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Abstract. Linear cryptanalysis is considered to be one of the strongest
techniques in the cryptanalyst’s arsenal. In most cases, Matsui’s Algo-
rithm 2 is used for the key recovery part of the attack. The success
rate analysis of this algorithm is based on an assumption regarding the
bias of a linear approximation for a wrong key, known as the wrong-key-
randomization hypothesis. This hypothesis was refined by Bogdanov and
Tischhauser to take into account the stochastic nature of the bias for a
wrong key. We provide further refinements to the analysis of Matsui’s
algorithm 2 by considering sampling without replacement.
This paper derives the distribution of the observed bias for wrong keys
when sampling is done without replacement and shows that less data is
required in this scenario. It also develops formulas for the success prob-
ability and the required data complexity when this approach is taken.
The formulas predict that the success probability may reach a peak,
then decrease as more pairs are considered. We provide a new explana-
tion for this behavior and derive the conditions for encountering it. We
empirically verify our results and compare them to previous work.

Keywords: linear cryptanalysis · wrong-key-randomization hypothesis
· success probability · data complexity

1 Introduction

Linear cryptanalysis is considered to be one of the most powerful cryptanalytic
techniques. Due to its enormous importance, it is standard practice for algorithm
designers to show that their new schemes are resistant to it. This is usually done
by providing upper bounds for the cryptographic properties exploited by a linear
attack, which is used to argue that the success probability of an adversary is
negligible.
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From the cryptanalyst’s side, much effort was invested in order to improve the
attack, either by better understanding it, or by developing possible extensions.
Among these extensions we can name the zero correlation attack [7,8], extensions
using more than a single approximation such as multiple linear cryptanalysis [3]
and multidimensional linear cryptanalysis [16], partitioning cryptanalysis [15],
and more. On the front of better understanding the attack we can find research
on the linear hull effect [21], various papers suggesting statistical models for
analyzing the attack [4,9,17,23], and attempts to quantify the success probability
of the various algorithms underlying the attack and the amount of data required.

In his original paper, Matsui estimated that the data complexity should be
approximately the squared inverse of the bias of the linear approximation em-
ployed in the attack. Selçuk improved this analysis based on the work of Junod
and Vaudenay [17] and suggested a complete statistical model, yielding closed
formulas for the required data complexity and the success probability. Being able
to precisely estimate the success probability of an attack is of great importance
to cipher designers as, without it, larger security margins need to be used, in
contradiction to the growing trend of using lightweight cryptography.

Estimates of the success probability of linear attacks have traditionally used a
simplifying assumption about the behavior of wrong keys. This assumption, com-
monly known as the wrong-key-randomization hypothesis [14], says that when the
adversary tries to determine the right key among a set including some wrong
keys, the key-dependent bias is much larger for the right key than for wrong
ones. The wrong-key-randomization hypothesis was commonly understood to
mean that the the bias for a wrong key is exactly zero. However, Bogdanov and
Tischhauser noted in [9] that the bias for a wrong key is a random variable
with a normal distribution rather than a fixed value. They proposed a corrected
wrong-key-randomization hypothesis, taking this distribution into account, and
developed a model for the distribution of the empirical bias. Using this model,
they have extended Selçuk’s formula [23] for the success probability of a linear
attack.

An interesting consequence of the new formula is that it reaches a maximum
for certain parameters. This result was described as counter-intuitive as it implies
that increasing the data complexity may sometimes lead to a reduced success
probability [9].

1.1 Our Contributions

In this paper we point out the importance of the sampling strategy employed
for obtaining plaintext/ciphertext pairs in a linear attack. In previous work,
sampling with replacement was often assumed. We argue that an equally com-
mon case is that plaintext/ciphertext pairs are not used more than once, and
thus, that sampling without replacement should also be considered. For instance,
some modes of operation such as Counter Mode are designed to avoid duplicate
plaintext/ciphertext pairs.

Under this assumption, we derive a formula for the success probability and
the data complexity of a linear attack for sampling without replacement. This
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formula confirms the intuitive notion that, for sampling without replacement, the
empirical bias converges faster to its real value, which means that the data com-
plexity can be reduced. Our formula agrees with the recent work of Nyberg and
Blondeau in [5] where the notion of “distinct-known-plaintext” is independently
introduced for the case of hypothesis testing (see also Section 2.4).

For the purpose of deriving this formula, we redevelop a model for the distri-
bution of the empirical bias for wrong keys. Our result shows that, for sampling
without replacement, the correction introduced by Bogdanov and Tischhauser
disappears.

We also confirm that the success probability can show non-monotonic behav-
ior as was observed by Tischhauser and Bogdanov [9]. However, their explanation
does not account for all of our observations. Hence, we explain the phenomenon
anew and derive necessary conditions for its occurrence. The average-case con-
dition, given in Theorem 1, represents a prerequisite for the applicability of
Matsui’s algorithm 2.

The paper is organized as follows: Section 2 briefly recalls a few basic no-
tions from probability theory and discusses previous work on the wrong-key-
randomization hypothesis. In Section 3 we discuss the behavior of the empirical
bias. The influence of the sampling strategy is clarified, and the distribution of
the sample bias is derived. Section 4 deals with the non-monotonicity of the
success probability. The phenomenon is explained, and the conditions for its
occurrence are developed. A discussion of the success probability and the data
complexity is provided in Section 5. Finally, we verify our results experimentally
in Section 6 and discuss their implications in Section 7. Section 8 concludes the
paper.

2 Preliminaries and Related Work

A random variable is denoted by bold letters e.g., X,Y. The expected value
of a random variable X is denoted by E [X], and its variance by Var [X]. The
conditional random variable X given Y is denoted by X | Y. This notation
carries over to conditional expectations and variances. By writing X ∼ N

(
µ, σ2

)
,

we mean that X follows a normal distribution with mean µ and variance σ2.
Similarly, X ∼ Hypergeometric(N,M,R) means that X follows a hypergeometric
distribution, i.e., X is a random variable counting the number of occurrences of
an item of type I inN draws from a population of sizeM known to include R such
items, where the draws are performed without replacement. The standard normal
cumulative distribution function will be denoted by Φ, i.e. Φ(z) = Pr [Z < z] for
Z ∼ N (0, 1).

During our analysis, it will frequently be convenient to approximate the hy-
pergeometric distribution. Several accurate χ2 and normal approximations exist,
see for example [20]. For our purposes, the following result given by Feller [12]
shall suffice. The interested reader may find two proofs of the result by Pinsky
in [22].
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Lemma 1 (Feller [12]) Let X ∼ Hypergeometric (N,M, pM). If N,M → ∞
in such manner that N/M → t ∈ (0, 1), then X has asymptotic distribution

X ∼ N (pN,N(1− t)p(1− p)) .

The factor (1 − t) in the variance of X in Lemma 1 may be interpreted as a
correction factor that accounts for the difference between sampling with and
without replacement.

2.1 Linear Cryptanalysis

We now describe linear cryptanalysis [19]. Let f : Fn
2 → Fn

2 be an n-bit permu-
tation. A linear approximation for f is a pair of masks (α, β) ∈ Fn

2 × Fn
2 such

that αtf(Y) = βtY holds with probability p for Y uniform over Fn
2 . The bias

of the approximation is defined as ε = p − 1/2. In the following, the bit-length
of the round key of the cipher under attack will be denoted by m.

Without loss of generality, in a key-recovery attack using Matsui’s Algorithm
2, the approximation (α, β) covers R − 1 rounds of an R-round cipher used to
encrypt N plaintexts. The resulting N ciphertexts are then 1-round decrypted
using 2m different key guesses, and the linear approximation is evaluated against
the resulting pairs. For each key ki, the adversary keeps a counter Ti counting the
number of times a pair satisfies the linear approximation. Once enough data has
been observed, the adversary calculates the empirical bias ε̂i = Ti/N−1/2. The
biases are sorted in descending order according to their magnitude (i.e. absolute
value), and their respective keys are tried in this order. If the bias corresponding
to the right key is ranked among the highest 2m−a biases, the attacker is said
to obtain an advantage a over brute-force. Throughout our paper, the subscript
zero refers to the right key. In particular, the counter and bias for the correct
key are denoted respectively by T0 and ε0.

The success probability PS of the above procedure is defined as follows. Note
that Definition 1 considers the success rate for a fixed right-key bias. As will be
discussed in Section 3.2, in practice a distribution of right-key biases may have
to be considered.

Definition 1 (Success probability) The success probability PS is the proba-
bility that Matsui’s Algorithm 2 ranks the right key among the top 2m−a can-
didate keys. Note that PS is a function of the right-key bias ε0, the number of
known plaintexts N and the advantage a.

2.2 The Wrong-Key-Randomization Hypothesis

The success rate analysis performed by Selçuk [23] uses order statistics to in-
vestigate the probability that the right key is among the 2m−a top ranked keys.
The main underlying assumption of this analysis is that the real bias for a wrong
key is zero, and thus, that the sample bias for a wrong key would have a normal
distribution centered around zero. This assumption may be summarized in the
following hypothesis:
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Hypothesis 1 (Simple wrong-key-randomization hypothesis) The bias for
a wrong key equals zero:

εw = 0.

If Hypothesis 1 is true, we have the following lemma.

Lemma 2 Let ε̂w be the empirical bias obtained from a counter associated with
a wrong key using N pairs of plaintexts and ciphertexts. Assuming Hypothesis 1
is true and sampling is performed with replacement, we have approximately

ε̂w ∼ N
(

0,
1

4N

)
.

However, Bogdanov and Tischhauser noted in [9] that, in accordance with Dae-
men and Rijmen [11], the underlying bias of a random linear approximation
is not necessarily zero but a random variable. This resulted in the following
extension of Hypothesis 1:

Hypothesis 2 (Bogdanov and Tischhauser [9]) The bias εw for a wrong
key is distributed as for a random permutation, i.e.

εw ∼ N
(
0, 2−n−2

)
.

This hypothesis requires the usage of a compound model for the empirical bias,
which takes into account the distribution of the wrong bias. This leads to the
following statement about the distribution of the sample bias for wrong keys.

Lemma 3 (Bogdanov and Tischhauser [9, Lemma 1]) Let ε̂w be defined
as before, then assuming the validity of Hypothesis 2, we have approximately

ε̂w ∼ N
(

0,
1

4
·
(

1

N
+

1

2n

))
.

Selçuk gives the success probability of a linear attack as

PS(N) = Φ
(

2
√
N |ε0| − Φ−1(1− 2−a−1)

)
, (1)

which holds under Hypothesis 1. However, as was noted by Bogdanov and Tis-
chhauser, the bias for wrong keys has a normal distribution centered around
zero, in accordance with Hypothesis 2. Using the distribution of Lemma 3, they
extend Selçuk’s formula as follows:

PS(N) = Φ

(
2
√
N |ε0| −

√
1 +

N

2n
Φ−1(1− 2−a−1)

)
. (2)

An experimental verification of the above formula is provided in [6].
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2.3 Compound Model

It is important to distinguish between two different random variables: the sample
bias for a specific wrong key, and the sample bias for a uniformly selected random
wrong key. We shall refer to the former by ε̂w | εw and the latter will be written
as ε̂w. The idea of a compound model is that a parameter in the distribution
of a random variable is itself a random variable. The probability density of the
compound variable ε̂w is given by the probability density of ε̂w | (εw = ε),
weighted by the probability that εw = ε for any ε that εw can take. Formally,
if fε̂w|εw is the probability density function of ε̂w | εw, and fεw likewise for εw,
then we may write

fε̂w(εw) =

∫
ε

fε̂w|εw(εw, ε)fεw(ε)dε,

for the density of ε̂w. This is depicted in Figure 1.
The behavior of the random variable ε̂w | εw is completely determined by the

sampling strategy. For example, for sampling without replacement, the counter
Tw | εw follows a hypergeometric distribution centered around N

(
1
2 + εw

)
.

εw

ε

ε1

fε̂w|εw (εw, ε1)

ε2

fε̂w|εw (εw, ε2)

ε3

fε̂w|εw (εw, ε3)

fε̂w (εw)

f ε
w

(ε
)

Fig. 1: The curve along the vertical axis represents the density function of εw (the
bias for a random wrong key). The probability density function of ε̂w (the sample
bias for a random wrong key) is shown at the bottom. ε̂w has a compound distri-
bution obtained by weighted integration over the smaller curves which represent
the sample biases for specific keys.

Since the right key bias depends on the unknown value of the right key,
an additional compound model must be introduced. In order to deal with this
case, a right key hypothesis is required. This will be discussed in more detail in
Section 3.2.
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2.4 Comparison with Blondeau and Nyberg [5]

The idea of using sampling without replacement for linear cryptanalysis was
recently introduced by Blondeau and Nyberg [5]. Their analysis was developed
independently from ours and follows the line of work using hypothesis testing,
whereas ours is based on key ranking. Although both approaches lead to similar
success probabilities, much of the existing literature uses key ranking, and our
results allow to easily evaluate the implications of such works.

Unlike [5], our results do not assume a particular right-key-hypothesis. This
is possible by the use of a compound model: all results can be derived for a fixed
right key bias and the distribution afterwards. This is discussed in more detail
in Section 3.2.

Finally, we also note that the possibility of a non-monotonic success proba-
bility is not considered in [5]. We discuss this phenomenon in detail in Section 4
and provide a complete explanation.

3 Sample Bias

This section deals with the distribution of the sample bias for wrong keys. The
details of this distribution are relevant for the construction and the analysis of
statistical procedures that attempt to distinguish the right key from wrong keys.

As mentioned in the related work section, the distribution of ε̂w must be de-
scribed by a compound model whenever Hypothesis 2 is used. Generally speak-
ing, the sample bias of wrong keys can be fully described given the distribution
of the bias for the wrong keys and a sampling strategy. The former is completely
determined by the choice of Hypothesis 1 or 2 and requires no further discussion.
The latter will be discussed in Section 3.1.

Finally, the main result of this section is presented in Lemma 4, which ap-
proximates the distribution of the sample bias for a random wrong key in the
case of sampling without replacement. Surprisingly, the resulting distribution
turns out to be the same as the one given in Lemma 2.

3.1 Sampling Strategies

The way plaintext/ciphertext pairs are obtained in linear cryptanalysis corre-
sponds to sampling from a population of size 2n. For each sample, a trial is
conducted: it is checked whether or not a fixed linear approximation holds. Re-
call that the sum of the outcomes (zero or one) of these trials is stored in a
counter Ti.

7



One could conceive many strategies for sampling, but here we will limit the
discussion to two common cases:

1. Sampling with replacement, trials are independent and N > 2n is possible.1

2. Sampling without replacement. Trials are not independent and N ≤ 2n.

The use of the first sampling strategy leads to a binomial distribution for the
counters. The existing analyses that we are aware of [4, 9, 23] implicitly start
from this assumption. An exception is the notion of “distinct-known-plaintext”
attacks in recent work by Blondeau and Nyberg [5], discussed in Section 2.4,
which was developed independently from the present paper.

We now argue that the second strategy is preferable. This will lead to a hyper-
geometric distribution for the counters. Since for a given key, a specific plaintext
always results in the same ciphertext, duplicates provide no new information
for the estimation of the real bias. Moreover, increasing the data complexity
beyond what is needed for the attack reduces its efficiency, and may render it
worse than exhaustive search when the bias is small. Hence, whenever possi-
ble, an adversary would prefer sampling without replacement. The disadvantage
of sampling without replacement is that the attacker must discard duplicate
plaintext/ciphertext pairs, which may require a large amount of memory. Nev-
ertheless, even for known-plaintext attacks, sampling without replacement can
occur naturally. For example, some modes of operation such as Counter Mode
avoid duplicate plaintext/ciphertext pairs by design.

3.2 Bias for the Right Key

In expressions (1) and (2) given in Section 2 for the success probability, the
absolute bias for the right key is represented by a fixed value |ε0|. In practice,
however, the right-key bias depends on the unknown value of the right key. The
absolute right-key bias should then be modeled as a random variable |ε0|. Hence,
it is necessary to find an adequate model for the distribution of the bias for the
right key. This is an independent problem, which we do not attempt to solve in
this paper. Instead, we will assume that the probability density function fε0(ε)
of the bias for the right key is known. Several proposals for such a right-key
hypothesis can be found in the literature, see for instance [1, 5, 9, 10].

In the setting described above, the success probability becomes a random
variable PS(N), or more explicitly PS(N, ε0). Typically, one is interested in the
average success probability E [PS(N, ε0)]. That is,

E [PS(N, ε0)] =

∫ 1/2

−1/2
PS(N, ε)fε0(ε)dε. (3)

Despite this complication, we shall continue to use the notation PS(N) in the
sense that PS(N) = E [PS(N, ε0)] when the absolute value of the right key bias

1 Note that, by the Coupon Collector’s problem, it is likely that every plain-
text/ciphertext pair has been sampled at least once when N > n2n for sampling
with replacement.
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is fixed. Furthermore, we will continue to use the term |ε0| to denote the actual
right key bias selected from the appropriate distribution as a result of fixing the
key.

Finally, we note that Hypothesis 2 makes no mention of the right key. The
dependence of the biases for wrong keys on the right key is neglected.

3.3 Sampling without Replacement

Given that duplicate draws provide no additional information to the cryptana-
lyst, we would like to analyze the attack when sampling without replacement is
used.

Assume then that N distinct plaintext/ciphertext pairs are sampled at ran-
dom from the total population of 2n pairs. The counter for a specific wrong key
follows a hypergeometric distribution

Tw | R ∼ Hypergeometric(N, 2n, R),

where R = 2n(εw + 1/2) equals the amount of plaintext/ciphertext pairs in the
population for which the linear approximation holds. Given this starting point,
the proof of the next lemma derives the distribution of the sample bias for a
random wrong key.

Lemma 4 (Lemma 2, stet.) Under Hypothesis 2, and for sampling without
replacement, we have for the sample bias ε̂w of a random wrong key

ε̂w ∼ N
(

0,
1

4N

)
,

approximately.

Proof. By Lemma 1 we have asymptotically

Tw | εw ∼ N
(
N

(
1

2
+ εw

)
, N

(
1− N

2n

)(
1

4
− ε2w

))
.

Note that this application of Lemma 1 provides an accurate approximation of
the hypergeometric distribution since N and 2n are large in all relevant cases.
Since ε2w is small, we have approximately

Tw | εw ∼ N
(
N

(
1

2
+ εw

)
,
N

4

(
1− N

2n

))
.

It follows that for the sample bias

ε̂w | εw ∼ N
(
εw,

1

4N

(
1− N

2n

))
.
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A compound normal distribution with normally distributed mean is again nor-
mal. That is, if X ∼ N

(
µ, σ2

1

)
with µ ∼ N

(
µ, σ2

2

)
, then X ∼ N

(
µ, σ2

1 + σ2
2

)
.2

In this particular case we obtain

E [ε̂w] = 0

Var [ε̂w] =
1

4N

(
1− N

2n

)
+

1

2n+2
=

1

4N
.

ut

The mean and variance of Tw can also be computed directly, without using
any of the approximations used in Lemma 4. This derivation can be found in
Appendix A and leads to approximately the same result.

Conclusion: The preceding lemma shows that ε̂w for sampling without re-
placement has approximately the same distribution as given by Lemma 2. In
other words, the correction provided in Lemma 3 should not be taken into ac-
count for sampling without replacement. Note, however, that the result is based
on Hypothesis 2 rather than Hypothesis 1.

4 Non-Monotonicity of the Success Probability

So far, we derived the distribution of the empirical bias for a uniformly chosen
wrong key when the attack is executed with distinct data pairs. We now turn
to investigate the success probability of such an attack, and explain the non-
monotonic behaviour first observed in [9].

For sampling with replacement, Selçuk estimates the success probability as
given by (1). Bogdanov and Tischhauser have extended this result to (2). Due
to the fact that the biases for the wrong keys are selected at random from
N
(
0, 2−n−2

)
, the success probability should be considered as a random variable.

Recall from Section 3.2 that PS(N) denotes the mean of the success probability
PS(N) when the absolute right key bias is fixed. This is the value computed
in (1) and (2). We give two results related to two aspects of the random variable
PS(N):

— According to (2), PS(N) can be non-monotonic. This effect was also observed
in [9]. We provide an explanation for this phenomenon, as well as necessary
conditions for its occurrence.

— In Section 5, we derive a formula for the average success probability in the
case of sampling without replacement.

4.1 Explanation of Non-Monotonicity

Bogdanov and Tischhauser have observed that, in some cases, the success prob-
ability exhibits a maximum [9]. They attribute this effect to the fact that, as N

2 This follows from the observation that X− µ ∼ N
(
0, σ2

1

)
is independent of µ.
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increases, the number of duplicate samples increases which amplifies the “noise”
due to the random distribution of the biases for the wrong keys. In the present
section we propose a different explanation for the non-monotonicity and show
that the phenomenon is not counter-intuitive. Note that a maximum can also
be observed for sampling without replacement, hence without duplicates, which
is difficult to reconcile with the explanation given by [9]. The discussion below
and the conditions given in the next section are independent of the sampling
strategy.

In the following, we will assume that the bias of the right key is fixed.
This is the setting in which Bogdanov and Tischhauser have observed non-
monotonicity [9]: a subset of keys was used for which the bias of the linear hull
was exactly equal to ε0. It can be seen from (3) that, depending on the right-key
hypothesis, the average success probability might never show non-monotonicity.
This is for instance the case when the right-key hypothesis proposed by [5] is
used, provided that certain assumptions on the distribution of the right key bias
are met. Nevertheless, if we restrict our attention to the success probability for a
subset of keys for which the right key bias does not vary much, non-monotonicity
remains possible.

When the bias ε0 of the right key is close to zero, there is a non-negligible
probability that some of the wrong keys have a higher absolute bias than |ε0|.
This is depicted in Figure 2. In this case, the correct key should not be expected
to be ranked higher than (some of the) wrong keys. As N increases, the accuracy
of the ranking increases because the variances of all sample biases decrease. It
follows that, if there are wrong keys with absolute bias higher than |ε0|, then
for large N those will be ranked higher than the right key. If there are more
such keys than the attacker advantage allows, i.e. more than 2m−a, then, due to
the sample variance, the right key may start high (among the top 2m−a values)
on the list of candidate keys as a false-positive but will slowly drop down to
its “real” position (below 2m−a) due to improved accuracy as a result of using
more data. In this case, if N → ∞ (or N = 2n without replacement) then also
PS(N) → 0, almost surely. In other words: given all possible information, the
attack will always fail.

One can conclude that two different scenarios exist for the success probability
of the linear attack, depending on the bias of the right key. This is depicted in
Figure 3.

As indicated in Figure 3, there is a threshold such that any bias that exceeds
it in magnitude corresponds to a success probability which is monotonic with
probability higher than 50%. For example, a set of keys with bias ε1 will have
a monotonic average success probability whereas biases ε2 and ε3 would lead to
non-monotonicity. A special case is ε4, because it is very close to the threshold. In
this case, the success probability will be monotonic for about half of the keys that
have this bias. Theorem 1 says that the threshold equals 2−n/2−1Φ−1(1−2−a−1).

From the discussion above, we may conclude that non-monotonic behavior
indicates that the attack can not be conducted using Matsui’s algorithm 2. In
fact, a correct identification of the right key amounts to a false positive. This is
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Fig. 2: The biases for a few keys are indicated by dots, the dashed line represents
the bias for the right key. Two of the wrong keys have a larger bias than the
right key. If the adversary requires such an advantage that the right key needs to
be among the top two keys, the attack would fail once enough data is obtained
to place the keys in their true order.

formalized in the next section, by giving a bound on the required bias for given
values of 2n and a. This bound hence also expresses a prerequisite for Matsui’s
algorithm 2.

4.2 Conditions for Non-Monotonicity

This subsection derives necessary conditions for non-monotonic behavior of the
success probability. These conditions are necessarily probabilistic, since they are
determined by the biases of individual wrong keys. Hence, it can be expected
that for some values of a, n,m and ε0, PS(N) is non-monotonic only for some

ε1 ε2 ε3 ε4

2−n/2−1Φ−1(1− 2−a−1)−2−n/2−1Φ−1(1− 2−a−1)

Non-monotonic MonotonicMonotonic

ε

Fig. 3: Depending on the right key bias, the success probability can be monotonic
(ε1, ε4) or non-monotonic (ε2, ε3).
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keys. The main result of this section is Theorem 1, which gives a necessary con-
dition for average non-monotonicity and hence for the applicability of Matsui’s
algorithm 2.

The following lemma gives a first result on the probability of monotonicity.
It is independent of the sampling strategy.

Lemma 5 The probability that PS(N) is a monotonic function is given by

Pr [PS(N) is monotonic ] = Φ

((
2−a − 2−m−1 − p

)
2m/2√

p(1− p)

)
,

where
p = 2

(
1− Φ

(
|ε0|2n/2+1

))
.

and ε0 is the bias for the right key as defined in Section 3.2.

Proof. The probability that a random permutation has absolute bias larger than
|ε0| can be computed as

p = Pr [|εw| ≥ |ε0|] = 2(1− Pr [εw < |ε0|]) = 2
(

1− Φ
(
|ε0|2n/2+1

))
,

since εw ∼ N
(
0, 2−n−2

)
. For a non-monotonic success probability, we require at

least 2m−a wrong keys with bias larger than |ε0|. Let C be the random variable
describing the number of such keys, then C is binomially distributed. Further-
more, if the number of keys 2m is sufficiently large, C can be approximated with
a normal distribution:

C ∼ N (p2m, p(1− p)2m) where p = 2
(

1− Φ
(
|ε0|2n/2+1

))
.

The probability that PS(N) is monotonic for some |ε0|,m and a can hence be
computed as

Pr [PS(N) is monotonic] = Pr
[
C < 2m−a

]
.

Using the normal approximation of C, we get:

Pr [PS(N) is monotonic] = Φ

(
2m−a − 2−1 − p2m√

p(1− p)2m

)

= Φ

(
(2−a − 2−m−1 − p)2m/2√

p(1− p)

)
.

ut

In the previous lemma, a fixed absolute right-key bias |ε0| was assumed. When
ε0 has a known probability distribution, we can compute the average probability
of monotonicity from Lemma 5 by

Pr [PS(N) is monotonic ] =

∫ 1/2

−1/2
Φ

((
2−a − 2−m−1 − p(ε)

)
2m/2√

p(ε)(1− p(ε))

)
dε,

13



with p(ε) as before:

p(ε) = 2
(

1− Φ
(
|ε|2n/2+1

))
.

Observe that, as the bias ε0 approaches 0 in probability, the success prob-
ability is almost surely non-monotonic. If E [C] ≥ 2m−a, then PS(N) is non-
monotonic on average, i.e. over all keys and all attacks. This condition can be
used to derive the following theorem, which assumes a fixed absolute bias for
the right key.

Theorem 1 (Prerequisite of Matsui’s algorithm 2) The success probabil-
ity is monotonic on average if and only if

|ε0| > 2−n/2−1Φ−1(1− 2−a−1).

Proof. The condition E [C] ≥ 2m−a corresponds to the inequality

2
(

1− Φ
(
|ε0|2n/2+1

))
2m ≥ 2m−a,

which can be rewritten as

1− Φ
(
|ε0|2n/2+1

)
≥ 2−a−1

⇐⇒ |ε0| ≤ 2−n/2−1Φ−1(1− 2−a−1).

ut

Theorem 1 expresses a necessary condition for a nonzero success probability in
the average case as N →∞ (or N = 2n without replacement). Hence, when the
condition does not hold, the advantage a can only be obtained as a false-positive
during key recovery with Matsui’s algorithm 2.

It can be verified that the condition of Theorem 1 ensures that the maximum
of PS(N) as defined by equation (2) corresponds to a positive value of N .

Bogdanov and Tischhauser have observed non-monotonic behavior with |ε0| =
2−10, a = 12 and n = 20 [9]. Theorem 1 gives:

p = 2
(
1− Φ(2−10 · 211)

)
≈ 0.0455.

and
|ε0| ≤ 2−11Φ−1(1− 2−13) ≈ 2−9.125.

Hence, with these parameters, the average attack setup will lead to non-monotonic
behavior. By Lemma 5, the probability of monotonicity is Φ(−218.78) ≈ 0.

5 Average Success Probability and Data Complexity

In this section, we will derive formulas for the average success probability of an
attack using sampling without replacement and the data complexity required for
a successful attack.

14



To compute the average success probability, we will make the approximation
that the non-identically distributed sample biases for wrong keys can be replaced
by an equal amount of independent and identically distributed random variables
with distribution given by Lemma 4. A similar approximation was also implicitly
made in [9] and greatly simplifies the distribution of the order statistics.

The derivation of PS(N) is similar to that of Selçuk [23], with the important
difference that the counter for the right key is distributed as

T0 ∼ Hypergeometric

(
N, 2n,

(
1

2
+ ε0

)
2n
)
. (4)

The corresponding distribution function of ε̂0 will be denoted by Fε̂0 and can be
written in terms of the distribution function FT0 of T0:

Fε̂0(ε) = FT0

(
N

2
+Nε

)
.

Following Selçuk, without loss of generality, we only consider the case ε0 ≥ 0.
The discussion for ε0 < 0 is completely analogous. It will be assumed that
the distribution of an order statistic of the sample biases ε̂w for wrong keys is
approximately degenerate relative to that of the right key — Selçuk makes the
same approximation in his discussion. The mean of the (2m − 2m−a)th order
statistic ζ is approximately given by E [ζ] = Φ−1(1−2−a−1)/(2

√
N) [23]. Noting

that Pr[ε̂0 < 0] ≈ 0, we have for the average success probability

PS(N) = Pr [ε̂0 − ζ > 0]

≈ Pr [ε̂0 > E [ζ]]

= 1− Fε̂0

(
Φ−1(1− 2−a−1)

2
√
N

)
= 1− FT0

(
N

2
+

√
N

2
Φ−1(1− 2−a−1)

)
︸ ︷︷ ︸

k(N)

.

An accurate approximation of FT0 can be obtained by using a normal approxi-
mation with respect to N . Indeed, by applying Lemma 1 to T0, one obtains the
approximation (assuming ε20 ≈ 0)

T0 ∼ N
(
N

(
1

2
+ |ε0|

)
,

(
1− N

2n

)
N

4

)
,

which is accurate if N and 2n are sufficiently large. It can be verified that the
above expression also holds for ε0 < 0. In terms of the standard normal distri-
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bution, we have

FT0
(k(N)) ≈ Φ

k(N)−N
(
1
2 + |ε0|

)√
N
4

(
1− N

2n

)


= Φ

√NΦ−1(1− 2−a−1)/2−N |ε0|√
N
4

(
1− N

2n

)


= Φ

Φ−1(1− 2−a−1)− 2
√
N |ε0|√

1− N
2n

 .

By symmetry, we then obtain the simple result of the theorem below.

Theorem 2 Assume Hypothesis 2 holds. Let PS(N) denote the average success
probability of a linear attack on an n-bit block cipher given N distinct known
plaintext/ciphertext pairs. If the bias of the right key is ε0 and the desired ad-
vantage is a, then we have

PS(N) ≈ Φ

2
√
N |ε0| − Φ−1(1− 2−a−1)√

1− N
2n

 ,

for sampling without replacement.

Note that in the above expression for the success probability, and in the preceding
discussion, we have assumed that the bias ε0 is fixed. In practice, this is not the
case and instead the right-key hypothesis should be taken into account. Recall
from Section 3.2 that the average success probability can be obtained as

E [PS(N, ε0)] =

∫ 1/2

−1/2
PS(N, ε)fε0(ε)dε, (3)

where fε0(ε) is the probability density function of ε0.
Theorem 2 directly leads to an expression for the data complexity, which is

given below. Note that when PS(N) is non-monotonic, the value of the success
probability PS will in general correspond to two data complexities N . For sim-
plicity, and because monotonicity is a prerequisite for practical usage of Matsui’s
algorithm 2, we only deal with the monotonic case.

Theorem 3 Under the same conditions as Theorem 2, and when the condition
given by Theorem 1 is satisfied, the number of plaintext/ciphertext pairs required
to obtain an average success probability PS is

N =

(
2|ε0|α±

√
(2ε0α)2 − (α2 − β2)(2−nβ2 + 4ε20)

4ε20 + 2−nβ2

)2

,
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where α = Φ−1(1 − 2−a−1) and β = Φ−1(PS). The plus sign applies whenever
PS ≥ 1/2, otherwise the minus sign applies. For |ε0| � 2−n/2−1Φ−1(PS), this
simplifies to

N =

(
Φ−1(1− 2−a−1) + Φ−1(PS)

2ε0

)2

.

Proof. The result is obtained by solving the equation

Φ−1(PS)

√
1− N

2n
= 2
√
N |ε0| − Φ−1(1− 2−a−1).

A trite calculation (cf. Appendix B) yields(
2−nβ2 + 4ε20

)
N − 4|ε0|α

√
N + α2 − β2 = 0,

which can be solved to obtain the result. ut

Note that the approximation for large |ε0| gives the same data complexity
as Selçuk [23]. This is due to the fact that large biases require fewer plain-
text/ciphertext pairs, and for very small N the difference between sampling
with and without replacement is negligible. Since Selçuk’s result was obtained
under Hypothesis 1 rather than Hypothesis 2, this also shows that Hypothesis 1
is a reasonable approximation when |ε0| � 2−n/2−1Φ−1(PS).

In general, the data complexity for sampling without replacement is lower.
This is a consequence of the fact that no duplicates are used. Bogdanov and
Tischhauser provide an algorithm to compute the data complexity for a given
success probability [9].3 Here, the following equivalent closed-form formula for
the monotonic case will be used instead:

N =

(
2|ε0|β +

√
(2ε0β)2 − (α2 − β2)(2−nα2 − 4ε20)

4ε20 − 2−nα2

)2

,

where α = Φ−1(1− 2−a−1) and β = Φ−1(PS).
Figure 4 shows the data complexity for a large bias and for a small bias close

to the bound of Theorem 1 (with n = 32). For |ε0| = 2−14 the difference between
the data complexities is relatively small. For instance, at a success probability of
95%, the data complexity is about 14% higher for sampling with replacement.
The difference with sampling without replacement is much more significant for
small values of the bias. In this case, for a success probability of 95%, the data
complexity is 69% higher for sampling with replacement. Note that, due to dupli-
cates, the data complexity for sampling with replacement can exceed the size of
the codebook, but not that of the key space (i.e., the time complexity of handling
the data cannot exceed that of brute force). For completeness and comparison
with [9], we also compute the maximum of PS(N).

3 In the non-monotonic case, their algorithm returns the lowest data complexity cor-
responding to the given success probability.
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Fig. 4: The theoretical data complexity for a given success probability. The top
figure corresponds to a relatively large bias compared to the bias in the bottom
figure.
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Corollary 1 Under the conditions of Theorem 2 and Theorem 1, the success
probability attains a maximum at

arg max
N

PS(N) =

(
2n+1|ε0|

Φ−1(1− 2−a−1)

)2

.

Proof. Maximizing PS(N) amounts to solving

d

dN

2
√
N |ε0| − Φ−1(1− 2−a−1)√

1− N
2n

 = 0.

A trite calculation (cf. Appendix C) shows that the solution is

N =

(
2n+1|ε0|

Φ−1(1− 2−a−1)

)2

.

Finally, note that the condition N ≤ 2n corresponds exactly to the condition
given by Theorem 1. ut
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6 Experimental Verification

Bogdanov et al. have conducted a series of large-scale experiments to verify their
model for the success probability in the monotonic case [6]. Hence, Hypothesis 2
has already been verified implicitly. We use this to simplify the verification of
our theoretical results by using simulations that are based on Hypothesis 2.

Since our model for the success probability relies heavily on the validity of
the distribution of the sample bias ε̂w for wrong keys as given by Lemma 4, we
verify the accuracy of this claim in Section 6.1

In Section 6.2, we provide simulation data for the success probability and
compare the results with Theorem 2.

Finally, our explanation for the non-monotonicity of the success probability
given in Section 5 suggests that the probabilistic nature of the phenomenon
becomes relevant when the bias is close to the bound of Theorem 1. We verify this
for parameters such that the success probability is monotonic with probability
1/2.

6.1 Sample Bias

In this section we verify the proposition that, for sampling without replacement,
the distribution of the sample bias is given by Lemma 4. Our experiments do
not attempt to evaluate the validity of Hypothesis 2. We therefore propose the
following simulation procedure:

1. Sample 213 biases from N
(
0, 2−n−2

)
and, for each such bias εi, compute the

corresponding number of plaintext/ciphertext pairs for which the approxi-
mation holds, i.e. R = 2n(1/2 + εi).

2. For each εi, sample N values from the corresponding population without re-
placement. Keep a counter Ti for the number of successful approximations.
For this purpose, the simulation performs a series of dependent Bernoulli tri-
als, i.e. after N samples, increasing the counter has probability (R−Ti)/(2n−
N).

With respect to Lemma 4, two aspects must be verified: Firstly, the normal-
ity of ε̂w and secondly the variance, which we claim is 1/(4N) such that the
additional term 2−n−2 from Lemma 2 only applies to sampling with replace-
ment. The normal probability plots in Figure 5 allow for a quick graphical check
of both aspects.

From Figure 5, we see that the empirical quantiles of the observed sample
biases are a linear function of the quantiles of the standard normal distribution.
This indicates that the distribution of the sample bias ε̂w for wrong keys is
approximately normal. A Kolmogorov-Smirnov test supports this conclusion,
yielding P -values of 91.68% (n = 20, N = 219) and 92.14% (n = 32, N =
b231.5e). For both plots, the slope of a least-squares fit is close to 1/(2

√
N), the

standard deviation of ε̂w. In Figure 5, we have drawn another straight line with
slope 1

2

√
1/N + 1/2n to clarify the difference between Lemma 2 and Lemma 4.
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Fig. 5: Standard normal probability plots of the sample bias for sampling without
replacement. Each plot contains 213 data points. The straight line matching the
data corresponds to the distribution for the sample bias as given by Lemma 4.
The other straight line represents the result of Lemma 3.
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6.2 Success Probability

In this subsection, we verify the formula for the success probability given by
Theorem 2. We simulate the attack and compare our formula with the result of
the simulation. This allows a simple verification of Theorem 2 independent of
the accuracy of the assumptions on the sample bias. An attack is simulated as
follows:

1. Generate a list of 2m − 1 zero-initialized counters, each corresponding to
a key with associated bias sampled from N

(
0, 2−n−2

)
in accordance with

Hypothesis 2. An additional counter is kept for the right key, which has bias
ε0.

2. For several values of N , repeat the following steps 28 times to estimate the
proportion of successes:
(a) The value of each counter with corresponding bias ε is sampled directly

from

N
(
N

(
ε+

1

2

)
,
N2

4

(
1− N

2n

))
,

(b) Check whether the absolute bias corresponding to the right key is among
the first 2m−a entries of the list of absolute biases.

To capture the stochastic nature of the success probability, we repeat the above
procedure 400 times.

The second step of the procedure can be justified by the results of the previous
section, where it was shown that the distribution of the sample bias provided
by Lemma 4 is sufficiently accurate. That is, the distribution from which the
counters are sampled was the starting point for the proof of Lemma 4. The
correspondence between the simulation and our theoretical results is shown in
Figure 6.

6.3 Non-Monotonicity

To test the stochastic nature of the non-monotonicity of the success probability,
we choose parameters n, |ε0| and a such that Lemma 5 predicts monotonicity
with some fixed probability. For n = 32, m = 14 and a = 10, Lemma 5 shows
that PS(N) is monotonic with probability 1/2 for

|ε0| = 2−n/2−1Φ−1
(
1− 2−a−1 + 2−m−2

)
≈ 2−15.275.

Note that since m is relatively small,4 the above value for |ε0| is not exactly equal
to the bound of Theorem 1 contrary to what one might expect from symmetry.

To detect whether an observation of the success probability is monotonic, it
suffices to check that it reaches one for N = 2n, In a total of 400 simulations, we
have observed monotonic behavior in 204 cases (51%). Figure 7 shows the aver-
age curves E [PS(N) | PS(2n) = 0] and E [PS(N) | PS(2n) = 1], corresponding
respectively to the monotonic and non-monotonic case.

4 More precisely, the continuity correction in Lemma 5 is non-negligible.
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From Corollary 1, we see that if there is a maximum success probability, it
should occur for N very close to 2n. Hence, for relatively small values of N ,
the average success probability should behave the same in the monotonic and
non-monotonic case:

E [PS(N) | PS(2n) = 0] ≈ E [PS(N) | PS(2n) = 1] ,

for small N . This is reflected by Figure 7.
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Fig. 7: Averages of the experimental success probability. The middle curve is the
average over all experiments. The upper curve was computed by averaging over
the experiments with monotonic behavior. Finally, the lower curve corresponds
to the average over all non-monotonic experiments. Note that the scale for the
horizontal axis is logarithmic and does not start from zero.

24



7 Discussion

To illustrate the practical consequences of some of the results above, this section
contains two case studies related to the block cipher families Simon and Speck [2].

As a first example, consider a key-recovery attack based on the 15-round
linear approximation of Speck-96 due to Fu et al. [13] with bias |ε0| = 2−46. The
number of guessed key bits m depends on the details of the attack, but is not
important for the statistical analysis as long as a ≤ m. Table 1 lists the amount
of data required by Matsui’s Algorithm 2 for several values of a and with success
rate PS = 1/2.

Table 1: Required amount of data for linear attacks on Speck-96 with PS = 1/2
for various values of a. The approximation from Fu et al. [13] with bias |ε0| =
2−46 is considered. We see that that for a ≥ 20 the data complexity (and hence
the time complexity) is beyond 295 if replacement is allowed, but remains below
this number if sampling is done without replacement.

a log2N
With replacement Without replacement

(Bogdanov et al. [9]) (Theorem 3)

16 94.72 94.23
20 95.26 94.59
24 95.76 94.88

Note that, when sampling with replacement and a ∈ {20, 24}, the compu-
tational cost of handling the data exceeds the cost of brute-force search for
Speck-96 with a 96-bit key. This situation does not occur for sampling without
replacement. Hence, sampling without replacement enables attacks with a larger
advantage a. Alternatively, as shown in Figure 8, a significantly higher success
probability can be obtained for given values of a and N .

In the Speck-96 example above, non-monotonicity occurs (for a fixed bias)
when the advantage exceeds 50.42. This provides an upper bound on the key-
recovery advantage a that one can obtain using Matsui’s Algorithm 2. For the
approximation of Fu et al. [13], this bound is sufficiently large such that it is not
a hindrance to realistic key-recovery attacks.

In other cases, the breakdown of Matsui’s Algorithm 2 can be a serious
obstacle. For example, Liu et al. [18] provide upper bounds on the correlation of
linear trails in Simon and Simeck. For 49 rounds of Simon-96, Liu et al. give the
upper bound |ε0| ≤ 2−49. They conclude that Simon-96 with a 96-bit key has a
margin of only three rounds with respect to linear distinguishers – which might
be too small if Matsui’s Algorithm 2 is accounted for. Considering that average-
case non-monotonicity already occurs for a ≥ 1.66, this conclusion seems to be
too pessimistic even if the upper bound is assumed to be tight. Since only small
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advantages can be achieved, it is doubtful that one could improve over brute force
even if data and memory costs are not taken into account. For instance, with a =
1.5, one can reduce the search space to 294.5 candidate keys provided that 295.78

distinct known plaintexts or 298.63 non-distinct known plaintexts are available.
Hence, the total computational cost at the very least exceeds 294.5 +295.78 > 296

if sampling is done without replacement and 294.5 + 298.63 > 296 if sampling is
done with replacement.

8 Conclusion

In this paper we revisited the behavior of the empirical bias for wrong keys. We
have pointed out that previous works implicitly assume that plaintext/ciphertext
pairs are sampled with replacement, which results in larger data complexities
than necessary. We have redeveloped the theory under the assumption that the
adversary can discard duplicate plaintext/ciphertext pairs, and have presented
formulas for the success probability and the data complexity. The previously
observed non-monotonic behavior of the success probability, which was charac-
terized as counter-intuitive, was explained and the conditions for its occurrence
were derived.

All the results in this paper have been verified through simulations. We con-
clude that when an adversary using Matsui’s Algorithm 2 attempts to increase
their advantage beyond certain bounds, what is witnessed to be an increase in
the success probability is in fact a false positive. As the accuracy of the estima-
tion increases, the attack is doomed to fail, which is evidenced by a decreasing
success probability as N increases beyond a certain point.

Our simulations also show that, independent of the success probability, the
attack converges faster to its final result when sampling without replacement
is preferred over sampling with replacement. This results in a reduced data
complexity. Since the overall time complexity of an attack includes the time it
takes to generate the required data (i.e., the data complexity), this reduction
may decrease the overall complexity of attacks believed to be more expensive
than exhaustive search.

We believe that alternatives for or extensions to Matsui’s algorithm 2 could
extend the reach of linear cryptanalysis to absolute biases below the bound
given by Theorem 1, provided that they take into account the origins of this
prerequisite.
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Number 12ZH420N. Tim Beyne is supported by a PhD Fellowship from the
Research Foundation - Flanders (FWO).
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A Alternative Derivation of Lemma 4

In this section, the exact value of the mean and variance of Tw are computed.
This leads to an alternative derivation of Lemma 4. The first two central mo-
ments of R = 2n(εw + 1/2) are given by

E [R] = 2n−1

Var [R] = 22nVar [ε̂w + 1/2] = 2n−2.

Hence, the expected value of Tw is given by

E [Tw] = E [E [Tw | R]] = E
[
NR 2−n

]
= N/2.

For the variance of Tw we have

Var [Tw] = E [Var [Tw | R]] + Var [E [Tw | R]]

= E

[
N

R

2n
2n −R

2n
2n −N
2n − 1

]
+ Var

[
N

R

2n

]
=
N(2n −N)

22n(2n − 1)
E [R(2n −R)] + Var

[
N

R

2n

]
=
N(2n −N)

22n(2n − 1)

(
2nE [R]− E

[
R2
])

+
N2

22n
Var [R]

=
N(2n −N)

22n(2n − 1)

(
2nE [R]− Var [R]− E [R]

2
)

+
N2

22n
Var [R]

=
N(2n −N)

22n(2n − 1)

(
22n−2 − 2n−2

)
+

N2

2n+2
.

If n is sufficiently large, it is reasonable to assume that 22n−2 − 2n−2 ≈ 22n−2.
This gives

Var [Tw] ≈ N(2n −N)

2n+2 − 1/4
+

N2

2n+2
≈ N

4
.

Assuming that the distribution of Tw can be approximated using a normal
distribution, we also obtain Lemma 4.

B Data Complexity

This section provides the calculations in the proof of Theorem 3. The objective
is to solve the equation

Φ−1(PS)

√
1− N

2n
= 2
√
N |ε0| − α.

Letting α = Φ−1(1− 2−a−1) and β = Φ−1(PS), and squaring yields

β2
(
1− 2−nN

)
= 4N |ε0|2 − 4

√
N |ε0|α+ α2.
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Grouping terms appropriately, we obtain

(4|ε0|2 + 2−nβ2)N − 4
√
N |ε0|α+ α2 − β2 = 0.

This equation is quadratic in
√
N and has the solutions

√
N =

2|ε0|α±
√

(2ε0α)2 − (α2 − β2)(2−nβ2 + 4|ε0|2)

4|ε0|2 + 2−nβ2
.

C Maximum of PS(N)

In the proof of Corollary 1, it is mentioned that the maximum is obtained by
solving

d

dN

2
√
N |ε0| − Φ−1(1− 2−a−1)√

1− N
2n

 = 0.

Note that

d

dN

 1√
1− N

2n

 =
1

2n+1

√(
1− N

2n

)3 ,
such that we obtain the equivalent equation

|ε0|√
N
(
1− N

2n

) =
Φ−1(1− 2−a−1)− 2

√
N |ε0|

2n+1

√(
1− N

2n

)3 .

This is readily simplified to

|ε0|
(

1− N

2n

)
=
√
N2−n−1Φ−1(1− 2−a−1)− 2−nN |ε0|,

and further
|ε0| =

√
N2−n−1Φ−1(1− 2−a−1).

Finally, we obtain the result:

N =

(
|ε0|2n+1

Φ−1(1− 2−a−1)

)2

.
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