a message or of zero, like
in the CPA game, instead it sends the vector cb = [mbY + v]u0 where v← ZΓu0 . By Lemma
4.4 we know that (pk′, cb)H1 is indistinguishable from (pk′, cb)H2 , which implies that B has
probability of success that is negligibly close to that of Hybrid 1, hence∣∣∣∣Pr

H1

[B(1λ, pk′, cb) = 1]− Pr
H2

[B(1λ, pk′, cb) = 1]

∣∣∣∣ = negl(λ) .

Furthermore, we know that cb ≡ v and since v is completely random, the probability of
success of B is exactly 1/2. Thus, by transitivity, we have that∣∣∣∣Pr

H0

[B(1λ, pk′, cb) = 1]− Pr
H2

[B(1λ, pk′,v) = 1]

∣∣∣∣ = negl(λ) .
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Hence we have showed that if the AHE scheme is circular secure, then there does not
exist an adversary that has non-negligible advantage in a CPA game in the BHE scheme. ut

5 Towards Practicality

In this section, we suggest some optimizations to improve the asymptotic and concrete pa-
rameters of our schemes, and discuss the obstacles towards efficient implementation thereof.
Overcoming these limitations and obtaining a scheme as efficient as the lattice-based vari-
ants [11, 18, 24] remains a challenging open problem. In this section, for simplicity we focus
on the scheme of Sec. 3 (our optimizations are easily generalizable to the batch variant of
Sec. 4).

5.1 Reducing the Public-Key Size

To satisfy the constraints on the parameters of Sec. 3 for a depth-d circuit, we can take

ρ = 2λ, η = Õ(λ+ d), γ = Õ(λ2 + d2) and τ = Õ(λ2 + d2).

This gives a public key of size Õ(λ6+d6). To reduce the size of the public key, we can use the
technique suggested in [16] to use a subset-sum with words rather than bits. In particular,
to encrypt a message m ∈ {0, 1} as in Eq. (3.1), we sample a random matrix S ∈ [0, β)τ×γ

instead of a binary matrix. We have the following corollary of Lemma 2.1.

Corollary 5.1. Let β ≥ 2. Set x = (x1, . . . , xm) ← ZmM uniformly and independently, set
S ← [0, β)m×n for some n; and let y = x · S (mod M). Then (x,y) is 1/2

√
M/2log2 β·m-

uniform over Zm+n
M .

Proof. Let us consider the hash function family H from [0, 2β)m to ZnM . Each member h ∈ H
is parametrized by the element (x1, . . . , xm) ∈ ZmM . Given S ∈ [0, β)m×n, we define h(S) =
x · S. The family H is a 2-universal family of hash functions, and by Lemma 2.1 we get the
desired result. ut

In the proof of security (case 2) instead of concluding that the statistical distance between
(x,xS) and (x,u) where u← U([0, 2γ))∩Z is bounded by 1

2

√
x0/2τ , we get that it is bounded

by 1
2

√
x0/2log2 β·τ . Also in Lemma 3.1, the noise of a fresh encryption c of m now has norm

rm,p(c) ≤ τβ · 2ρ+1 .

Eventually, this gives the following new parameter constraints:

log β · τ ≥ γ +O(λ), η − ρ > (d+ 1) log γ + log τ + log β +O(1) ,

and by taking log β = Õ(λ+ d), we reduce the public key size to Õ(λ5 + d5).
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5.2 Evaluating Partial Gates

Let us recall that the decryption procedure first computes

f = c · g−1(p/2) (mod p) ,

and outputs m = 1 if |f | ≥ p/4 and m = 0 otherwise. Now, since p/2 ≤ 2η−1, we have that

g−1(p/2) = (P0, P1, . . . , Pη−1, 0, . . . , 0),

where P0, . . . , Pη−1 ∈ {0, 1}. In particular, this shows that only the first η coefficients of c
are useful during the decryption procedure (the other coefficients are required for correctness
when homomorphically processing the mult and nand gates; see Section 3.2). Therefore,
when evaluating a circuit, one can only compute the η first coefficients of the outputs of the
last mult and nand gates, and all the subsequent homomorphic additions; this reduces
the computation cost by a multiplicative factor ≈ γ/η.

5.3 Trade-off on the Multiplication Complexity and the Ciphertext Size

Recall that the homomorphic multiplication (Eq. (4)) of two ciphertexts c1 and c2 is given
by:

cmult = c1 ·G−1(c2) mod x0 .

In particular, computing cmult requires to compute γ times (for each coefficient) about γ/2
modular additions of γ-bit numbers, i.e. a computational complexity of O(γ2 log(γ)).

Now, assume that instead of using the gadget g = (1, 2, . . . , 2γ), we use the gadget

gω = (1, ω, . . . , ωγ
′
ω) ,

where ω ≥ 2 and γ′ω = dγ′/ log2 ωe assuming that we now work with γ′-bit integers; i.e.
we perform a word decomposition instead of a bit decomposition (taking γ′ ≥ γ to get the
same homomorphic functionality). Then, computing cmult requires to compute γ′ω times (for
each coefficient) γ′ω modular multiplications between an element of Zγ′ and of Zω; i.e. an
approximate complexity of O(γ′2ω log(γ′) log(ω)) (via a schoolbook multiplication).

Now, if one works with ω ≥ 2, the noise bounds have to be revisited. In particular, for
any two ciphertexts c1, c2, where B = max{rm1,p(c1), rm2,p(c2)}, then

rmmult,p(cmult) = rmnand,p(cnand) ≤ (2γ′ωω + 1)B ,

and the decryption condition of a ciphertext c of a message m becomes

rm,p(c) < p/(4γ′ωω) .

We have the following new parameter constraint:

η − ρ > (d+ 1)(log γ′ω + logω) + log τ + log β +O(1).

By taking logω = Õ(λ), we obtain the same asymptotic complexities a before, but concrete
complexities will differ. We will see in Sec. 5.4 how this trade-off (increasing ω also increases
γ′) impacts concrete parameters.
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5.4 Limitations

In order to choose concrete parameters, we use the analyses of the concrete attacks against
the AGCD problem from [8, 10, 16, 17, 19, 31]. In particular, we deduce from [8, 17] that ρ
should be conservatively set to 2λ, and from [10, 19] that the best lattice attacks require to
work in dimension t ≥ (γ − ρ)/(η − ρ).

In [10], the AGCD based scheme is also a leveled homomorphic encryption scheme and
its parameters can be set significantly smaller than previous works [9, 15–17]: indeed, η − ρ
can be selected to be small, and so can γ as long as (say) 800 ≥ (γ − ρ)/(η − ρ). In
the regular scheme of Sec. 3, we also have that η − ρ is small, and hence that γ can be
small. Unfortunately, our ciphertexts are γ time larger than the ciphertexts in [9], and
the complexity of the homomorphic multiplication is at least quadratic in γ. In practice,
for (say) λ = 80, ρ = 160 and η = 172 (which would only allow for one homomorphic
multiplication), then γ ≈ 12000, and the homomorphic multiplication would consist of about
109 modular additions, which takes several seconds on a modern CPU. Using the optimization
of Section 5.3, one can reduce the homomorphic multiplication complexity at first; e.g. when
ω = 232 and γ ≈ 75000, performing an homomorphic multiplication costs now 0.43 · 109

schoolbook modular multiplications between 32-bit words and 75000-bit integers (which still
takes several seconds on a modern CPU). Unfortunately, as the gap between η and ρ widens,
γ has to be significantly increased so that the AGCD problem remains hard. As ω increases,
the number of unit operations increases again, and the unit operations becomes more and
more costly (namely, modular multiplication between logω-bit integers and γ-bit integers).
It follows from our experiments that the size of the ciphertext is a bottleneck to make our
schemes practical; a back of the hand computation shows that they are about two order of
magnitude slower than their competitors [11, 24]. We leave as a challenging open problem
to improve the efficiency of this scheme. Note however that our batch variant can encrypt
up to γ/η plaintexts in parallel for roughly the same computational cost (cf. Remark 4.1),
which decreases the computational cost per bit of plaintext.
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10. Jung Hee Cheon and Damien Stehlé. Fully homomophic encryption over the integers revisited. In EUROCRYPT
(1), volume 9056 of LNCS, pages 513–536. Springer, 2015.

11. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Faster fully homomorphic encryption:
Bootstrapping in less than 0.1 seconds. In ASIACRYPT (1), volume 10031 of Lecture Notes in Computer Science,
pages 3–33, 2016.

12. Henry Cohn and Nadia Heninger. Approximate common divisors via lattices. The Open Book Series, 1(1):271–
293, 2013.
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14. Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear maps over the integers. In
CRYPTO (1), volume 8042 of Lecture Notes in Computer Science, pages 476–493. Springer, 2013.
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