
High-Throughput Secure Three-Party
Computation for Malicious Adversaries and an

Honest Majority

Jun Furukawa1, Yehuda Lindell2, Ariel Nof2, and Or Weinstein2

1 NEC Israel Research Center, Israel.
jun.furukawa@necam.com

2 Bar-Ilan University, Israel?

lindell@biu.ac.il, nofdinar@google.com, oror.wn@gmail.com

Abstract. In this paper, we describe a new protocol for secure three-
party computation of any functionality, with an honest majority and
a malicious adversary. Our protocol has both an information-theoretic
and computational variant, and is distinguished by extremely low com-
munication complexity and very simple computation. We start from the
recent semi-honest protocol of Araki et al. (ACM CCS 2016) in which
the parties communicate only a single bit per AND gate, and modify it
to be secure in the presence of malicious adversaries. Our protocol fol-
lows the paradigm of first constructing Beaver multiplication triples and
then using them to verify that circuit gates are correctly computed. As
in previous work (e.g., the so-called TinyOT and SPDZ protocols), we
rely on the cut-and-choose paradigm to verify that triples are correctly
constructed. We are able to utilize the fact that at most one of three par-
ties is corrupted in order to construct an extremely simple and efficient
method of constructing such triples. We also present an improved com-
binatorial analysis for this cut-and-choose which can be used to achieve
improvements in other protocols using this approach.

1 Introduction

1.1 Background

In the setting of secure computation, a set of parties with private inputs wish
to compute a joint function of their inputs, without revealing anything but the
output. Protocols for secure computation guarantee privacy (meaning that the
protocol reveals nothing but the output), correctness (meaning that the correct
function is computed), and more. These security guarantees are provided in the
presence of adversarial behavior. There are two classic adversary models that are
typically considered: semi-honest (where the adversary follows the protocol spec-
ification but may try to learn more than allowed from the protocol transcript)

?
Supported by the European Research Council under the ERC consolidators grant agreement
n. 615172 (HIPS) and by the BIU Center for Research in Applied Cryptography and Cyber
Security in conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office.

and malicious (where the adversary can run any arbitrary polynomial-time at-
tack strategy). In the information-theoretic model, security is obtained uncon-
ditionally and even in the presence of computationally unbounded adversaries.
In contrast, in the computational model, security is obtained in the presence of
polynomial-time adversaries and relies on cryptographic hardness assumptions.

Despite its stringent requirements, it has been shown that any polynomial-
time functionality can be securely computed with computational security [23,12,3]
and with information-theoretic security [4,8,20]. These results hold both for semi-
honest and malicious adversaries, but a two-thirds honest majority must be as-
sumed in order to obtain information-theoretic security (or an honest majority
when assuming broadcast).

There are two main approaches for constructing secure computation pro-
tocols: the secret-sharing approach (followed by [4,8,12]) works by having the
parties interact for every gate of the circuit, whereas the garbled-circuit ap-
proach (followed by [23,3]) works by having the parties construct an encrypted
version of the circuit which can be computed at once. Both approaches have
importance and have settings where they perform better than the other. On the
one hand, the garbled-circuit approach yields protocols with a constant number
of rounds. Thus, in high-latency networks, they far outperform secret-sharing
based protocols which have a number of rounds that is linear in the depth of the
circuit being computed. On the other hand, protocols based on secret-sharing
typically have low bandwidth, in contrast to garbled circuits that are large and
costly in bandwidth. Given that the bandwidth is often the bottleneck, it fol-
lows that protocols with low communication have the potential to achieve much
higher throughput.

1.2 Our Results

In this paper, we focus on the question of achieving secure computation in the
presence of malicious adversaries with very high throughput on a fast network
(without utilizing special-purpose hardware). We start with the recent three-
party protocol of [1] that achieves security in the presence of semi-honest adver-
saries. The protocol requires transmitting only a single bit per AND gate, and
the computation per gate is very simple. On a cluster of three 20-core servers
with a 10Gbs connection, the protocol of [1] achieves a rate of computation of 7
billion AND gates per second. This can be used, for example, to securely compute
1.3 million AES block operations per second.

Our approach to achieving malicious security follows the Beaver multiplica-
tion triple approach [2] used in [19,9,5] (and many follow-up works). According
to this approach, the parties securely generate shares of triples (a, b, c) where
a, b are random and c = ab (for the case of Boolean circuits, this is equivalent to
c = a∧ b). Such triples can then be used to verify that AND gates are computed
correctly. In the (difficult) case of no honest majority considered in [19,9,5], there
are two major challenges: (a) how to generate such triples without malicious par-
ties causing either the shares to be invalid or causing c 6= ab, and (b) how to
force the parties to send their “correct” values in the multiplication triple in the

2

verification stage. The first problem is solved in [19,9,5] by using cut-and-choose:
many triples are generated, some are opened, and the others are put in buckets
and used to verify each other. The second problem is solved in [19,9,5] by using
homomorphic MACs on all of the values. The generation of the triples to start
with and the use of MACs adds additional overhead that is very expensive.

In this paper, we heavily utilize the fact that at most one party (out of 3)
is corrupted in order to generate triples at very little expense, and to force
the parties to send the correct values. In fact, the secret-sharing method used
in [1] is such that it is possible to generate shares of random values without any
interaction (using correlated randomness which is generated by the parties at
almost no cost). Furthermore, we show how it is possible to detect if a malicious
party sends incorrect values (in the prepared multiplication triples) when there is
an honest majority, without requiring MACs of any kind. As a result, generating
multiplication triples is very cheap. In turn, this enables us to generate a large
number of triples at once, which further improves the parameters of the cut-and-
choose step as well.

Overall, our protocol requires very simple computation, and achieves mali-
cious security at very low communication cost. Specifically, with a statistical
error of 2−40 each party needs to send only 10 bits per AND gate to one other
party; for 2−80 this rises to only 16 bits per AND gate.

Based on the implementation results in [1], our estimates are that our new
protocol should achieve a rate of over 500 million AND gates per second on the
same setup as [1]. This is orders of magnitude faster than any other protocol
achieving malicious security (see related work below).

1.3 Outline of Our Solution and Organization

In this section, we describe the different subprotocols and constructions that
make up our protocol, and provide the high-level ideas behind our constructions.

In Section 2.1, we present the 2-out-of-3 secret-sharing scheme used in [1]
and some important properties of it. Then, in Section 2.2 we describe the semi-
honest protocol of [1] for multiplication (AND) gates. In addition, we prove a
crucial property of this protocol that we heavily rely on in our construction: for
any malicious adversary, the honest parties always hold a valid sharing after the
multiplication protocol; the shared value may either equal the AND of the input
(if the adversary follows the protocol) or its complement (if the adversary cheats).

In Section 2.3 we show how to generate correlated randomness (functionality
Fcr); after an initial exchange of keys for a pseudorandom function, the protocol
is non-interactive. This makes it highly efficient, and also secure for malicious
adversaries (since there is no interaction at all and so no way to cheat). In
Section 2.4, we use Fcr to securely compute functionality Frand that provides
random shares to all parties. A very important feature of our protocol is based on
the fact that Frand can be securely computed non-interactively using correlated
randomness. This means that the first step in generating multiplication triples
– generating shares of random a, b via calls to Frand – can be carried out non-
interactively and thus at a very fast rate.

3

In Section 2.5, we use Frand to carry out secure coin tossing (by generating
shares of random values and then just opening them); each coin is generated by
sending just a single bit. We explain how this is achieved, since it introduces
a key technique that we use throughout. As we have mentioned, shares of a
random value can be generated non-interactively and thus this is secure for
malicious adversaries by default. However, when opening the shares to obtain
the coin, a malicious adversary can cheat by sending an incorrect share value.
Here we critically utilize the fact that we have an honest majority. In particular,
we can simply have all pairs of parties send their shares to each other. Since the
sharing is valid and any two parties can reconstruct the secret, each party can
reconstruct separately based on the shares received from each other party, and
compare. If the adversary cheats, then the result will be different reconstructed
secrets, which will result in an abort. Our secret-sharing scheme has two bits
and so this would cost each party sending 4 bits. However, we observe that in
order to open it suffices to send 1 bit of each share only. Furthermore, we observe
that if each party sends its bit to only one other party (P1 to P2, P2 to P3, and
P3 to P1) then the bit sent by one honest party to another will result in the
correct coin (there is always one such pair since only one party is corrupted).
Thus, it actually suffices for each party to send its bit to only one other party
and to record the result of the coin on a “public view” string. Then, at the end
of the entire execution, before any output is revealed, the parties can compare
their views by sending a collision-resistant hash of their local public view. If
the two honest parties received a different coin at any point then they will have
different local public views and so will abort before anything is revealed. As a
result, coin-tossing can be achieved by each party sending just a single bit to
one other party.

In Sections 2.6-2.8, we introduce additional functionalities needed for our
protocol. First, in order to carry out the cut-and-choose, a random permutation
must be applied to the tuples generated. This is carried out using Fperm (Sec-
tion 2.6) which computes a random permutation of array indices. This function-
ality is easily realized by the parties just coin tossing the amount of randomness
needed to define the permutation. In addition, in order for the parties to share
inputs and obtain output, we need a way to deal shares and open shares that is
secure for malicious adversaries. These are constructed in Section 2.7 (Freconst

for robustly reconstructing a secret to one party) and Section 2.8 (Fshare for
robustly sharing a value).

We now explain how the above subprotocols can be used to generate correct
multiplication triples. The parties first call Frand to generate shares of random
values a, b and then run the semi-honest multiplication protocol of [1] to generate
shares of c. As we have mentioned above, the semi-honest multiplication protocol
has the property that even if the adversary is malicious, the shares of c are
valid. However, if the adversary cheats then it may be the case that c = ab⊕ 1
instead of equalling ab. In order to prevent this from happening, the parties
generate many triples and use some to check the others. Namely, the parties
first randomly choose a subset of the triples which are opened to verify that

4

indeed c = ab. This uses the subprotocol in Section 2.9 which carries out this
exact check. Next, the remaining triples are partitioned randomly into buckets
of size B (the random division is carried out using Fperm). Then, in each bucket,
B − 1 of the triples are used to verify that one of the triples is correct, except
with negligible probability (without revealing the triple being checked). This
uses the subprotocol of Section 2.10 which shows how to use one triple to verify
that another is correct. This protocol is described in Section 3, and it securely
computes functionality Ftriples that generates an array of random multiplication
triples for the parties.

Finally, we show how to securely compute any functionality f using ran-
dom multiplication triples. Intuitively, this works by the parties running the
semi-honest multiplication protocol for each AND gate and verifying each mul-
tiplication using a triple. The verification method, as used in [19,9], has the
property that if a multiplication triple is good and the adversary cheats in the
gate multiplication, then this is detected by the honest parties. As with all of our
protocols, we take care to minimize the communication, and verify each gate by
sending only 2 bits (beyond the single bit needed for the multiplication itself).
The dependency graph of our constructions appears in Figure 1.

Fig. 1. Graph of dependencies of our constructions

The efficiency of our construction relies heavily on the cut-and-choose param-
eters, both with respect to how many triples need to be opened and checked and
the bucket size. In Section 5 we provide a tight analysis of this cut-and-choose

5

game which yields a significant improvement over previous analyses fo similar
games in [19,5]. For concrete parameters that are suitable for our protocol, our
analysis is approximately 25% better than [19,5].

Caveats. We stress that our protocol is specifically defined for the case of 3
parties only. This case is of interest for outsourced computations, as in the Share-
mind business model [22], for two-party setting where a third auxiliary server can
be used, and in other settings of interest as described in [1]. The generalization
of our protocol to more parties is not straightforward since we rely on replicated
secret sharing, and the size of such shares increases exponentially in the number
of parties. In addition, our protocol is only secure with abort ; this is unlike other
protocols for the honest majority case that achieve fairness. Nevertheless, this is
sufficient for many applications. For this setting, we are able to achieve security
for malicious adversaries with efficiency way beyond any other known protocol.

1.4 Related Work

Most of the work on concretely-efficient secure computation has focused on the
dishonest majority case. These protocols are orders of magnitude less efficient
than ours, but deal with a much more difficult setting. For example, the best
protocols based on garbled circuits for batch executions [17,21] require only
sending 4 garbled circuits per execution. Even ignoring all of the additional work
and communication (which is very significant), 4 garbled circuits per execution
means sending 1000 bits per gate, which is 100 times the cost of our protocol.
Likewise, the SPDZ/MASCOT protocol [14] communicates approximately 360
bits per gate for three parties, which is 36 times the cost of our protocol. The
same is true for all other dishonest-majority protocols; c.f. [19,9,5].

In the setting of an honest majority, the only highly-efficient protocol with
security for malicious adversaries that has been implemented, to the best of our
knowledge, is that of [18]. We compare our protocol to [18] in detail in Section 6.
Our protocol is more than an order of magnitude cheaper both in communication
and computation; however, their protocol is constant-round and therefore better
suited to slow networks.

1.5 Definition of Security

Our protocols are proven secure under the standard ideal/real simulation paradigm,
for the case of malicious adversaries and with abort. For the sake of completeness,
this definition is provided in the appendix.

2 Building Blocks and Subprotocols

2.1 The Secret Sharing Scheme

We denote the three parties by P1, P2 and P3. Throughout the paper, in order to
simplify notation, when we use an index (say i) to denote the ith party, we will
write i−1 and i+1 to mean the “previous“ and “subsequent“ party, respectively.
That is, when i = 1 then Pi−1 is P3 and when i = 3 then Pi+1 is P1.

6

We use the 2-out-of-3 secret sharing scheme of [1], defined as follows. In order
to share a bit v, the dealer chooses three random bits s1, s2, s3 ∈ {0, 1} under
the constraint that s1 ⊕ s2 ⊕ s3 = v. Then:

– P1’s share is the pair (t1, s1) where t1 = s3 ⊕ s1.
– P2’s share is the pair (t2, s2) where t2 = s1 ⊕ s2.
– P3’s share is the pair (t3, s3) and t3 = s2 ⊕ s3.

It is clear that no single party’s share reveals anything about v. In addition,
any two parties can obtain v; e.g., given (t1, s1), (t2, s2) one can compute v =
t1 ⊕ s2. We denote by [v] a 2-out-of-3 sharing of the value v according to the
above scheme.

Claim 2.1 The secret v together with the share of one party fully determine the
shares of the other parties.

Proof: By the definition of the secret sharing scheme, it holds that ti = si−1⊕
si. Since (ti, si) for some i ∈ {1, 2, 3} and v are determined, this determines both
si−1 and si+1 as well. This follows since si−1 = ti ⊕ si and si+1 = v ⊕ si ⊕ si−1.
Thus, the shares of the other two parties are determined.

Opening shares. We define a subprocedure, denoted open([v]), for our secret

sharing scheme, as follows. Denote the shares of v by
{

(ti, si)
}i=3

i=1
. Then, each

party Pi sends ti to Pi+1, and each Pi outputs v = si ⊕ ti−1.

Local operators for shares. We define the following local operators on shares:

– Addition [v1] ⊕ [v2]: Given a share (t1i , s
1
i) of v1 and a share (t2i , s

2
i) of v2,

each party Pi computes: (t1i ⊕ t2i , s1
i ⊕ s2

i).
– Multiplication by a scalar σ · [v]: Given a share (ti, si) of v and a value
σ ∈ {0, 1}, each party Pi computes (σ · ti, σ · si).

– Addition of a scalar [v]⊕σ: Given a share (ti, si) of v and a value σ ∈ {0, 1},
each party Pi computes (ti, si ⊕ σ).

– Complement [v]: Given a share (ti, si) of v, each party Pi computes (ti, si)
(where b is b’s complement)

We stress that when writing [v1]⊕ [v2] the symbol “⊕” is an operator on shares
and not bitwise XOR, whereas when we write v1⊕ v2 the symbol “⊕” is bitwise
XOR; likewise for the product and complement notation. We now prove that
these local operators achieve the expected results.

Claim 2.2 Let [v1], [v2] be shares and let σ ∈ {0, 1} be a scalar. Then, the
following properties hold:

1. [v1]⊕ [v2] = [v1 ⊕ v2]
2. σ · [v1] = [σ · v1]
3. [v1]⊕ σ = [v1 ⊕ σ]
4. [v1] = [v1]

7

Proof: Denote the shares of v1 and v2 by
{

(t1i , s
1
i)
}i=3

i=1
and

{
(t2i , s

2
i)
}i=3

i=1
,

respectively.

1. We prove that [v1]⊕ [v2] = [v1 ⊕ v2] by showing that {(t1i ⊕ t2i , s1
i ⊕ s2

i)}i=3
i=1

is a valid sharing of v1 ⊕ v2. First, observe that the s-parts are valid since
(s1

1 ⊕ s2
1)⊕ (s1

2 ⊕ s2
2)⊕ (s1

3 ⊕ s2
3) = (s1

1 ⊕ s1
2 ⊕ s1

3)⊕ (s2
1 ⊕ s2

2 ⊕ s2
3) = v1 ⊕ v2.

Furthermore, for every i, (t1i ⊕ t2i) = (s1
i−1 ⊕ s1

i) ⊕ (s2
i−1 ⊕ s2

i) = (s1
i−1 ⊕

s2
i−1)⊕ (s1

i ⊕ s2
i) as required.

2. We prove that σ · [v1] = [σ · v1] by showing that {(σ · t1i , σ · s1
i)}i=3

i=1 is a valid
sharing of σ ·v1. This is true since σ ·s1

1⊕σ ·s1
2⊕σ ·s1

3 = σ ·(s1
1⊕s1

2⊕s1
3) = σ ·v1

and σ · t1i = σ · (s1
i−1 ⊕ s1

i) = σ · s1
i−1 ⊕ σ · s1

i as required.

3. We prove that [v1] ⊕ σ = [v1 ⊕ σ] by showing that {(t1i , σ ⊕ s1
i)}i=3

i=1 is a
valid sharing of σ ⊕ v1. This is true since (σ ⊕ s1

1) ⊕ (σ ⊕ s1
2) ⊕ (σ ⊕ s1

3) =
σ ⊕ (s1

1 ⊕ s1
2 ⊕ s1

3) = σ ⊕ v1 and t1i = s1
i−1 ⊕ s1

i = (σ ⊕ s1
i−1)⊕ (σ ⊕ s1

i).

4. We prove that [v1] = [v1] by showing that {(t1i , s1
i)}i=3

i=1 is a valid sharing of v1.

This holds since s1
1⊕s1

2⊕s1
3 = s1

1 ⊕ s1
2 ⊕ s1

3 = v1 and t1i = s1
i−1⊕s1

i = s1
i−1⊕s1

i .

Consistency. In the setting that we consider here, one of the parties may
be maliciously corrupted and thus can behave in an arbitrary manner. Thus, if
parties define their shares based on values received, it may be possible that the
honest parties hold values that are not a valid sharing of any value. We therefore
define the notion of consistency of shares. We stress that this definition relates
only to the shares held by the honest parties, since the corrupted party can
always change its local values. As we will show after the definition, shares are
consistent if they define a unique secret v.

Definition 2.3. Let (t1, s1), (t2, s2) and (t3, s3) be the shares held by parties
P1, P2 and P3 respectively, and let Pi be the corrupted party. We say that the
shares are consistent if it holds that si+1 = si+2 ⊕ ti+2.

In order to understand the definition, recall that in a valid sharing of v it
holds that ti+2 = si+1 ⊕ si+2. Thus, we obtain that si+1 = si+1 ⊕ si+2 ⊕ si+2 =
si+2 ⊕ ti+2 as the definition requires. The intuition behind this is that, in order
to reconstruct the secret, the honest parties Pi+1 and Pi+2 need to learn ti
and ti+1 respectively. However, since ti is held by the corrupted party, we use
the fact that ti = ti+1 ⊕ ti+2 to obtain that Pi+1 can reconstruct the secret
using ti+1 which it knows and ti+2 which is held by the other honest party.
The definition says that computing the secret using Pi+1’s share and ti+2; i.e.,
computing si+1 ⊕ ti+1 ⊕ ti+2, yields the same value as computing the secret
using Pi+2’s share and ti+1; i.e., computing si+2 ⊕ ti+1. We stress that shares
may be inconsistent. For example, if P1 is the corrupted party and the shares
of the honest parties P2, P3 are (1, 1) and (1, 1) respectively, then the shares are
inconsistent since s2 = 1 whereas s3⊕ t3 = 1⊕ 1 = 0. Thus, these shares cannot
be the result of any sharing of any value.

8

2.2 Computing AND Gates – One Semi-Honest Corrupted Party

We review the protocol for securely computing AND (equivalently, multiplica-
tion) gates for semi-honest adversaries from [1] as it will be used in a subprotocol
in our protocol for malicious adversaries. This subprotocol requires each party
to send a single bit only. The protocol works in two phases: in the first phase the
parties compute a simple

(
3
3

)
XOR-sharing of the AND of the input bits, and in

the second phase they convert the
(

3
3

)
-sharing into the above-defined

(
3
2

)
-sharing.

Let (t1, s1), (t2, s2), (t3, s3) be a secret sharing of v1, and let (u1, w1), (u2, w2),
(u3, w3) be a secret sharing of v2. We assume that the parties P1, P2, P3 hold
correlated randomness α1, α2, α3, respectively, where α1 ⊕ α2 ⊕ α3 = 0. The
parties compute

(
3
2

)
-shares of v1v2 = v1 ∧ v2 as follows :

1. Step 1 – compute
(

3
3

)
-sharing:

(a) P1 computes r1 = t1u1 ⊕ s1w1 ⊕ α1, and sends r1 to P2.
(b) P2 computes r2 = t2u2 ⊕ s2w2 ⊕ α2, and sends r2 to P3.
(c) P3 computes r3 = t3u3 ⊕ s3w3 ⊕ α3, and sends r3 to P1.

These messages are computed and sent in parallel.
2. Step 2 – compute

(
3
2

)
-sharing: In this step, the parties construct a

(
3
2

)
-

sharing from their given
(

3
3

)
-sharing and the messages sent in the previous

step. This requires local computation only.

(a) P1 stores (e1, f1) where e1 = r1 ⊕ r3 and f1 = r1.
(b) P2 stores (e2, f2) where e2 = r2 ⊕ r1 and f2 = r2.
(c) P3 stores (e3, f3) where e3 = r3 ⊕ r2 and f3 = r3.

It was shown in [1], that f1⊕f2⊕f3 = r1⊕r2⊕r3 = v1v2. Thus, the obtained
sharing is a consistent sharing of v1v2. We now show something far stronger;
specifically, we show that the above multiplication protocol (for semi-honest
adversaries) always yields consistent shares, even when run in the presence of a
malicious adversary. Depending on the adversary, the result is either a consistent
sharing of the product or its complement, but it is always consistent.

Lemma 2.4. If [v1] and [v2] are consistent and [v3] was generated by executing
the (semi-honest) multiplication protocol on [v1] and [v2] in the presence of one
malicious party, then [v3] is a consistent sharing of either v1v2 or v1v2 ⊕ 1.

Proof: If the corrupted party follows the protocol specification then [v3] is a
consistent sharing of v1v2. Else, since the multiplication protocol is symmetric,
assume without loss of generality that P1 is the corrupted party. Then, the only
way that P1 can deviate from the protocol specification is by sending r1⊕1 to the
honest P2 instead of r1, and in this case P2 will define its share to be (e2, f2) =
(r2 ⊕ r1 ⊕ 1, r2). Meanwhile, P3 defines its share to be (e3, f3) = (r3 ⊕ r2, r3),
as it receives r2 from the honest P2. Thus, f3 ⊕ e3 = r3 ⊕ (r3 ⊕ r2) = r2 = f2

meaning that [v3] is consistent by Definition 2.3 . Furthermore, it is a sharing
of v1v2 ⊕ 1 since f3 ⊕ e2 = r3 ⊕ (r1 ⊕ 1⊕ r2) = v1v2 ⊕ 1 (utilizing the fact that
r1 ⊕ r2 ⊕ r3 = v1v2).

9

2.3 Generating Correlated Randomness – F1
cr/F2

cr

Our protocol relies strongly on the use of random bits which are correlated. We
define two types of correlated randomness:

– Type 1: Consider an ideal functionality F1
cr that chooses α1, α2, α3 ∈ {0, 1}

at random under the constraint that α1 ⊕ α2 ⊕ α3 = 0, and sends αi to Pi
for every i.

– Type 2: Consider an ideal functionality F2
cr that chooses α1, α2, α3 ∈ {0, 1}

at random, and sends (α1, α2) to P1, (α2, α3) to P2, and (α3, α2) to P3.

Generating correlated randomness efficiently. It is possible to securely
generate type-1 correlated randomness with perfect security by having each party
Pj simply choose a random ρj ∈ {0, 1} and send it to Pj+1. Then, each Pj
defines αj = ρj⊕ρj−1 (observe that α1⊕α2⊕α3 = 0 since each ρ-value appears
twice). In order to compute type-2 correlated randomness, each party Pj sends
a random ρj as before, but now each Pj outputs the pair (ρj−1, ρj). (Formally,
the ideal functionalities F1

cr/F2
cr must be defined so that the corrupted party Pi

has some influence, but this suffices.) Despite the elegance and simplicity of this
solution, we use a different approach that does not require any communication.
Although the above involves sending just a single bit, this would actually double
the communication per AND gate which is the bottleneck of efficiency.

Protocol 2.5 describes a method for securely compute correlated randomness
computationally without any interaction beyond a short initial setup. Observe
that in the output of F1

cr, it holds that α1⊕α2⊕α3 = 0. Furthermore, for every j,
Pj does not know kj+1 which is used to generate αj+1 and αj+2. Thus, αj+1

and αj+2 are pseudorandom to Pj , under the constraint that α2⊕α3 = α1. This
was proven formally in [1] and the same proof holds for the malicious setting.

PROTOCOL 2.5 (Computing F1
cr / F2

cr)

– Auxiliary input: Each party holds a security parameter κ and a descrip-
tion of a pseudorandom function F : {0, 1}κ × {0, 1}κ → {0, 1}.

– Setup (executed once):
1. Each party Pj chooses a random kj ∈ {0, 1}κ.
2. Each party Pj sends kj to party Pj+1.

– Generating randomness: Upon input id,
• Computing F1

cr: each party Pj computes αj = Fkj (id)⊕Fkj−1(id) and
outputs it.

• Computing F2
cr: each party Pj outputs

(
Fkj (id), Fkj−1(id)

)
.

Formally defining the F1
cr / F2

cr ideal functionalities. A naive definition
would be to have the ideal functionality choose α1, α2, α3 and send αj to Pj
for = j ∈ {1, 2, 3} (or send αj , αj−1 to Pi in the F2

cr functionality). However,
securely realizing such a functionality would require a full-blown coin tossing
protocol. In order to model our non-interactive method, which suffices for our
protocol, we need to take into account that the corrupted party Pi can choose
its ki and this influences the output, as Pi’s value is generated in a very specific

10

way using a pseudorandom function. In order for the view of the corrupted party
to be like in the real protocol, we define the functionality F1

cr / F2
cr so that they

generate the corrupted party’s value in this exact same way.
The functionalities are described formally in Functionality 2.6. The corrupted

party chooses two keys k, k′ for the pseudorandom function F and sends them to
the functionality. These keys are used to generate the values that are influenced
by the corrupted party, whereas the other values are chosen uniformly. We denote
by κ the computational security parameter, and thus the length of the keys k, k′.

FUNCTIONALITY 2.6 (F1
cr / F2

cr – correlated randomness)

Let F : {0, 1}κ × {0, 1}κ → {0, 1} be a keyed function. Upon invocation, the
adversary controlling party Pi chooses a pair of keys k, k′ ∈ {0, 1}κ and sends
them to F1

cr / F2
cr. Then:

– F1
cr: Upon receiving input id from all parties, functionality F1

cr computes
αi = Fk(id)⊕Fk′(id) and chooses random values αi−1, αi+1 ∈ {0, 1} under
the constraint that α1 ⊕ α2 ⊕ α3 = 0. F1

cr sends αj to Pj for every j.
– F2

cr: Upon receiving input id from all parties, functionality F2
cr computes

αi = Fk(id) and αi−1 = Fk′(id) and chooses a random value αi+1 ∈ {0, 1}.
F2

cr sends (αj−1, αj) to Pj for every j.

Proposition 2.7. If F is a pseudorandom function, then Protocol 2.5 securely
computes functionalities F1

cr and F2
cr, respectively, with abort in the presence of

one malicious party.

Proof: The proof of this proposition is similar to the proof of Theorem 3.9
in [1]. Note that [1] considers the semi-honest model; however, since the protocol
is non-interactive (beyond the setup phase), there is almost no difference.

We first consider F1
cr. Let A be the real-model adversary controlling party Pi.

We construct a simulator S who interacts externally with the Fcr functionality
and internally with A, as follows:

1. S invokes A, chooses a random key ki−1 ∈ {0, 1}κ and internally hands it to
A as if received from Pi−1 in the setup phase.

2. Next, S receives the key ki that it sends to Pi+1 in the setup phase of
Protocol 2.5. (Since A is rushing, S first provides A with ki−1 and then
receives its message ki.)

3. If A does not send a valid ki ∈ {0, 1}κ, then S externally sends abort to F1
cr.

Else, S externally sends (k, k′) = (ki−1, ki) to F1
cr.

4. From this point on (when computing the “generating randomness” phase)
upon input id, S just outputs whatever A outputs.

We now show that for each input id, the joint output distribution of S and the
honest parties in an ideal execution with F1

cr is computationally indistinguish-
able from the joint output distribution of A and the honest parties in a real
execution of Protocol 2.5 with adversary A. In order to see this, observe that in
the F1

cr functionality the respective outputs of the honest parties Pi−1, Pi+1 are

11

random values αi−1, αi+1 under the constraint that Fk(id) ⊕ Fk′(id) ⊕ αi−1 ⊕
αi+1 = 0, whereas in the real-world protocol the output of the honest parties
is Fk(id)⊕ Fk′′(id) and Fk′(id)⊕ Fk′′(id) for a random key k′′ unknown to the
adversary (chosen by Pi+1 and sent to Pi−1). By a straightforward reduction,
the pseudorandom function Fk′′ in the real execution can be replaced by a truly
random function, implying that Fk′′(id) can be replaced by a truly random value
α. Now, define αi−1 = Fk(id) ⊕ α and define αi+1 = Fk′(id) ⊕ α. Observe that
αi−1⊕αi+1 = Fk(id)⊕Fk′(id), and that by the way they are defined αi−1, αi+1

are random under this constraint. We therefore have that for any fixed k, k′,
the outputs of the honest parties are computationally indistinguishable in both
executions. Since the entire view of A consists of k, k′ and these are identically
distributed in both cases, we have that the joint distributions are computation-
ally indistinguishable, as required.

The proof for functionality F2
cr is almost identical (the only difference being

that the α values are sent separately instead of their XOR, but this makes no
difference).

2.4 Generating Shares of a Random Value – Frand

In this section, we show how the parties can generate a sharing of a random secret
value v known to none of them. Formally, we define the functionality Frand that
chooses a random v ∈ {0, 1}, computes a sharing [v], and sends each party its
share of [v]. However, Frand allows the corrupted party to determine its own
share, and thus computes the honest parties’ shares from the corrupted party’s
share and the randomly chosen v. Frand is formally specified in Functionality 2.8.

FUNCTIONALITY 2.8 (Frand – generating shares of a random value)

– Frand receives (ti, si) from the corrupted party Pi.
– Frand chooses a random v ∈ {0, 1} and defines the respective shares

(ti−1, si−1), (ti+1, si+1) of Pi−1, Pi+1 based on (ti, si) and v (as described in
Claim 2.1).

– Frand sends (ti−1, si−1) to Pi−1, and sends (ti+1, si+1) to Pi+1.

Protocol 2.9 describes how to securely compute Frand in the F2
cr-hybrid

model, without any interaction.

PROTOCOL 2.9 (Securely computing Frand)

1. The parties call F2
cr and receive (r3, r1), (r1, r2), and (r2, r3), respectively.

2. P1 defines t1 = r3 ⊕ r1 and s1 = r1.
3. P2 defines t2 = r1 ⊕ r2 and s2 = r2.
4. P3 defines t3 = r2 ⊕ r3 and s3 = r3.

Observe that t1⊕ t2⊕ t3 = 0. Furthermore, define v = s1⊕ t3 = r1⊕ r2⊕ r3.
Observe that s2 ⊕ t1 and s3 ⊕ t2 also both equal the same v. Thus, this non-
interactive protocol defines a valid sharing [v] for a random v ∈ {0, 1}. The fact
that v is random follows from the fact that it equals r1 ⊕ r2 ⊕ r3. Now, by the

12

definition of F2
cr, a corrupted Pi knows nothing of ri+1 = αi+1 which is chosen

uniformly at random, and thus the defined sharing is of a random value.

Proposition 2.10. Protocol 2.9 securely computes functionality Frand with abort
in the F2

cr-hybrid model, in the presence of one malicious party.

Proof: Let A be a real adversary; we define S as follows:

– S receives A’s input k, k′ to F2
cr.

– Upon receiving id from A as intended for F2
cr, simulator S simulates A

receiving back (ri−1, ri) = (Fk′(id), Fk(id)) from F2
cr.

– S defines ti = ri−1 ⊕ ri and si = ri, and externally sends (ti, si) to Frand.

– S outputs whatever A outputs.

We show that the joint distribution of the outputs of S and the honest parties
in an ideal execution is identical to the outputs of A and the honest parties in
a real execution. In order to see this, observe that in a real execution, given a
fixed ri−1, ri (as viewed by the adversary), the value v is fully determined by
ri+1. In particular, by the definition of the secret-sharing scheme, v = si⊕ti−1 =
ri ⊕ ri−2 ⊕ ri−1 = r1 ⊕ r2 ⊕ r3. Since ri+1 is randomly generated by F2

cr, this
has the same distribution as Frand choosing v randomly (because choosing v
randomly, or choosing some r randomly and setting v = ti ⊕ r is identical).
Thus, the joint distributions are identical.

2.5 Coin Tossing – Fcoin

We now present a highly-efficient three-party coin tossing protocol that is secure
in the presence of one malicious adversary. We define the functionality Fcoin that
chooses s random bits v1, . . . , vs ∈ {0, 1} and sends them to each of the parties.
The idea behind our protocol is simply for the parties to invoke s calls to Frand

and to then open the result (by each Pi sending ti to Pi+1; see Section 2.1).
Observe that this in itself is not sufficient since a malicious party may send an
incorrect opening, resulting in the honest parties receiving different output. This
can be solved by using a subprocedure called compareview() in which each party
Pj sends its output to party Pj+1. If any party receives a different output, then
it aborts. The reason why this is secure is that the protocol guarantees that
if Pi is corrupted then Pi+2 receives the correct outputs v1, . . . , vs; this holds
because when opening the shares, the only values received by Pi+2 are sent by
the honest Pi+1 and are not influenced by Pi. Thus, Pi+2’s output is guaranteed
to be correct, and if Pi+1 and Pi+2 have the same output then Pi+1’s output is
also correct. This is formally described in Protocol 2.11.

13

PROTOCOL 2.11 (Securely computing Fcoin)

1. The parties invoke s calls to Frand; denote their outputs by [v1], ..., [vs].
2. For every j ∈ {1, .., s}, the parties run the open([vj]) procedure defined in

Section 2.1 to obtain vj .
3. The parties run compareview(v1, . . . , vs) by each Pj sending the outputs

v1, . . . , vs to Pj+1. If a party receives different output, then it outputs ⊥.
Otherwise, it outputs v1, . . . , vs.

Proposition 2.12. Protocol 2.11 securely computes functionality Fcoin with abort
in the Frand-hybrid model, in the presence of one malicious party.

Proof: Let A be the real adversary controlling Pi. We construct a simulator S,
as follows:

1. S receives v1, . . . , vs from the trusted party computing Fcoin.
2. S invokes A and simulates s calls to Frand, as follows:

(a) S receives Pi’s share in every call to Frand.
(b) Given v1, . . . , vs and Pi’s shares, S computes the value ti−1 thatA should

receive from Pi−1. (Specifically, for the `th value, let (t`i , s
`
i) be Pi’s share

and let v` be the bit received from Fcoin. Then, S sets ti−1 = v` ⊕ s`i .
This implies that the “opening” is to v`.)

(c) If A sends an incorrect ti value in any open procedure, then S sends
aborti+1 to Fcoin causing Pi+1 to abort in the ideal model (see Ap-
pendix A for the definition of the ideal model). Otherwise, it sends
continuei+1 to Fcoin. (In all cases it sends continuei−1 to Fcoin since
Pi−1 never aborts.)

By the way Frand is defined, the output distribution of A and the honest parties
in a real execution is identical to the output distribution of S and the honest
parties in an ideal execution. This is because each vj is uniformly distributed,
and S can fully determine the messages that A receives for any fixed v1, . . . , vs.

We remark that although Protocol 2.11 is “expensive” (each party needs to
send two bits to generate one random bit), it is called only constant number of
times in our main protocol. Thus, its effect on the overall cost of our protocol is
negligible. This will be explained and justified in Section 4.

2.6 Random Shuffle – Fperm

In our protocol, we will need to compute a random permutation of an array
of elements (where each element is a “multiplication triple”). Let Fperm be an
ideal functionality that receives a vector d of length M from all parties, chooses
a random permutation π over {1, ...,M} and returns the vector d′ defined by
d′[i] = d[π[i]] for every i ∈ {1, ...,M}. Functionality Fperm can be securely
computed by the parties running the Fisher-Yates shuffle algorithm [10], and
obtaining randomness via Fcoin. This is formally described in Protocol 2.13.

The following proposition follows trivially from the security of Fcoin:

14

PROTOCOL 2.13 (Securely computing Fperm)

All parties hold the same input d, and work as follows:

1. For j = 1 to M :
(a) The parties call Fcoin enough times to generate a random index i ∈
{j, . . . ,M}.

(b) Each party swaps d[j] and d[i].
2. Each party output the resulting vector d.

Proposition 2.14. Protocol 2.13 securely computes functionality Fperm with
abort in the Fcoin-hybrid model, in the presence of one malicious party.

2.7 Reconstruct a Secret to One of the Parties – Freconst

In this section we show how the parties can open a consistent sharing [v] of a
secret v to one of the parties in a secure way. We will use this subprotocol for
reconstructing the outputs in our protocol. We remark that we consider security
with abort only, and thus the party who should receive the output may abort.
We stress that this procedure is fundamentally different to the open procedure
of Section 2.1 in two ways: first, only one party receives output; second, the
open procedure does not guarantee correctness. In contrast, here we ensure that
the party either receives the correct value or aborts. We stress, however, that
the protocol is only secure if the sharing [v] is consistent; otherwise, nothing is
guaranteed. We formally define Freconst in Functionality 2.15.

FUNCTIONALITY 2.15 (Freconst – secure reconstruction)

Let S be the adversary and Pi the corrupted party. Freconst receives
(ti+1, si+1, j) from Pi+1 and (ti+2, si+2, j) from Pi+2, and works as follows:

– Freconst computes v = si+2 ⊕ ti+1 and sends v to Pj . In addition, Freconst

sends (ti, si) to S (where (ti, si) is Pi’s share as defined by the shares
received from the honest parties).

Note that Freconst also sends Pi’s share to S. This is needed technically in the
proof to enable simulation; it reveals nothing since this is the corrupted party’s
share anyway. Also, observe that the output is determined solely by the honest
parties’ shares; this guarantees that the corrupted party cannot influence the
output beyond causing an abort.

We show how to securely compute Freconst in Protocol 2.16. Intuitively, the
protocol works by the parties sending their shares to Pj who checks that they
are consistent, and reconstructs if yes. In order to reduce communication, we
actually show that it suffices for the parties to send only the “t” parts of their
shares.

15

PROTOCOL 2.16 (Reconstruct a Secret to One Party)

– Inputs: The parties hold a sharing [v] and an index j ∈ {1, 2, 3}.
– The protocol:

1. Parties Pj+1 and Pj−1 send tj+1 and tj−1, respectively, to Pj .
2. Party Pj checks that tj = tj+1⊕ tj+2. If yes, it outputs v = sj ⊕ tj−1;

otherwise, it outputs ⊥.

Proposition 2.17. If the honest parties’ inputs shares are consistent as in Def-
inition 2.3, then Protocol 2.16 securely computes Freconst with abort, in the pres-
ence of one malicious party.

Proof: Let A be the real adversary controlling Pi, and assume that the honest
parties’ shares are consistent. We first consider the case that Pj is corrupt (i.e.,
i = j). In this case, the simulator S receives v and (ti, si) = (tj , sj) from Freconst.
These values fully define all other shares, and in particular the values tj+1 and
tj−1. Thus, S can simulates Pj+1 and Pj−1 sending tj+1 and tj−1 to Pj .

We next consider the case that Pj is honest (i.e., j 6= i). In this case, S receives
Pi’s share (ti, si) from Freconst. Then, S invokes A and receives the bit t′i that
Pi would send to Pj . If t′i = ti (where ti is the correct share value as received
from Freconst), then S sends continuej to Freconst so that the honest Pj receives v.
Otherwise, S sends abortj to Freconst so that the honest Pj outputs ⊥. Observe
that in a real protocol Pj aborts unless t1 ⊕ t2 ⊕ t3 = 0 (which is equivalent
to tj = tj+1 ⊕ tj+2). Thus, if the corrupted party sends an incorrect ti value,
then Pj will certainly abort. In contrast, if the adversary controlling Pi sends
the correct ti, then the output will clearly be the correct v, again as in the ideal
execution with S.

2.8 Robust Sharing of a Secret – Fshare

In this section, we show how to share a secret that is held by one of the parties
who may be corrupt. This sub-protocol will be used to share the parties’ inputs in
the protocol. We define Fshare in Functionality 2.18. We note that the corrupted
party always provides its share as input, as in Frand. In addition, the dealer
provides v and the (honest) parties receive their correct shares as defined by
these values.

We show how to securely compute Fshare in Protocol 2.19. The idea behind
the protocol is to first generate a random sharing via Frand which guarantees a
consistent sharing of a random value (recall that this requires no communica-
tion). Next, the parties reconstruct the shared secret to the dealer, who can then
send a single bit to “correct” the random share to its actual input. This ensures
that the honest parties hold consistent shares, as long as a corrupt dealer sent
the same bit to both; this is enforced by the parties comparing to ensure that
they received the same bit from the dealer.

16

FUNCTIONALITY 2.18 (Functionality Fshare – sharing a secret)

Let Pj be the party playing the dealer, and let Pi be the corrupted party:

– The corrupted Pi sends (ti, si) to Fshare.
– The dealer Pj sends v to Fshare.
– Fshare computes (tj+1, sj+1) and (tj+2, sj+2) from (ti, si) and v (as de-

scribed in Claim 2.1) and sends the honest Pi−1 and Pi+1 their respective
shares.

PROTOCOL 2.19 (Robust Sharing of a Secret)

– Inputs: Party Pj holds a bit v ∈ {0, 1}.
– The protocol:

1. The parties call Frand to obtain [a] for a random a ∈ {0, 1}.
2. The parties call Freconst with [a] and j as its inputs, and so Pj re-

ceives a. If Pj receives ⊥, it sends ⊥ to all other parties and halts.
Else, it proceeds to the next step.

3. Party Pj sends b = a⊕ v to the other parties.
4. The parties run compareview(b) by each Pj sending the bit b to Pj+1.

If any party sees different b values, then it sends ⊥ to all other parties
and halts.

5. The parties each set their share [v] = [a]⊕ b (using the operator
defined in Section 2.1).

– Output: Each party outputs its share in [v].

Proposition 2.20. Protocol 2.19 securely computes Fshare with abort in the
(Frand,Freconst)-hybrid mode, in the presence of one malicious party.

Proof: Let A be the adversary corrupting party Pi. We construct a simulator
S separately for the following two cases:

– Case 1 – Pj is honest (and so i 6= j): In this case, simulator S invokes A
and obtains the value (ti, si) that it intends to send to Frand in the protocol.
Then, S chooses a random bit b ∈ {0, 1}. Next, S simulates the call to
Freconst. Recall that the corrupted party has no input to Freconst and only
receives output. Furthermore, since [v] was generated by Frand, the honest
parties shares are guaranteed to be consistent. Thus, S simulates Pj ’s output
by simply sending it the same pair (ti, si), as Freconst works in the case of
consistent input (as proven in Proposition 2.17). Next, if A sends abort to
Freconst, then S sends abort to Fshare and simulates Pj sending ⊥ to Pi.
Else, S simulates Pj sending b to the corrupted Pi. Finally, S externally
sends Fshare the share of the corrupted party to be (ti, si ⊕ b).
We show that the joint distribution of A’s view and the honest parties’ out-
puts is identical in the real and ideal executions. A’s view is clearly identical
in both cases; we show that the output of the honest parties’ given A’s
view are also identical. In the ideal simulation, the corrupted party’s output
share is (ti, si⊕b), and the honest parties’ output shares are those defined by

17

(ti, si ⊕ b) and the dealer’s bit v. Specifically, we have that ti−1 = si ⊕ b⊕ v
and ti+1 = ti−1 ⊕ ti = si ⊕ ti ⊕ b ⊕ v, and si−1 = ti−2 ⊕ v = ti+1 ⊕ v and
si+1 = ti ⊕ v; see Claim 2.1.
In a real execution, the honest parties’ outputs from Frand are those defined
by (ti, si) and a random a. The dealer Pj then sends b = a ⊕ v and the
honest parties set their output as [v] = [a]⊕ b. The t-parts of the shares held
by the honest parties after Frand are ti−1 = si ⊕ a and ti+1 = si ⊕ ti ⊕ a.
Furthermore, si−1 = ti+1 ⊕ a and si+1 = ti ⊕ a. After the dealer sends
b = v ⊕ a, the honest parties XOR a into the “s” part of their share. Thus,
the output of the honest parties after the entire protocol are ti−1 = si ⊕ a
and si−1 = (ti+1 ⊕ a) ⊕ b = ti+1 ⊕ v, and ti+1 = si ⊕ ti ⊕ a and si+1 =
(ti ⊕ a)⊕ b = ti ⊕ v.
Observing that a = b ⊕ v, we have that these are the exact same values as
in the ideal execution.

– Case 2 - Pj is corrupt (and so i = j): In this case, as above, S invokes
A and obtains the value (ti, si) that it intends to send to Frand. Next, S
chooses a random a ∈ {0, 1} and simulates the call to Freconst by internally
handing A the bit a (and the pair (ti, si) which the corrupted party always
receives). Finally, S receives bits b, b′ that A intends to send to the honest
parties Pi+1 and Pi−1, respectively. If b 6= b′, then S simulates the honest
parties aborting, and sends abort to Fshare. Otherwise, S sends (ti, si, v) to
Fshare, where v = a⊕ b.
As above, it is clear that A’s view is identical in both the real and ideal
executions. In addition, since (ti, si, v) fully determine the honest parties’
shares, and in both the real and ideal executions the parties hold shares of
v defined by (ti, si), we have that the joint distribution of the adversary’s
view and honest parties’ outputs is identical in both cases.

This concludes the proof.

Deferring compareview. The compareview step can be deferred to the end of
the input sharing step. When using this mechanism, the bits to be compared
are simply added to the parties local view and stored, and they are compared
at the end. enables us to have the parties compare their views by only sending
a collision-resistant hash of their outputs, thereby reducing communication. As
we will see below, this method will be used in a number of places, thus reducing
the communication cost incurred by compareview operations.

2.9 Triple Verification With Opening

A multiplication triple is a triple of shares ([a], [b], [c]) with the property that
c = a · b. Our protocol works by constructing triples and verifying that indeed
c = a · b. We begin by defining what it means for such a triple to be correct.

Definition 2.21. ([a], [b], [c]) is a correct multiplication triple if [a], [b] and [c]
are consistent sharings, and c = a · b.

18

In our main protocol for secure computation, the parties will generate mul-
tiplication triples in two steps:

1. The parties generate random sharings [a] and [b] by calling Frand twice.
2. The parties run the semi-honest multiplication protocol described in Section

2.2 to obtain [c].

Recall that by Lemma 2.4, the sharing [c] is always consistent. However, if one of
the parties is malicious, then it may be that c = ab⊕ 1. Protocol 2.22 describes
a method of verifying that a triple is correct. The protocol is very simple and
is based on the fact that if the shares are consistent and c 6= ab, then one of
the honest parties will detect this in the standard open procedure defined in
Section 2.1. This protocol is called verification “with opening” since the values
a, b, c are revealed.

PROTOCOL 2.22 (Triple Verification With Opening)

– Inputs: The parties holds the triple ([a], [b], [c]).
– The protocol:

1. The parties run the procedures open([a]), open([b]) and open([c]). De-
note the output of party Pj from the three procedures by aj , bj and
cj respectively.

2. Each party Pj checks that cj = aj ·bj . If no, it sends ⊥ to both parties
and aborts.

3. If no ⊥ message is received, each party outputs accept.

Lemma 2.23. If [a], [b], [c] are consistent shares, but ([a], [b], [c]) is not a correct
multiplication triple, then both honest parties output ⊥ in Protocol 2.22.

Proof: Let Pi be the corrupted party, and assume that [a], [b], [c] are consistent
shares, but ([a], [b], [c]) is not a correct multiplication triple. This implies that
c = a · b ⊕ 1. Therefore, in the open procedures, party Pi+2 will receive values
ai+2, bi+2, ci+2 such that ci+2 6= ai+2 · bi+2, and will send ⊥ to both parties.
(This holds since Pi+2 receives messages only from Pi+1 that are independent of
what Pi sends.) Thus, both honest parties will output ⊥.

2.10 Triple Verification Using Another (Without Opening)

We have seen how to check a triple by opening it and revealing its values a, b, c.
Such a triple can no longer be used in the protocol. In this section, we show
how to verify that a multiplication triple is consistent without opening it, by
using (and wasting) an additional random multiplication triple that is assumed
to be consistent. The method is described in Protocol 2.24. The idea behind the
protocol is as follows. Given shares of x, y, z and of a, b, c, the parties compute
and open shares of ρ = x ⊕ a and σ = y ⊕ b; these values reveal nothing about
x and y since a, b are both random. As we will show in the proof below, if one
of (x, y, z) or (a, b, c) is correct and the other is incorrect (e.g., x 6= y · z but
c = a · b) then z + c+ σ · a+ ρ · b+ ρ · σ = 1. Thus, this value can be computed
and opened by the parties. If x, y, z is incorrect and a, b, c is correct, then the
honest parties will detect this and abort. In order to save on communication,

19

PROTOCOL 2.24 (Triple Verif. Using Another Without Opening)

– Inputs: The parties hold a triple ([x], [y], [z]) to verify and an additional
triple ([a], [b], [c]).

– The protocol:
1. Each party locally computes [ρ] = [x]⊕ [a] and [σ] = [y]⊕ [b].
2. The parties run open([ρ]) and open([σ]), as defined in Section 2.1.

Denote by ρj and σj the respective output received by Pj in the
openings.

3. The parties run compareview(ρj , σj) by each Pj sending (ρj , σj) to
Pj+1. If a party sees different values, then it sends ⊥ to all parties
and outputs ⊥.

4. Each party Pj computes [z] ⊕ [c] ⊕ σj · [a] ⊕ ρj · [b] ⊕ ρj · σj . Denote
by (tj , sj) the result of the computation held by party Pj .

5. The parties run compareview(tj) by each Pj sending tj to Pj+1. Upon
receiving tj−1 from Pj−1, party Pj checks that sj = tj−1. If yes, it
outputs accept; else, it sends ⊥ to all other parties and outputs ⊥.

6. If no abort messages are received, then output accept.

we observe that if the value to be opened must equal 0 then it must hold that
sj = tj−1. Thus, it suffices for the parties to compare a single bit.

Lemma 2.25. If ([a], [b], [c]) is a correct multiplication triple and [x], [y], [z] are
consistent shares, but ([x], [y], [z]) is not a correct multiplication triple, then all
honest parties output ⊥ in Protocol 2.24.

Proof: Let Pi be the corrupted party. Assume that ([a], [b], [c]) is a correct
multiplication triple, that [x], [y], [z] are consistent sharings, but ([x], [y], [z]) is
not a correct multiplication triple. This implies that all values a, b, c, x, y, z are
well defined (from the honest parties’ shares) and that c = ab and z 6= xy.

Let ρ = x⊕ a and σ = y⊕ b. If Pj+1 receives an incorrect bit from Pj in the
openings of ρ and σ (i.e., if ρj 6= ρ or σj 6= σ) then it detects this in compareview
of Step 3 with Pj+2 and thus both honest parties output ⊥. (Observe that Pj+2

receives the openings from Pj+1 who is honest and thus it is guaranteed that
ρj+1 = ρ and σj+1 = σ.)

We now show that if Pi+1 and Pi+2 did not output ⊥ in Step 3 (and thus
σi+1 = σi+2 = σ and ρi+1 = ρi+2 = ρ), then Pi+1 and Pi+2 output ⊥ with
probability 1 in Step 5. In order to show this, we first show that in this case,
[z]⊕ [c]⊕σj · [a]⊕ρj · [b]⊕ρj ·σj = [1]. Observe that z 6= xy and thus z = xy⊕1,
and that σ = y ⊕ b and ρ = x⊕ a. Thus, we have:

[z]⊕ [c]⊕ σ[a]⊕ ρ[b]⊕ ρσ
= [xy ⊕ 1]⊕ [c]⊕ (y ⊕ b)[a]⊕ (x⊕ a)[b]⊕ (x⊕ a)(y ⊕ b)
= [xy ⊕ 1]⊕ [c]⊕ [(y ⊕ b)a]⊕ [(x⊕ a)b]⊕ (xy ⊕ ay ⊕ xb⊕ ab)
= [xy ⊕ 1⊕ c⊕ (y ⊕ b)a⊕ (x⊕ a)b⊕ xy ⊕ ay ⊕ xb⊕ ab]
= [xy ⊕ 1⊕ c⊕ ya⊕ ba⊕ xb⊕ ab⊕ xy ⊕ ay ⊕ xb⊕ ab]
= [1]

20

where the last equality follows from simple cancellations and the fact that by the
assumption c = ab. We therefore have that the honest parties hold a consistent
sharing of 1. Denoting the respective shares of Pi+1 and Pi+2 by (ti+1, si+1)
and (ti+2, si+2), by the definition of the secret-sharing scheme we have that
si+2 = ti+1 ⊕ 1 and so si+2 6= ti+1. This implies that Pi+2 sends ⊥ to all other
parties in Step 5 of the protocol, and all output ⊥.

Deferring compareview: As above, it is possible to defer all view comparisons
and save communication by comparing only the hash values of all the views seen
by the parties. However, for Lemma 2.25 to work when the views are deferred,
the hash of the string with all ρj , σj values must be compared and verified before
the second hash of the string which includes all of the tjs values. Thus, the
parties first check for cheating in the opening of ρ and σ, and only then, if there
was no abort, check equality to 0 by performing the second comparison. Observe
that in the second compareview, Pj includes tj in its joint view with Pj+1 and
includes sj in its joint view with Pj−1. Thus, the requirement that sj = tj−1

is automatically fulfilled by requiring that the pairwise views be the same. This
holds since Pj include sj in its view with Pj−1, whereas Pj−1 includes tj−1 in its
view with Pj . As a consequence, in the protocol when the second compareview is
deferred, each party stores two strings – one for its joint view with each of the
other parties – and hashes these two strings separately at the end of the protocol.
We remark that it is possible to use only a universal hash function by choosing
the function after the views have been fixed, if this is desired. Recall that in
compareview, it suffices for each party to send its view to one other party. Thus,
all communication in our protocol follows the pattern that Pi sends messages to
Pi+1 only, for every i ∈ {1, 2, 3}.

3 Secure Generation of Multiplication Triples – Ftriples

In this section, we present a three-party protocol for generating an array of
correct multiplication triples, as defined in Section 2.21. Formally, we securely
compute the functionality Ftriples defined in Functionality 3.1.

FUNCTIONALITY 3.1 (Ftriples – generating multiplication triples)

Let Pi be the corrupted party. Upon receiving N from P1, P2, P3, and receiv-

ing N triples of pairs
{

(tjai , s
j
ai), (t

j
bi
, sjbi), (t

j
ci , s

j
ci)
}N
j=1

from Pi, functionality

Ftriples works as follows:

– For j = 1, . . . , N , Ftriples chooses random aj , bj ∈ {0, 1} and computes
cj = ajbj .

– For j = 1, . . . , N , Ftriples defines a vector of sharings d = ([aj], [bj], [cj]).

The sharings are computed from
[
(tjai , s

j
ai), (t

j
bi
, sjbi), (t

j
ci , s

j
ci)
]

provided

by Pi and the chosen aj , bj , cj (as in Claim 2.1).
– Ftriples sends each party its shares in all of the generated shares.

21

We show how to securely compute Ftriples in Protocol 3.2. The idea behind the
protocol is as follows. The parties first use Frand to generate many shares of pairs
of random values [ai], [bi]. Next, they run the semi-honest multiplication protocol
of Section 2.2 to compute shares of ci = ai · bi. However, since the multiplication
protocol is only secure for semi-honest parties, a malicious adversary can cheat
in this protocol. We therefore utilize the fact that even if the malicious adversary
cheats, the resulting shares [ci] is consistent, but it may be the case that ci =
aibi ⊕ 1 instead of ci = aibi (see Claim 2.4). We therefore use cut-and-choose to
check that the triples are indeed correct. We do this by opening C triples using
Protocol 2.22; this protocol provides a full guarantee that the parties detect any
incorrect triple that is opened. Next, the parties randomly divide the remaining
triples into “buckets” of size B and use Protocol 2.24 to verify that the first
triple in the bucket is correct. Recall that in Protocol 2.24, one triple is used
to check another without revealing its values. Furthermore, by Lemma 2.25, if
the first triple is not correct and the second is, then this is detected by the
honest parties. Thus, the only way an adversary can successfully cheat is if (a)
no incorrect triples are opened, and (b) there is no bucket with both correct and
incorrect triples. Stated differently, the adversary can only successfully cheat if
there exists a bucket where all triples are incorrect. By appropriately choosing
the bucket-size B and number of triples C to be opened, the cheating probability
can be made negligibly small.

Proposition 3.3. Let N,B,C be such that N = CB2 and (B − 1) log2 C ≥ σ.
Then, Protocol 3.2 securely computes Ftriples with abort in the (Frand,Fperm)-
hybrid model, with statistical error 2−σ and in the presence of one malicious
party.

Proof Sketch: Intuitively, the triples generated are to random values since
Frand is used to generate [ai], [bi] for all i (note that in Ftriples the adversary
chooses its shares in [ai], [bi]; this is inherited from its capability in Frand). Then,
Protocol 2.22 is used to ensure that the first C triples are all correct (recall that
by Lemma 2.4, [ai], [bi], [ci] are all consistent sharings, and thus by Lemma 2.23
the honest parties output ⊥ if ci 6= aibi). Finally, Protocol 2.24 is used to verify
that all of the triples in d are correct multiplication triples. By Lemma 2.25, if
([a1], [b1], [c1]) in any of the buckets is not a correct multiplication triple, and
there exists a j ∈ {2, . . . , B} for which ([aj], [bj], [cj]) is a correct multiplication
triple, then the honest parties output ⊥ (note that once again by Lemma 2.4,
all of the shares are guaranteed to be consistent). Thus, the only way that di for
some i ∈ [N] contains an incorrect multiplication triple is if all of the C opened
triples were correct and the entire bucket Di contains incorrect multiplication
triples. Denote the event that this happens for some i by bad. By choosing B and
C so that Pr[bad] is negligible, the protocol is secure. Observe that the triples
are all generated and fixed before Fperm is called, and thus the probability that
bad occurs is equal to the balls-and-buckets game of [19,5], where the adversary
wins only if there exists no “mixed bucket” (containing both good and bad balls).
In [5, Proof of Lemma 12], it is shown that Pr[bad] < 2−σ when (B−1) log2 C ≥ σ

22

PROTOCOL 3.2 (Generating Multiplication triples)

– Input: The number N of triples to be generated.
– Auxiliary input: Parameters B and C.
– The Protocol:

1. Generate random sharings: The parties invoke 2(NB+C) calls to Frand;
denote the shares that they receive by [([ai], [bi])]

NB+C
i=1 .

2. Generate multiplication triples: For i = 1, . . . , NB + C, the parties
run the semi-honest multiplication protocol of Section 2.2 to compute
[ci] = [ai] · [bi]. Denote D = [([ai], [bi], [ci])]

NB+C
i=1 ; observe that [ci] is

the result of the protocol and is not necessarily “correct”.
3. Cut and bucket: Let M = NB + C. In this stage, the parties perform

a first verification that the triples were generated correctly by opening
C triples, and then randomly divide the remainder into buckets.
(a) The parties call Fperm with vector D.
(b) The parties run Protocol 2.22 (triple verification with opening) for

each of the first C triples in D, and remove them from D. If a
party did not output accept in every execution, it sends ⊥ to the
other parties and outputs ⊥.

(c) The remaining NB triples in D are divided into
N sets of triples D1, . . . ,DN , each of size B. For
i = 1, . . . , N , the bucket Di contains the triples
([a(i−1)·B+1], [b(i−1)·B+1], [c(i−1)·B+1]), ..., ([ai·B], [bi·B], [ci·B]).

4. Check buckets: The parties initialize a vector d of length N . Then, for
i = 1, . . . , N :
(a) Denote the triples in Dk by ([a1], [b1], [c1]), ..., ([aB], [bB], [cB]).
(b) For j = 2, . . . , B, the parties run Protocol 2.24 (triple verifica-

tion using another without opening) on input ([a1], [b1], [c1]) and
([aj], [bj], [cj]), to verify ([a1], [b1], [c1]).

(c) If a party did not output accept in every execution, it sends ⊥ to
the other parties and outputs ⊥.

(d) The parties set di = ([a1], [b1], [c1]); i.e., they store these shares in
the ith entry of d.

– Output: The parties output d.

(these parameters are derived from their notation by setting C = `, B = b and
N = `b2). For any σ, we therefore choose B and C such that N = CB2 and
(B − 1) log2 C ≥ σ, and the appropriate error probability is obtained.

Observe that simulation is easy; S receives N triples from the trusted party
and simulates the 2(NB+C) calls to Frand. S places the appropriate values from
the N triples in random places, and ensures that they will all be the first triple
in each bucket (by setting the output of Fperm appropriately). Then, S sends
continue to the trusted party if and only if A did not cheat in any multiplication.
The only difference between the protocol execution with A and the simulation
with S is in the case that bad occurs, which happens with negligible probability.

23

Concrete parameters. In our protocol, generation of triples is highly efficient.
Thus, we can generate a very large number of triples at once (unlike [19]) which
yields better parameters. In [19, Proof of Theorem 8] it was shown that when
the probability of a triple being incorrect is 1/2, the adversary can cheat with
probability at most 2−σ when (1 + log2N)(B − 1) ≥ σ. This implies that for
N = 220 and σ = 40, we can take B = 3 because (1+log2N)(B−1) > 21·2 > 40.
In order to make the probability of a triple being incorrect be (close to) 1/2,
we can set C = 3 · 220. This implies that the overall number of triples required
is 6 · 220.

An improved combinatorial analysis is provided in [5]. They show that when
setting N = CB2, the adversary can cheat with probability at most 2−σ when
(B − 1) log2 C ≥ σ (in [5], they write ` instead of C and b instead of B). In
order to minimize the number of triples overall, B must be kept to a minimum.
For N = 220 and σ = 40, one can choose B = 4 and C = 216. It then follows
that (B − 1) log2 C = 3 · 16 > 40. Thus, the overall number of triples required is
NB + C = CB3 + C = 222 + 216. Observe that these parameters derived from
the analysis of [5] yield approximately 2/3 the cost of 6 · 220 as required by the
analysis of [19]. (This follows because 6 · 220 = 3

2 · 2
22.)

In Section 5 we provide a new analysis showing that it suffices to generate 3 ·
220+3 triples. This is approximately 25% less than the analysis of [5]. Concretely,
to generate 1 million validated triples, the analysis of [5] requires generating
4,065,536 triples initially, whereas we require only 3,000,003.

Deferring compareview. In the execution of Protocol 2.24, the parties use the
compareview subprocedure. As explained before, the parties actually compare
only at the end of the entire triple-generation protocol, and compare a hash of
the view instead of the entire view, which reduces communication significantly.

Using pseudorandomness in Fperm. In practice, in order to reduce the com-
munication, the calls to Fcoin inside Fperm are only used in order to generate a
short seed. Each party then applies a pseudorandom generator to the seed in or-
der to obtain all of the randomness needed for computing the permutation. This
protocol actually no longer securely computes Fperm since the permutation is
not random, and the corrupted party actually knows that it is not random since
it has the seed. Nevertheless, by the proof of Proposition 3.3, we have that the
only requirement from Fperm is that the probability of bad happening is negligi-
ble. Now, since the triples are fixed before Fperm is called, the probability of bad
happening is simply the probability that a specific subset of permutations occur
(that map all of the incorrect triples into the same bucket/s). If this occurs with
probability that is non-negligibly higher than when a truly random permutation
is used, then this can be used to distinguish the result of the pseudorandom
generator from random.

4 Secure Computation of Any Functionality

In this section, we show how to securely compute any three party functionality f .
The idea behind the protocol is simple. The parties first use Ftriples to generate a

24

vector of valid multiplication triples. Next, the parties compute the circuit using
the semi-honest multiplication protocol of Section 2.2 for each AND gate. Recall
that by Lemma 2.4, the result of this protocol is a triple of consistent shares
([a], [b], [c]) where c = ab or c = ab⊕1, even when one of the parties is malicious.
Thus, it remains to verify that for each gate it holds that c = ab. Now, utilizing
the valid triples generated within Ftriples, the parties can use Protocol 2.24 to
verify that ([a], [b], [c]) is a correct multiplication triple (i.e., that c = ab) without
revealing anything about a, b or c. See Protocol 4.2 for a full specification.

We prove the following theorem:

Theorem 4.1. Let f be a three-party functionality. Then, Protocol 4.2 securely
computes f with abort in the (Ftriples,Fshare,Freconst)-hybrid model, in the pres-
ence of one malicious party.

Proof Sketch: Intuitively, the security of this protocol follows from the
following. If the adversary cheats in any semi-honest multiplication, then by
Lemma 2.25 the honest parties output ⊥. This holds because by Lemma 2.4 all
shares [x], [y], [z] are consistent (but z 6= xy), while ([ak], [bk], [ck]) is guaranteed
to be a correct multiplication triple since it was generated by Ftriples. Thus, the
adversary must behave honestly throughout, and the security is reduced to the
proof of security for the semi-honest case, as proven in [1].

The simulator for A works by playing the role of the trusted party for Ftriples

and Fshare, and then by simulating the semi-honest multiplication protocol in
the circuit emulation phase for every AND gate. The verification stage involving
executions of Protocol 2.24 is then simulated by S internally handing random
ρ, σ values to A as if sent by Pi−1. Since S plays the trusted party in Ftriples

and Fshare, it knows all of the values held and therefore can detect if A tries
to cheat. If yes, then it simulates the honest parties aborting, and sends ⊥ to
the trusted party as Pi’s input. Otherwise, it sends the input of Pi sent by A in
Fshare. Finally, after receiving Pi’s output from the trusted party computing f ,
S plays the ideal functionality computing Freconst. If A sends abort to Freconst

then S sends abort to the trusted party computing f ; otherwise, it sends continue.
We stress that the above simulation works since the semi-honest multiplication
protocol is private in the presence of a malicious adversary, meaning that its
view can be simulated before any output is revealed. This was shown in [1,
Section 4]. Thus, the view of a malicious A in the circuit-emulation phase is
simulated as in [1], and then the verification phase is simulated as described
above. This completes the proof sketch.

Generating many triples in the offline. In many cases, the circuit being
computed is rather small. However, the highest efficiency in Ftriples is achieved
when taking a very large N (e.g., N = 220). We argue that Ftriples can be run
once, and the triples used for multiple different computations. This is due to
the fact that the honest parties abort if any multiplication is incorrect, and
this makes no difference whether a single execution utilizing N gates is run, or
multiple executions.

25

PROTOCOL 4.2 (Securely Computing a Functionality f)

– Inputs: Each party Pj where j ∈ {1, 2, 3} holds an input xj ∈ {0, 1}`.
– Auxiliary Input: The parties hold a description of a boolean circuit C

that computes f on inputs of length `. Let N be the number of AND gates
in C.

– The protocol – offline phase: The parties call Ftriples with input N and
obtain a vector d of sharings.

– The protocol – online phase:
1. Sharing the inputs: For each input wire, the parties call Fshare with the

dealer being the party whose input is associated with that wire.
2. Circuit emulation: Let G1, ..., GN be a predetermined topological or-

dering of the gates of the circuit. For k = 1, ..., N the parties work as
follows:
• If Gk is a XOR gate: Given shares [x] and [y] on the input wires,

the parties compute [x]⊕ [y] and define the result as their share on
the output wire.

• If Gk is a NOT gate: Given shares [x] on the input wire, the parties
compute [x] and define the result as their share on the output wire.

• If Gk is an AND gate: Given shares [x] and [y] on the input
wires, the parties run the semi-honest multiplication protocol of
Section 2.2.

3. Verification stage: Before the secrets on the output wires are recon-
structed, the parties verify that all the multiplications were carried out
correctly, as follows. For k = 1, . . . , N :
(a) Denote by ([x], [y]) the shares of the input wires to the kth AND

gate, and denote by [z] the shares of the output wire of the kth
AND gate.

(b) The parties run Protocol 2.24 (triple verification using another
without opening) on input ([x], [y], [z]) and ([ak], [bk], [ck]) to verify
([x], [y], [z]).

(c) If a party did not output accept in every execution, it sends ⊥ to
the other parties and outputs ⊥.

Observe that all executions of Protocol 2.24 can be run in parallel. In
addition, compareview can be run twice at the end of all checks, and
using a hash of the view as described in Section 2.10.

4. If any party received ⊥ in any call to any functionality above, then it
outputs ⊥ and halts.

5. Output reconstruction: For each output wire of the circuit, the parties
call Freconst with input ([v], j) where [v] is the sharing of the value on
the output wire, and Pj is the party whose output is on the wire.

6. If a party received ⊥ in any call to Freconst then it sends ⊥ to the other
parties, outputs ⊥ and halts.

– Output: If a party has not output ⊥, then it outputs the values it received
on its output wires.

26

5 Improved Combinatorial Analysis

In this section we provide a tighter analysis of the probability that the adversary
succeeds in circumventing the computation without being caught. This analysis
allows us to reduce both the overall number of triples needed and the number of
triples that are opened in the cut-and-bucket process, compared to [19] and [5].
In our specific protocol, reducing the number of triples to be opened is of great
importance since generation of a triple requires 3 bits of communication, while
each opening requires 9 bits.

Loosely speaking, the adversary can succeed if the verification of an incorrect
AND gate computation is carried using an incorrect multiplication triple. This
event can only happen if no incorrect triples were opened and if the entire bucket
from which the incorrect triple came contained only incorrect triples. Otherwise,
the honest parties would abort in the triples-generation protocol, when running
the check phase. Since the triples are randomly assigned to buckets, the proba-
bility that this event occurs is small (which is what we need to prove). Clearly,
increasing the number of triples checked and the bucket size reduces the success
probability of the adversary. However, increasing these parameters raises the
computation and communication cost of our protocol. Thus, our goal is to min-
imize these costs by minimizing the number of triples generated (and opened).
We denote by σ the statistical parameter, and our aim to guarantee that the
adversary succeeds with probability at most 2−σ. Recall that C is the number
of triples opened in the cut-and-bucket process and B is the size of the bucket.
We start by defining the following balls-and-buckets game, which is equivalent
to our protocol (in the game, a “bad ball” is an incorrect multiplication triple).
We say that the adversary “wins”, if the output of the game is 1.

Game1(A, N,B,C):

1. The adversary A prepares M = NB +C balls. Each ball can be either bad
or good.

2. C random balls are chosen and opened. If one of the C balls is bad then
output 0. Otherwise, the game proceeds to the next step.

3. The remaining NB balls are randomly divided into N buckets of equal size
B. Denote the buckets by B1, ..., BN . We say that a bucket is fully bad if
all balls inside it are bad. Similarly, a bucket is fully good if all balls inside
it are good.

4. The output of the game is 1 if and only if there exists i such that bucket Bi
is fully bad, and all other buckets are either fully bad or fully good.

Note that the condition in the last step forces the adversary to choose at
least one bad ball if it wishes to win. We first show that for A to win the game,
the number of bad balls A chooses must be a multiple of B, the size of a bucket.

Lemma 5.1. Let T be the number of bad balls chosen by the adversary A. Then,
a necessary condition for Game1(A, N,B,C) = 1 is that T = B·t for some t ∈ N.

27

Proof: This follows immediately from the fact that the output of the game is
1 only if no bad balls are opened and all buckets are fully bad or good. Thus, if
T 6= B · t, then either a bad ball is opened or there must be some bucket that is
mixed, meaning that it has both bad and good balls inside it. Therefore, in this
case, the output of the game will be 0.

Following Lemma 5.1, we derive a formula for the success probability of the
adversary in the game. We say that the adversary A has chosen to “corrupt“ t
buckets if t = T

B , where T is the number of bad balls generated by the adversary.

Theorem 5.2. Let t be the number of buckets A has chosen to corrupt. Then,
for every 0 < t ≤ N it holds that

Pr[Game1(A, N,B,C) = 1] =

(
N

t

)(
NB + C

tB

)−1

.

Proof: Assume A has chosen to corrupt t buckets. i.e., A has generated tB
bad balls. Let Ec be the event that no bad balls were detected when opening C
random balls. We have:

Pr[Ec] =

(
NB+C−tB

C

)(
NB+C
C

) =
(NB + C − tB)!(NB)!

(NB − tB)!(NB + C)!
.

Next, let EB the event that the bad balls are in exactly t buckets after
permuting the balls (and so there are t fully bad buckets and all other buckets
are fully good). There are (NB)! ways to permute the balls, but if we require
the tB bad balls to fall in exactly t buckets then we first choose t buckets out of
N , permute the tB balls inside them, and finally permute the other NB − tB
balls in the other buckets. Overall, we obtain that

Pr[EB] =

(
N
t

)
(tB)!(NB − tB)!

(NB)!
.

Combining the above, we obtain that

Pr[Game1(A, N,B,C) = 1] = Pr[Ec ∧ EB] = Pr[Ec] · Pr[EB]

=

(
N

t

)
(NB + C − tB)!(tB)!

(NB + C)!

=

(
N

t

)(
NB + C

tB

)−1

.

Next, we show that if C ≥ B, then the best strategy of the adversary is
to corrupt exactly one bucket. This allows us to derive an upper bound of the
success probability of the adversary.

Theorem 5.3. If C ≥ B, then for every adversary A, it holds that

Pr[Game1(A, N,B,C) = 1] ≤ N
(
NB + C

B

)−1

.

28

Proof: Following Theorem 5.2, we need to show that for every t ≥ 1(
N

t

)(
NB + C

tB

)−1

≤ N
(
NB + C

B

)−1

.

First, observe that when t = 1, the left side of the inequality is exactly the
same as its right side, and thus the theorem holds.

Next, assume that t ≥ 2; It is suffices to show that:(
N

t

)(
NB + C

tB

)−1

≤
(
NB + C

B

)−1

which is equivalent to proving that(
N

t

)
(tB)!(NB + C − tB)!

(NB + C)!
≤ B!(NB + C −B)!

(NB + C)!

which is in turn equivalent to proving that(
N

t

)
(tB)!

B!
≤ (NB + C −B)!

(NB + C − tB)!
.

By multiplying both sides of the inequality with 1
(tB−B)! we obtain that in

order to complete the proof, it suffices to show that(
N

t

)(
tB

tB −B

)
≤
(
NB + C −B
tB −B

)
. (1)

Using the assumption that C ≥ B, we obtain that instead of proving Eq. (1),
it is sufficient to prove that(

N

t

)(
tB

tB −B

)
≤
(

NB

tB −B

)
. (2)

To see that Eq. (2) holds, consider the following two combinatorial processes:

1. Choose t buckets out of N . Then, choose tB−B out of the tB balls in these
buckets.

2. Choose tB −B out of NB balls.

Note that since t ≥ 2, it holds that tB − B > 0, and the processes are well
defined. Next, observe that both processes end with holding tB − B balls that
were chosen from an initial set of NB balls. However, while in the second process
we do not place any restriction on the selection process, in the first process we
require that t buckets will be chosen first and then the tB −B balls are allowed
to be chosen only from the t buckets. Thus, the number of choice options in
the second process is strictly larger than in the first process. Finally, since the
first process describes exactly the left side of Eq. (2), whereas the second process
describes exactly the right side of Eq. (2), we conclude that the inequality indeed
holds.

29

Corollary 5.4. If C = B and B,N are chosen such that σ ≤ log
(

(N ·B+B)!
N ·B!·(N ·B)!

)
,

then for every adversary A it holds that Pr[Game1(A, N,B,C) = 1] ≤ 2−σ.

Proof: This holds directly from Theorem 5.3, which holds if C ≥ B. Since
this holds for any C ≥ B, we set C = B in the bound of Theorem 5.3, and have
that the bound is fulfilled if

N

(
NB +B

B

)−1

≤ 2−σ and so
1

N
·
(
NB +B

B

)
≥ 2σ.

Taking log of both sides yields the result.

Corollary 5.4 provides us a way of computing the bucket size B for every
possible N and σ. For example, setting N = 220 and σ = 40 (meaning that we
want to output 220 triples from the pre-processing protocol with error probability
less than 2−40), we obtain that B = 3 suffices and we need to generate NB +
C = 3 · 220 + 3 triples, of which only 3 triples are opened. We performed this
computation for N = 220, 230 and σ = 40, 80, 128 and compared the results
with [5] (recall that according to their analysis, when setting N = CB2, the
adversary can cheat with probability at most 2−σ when (B − 1) log2 C ≥ σ).
The comparison is presented in Tables 1, 2 and 3. In the tables, we use “M” to
denote the number of triples that are initially generated, i.e., M = NB + C in
our work whereas M = CB3 + C in [5].

N = 220 N = 230

B M C B M C

[5] 4 4,259,840 65,536 3 3,340,530,119 119,304,647

Our work 3 3,145,731 3 3 3,221,225,475 3

Table 1. Parameter comparison for σ = 40

N = 220 N = 230

B M C B M C

[5] 7 7,361,432 21,400 5 5,411,658,793 42,949,673

Our work 5 5,242,885 5 4 4,294,967,300 4

Table 2. Parameter comparison for σ = 80

N = 220 N = 230

B M C B M C

[5] 10 10,496,246 10,486 6 6,427,277,106 29,826,162

Our work 7 7,340,039 7 5 5,368,709,125 5

Table 3. Parameters comparison for σ = 120

As can be seen, in all cases, our combinatorial analysis yields a significant
improvement, both in the number of generated triples and in the number of
triples needed to be opened. Specifically, although only few triples are opened,
we reduce the overall number of triples generated by up to 25%, compared to [5].
Recall that both improvements are important, as each triple less to generate
means 1 bit less to send for each party, and each triple less to open means 3 bit
less to send for each party.

30

6 Efficiency and Comparison

In this section, we describe the communication and computation complexity of
(the computationally secure variant of) our protocol. We compare our protocol
to that of [18], since this is the most efficient protocol known for our setting of
three parties, malicious adversaries, and an honest majority. The complexity of
the protocol in [18] is close to Yao’s two-party semi-honest protocol, and thus
its communication complexity is dominated by the size of the garbled circuit
and its computation complexity is dominated by the amount of work needed to
prepare a garbled circuit and evaluate it. The comparison summary is shown in
Table 4; for our protocol, the complexity is based on a bucket size of B = 3. A
detailed explanation appears below.

Communication (bits) Number of AES computations

Our protocol 10N 20N+3N log(3N))
128

≈ N
5

The protocol of [18] 85N 3N

Table 4. Average cost per party (N = number of AND gates in the circuit)

Communication Complexity. We count the number of bits sent by each party
for each AND gate. The semi-honest multiplication protocol requires sending a
single bit, and verifying a triple using another without opening requires sending
2 bits (only very few triples are checked with opening and so we ignore this).
Now, a single multiplication and a single verification is used for each AND gate
(3 bits). Furthermore, each triple is generated from B triples (generated using
B multiplications) and B − 1 verifications, thereby costing B + 2(B − 1) bits.
The overall cost per gate is therefore B+2B−2+3 = 3B+1. For B = 3 (which
suffices with N = 220 and error 2−40), we conclude that only 10 bits are sent by
each party per gate.

In contrast, in [18], the communication is dominated by a single garbled
circuit. When using the half-gates optimization of [24], such a circuits consists
of two ciphertexts per AND gate with a size of 256 bits. Thus, on average, each
party sends 256/3 ≈ 85 bits per AND gate.

Number of AES computations. The computations in our protocol are very
simple, and the computation complexity is therefore dominated by the AES com-
putations needed to generated randomness (in the multiplication and to compute
correlated randomness). Two bits of pseudorandomness are needed for each call
to Fcr to generate correlated randomness. In order to generate a triple, 2 calls to
Fcr are required and an additional call for the multiplication, for a total of 6 bits.
For every AND gate, B triples are generated and one additional multiplication
is carried out for the actual gate, resulting in a total of 6B+ 2 bits. In addition,
Fperm requires an additional NB log(NB) bits of pseudorandomness. Thus, the
total number of pseudorandom bits for N gates equals (6B+2)N+NB log(NB);
taking B = 3 as above, we have 20N + 3N(log 3N). Noting that 128-bits of

31

pseudorandomness are generated with a single AES computation, this requires
20N+3N(log 3N)

128 ≈ N
5 calls to AES.

In contrast, in the protocol of [18], two parties need to garble the circuit
and one needs to evaluate it. Garbling a circuit requires 4 AES operations per
AND gate and evaluating requires 2 operations per AND gate. Thus, the average
number of AES operations is 10

3 ≈ 3 per party per AND gate.

References

1. T. Araki, J. Furukawa, Y. Lindell, A. Nof and K. Ohara. High-Throughput Semi-
Honest Secure Three-Party Computation with an Honest Majority. To appear
in the 23rd ACM CCS, 2016.

2. D. Beaver. Efficient Multiparty Protocols Using Circuit Randomization. In
CRYPTO 1991, Springer (LNCS 576), pages 420–432, 1992.

3. D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols.
In the 22nd STOC, pages 503–513, 1990.

4. M. Ben-Or, S. Goldwasser, A. Wigderson. Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation. STOC 1988 : 1-10

5. S.S. Burra, E. Larraia, J.B. Nielsen, P.S. Nordholt, C. Orlandi, E. Orsini,
P. Scholl, and N.P. Smart. High Performance Multi-Party Computation for Bi-
nary Circuits Based on Oblivious Transfer. ePrint Cryptology Archive, 2015/472.

6. R. Canetti. Security and Composition of Multiparty Cryptographic Protocols.
Journal of Cryptology, 13(1):143–202, 2000.

7. R. Canetti. Universally Composable Security: A New Paradigm for Crypto-
graphic Protocols. In 42nd FOCS, pages 136–145, 2001.

8. D. Chaum, C. Crépeau and I. Damg̊ard. Multi-party Unconditionally Secure
Protocols. In 20th STOC, pages 11–19, 1988.

9. I. Damg̊ard, V. Pastro, N.P. Smart and S. Zakarias. Multiparty Computation
from Somewhat Homomorphic Encryption. In CRYPTO 2012, Springer (LNCS
7417), pages 643–662, 2012.

10. R.A. Fisher and F. Yates. Statistical Tables for Biological, Agricultural and Med-
ical Research (3rd ed.). Oliver & Boyd. pages 26-27, 1938.

11. O. Goldreich. Foundations of Cryptography: Volume 2 – Basic Applications.
Cambridge University Press, 2004.

12. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. 19th
STOC, 218–229, 1987.

13. S. Goldwasser and Y. Lindell. Secure Computation Without Agreement. In the
Journal of Cryptology, 18(3):247-287, 2005.

14. M. Keller, E. Orsini and P. Scholl. MASCOT: Faster Malicious Arithmetic Se-
cure Computation with Oblivious Transfer. In the 23rd ACM CCS, pages 830–
842, 2016.

15. E. Kushilevitz, Y. Lindell and T. Rabin. Information-Theoretically Secure Pro-
tocols and Security Under Composition. In the SIAM Journal on Computing,
39(5):2090–2112, 2010.

16. Y. Lindell and B. Pinkas. Secure Two-Party Computation via Cut-and-Choose
Oblivious Transfer. In the 8th TCC, Springer (LNCS 6597), 329–346, 2011.

17. Y. Lindell and B. Riva. Blazing Fast 2PC in the Offline/Online Setting with
Security for Malicious Adversaries. In ACM Conference on Computer and Com-
munications Security, pages 579–590, 2015.

32

18. P. Mohassel, M. Rosulek and Y. Zhang. Fast and Secure Three-party Compu-
tation: The Garbled Circuit Approach. In ACM Conference on Computer and
Communications Security, pages 591–602, 2015.

19. J.B. Nielsen, P.S. Nordholt, C. Orlandi and S.S. Burra. A New Approach to
Practical Active-Secure Two-Party Computation. In CRYPTO 2012, Springer
(LNCS 7417), pages 681–700, 2012.

20. T. Rabin and M. Ben-Or. Verifiable Secret Sharing and Multi-party Protocols
with Honest Majority. In 21st STOC, pages 73–85, 1989.

21. P. Rindal and M. Rosulek. Faster Malicious 2-Party Secure Computation with
Online/Offline Dual Execution. In USENIX Security Symposium, pages 297–
314, 2016.

22. Sharemind, Cybernetica. https://sharemind.cyber.ee.
23. A. Yao. How to Generate and Exchange Secrets. In the 27th FOCS, pages

162–167, 1986.
24. S. Zahur, M. Rosulek and D. Evans: Two Halves Make a Whole – Reducing

Data Transfer in Garbled Circuits Using Half Gates. In EUROCRYPT 2015,
Springer (LNCS 9057), pages 220–250, 2015.

A Definition of Security

The security parameter is denoted n; negligible functions and computational
indistinguishability are defined in the standard way, with respect to non-uniform
polynomial-time distinguishers.

Ideal versus real model definition. We use the ideal/real simulation paradigm
in order to define security, where an execution in the real world is compared to
an execution in an ideal world where an incorruptible trusted party computes
the functionality for the parties [6,11]. For the sake of clarity, we present our def-
inition specifically for the three-party case with one party corrupted. We define
security with abort (and without fairness), meaning that the corrupted party may
receive output while the honest parties do not. Our definition does not guaran-
tee unanimous abort, meaning that some honest party may receive output while
the other does not. It is easy to modify our protocols so that the honest parties
unanimously abort by running a single (weak) Byzantine agreement at the end
of the execution [13]; we therefore omit this step for simplicity.

Note that with an honest majority, it is possible to achieve fairness (assuming
a broadcast channel). Nevertheless, our protocol does not guarantee this, and
we do not know how to modify it to guarantee fairness without significantly
sacrificing efficiency,

The real model. In the real model, a three-party protocol π is executed by
the parties. For simplicity, we consider a synchronous network that proceeds in
rounds and a rushing adversary, meaning that the adversary receives its incoming
messages in a round before it sends its outgoing message.3 The adversary A can

3 This modeling is only for simplicity, since in our protocol, all parties receive and send
messages in each round. Thus, by instructing each party to only send their round
i + 1 messages after receiving all round-i messages, we have that an execution of

33

be malicious; it sends all messages in place of the corrupted party, and can follow
any arbitrary strategy. The honest parties follow the instructions of the protocol.

Let A be a non-uniform probabilistic polynomial-time adversary controlling
party Pi for i ∈ {1, 2, 3}. Let realπ,A(z),i(x1, x2, x3, n) denote the output of the
honest parties and A in an real execution of π, with inputs x1, x2, x3, auxiliary-
input z for A, and security parameter n.

The ideal model. We define the ideal model, for any (possibly reactive) func-
tionality F , receiving inputs from P1, P2, P3 and providing them outputs. Let
i ∈ {1, 2, 3} be the index of the corrupted party controlled by the adversary. The
ideal execution proceeds as follows:

– Send inputs to the trusted party: Each honest party Pj sends its speci-
fied input xj to the trusted party. The corrupted party Pi controlled by the
adversary may either send its specified input xi, some other x′i or an abort
message.

– Early abort option: If the trusted party received abort from the corrupted
Pi, it sends ⊥ to all messages and terminates. Otherwise, it proceeds to the
next step.

– Trusted party sends output to the adversary: The trusted party com-
putes each party’s output as specified by the functionality F based on the
inputs received; denote the output of Pj by yj . The trusted party then sends
yi to the corrupted party.

– Adversary instructs trusted party to continue or halt: For each j ∈
{1, 2, 3} with j 6= i, the corrupted party sends the trusted party either abortj
or continuej . For each j 6= i:
• If the trusted party received abortj then it sends Pj the abort value ⊥

for output.
• If the trusted party received continuej then it sends Pj its output value yj .

– Outputs: The honest parties always output the output value they obtained
from the trusted party, and the corrupted party outputs nothing.

Let S be a non-uniform probabilistic polynomial-time adversary controlling
party Pi for i ∈ {1, 2, 3}. Let idealF,S(z),i(x1, x2, x3, n) denote the output of
the honest parties and S in an ideal execution with the functionality F , inputs
x1, x2, x3 to the parties, auxiliary-input z to S, and security parameter n.

Security. Informally speaking, the definition says that protocol π securely
computes f if adversaries in the ideal world can simulate executions of the real
world protocol. In some of our protocols there is a statistical error that is not
dependent on the computational security parameter. As in [16], we formalize
security in this model by saying that the distinguisher can distinguish with
probability at most this error plus some factor that is negligible in the security
parameter. This is formally different from the standard definition of security
since the statistical error does not decrease as the security parameter increases.

the protocol in an asynchronous network is the same as for a rushing adversary in a
synchronous network. Note that we do not guarantee output delivery, so “hanging”
of the protocol is also allowed.

34

Definition A.1. Let F be a 3-party functionality, and let π be a 3-party proto-
col. We say that π securely computes f with abort in the presence of one mali-
cious party, if for every non-uniform probabilistic polynomial-time adversary A
in the real world, there exists a non-uniform probabilistic polynomial-time sim-
ulator/adversary S in the ideal model with F , such that for every i ∈ {1, 2, 3},{

idealF,S(z),i(x1, x2, x3, n)
}

c≡
{
realπ,A(z),i(x1, x2, x3, n)

}
where x1, x2, x3 ∈ {0, 1}∗ under the constraint that |x1| = |x2| = |x3|, z ∈ {0, 1}∗
and n ∈ N. We say that π securely computes f with abort in the presence of one
malicious party with statistical error 2−σ if there exists a negligible function µ(·)
such that the distinguishing probability of the adversary is less than 2−σ +µ(n).

The hybrid model. We prove the security of our protocols in a hybrid model,
where parties run a protocol with real messages and also have access to a trusted
party computing a subfunctionality for them. The modular sequential compo-
sition theorem of [6] states that one can replace the trusted party computing
the subfunctionality with a real secure protocol computing the subfunction-
ality. When the subfunctionality is g, we say that the protocol works in the
g-hybrid model.

Universal Composability [7]. Protocols that are proven secure in the univer-
sal composability framework have the property that they maintain their security
when run in parallel and concurrently with other secure and insecure protocols.
In [15, Theorem 1.5], it was shown that any protocol that is proven secure with a
black-box non-rewinding simulator and also has the property that the inputs of
all parties are fixed before the execution begins (called input availability or start
synchronization in [15]), is also secure under universal composability. Since the
input availability property holds for all of our protocols and subprotocols, it is
sufficient to prove security in the classic stand-alone setting and automatically
derive universal composability from [15]. We remark that this also enables us to
call the protocol and subprotocols that we use in parallel and concurrently (and
not just sequentially), enabling us to achieve more efficient computation (e.g., by
running many executions in parallel or running each layer of a circuit in parallel).

Conditional security. In one of our constructions (securely computing Freconst

in Section 2.7), we only prove security on the condition that the honest parties’
inputs fulfill some condition. Then, in our protocols, whenever Freconst is called, it
is always guaranteed that the condition is fulfilled. Thus, intuitively this suffices.
We now explain formally why this is sufficient. The reason is that it is always
possible to define the ideal functionality so that the trusted party first checks if
the condition holds. If yes, then it computes the output as specified. Otherwise, it
provides the adversary with the honest parties’ inputs and lets it determine their
outputs. Now, if a protocol securely computes the original functionality when
the condition holds, then it securely computes the modified functionality without
any condition. The reason for this is as follows: if the condition holds, then the
protocol is secure by assumption and the original simulator can be used; if the

35

condition does not hold, then the simulator receives the honest parties’ inputs
and so can perfectly simulate an execution by running the honest parties and
then sending the functionality the output they would receive in a real execution.
Finally, observe that as long as the protocol is only used when the condition is
fulfilled, this addition to the functionality makes no differences (since it is never
called). We therefore conclude that it is possible to define conditional security
and use the functionality with all the benefits of modular composition and so on.

36

	High-Throughput Secure Three-Party Computation for Malicious Adversaries and an Honest Majority

