
A Key Recovery Attack on MDPC with CCA
Security Using Decoding Errors

Qian Guo1?, Thomas Johansson1?, and Paul Stankovski1?

Dept. of Electrical and Information Technology, Lund University, Lund, Sweden
{qian.guo,thomas.johansson,paul.stankovski}@eit.lth.se

Abstract. Algorithms for secure encryption in a post-quantum world
are currently receiving a lot of attention in the research community,
including several larger projects and a standardization effort from NIST.
One of the most promising algorithms is the code-based scheme called
QC-MDPC, which has excellent performance and a small public key size.
In this work we present a very efficient key recovery attack on the QC-
MDPC scheme using the fact that decryption uses an iterative decoding
step and this can fail with some small probability. We identify a depen-
dence between the secret key and the failure in decoding. This can be
used to build what we refer to as a distance spectrum for the secret key,
which is the set of all distances between any two ones in the secret key. In
a reconstruction step we then determine the secret key from the distance
spectrum. The attack has been implemented and tested on a proposed
instance of QC-MDPC for 80 bit security. It successfully recovers the
secret key in minutes.
A slightly modified version of the attack can be applied on proposed
versions of the QC-MDPC scheme that provides IND-CCA security. The
attack is a bit more complex in this case, but still very much below the
security level. The reason why we can break schemes with proved CCA
security is that the model for these proofs typically does not include the
decoding error possibility.

Keywords: CCA-security, key-recovery attack, post-quantum cryptog-
raphy, QC-MDPC, reaction attack.

1 Introduction

Given the existence of a large quantum computer, cryptosystems based on fac-
toring or discrete logarithm will no longer be secure, as a quantum computer
is able to solve both problems in polynomial time [33]. However, it is not yet
known to what extent a future quantum computer can be used to successfully
solve other types of problems. New algorithms for secure encryption in a post-
quantum world (when large quantum computers exist) are currently receiving
a lot of attention in the research community, including several larger projects
and a standardization effort from NIST [9]. It is often mentioned that the new
? Supported by the Swedish Research Council (Grants No. 2015-04528).

schemes could be from one of the areas: lattice-based, code-based, hash-based
and multi-variate [5].

For code-based schemes, the basic construction is the McEliece public-key
cryptosystem (PKC) [28], based on the hardness of decoding a random linear
code. The general idea is to transform polynomially solvable instance of the prob-
lem into something that looks like a random instance. In this case we transform
the generator matrix of a code with simple and efficient decoding to a generator
matrix for a randomly looking code. Not knowing the inverse of this transfor-
mation, the attacker is facing a presumably hard problem, namely, decoding the
random code.

The McEliece PKC has been extensively analyzed over a period of more than
thirty years, and is still regarded secure in its original form using Goppa codes.
Several other underlying codes have been proposed, but many of them have been
broken [30]. A problem with the original McEliece construction is the size of the
public key. McEliece proposed to use the generator matrix of a linear code as
public key. The public key for the originally proposed parameters is roughly 500
Kbits. Although this can be managed today, it has motivated various attempts
to decrease the key sizes but most of them have been unsuccessful.

Recently however, a very interesting version of the McEliece PKC was pro-
posed, the QC-MDPC scheme [29]. This is a McEliece PKC that uses so-called
moderate density parity check codes (MDPC codes) in quasi-cyclic (QC) form.
The quasi-cyclic form allows us to represent a matrix by its first row, which leads
to a small public key. As the MDPC codes have a random component, there is
no need for scrambling and permutation matrices. Instead, the generator matrix
is presented in systematic form. The QC-MDPC proposal with suitable param-
eters is yet unbroken and it is particularly interesting because of its simplicity
and smaller key size.

An European initiative, PQCRYPTO, sponsored by the European Commis-
sion under its Horizon 2020 Program ICT-645622, is »developing cryptology
that resists the unmatched power of quantum computers«. In September 2015
this group of researchers published a report entitled “Initial Recommendation
of long-term secure post-quantum systems” [1], where they recommended sev-
eral algorithms as being ready for use and several others that warrant further
study and may be recommended in coming years. This report recommends the
QC-MDPC scheme for further study, confirming its competitiveness as a post-
quantum candidate.

Many papers on its implementation have appeared since the introduction
of the QC-MDPC scheme. In [15] and [24], the QC-MDPC McEliece is imple-
mented in hardware using the same parameters that we attack in this paper.
Implementation with side-channel protection is considered in [25].

1.1 Attack Models and Previous Work

In code-based public-key cryptography, one is typically concerned with two types
of attacks: structural attacks and decoding attacks. Structural attacks aim to
recover the secret code - key recovery, while the decoding attacks target an

2

intercepted ciphertext and tries to recover the transmitted plaintext - message
recovery. The plain versions of code-based schemes are designed to be secure in
the chosen plaintext attack (CPA) model and it is known that chosen ciphertext
attacks (CCA) can break them. To achieve security against adaptive chosen
ciphertext attacks (CCA2), the schemes need to be converted. There are several
standard conversions to achieve CCA2 security from CPA security, [4,21], and
basically the decoding problem is changed in such a way that the noise added in
the encryption is no longer in control by Alice who is encrypting.

The standard attacks on the original McEliece scheme can be applied on
the QC-MDPC scheme. These attacks are decoding attacks using information
set decoding algorithms, typically improved versions of the Stern algorithm [3].
These attacks are message recovery attacks and can be applied in a few different
scenarios, one of them being the "decoding one-out-of-many" [20,32]. The family
of MDPC codes have parity checks of moderate weight (low but not very low).
In a structural attack, one can thus consider the dual code, which is given from
the generator matrix, and search for low weight codewords in the dual code.
This is again done by the same type of algorithms as above. Being well known
attacks, the instantiation of QC-MDPC schemes make sure that the computa-
tional complexity for these attacks are well beyond the selected security limit.
More details can be found in for example [30,31].

For a plain QC-MDPC scheme without CCA2 conversion we can identify
a few attacks that require more than the CPA assumption. Using a partially
known plaintext attack [7], the attacker can reduce the code dimension in the
decoding and thus achieve a lower complexity for the information set decoding.
In a resend attack, Alice is resending the same message twice, or possible two
related messages. Also in this case we can efficiently find the message [6]. A
reaction attack [14] is a weaker version of a chosen ciphertext attack. The attacker
sends an intercepted ciphertext with a modification (for example adding a single
bit) and observes the reaction of the recipient (but not the result of decoding).
Again, one can in certain cases efficiently find the message corresponding to
the intercepted ciphertext. It is worth noting that all these attacks are message
recovery attacks.

As mentioned before, to achieve a stronger security notion, the QC-MDPC
scheme (as any McEliece PKC) can use a CCA2 conversion [21,26]. In this case,
the above attacks are no longer possible. So to summarize the current state-of-
the-art regarding attacks, for the plain schemes we have possibly some message
recovery attacks using the model of reaction attacks. For CCA2 secure versions,
we have no known successful attacks.

1.2 Contributions

Our basic scenario is the following. Bob has publicly announced his public key
and Alice is continuously sending messages to him using the QC-MDPC scheme.
Occasionally, Bob will suffer from a decoding error and will tell Alice, who may
retransmit or simply discard sending that message. After sending a number of

3

messages, Alice will be able to recover Bob’s secret key using our proposed
attack.

We present a very efficient key recovery attack on the QC-MDPC scheme
using the fact that decryption uses an iterative decoding step and this can fail
with some small probability. We identify a dependence between the secret key
and the failure in decoding. This can be used to build what we call a distance
spectrum for the secret key, which is the set of all distances between any two
ones in the secret key. In a reconstruction step we then determine the secret key
from the distance spectrum. The attack has been implemented and tested on a
proposed instance of QC-MDPC for 80 bit security. It successfully recovers the
secret key in minutes.

A slightly modified version of the attack can be applied on proposed versions
of the QC-MDPC scheme that provides CCA2 security. The attack is a bit more
complex in this case, but still very much below the security level. The reason
why we can break schemes with proved CCA2 security is that the model for
these proofs typically does not include the decoding error possibility. A similar
situation has been identified and analyzed for the lattice-based scheme NTRU
(NTRUEncrypt) [18,19].

The paper is organized as follows. We give some background in Section 2 and
describe the QC-MDPC scheme in Section 3. We then present an overview of our
new attack in Section 4 and give some related analysis in Section 5. In Section 6
we consider the case when we have a CCA2 converted version and demonstrate
that a modified version of the attack is still valid. Section 7 presents some results
from implementing the different steps of the attack. Finally, we conclude the
paper in Section 8.

2 Background in Coding Theory and Public-Key
Cryptography

Let us start by reviewing some basics from coding theory and how it can be
applied to public-key cryptography through the McEliece PKC.

Definition 1 (Linear codes) An [n, k] linear code C over a finite field Fq is a
linear subspace of Fnq of dimension k.

Definition 2 (Generator matrix) A k × n matrix G with entries from Fq
having rowspan C is a generator matrix for the [n, k] linear code C.

Equivalently, C is the kernel of an (n− k)× n matrix H called a parity-check
matrix of C. We then have cHT = 0, if and only if c ∈ C, where HT denotes the
transpose of H.

A code C can be represented by different generator matrices. An important
representation is the systematic form, i.e., when each input symbol are in one-
to-one correspondence with a position in the codeword. Then, one can find a
k × k submatrix of G forming the identity matrix. After a row permutation we

4

can consider G in the form G =
(
I P
)
. If G has the form G =

(
I P
)
, then

H =
(
−PT I

)
.

The Hamming weight wH (x) of a vector in x ∈ Fnq is the number of nonzero
entries in the vector. The minimum (Hamming) distance of the code C is defined
as d def

= minx,y∈C wH (x− y), where x 6= y. Continuing, we only consider the
binary case q = 2.

Definition 3 (Quasi-cyclic codes) An [n, k]-quasi-cylic (QC) code C is a lin-
ear block code such that for some integer n0, every cyclic shift by n0 is again a
codeword.

In particular, if n = n0k, then a generator matrix of the form

G =
(
I P0 P1 · · · Pn0−1

)
is a useful way to represent a QC code, where Pi is a k×k cyclic matrix, i.e. the
rows (or columns) of P is obtained by cyclic rotation of the first row one step.
Also, the algebra of k× k binary circulant matrices is isomorphic to the algebra
of polynomials modulo xk + 1 over F2, allowing an alternative description.

Another useful class of codes is the low-density parity-check code (LDPC)
defined as a linear code that admits a sparse parity-check matrix H, where
sparsity means that each row of H has at most w ones, for some small w. This
sparse matrix can be represented in the form of a bipartite graph, that consists of
n−k upper nodes (named “check node”) representing the n−k parity equations
and n lower nodes (named “variable node”) representing the n codeword bits.
A variable node is connected to a check node if the variable is present in that
parity check. Each check node is then connected to w variable nodes. We call
this graph representation a “Tanner” graph, which is a frequently used term in
work on iterative decoding algorithms.

2.1 McEliece Cryptosystem

In 1978 McEliece showed how a public key cryptosystem (PKC) could be con-
structed using tools from coding theory. We shortly describe the original McEliece
PKC here. This scheme uses three matrices G,S,P, where G is a k × n gen-
erator matrix of a binary [n, k, 2t + 1] linear code. The original and still secure
proposal in [28] is to use Goppa codes (see [13,23]). Then S a k × k random
binary non-singular matrix (called the scrambling matrix), and P is an n × n
random permutation matrix (called the permutation matrix). As designers we
compute the new k × n matrix G′ = SGP. The scheme works as follows:

– Private Key: (G,S,P).
– Public Key: (G′, t)
– Encryption: A message m is mapped to a ciphertext c by c = mG′ + e,

where c is the n-bit ciphertext, m is the k-bit plaintext and e an n-bit error
vector with (Hamming) weight t.

5

– Decryption: Use an efficient decoding algorithm for Goppa codes to decode
c to find the error eP−1, recover mS and thus m.

Knowing the description of the selected Goppa code allows efficient decoding,
as there are many decoding algorithms for this problem running in polynomial
time. But knowing only the public key, the attacker is facing a decoding problem
for a code that looks like a random code, a presumably difficult problem.

3 The QC-MDPC Public Key Encryption Scheme

In [29] a new version of the McEliece PKC was proposed. It has a surprisingly
simple description and does not use permutation and scrambling matrices as
in the original McEliece construction, as well as in other generalizations [22,2]
proposed. The idea is to use codes that allow iterative decoding. In coding theory,
this usually involves low-density parity check codes, but for an encryption scheme
this is not secure. The reason is that LDPC codes have parity-checks with very
small Hamming weight (like 3-5) and these parity-checks in a given LDPC code
correspond to codewords in the dual code. Since a basis of the dual code can be
computed, it is computationally easy to find low-weight codewords in the dual
code and hence the low-weight parity checks. The solution proposed in [29] is to
increase the weight of the parity checks to a larger value, which is still small in
comparison with the dimension of the code. This makes the task of finding low-
weight codewords in the dual code much more costly. In this way, key-recovery
attacks by algorithms searching for low weight codewords can be avoided.

The family of such codes with increased parity-check weight is calledModerate-
Density Parity-Check codes (MDPC codes), and they can be decoded with the
same decoding algorithms used to decode LDPC codes. The quasi-cyclic variant
of MDPC codes are called QC-MDPC codes. These are of special interest, since
the quasi-cyclic property allows us to represent the code to be used, by a sin-
gle row of the generator matrix. Since the public key is the generator matrix,
this gives us very compact keys. We will go through the different steps of the
QC-MDPC public key cryptosystem as proposed in [29].

Let r = n− k.

3.1 Generation of Public-key

1. Choose an [n, n− r] code in the QC-MDPC family described by the parity-
check matrix H ∈ Fr×n2 , n = n0r, such that

H =
(
H0 H1 · · · Hn0−1

)
,

where each Hi is a circulant r × r matrix with weight wi in each row and
with ŵ =

∑
wi.

2. Generate the public key G ∈ F(n−r)×n
2 from H as,

G =
(
I P
)
,

6

where

P =


P0

P1

...
Pn0−2

 =


(
H−1n0−1H0

)T(
H−1n0−1H1

)T
...(

H−1n0−1Hn0−2
)T
 .

Again, the QC-MDPC construction has no need for permutation or scrambling
matrices.

Encryption Let m ∈ F(n−r)
2 be the plaintext. Multiply m with the public key

G and add noise within the correction radius t of the code, i.e., c = mG + e,
where wH (e) ≤ t. The parameter t is obtained from the the error correcting
capability of the decoding algorithm for the MDPC code [29]. The error vector
is uniformly chosen among all binary n-tuples with wH (e) ≤ t.

3.2 Decryption

Let c ∈ Fn2 be a received ciphertext. Given the secret low-weight parity check
matrix H, a low-complexity decoding procedure is used to obtain the plaintext
m.

The authors of [29] propose a variant of Gallager’s bit-flipping algorithm [12]
as the decoding procedure of MDPC codes. Here some details on this bit-flipping
procedure are presented, which are vital to the proposed key recovery attack in
the next section. The decoding algorithm works as follows:

1. Compute the syndrome, s = cHT . Since mHT = 0, the syndrome is equiva-
lently expressed as s = eHT . Now consider the Tanner graph for H and set
the initial value in each variable node to 0. Create a counter with an initial
value 0 for each variable node.

2. Run through all parity-check equations (rows of H and check nodes in the
graph) and for every variable node connected to an unsatisfied check node,
increase its corresponding counter by one.

3. Run through all variable nodes and flip its value if its counter satisfies a
certain constraint—which usually is that the counter surpasses a threshold.

4. Check if all the equations are satisfied; if not, reset all the counters to 0 and
go to Step 2. The procedure will stop if all the parity-checks are satisfied or
if the limit on the maximum number of iterations is reached.

This iterative decoding algorithm commonly used with LDPC codes has an
error-correction capability that increases linearly with the length of the code.
The good performance of LDPC codes is due to the low-weight parities as the
error-correction capability also decreases linearly with the weight of the parity-
checks. MDPC codes have slightly higher parity-check weight than LDPC codes
and one should anticipate that this influences the error-correction capability.

As expected, the actual performance of this procedure on MDPC codes is rel-
atively poor compared with that on LDPC codes. Along the path of the work [29],

7

researchers also proposed other variants [15,27] that reduce the decoding er-
ror probability further via changing the flipping threshold or introducing more
rounds to handle the detected decoding errors. The reduced error probability,
however, is still large compared with the corresponding security level1.

3.3 Proposed Parameters

The authors of [29] proposed the parameters found in Table 1 for a QC-MDPC
scheme with 80-bit, 128-bit and 256-bit security level.

Table 1: Some proposed QC-MDPC instances with key size and security level.
Parameters

n r ŵ t n0 Key size Security

9602 4801 90 84 2 4801 80
19714 9857 142 134 2 9857 128
65542 32771 274 264 2 32771 256

Results from actual implementations of the QC-MDPC scheme [15,27] and
also a QC-MDPC Niederreiter variant [26] were recently published. They all
demonstrated excellent efficiency in terms of computational complexity and key
sizes for encryption and decryption on constrained platforms such as embedded
micro-controllers and FPGAs using the proposed parameters.

A European initiative, PQCRYPTO, sponsored by the European Commission
under its Horizon 2020 Program ICT-645622, is »developing cryptology that
resists the unmatched power of quantum computers«. In September 2015 this
group of researchers published a report entitled “Initial Recommendation of long-
term secure post-quantum systems”, where they recommended several algorithms
as being ready in 2015 and several others that warrant further study and may be
recommended in coming years. This report recommends the QC-MDPC scheme
for further study, confirming its competitiveness as a post-quantum candidate.

4 A Key-Recovery Attack

In this section we describe our new attack against the plain QC-MDPC scheme
as it has been proposed in [29] and described in the previous section.

1 As in NTRUEncrypt [17,16], a secure approach is to require the decoding error
probability to be less than 2−κ for the κ-bit security.

8

4.1 Attack Model

The basic scenario for the attack is the following. Alice continuously sends mes-
sages to Bob using the QC-MDPC scheme and Bob’s public key. Occasionally,
a decoding error will occur and Bob will show a different reaction to report
this decoding failure. The information will then be detected and collected. After
repeating the procedure a number of times, Alice will be capable of recovering
Bob’s secret key using our proposed attack.

In terms of a security model definition, the attack is called a reaction at-
tack. In previous work, resend and reaction attacks on McEliece PKC have ap-
peared [14]. However, they have targeted message recovery only and there has
been no key recovery attack in this model before.

The McEliece PKCs in their plain form have computational security against
chosen plaintext attacks (CPAs), but are known to be insecure against chosen
ciphertext attacks (CCAs). The reaction attack is an attack model in-between
since it only requires the reaction of the decryption device (whether there was a
decryption error) and not the result of decryption.

4.2 Attack Description

Continuing, we assume that the rate of the code is R = k/n = 1/2, corresponding
to n0 = 2. Also, let w0 = w1 = w. Attacks for other parameters follow in a similar
fashion.

The key-recovery attack on QC-MDPC aims at finding the secret matrix H0,
given only the public-key matrix P. From H0, the remaining part of H can easily
be recovered from P using basic linear algebra. Being a cyclic matrix, recovering
H0 is equivalent to recovering its first row vector, denoted h0.

The key idea is to examine the decoding procedure for different error patterns.
In particular, we will be interested in having Alice pick error patterns from
special subsets. Let Ψd be the set of all binary vectors of length n = 2r having
exactly t ones, where all the t ones are placed as random pairs2 with distance
d in the first half of the vector. The second half of the vector is an all-0 vector.
Formally, we select from the set Ψd, which guarantees repeated ones at distance
d at least t/2 times, where

Ψd = {v = (e, f) | wH (f) = 0, and ∃ distinct s1, s2, . . . , st, s.t. esi = 1, and

s2i = (s2i−1 + d) mod r for i = 1, . . . ,
t

2
}.

Alice will now send M messages to Bob, using QC-MDPC with the error
selected from the subset Ψd of all possible error vectors of weight t. When there
is a decoding error with Bob, she will record this and after M messages she will
be able to compute an empirical decoding error probability for the subset Ψd.
Furthermore she will do this for d = 1, 2, . . . , U for some suitable upper bound
U .
2 We assume that t is an even number for the ease of description; otherwise, we just
pick t−1

2
random pairs and randomly choose another position to fulfill the constraint

on the error weight.

9

Algorithm 1 – Computing the distance spectrum

Input: parameters n, r, w and t of the underlying QC-MDPC code, number
of decoding trials M per distance.
Output: distance spectrum D(h0).

for all distances d do
Try M decoding trials using the designed error pattern
Perform statistical test to decide multiplicity µ(d)
if µ(d) > 0 then

Add d with multiplicity µ(d) to distance spectrum D(h0)

The main observation of the paper is that there is a strong correlation be-
tween the decoding error probability for error vectors from Ψd and the existence
of a distance d between two ones in the secret vector h0. Namely, if there exists
two ones in h0 at distance d, the decoding error probability is much smaller than
if distance d does not exist between two ones. We will give an explanation to
this in the next section.

So after sending M × U messages, we look at the decoding error probability
for each Ψd and classify each d, d = 1, 2, . . . , U as "does not exist in h0" (called
CASE-0) or "existing in h0" (called CASE-1). This gives us what we call a
distance spectrum for h0, denoted D(h0). It is given as

D(h0) = {d : 1 ≤ d ≤ U, d classified as existing in h0}.

Also, since a distance d can appear many times in the distance spectrum of a
given bit pattern c, we will let the multiplicity of d in c be denoted µc(d) in the
sequel, or simply µ(d) when c is clearly defined from the context.

As an example, for the bit pattern c = 0011001 we have U = 3 and

D(c) = {1, 3} ,

with distance multiplicities µ(1) = 1, µ(2) = 0 and µ(3) = 2.
The procedure for computing the distance spectrum is specified in Algo-

rithm 1.
The final step is to do a reconstruction of h0 from knowing the distance

spectrum D(h0). This is done through an iterative procedure. Start by assigning
the first two ones in a length i0 vector in position 0 and i0, where i0 is the
smallest value in D(h0). Then put the third one in a position and test if the
two distances between this third one and the previous two ones both appear in
the distance spectrum. If they do not, we test the next position for the third
bit. If they do, we move to test the fourth bit and its distances to the previous
three ones, etc. After reconstruction, we have restored h0. The reconstruction
procedure is illustrated in Figure 1 and detailed in Algorithm 2.

10

Algorithm 2 – Key recovery from distance spectrum

Input: distance spectrum D(h0), partial secret key h0, current depth l.
Output: recovered secret key h0 or message "No such secret key exists".
Initial recursion parameters: distance spectrum D(h0), empty set for
secret key, current depth 0.

if l = w then
return h0 /* secret key found */

for all potential key bits i do
for all distances to key bit i exist in D(h0) do

Add key bit i to secret key h0

Make recursive call with parameters D(h0),h0 and l + 1
if recursive call finds solution h0 then

if h0 is the secret key then
return h0 /* secret key found */

Remove key bit i from secret key h0

return "No such secret key exists"

For the above example with bit pattern c = 0011001, the careful reader will
note that this algorithm will reconstruct c as 1100100 – with a rotation. However,
this rotation is a non-issue in practice in our application.

In addition, the reconstruction procedure may also find some key pattern h′

with the same distance spectrum D(h0) as h0. The algorithm will then discard
it and recursively try other key patterns, which provides an exhaustive search
process.

0 i0 i1 i2 · · ·

Fig. 1: The reconstruction process. Vertices represent nonzero bit positions in
the bit pattern, solid arrows show the search order from left to right, dotted
arrows show that for a newly determined bit position, its distances to all previous
nonzero bit positions should all be in the distance spectrum.

11

5 Analysis

In this section we present an intuitive explanation why the proposed attack can
recover the secret key from the decoding errors of a bit-flipping-type iterative
decoder, and we also give some theoretical analysis on this new algorithm.

5.1 An Explanation for the Distinguishing Procedure

The authors in [27] pointed out that the employed iterative bit-flipping variants
will stop in quite a small number of iterations (i.e., around 3 to 5 iterations
on average), and further iterations have little effect on improving the success
probability. Therefore, the behavior of the error variables in the first iteration
plays a vital role in the decoding process: if almost all the variables flip from a
wrong to a right value, the decoder will correct the errors quickly, otherwise it
is more probable to fail.

We thus focus on the flipping behavior of the error bits in the first iteration
for different input error patterns from the sets Ψd, containing random pairs of
ones with distance d.

Table 2: The relation between the number of nonzero hijei’s and that of correctly
changed counters in the first decoding iteration.

(hijei = 1) #(right change) #(wrong change)

0 w 0
1 1 w − 1
2 w − 2 2
3 3 w − 3
...

...
...

First, we present more observations on the first round of the bit-flipping
process. Given the jth parity-check equation, i.e.,

n∑
i=1

hijei = sj ,

for 1 ≤ j ≤ r, this equation will affect w counters corresponding to the error
variables with a nonzero coefficient hij . The value of the syndrome bit sj deter-
mines if the equation is satisfied or not, since value for all the error variables ei’s
are initially set to 0. That is, if sj = 0, then the parity-check equation holds and
no counters are increased for this check node. On the other hand, if sj = 1, all
the w counters for variable nodes included in this parity check are incremented.

Obviously, in the iterative decoding we do not want the counter for an error
variable ei to increment if ei = 0, and vice versa; we do want it to increment

12

if ei = 1. So we can consider whether the counter is correctly or erroneously
changed.3

As a result, the number of nonzero terms of the form hijei’s in a parity-
check equation determines the number of correctly changed counters in the first
iteration, and the numbers are shown in Table 2. For example, in an equation, if
there is no nonzero terms hijei, then sj = 0 and the initial values of the ei’s in
this check are all correct; But since sj = 0 none of their counters are incremented
and hence all counters are correctly changed.

If there is only one nonzero term hijei in the parity check, then sj = 1 and
the equation is unsatisfied. Every counter corresponding to an error variable in
this equation will be increased, but only one variable is actually in error. Hence
we are changing w − 1 counters erroneously and only one correctly. For two
nonzero term hijei in the parity check, sj = 0 and it follows in the same way as
before that w − 2 counters are correctly changed and two of them erroneously,
etc.

According to the above observation, it is desirable to have a small even num-
ber (like 0, 2, . . .) of nonzero terms hijei when evaluating parity-check equations
for having the best chances of success in decoding. We can observe that if we
look at all the r parity checks in H, we will create a total of exactly t ·w nonzero
terms hijei in the parity checks all together. For a randomly selected weight t
error, we can view this as putting t ·w different objects in r buckets and counting
the number of objects in each bucket. An even number of objects in a bucket
will be helpful in decoding, while an odd number of objects will act in opposite.

Now let us consider errors selected from our special error set Ψd. If the secret
vector h0 contains two ones with distance d inbetween (CASE-1), then, due to
the many inserted pairs of distance d in the error vector, we have "artificially"
created a number of (≥ t

2) check equations where we know that we have at
least two nonzero terms hijei in the parity check. This "artificial" creation of
pairs of nonzero terms hijei in the same check equation changes the distribution
of the number of nonzero terms hijei in parity checks. If the secret vector h0

does not contains two ones with distance d inbetween (CASE-0), then the same
phenomenon does not appear.

In Table 3, we present a precise evaluation of the corresponding distributions
of an instance using the suggested QC-MDPC parameters for 80-bit security
where the weight of h0 is assumed to be exactly 45. These results are obtained
by a heavy simulation using 1000 different random keys and 480100 valid error
patterns for each key. In CASE-1, the probability of being 0 is higher and that
of being 1 lower, which are both preferred for the decoding purpose. Also owing
to that the probabilities of being other values larger than 1 are of a similar
magnitude for the both cases, this table verifies the influences of the “artificially”
created pairs.

Since this algorithm iterates further and many quite short (e.g., length-4)
cycles4 appear in the corresponding Tanner graph, it is challenging to determine

3 Here "change" means increasing by 1 or preserving the value.
4 See Table 4 for more details.

13

Table 3: The distinct distributions of the number of nonzero terms hijei’s for
the error patterns from Ψd using the QC-MDPC parameters for 80-bit security
and assuming that the weight of h0 is exactly 45.

(hijei = 1) Probability

CASE-0 CASE-1

0 0.4485 0.4534
1 0.3663 0.3602
≥ 2 0.1852 0.1864

the variation of the decoding error probability caused by the different distribu-
tions in the first round, via presenting some precise theoretical estimations. On
the other hand, several thousands of parity-check equations (e.g., 4801 equations
in the 80-bit security case) exist, making the overall differences substantial. In
addition, more correct values in the initial round will contribute positively in
the following iterations. These facts explain why some significant differences can
be detected in our experiments, and why they imply a successful key-recovery
attack in real time.

5.2 Complexity Analysis

We now derive a complexity estimation for the key-recovery attacks. Making use
of the obtained experimental results for certain key parameters, we can then
approximate the concrete time complexity (shown in Section 7). This complex-
ity consists of two parts: that of building the distance spectrum and that of
reconstructing the secret polynomial. We analyze separately.

The complexity for building the distance spectrum It is shown in ex-
periments that the error rates for the different distances clearly separate into
intervals according to multiplicity. When these intervals are disjoint, it is pos-
sible to determine the complete distance spectrum of the secret key fully and
without error. In general, for a well-designed error pattern, the error probabilities
increase with decreasing multiplicities, as sketched in Figure 2a.

The distinguishing procedure involves U groups of decoding tests, each of
them consisting of M decoding trails. Thus, overall U ×M decoding data would
be collected, implying that the complexity is of order O (MU). Here M and U
are two algorithmic parameters that depend on the targeting security parameters
n, r, ŵ, t. A reasonable upper bound for U is

⌊
r
2

⌋
, since this is the number of

possible (modular) distances given the block size r.
On the other hand, it is non-trivial to determine the minimal value of M

that is sufficient to execute a successful distinguishing. The experimental results
suggest that the error rate for the error pattern using a distance d with multiplic-
ity µ(d) can be approximated by a Gaussian distribution with mean mµ(d) and

14

m3 m2 m1 m0
error prob.

(a)

m1 = 9.1 m0 = 44.1
error prob. 10−4

(b)

Fig. 2: Classification of distance multiplicities based on decoding error prob-
ability. (a): Distribution shape in general. (b): Empirical distribution using
M = 100, 000 decoding trials for each distance (proposed parameters for 80-
bit security with t = 84).

variance σ2
µ(d); we can thus model this problem as a hypothesis testing problem

determining whether µ(d) is zero or not.
Figure 2, which consists of two sub-figures, describes the approximated distri-

butions of the error probability when performing the proposed reaction attack.
With adequate decoding trials to make the widths of these Gaussian distribu-
tions “narrow” enough, we draw roughly the shape of the probability density
function of the decoding error probability (in Figure 2a). On the contrary, Fig-
ure 2b records with the precision in magnitude the empirical distribution when
performing the proposed reaction attack on the QC-MDPC parameters for 80-
bit security with error weight 84, where 100, 000 decoding trails are exploited for
each distance d. In this figure, only the groups of multiplicity 0 and multiplicity
1 are depicted as the remaining groups are of a much smaller magnitude. More
data can be found in Table 5.

The complexity for reconstruction We show that the algorithm will return
the correct key soon on average. Since this algorithm builds an enumeration tree
to search for the possible solutions in a depth-first way, the time complexity can
be represented by its paths to the leaves in the tree. Later we present a rough
estimation of this number.

Suppose ns is the size of the distance spectrum D(h0), nt the number of
possible distances5 required to be tested, and α the ratio between them, i.e.
ns/nt. In the beginning, we chose the smallest distance in the spectrum and

5 A reasonable setting for nt is T , the number of distances bounded by r
2
.

15

determine two positions 0 and i0; this can be viewed as the root of the tree. Then
we extend the tree to choose another position i1. We know that the distances
i1 and i1 − i0 should be both in the distance spectrum; among the ns possible
distances for i1, thus, we can expect an α fraction of them are valid and there
exist nsα nodes in the first level. Similarly for one node in the first level, there
are nsα2 child nodes on average in the second level since the distances i2, i2− i0
and i2 − i1 should be all in the distance spectrum. Etc.

Since the average child number of a node after quite few steps6 (denoting
this number φ+ 1) will be less than 1, we can deduce a loose estimation on the
average number of possible paths as

φ∏
i=1

nsα
i = nφt α

φ(φ+3)
2 ≤

(r
2

)φ
α
φ(φ+3)

2 . (1)

The above results state that in expectation, the number of paths tested can
be bounded by Equation (1). In reality, the algorithm may terminate soon if we
are lucky.

6 Debunking the CCA Security Claim

When targeting the CPA security of the MDPC scheme, we were free to choose
the injected error patterns. When we now turn to attack its CCA-secure version,
this freedom of choice is severely limited.

The CCA-secure version of the MDPC scheme is of more importance as in real
applications the error vector will be protected by cryptographic hash functions
after conversions (e.g., [21]) for making the MDPC scheme semantically secure.

The fundamental idea of the attack is as follows. We randomly generate
T plaintext-ciphertext pairs. We then form subsets of those with desired error
patterns. In particular, we will be interested in error patterns that contain oc-
currences of distance d between error bits, where d is a length in the distance
spectrum to be tested. Our simulations show that these error patterns can be
used to efficiently distinguish whether a certain distance d appears in the dis-
tance spectrum of the targeted secret polynomial.

We present the algorithm in two versions to match different levels of detail.
The high level description is presented as Algorithm 3.

The description seems to suggest that we need lots of storage for handling ci-
phertexts, but this is not the case. An efficient implementation requires virtually
no storage. To see this, consider the alternative description in Algorithm 4.

In Algorithm 4 we successively check the decryptability of ciphertexts and
use these observations to obtain better and better estimates of decoding error
probabilities related to all possible distances in the distance spectrum of the
secret key.

The vector slots of a and b are used to represent the decoding error proba-
bilities, so that a[d]

b[d] is an approximation of the decoding error probability over

6 The average child number of a node in the lth level drops exponentially in l.

16

Algorithm 3 – Breaking the CCA security of the converted MDPC scheme.

Input: number T of ciphertexts to generate.
Output: distance spectrum s for the secret key K.

Generate a collection Σ of T ciphertexts
Record decryptability for each c in Σ
s← storage for distance spectrum of secret key
for all distances d do

Σd ← {c ∈ Σ | µc (d) ≥ 1}
s[d]← multiplicity classification from decryptability rate in Σd

return s

all error patterns with distance spectrums containing distance d. This subset of
error patterns is denoted Σd in Algorithm 3.

Each ciphertext updates several entries in a and b, and we need to observe
the decryptability of sufficiently many ciphertexts in order to obtain probability
estimates that are reliable enough for correct multiplicity classification.

For each ciphertext we utilize the nonzero (other thresholds are also possible)
entries in the corresponding distance spectrum. Letting α denote the average
fraction of nonzero entries in such a distance spectrum, one can see that the
total number of iterations in the inner loop (per ciphertext) is about αr

2 .
The output of Algorithm 4 is the distance spectrum of the secret key, so the

careful reader will note that the key recovery method described in Algorithm 2
needs to be applied as a final step for full key recovery. However, in terms of
complexities, this additional step comes for free.

The time complexity of Algorithm 4 is precisely T if we count the number
of observed ciphertexts. If we count low-level operations, as defined by the inner
loop of Algorithm 4, the time complexity is T × r

2 .

6.1 An Explanation of How Sample Collection Works

The precise nature of Algorithm 4 can easily and very conveniently be understood
by modeling the sampling procedure as a generalized version of the coupon col-
lector’s problem. In the original coupon collector’s problem, using the balls-and-
bins paradigm, we randomly throw balls into u bins until all bins are nonempty.
We need to throw around u log u balls before we achieve this goal.

In the generalized problem, we keep throwing balls until all bins each contain
at least b balls. The time complexity for this (see [11]) is

J (u, b) = u (log u+ (b− 1) log log u+ γ − log (b− 1)! + o (1)) . (2)

It is even possible to arbitrarily bound the probability of failure by adding a
linear number of samples (balls) according to

lim
t→∞

Pr
[
X(u,b) < u log u+ (b− 1)u log log u+ tu

]
= e−

e−t
(b−1)! ,

17

Algorithm 4 – Breaking the CCA security of the converted MDPC scheme.
Detailed description.

Input: number T of ciphertexts to generate.
Output: distance spectrum for the secret key K.

a← zero-initialized vector of length r
2

/* count decoding failures per distance */

b← zero-initialized vector of length r
2

/* count total samples per distance */

i← 0
while i < T do

Generate ciphertext c
serr ← distance spectrum of ciphertext error
`← decryptability of c /* 0 for successful decryption, 1 for decryption failure */

for all distances d do
if serr[d] ≥ 1 then

a[d]← a[d] + `
b[d]← b[d] + 1

i← i+ 1
skey ← vector of length r

2
/* distance spectrum of secret key */

for all distances d do
skey[d]← multiplicity classification from estimated error rate a[d]

b[d]

return skey

where X(u,b) is a statistical variable that represents the number of throws needed
to fill up u bins so that all of them contain at least b balls.

In the CCA case we collect error patterns, but not all error patterns are
useful. Instead, we form different subsets of useful error patterns denoted Σd
in Algorithm 3. We successively check the decryptability of ciphertexts and use
these observations to obtain better and better estimates of decoding error prob-
abilities related to all possible distances in the distance spectrum of the secret
key.

For each ciphertext we then utilize the nonzero (other thresholds are also
possible) entries in the corresponding distance spectrum, and each such nonzero
entry corresponds to a ball. With α denoting the average fraction of nonzero
entries in such a distance spectrum, one can see that the total number of balls
we collect per ciphertext is about αr

2 .
In Algorithm 4, the bins are represented by the vector slots of a and b, so

there are u = r
2 bins. Each observed error pattern generates α balls, and each

ball updates an entry in a and b. We need at least b balls in each bin in order to
obtain probability estimates that are reliable enough for computing the distance
spectrum of the secret key. The value b determines the number T of ciphertexts
that we need to generate, since b and T are strongly related according to

αrT

2
≈ J

(r
2
, b
)
. (3)

18

It may also be noted that it is not immediately clear how to analytically
derive b or T directly from the security parameters. For our results, we have
determined T explicitly by simulation, as described in Section 7.

7 Implementations and Numerical Results

We have conducted several simulation tests to verify the behaviors of the error
rates related to different multiplicities and different error shapes. The following
implementation results are all obtained by employing QC-MDPC with the pro-
posed parameters for 80-bit security [29] and the original Gallager’s bit-flipping
algorithm [12], i.e., Decoder B in [27].

In the CPA case, we consider two different error weights. Error weight t = 84
is what is proposed for 80-bit security, but we also consider the case t = 90 here.
This is motivated by security models that allow injection of more errors, where
additional errors are not explicitly detected. For the CCA case, only results with
t = 84 are stated.

Results for the CPA case are presented in Section 7.1, and the results for the
CCA case are presented in Section 7.2. A discussion on the employment of other
decoders follows in Section 7.3.

Before introducing the main implementation results, we show the probability
distributions for distance multiplicities in the first polynomial when considering
the QC-MDPC scheme with n0 = 2 (see Table 4).

Table 4: Probability distributions for distance multiplicities in the first polyno-
mial (of two), generated uniformly with total weight t = 84 and t = 90. The
polynomial length is 4801, while the total vector length is 9602.

t = 84 t = 90 / key with ŵ = 90
multiplicity probability accumulated accumulated probability accumulated accumulated

0 0.6955724 0.6955724 1.0000000 0.6589889 0.6589889 1.0000000
1 0.2524958 0.9480683 0.3044275 0.2748075 0.9337965 0.3410106
2 0.0458487 0.9939170 0.0519316 0.0573330 0.9911295 0.0662031
3 0.0055425 0.9994596 0.0060829 0.0079677 0.9990972 0.0088701
4 0.0005018 0.9999614 0.0005403 0.0008287 0.9999260 0.0009024
5 0.0000362 0.9999977 0.0000385 0.0000688 0.9999949 0.0000737
6 0.0000021 0.9999998 0.0000022 0.0000047 0.9999997 0.0000049
7 0.0000001 1.0000000 0.0000001 0.0000002 1.0000000 0.0000002

The vector is of length 9602, and is generated uniformly with weight 84 (or
90). These probability distributions are mainly of importance for the following
two reasons.

– When the vector is viewed as a key vector, the data in the right part (corre-
sponding to t = 90) show the distance multiplicity distributions of a random
key, from which not only the size of its distance spectrum can be estimated,

19

Table 5: Decoding error rates when using the original Gallager’s bit-flipping
algorithm (Decoder B in [27]) and the designed error pattern Ψd with t = 84
and t = 90. The number of decoding trials in a group is M = 100, 000 and
M = 10, 000, respectively.

t = 84 t = 90
multiplicity error rate σ error rate σ

0 0.0044099 0.00003868 0.415395 0.000830
1 0.0009116 0.00001304 0.248642 0.000729
2 0.0001418 0.00000475 0.121623 0.000529
3 0.0000134 0.00000112 0.048330 0.000299

but some other vital information may also be revealed. For example, since
about 6.6 percent of the distances are of multiplicity 2 or more when t = 90,
quite a few length-4 cycles7 will appear in the Tanner graph corresponding
to the secret key.

– When the vector is viewed as an error vector, these data can be utilized to
simulate the random error obtained from a CCA2-secure QC-MDPC scheme.
We will explain this further in Section 7.2.

7.1 CPA Case

As described in Section 5.2, the time complexity of attacking the CPA-secure
version consists of two parts: that of constructing the distance spectrum and of
key reconstruction. From Table 5, we can see that for the MDPC parameters
targeting 80-bit security, it is sufficient to choose M to be 100, 000 to make the
decoding error rates well-separated according to the multiplicity; this value can
be even reduce to 10, 000 if an error with weight t = 90 is allowed to be used.
Setting the number of different groups for decoding test as 2400, we derive that
the time complexity for Alice to know the distance spectrum of the secret key
is bounded by that of calling the decoder about 240, 000, 000 (or 24, 000, 000)
times for solely the information whether the decoding succeeds, when the error
weight t is 84 (or 90). In the security model of a reaction attack, the decoding
results (success or fail) are presumably provided to the adversary; therefore,
the decoding cost is excluded from the time complexity, implying that the time
complexity for constructing the distance spectrum can be estimated as 228 (or
225) operations for t = 84 (or 90).

For the MDPC parameters targeting 80-bit security, the weight of the secret
key is set to be 90. By checking Table 4, therefore, the empirical ratio α can be
approximated as 0.341 and thus φ is 6. We on average test no more than 225.5

paths, costing less than 235 operations since most of the invalid paths will be
detected and removed soon (less than 20 steps). We implemented this algorithm,

7 A distance with multiplicity of 2 or more implies that there exists at least one
length-4 cycle.

20

which performed quite well in practice — for most of the instances, the algorithm
succeeded in minutes.

7.2 CCA Case

Next in turn is the CCA case and truly uniform error patterns with a certain
weight. We have used Algorithm 4 for our simulation runs. One such simulation
for the QC-MDPC scheme with the proposed parameters for 80-bit security (with
t = 84) can be seen in Figure 3. Here we plot the number of utilized ciphertexts
vs. the fraction of correctly classified distance spectrum entries, resulting in a
simple visualization of the algorithm efficiency.

classification accuracy

num ciphertexts

100M 200M 300M 356M

25%

50%

75%

100%

Fig. 3: CCA algorithm for a QC-MDPC McEliece instance for 80-bit security
with t = 84. The distance spectrum of the key is fully recovered (no errors)
after observing 356M ciphertexts. The graph shows the worst case out of ten full
simulations.

The simulations suggest that T = 356 million observed ciphertexts are suf-
ficient for fully determining the entire distance spectrum without any errors.
That is, after we have observed 356 million ciphertexts, the distance spectrum
remains stable and correct.

21

It should be noted that we ran ten independent simulation runs, and the
result presented in Figure 3 was the worst case simulation result. The 356 million
ciphertexts estimate is therefore a conservative high probability estimate. That
is, in all simulations, the multiplicity classifications were 100% correct and stable
after 356 million ciphertexts. For comparison, the best case yielded full distance
spectrum recovery after 203 million ciphertexts.

The same simulation is shown in Figure 4, providing a more detailed view
of how the algorithm works. Each dot represents the estimated decoding error
probability for one particular distance, and every possible distance has been
plotted in the same graph.

0

1

2

3

4

decoding error probability

distance

multiplicity

600 1200 1800 2400

0.00052

0.00053

0.00054

0.00055

0.00056

0.00057

0.00058

0.00059

0.00060

0.00061

0.00062

Fig. 4: Classification intervals for the t = 84 worst-case simulation after 356M
ciphertexts. All 2400 data points plotted.

Now, have a closer look at the classification intervals that have been high-
lighted with a grey background. These intervals span from the minimum to the
maximum estimated decoding error probability per multiplicity.

As Figure 4 shows the state of affairs at the end of the simulation, we can
see that the distance dots are clearly separated into different and fully disjoint
classification intervals depending on their multiplicity. The classification intervals
are generally overlapping during the earlier parts of the simulation.

22

We can use the classification intervals and analyze their successive widths
in the simulation. This is very useful, because we are only able to compute
a perfect error-free distance spectrum when all of these intervals are mutually
disjoint. In this way we can derive a reliable estimate for the value T for different
problem instances. The reader may note that there is some (little) room for
improvement here. In the worst case simulation out of the ten we have performed,
the classification intervals became disjoint after 268 million ciphertexts, which
sets a lower bound for error-free distance spectrum recovery. However, this bound
can be lowered even further if we allow errors in the recovered distance spectrum,
or if we tweak the algorithm in other ways, and so on, but such improvements
are out of scope here.

In a live scenario, the distance multiplicities are unknown, so it is not pos-
sible to compute the successive classification intervals and check when they are
disjoint. Predetermined probability values cannot be used, since the decoding
error probabilities differ significantly between instances (different keys). How-
ever, the general shape of the probability distribution in Figure 2a is known
and represents a "side view" of Figure 4, so it can be seen that the multiplicity
classification problem is not very difficult in practice.

The classification procedure we have used in our experiments is quite sim-
plistic. In our simulations, we computed the current (estimated) decoding error
probabilities m0,m1, . . . per multiplicity from the simulation values, and then
computed boundary mid-points m0+m1

2 , m1+m2

2 , . . . and checked when the in-
tervals were fully separated into these mid-point regions. In a live scenario one
could efficiently achieve the same effect by using a simple clustering technique
(counting dots in small intervals) to first accurately estimate m0,m1, . . ., and
then continue as we have done.

To conclude the simulation results, the total time complexity of Algorithm 4
is at most 356 million observed ciphertexts. If we count low-level operations
instead, as specified in Section 6, then the total time complexity is about T ×
r
2 = 239.7 for the proposed security parameters for 80-bit security using the
Gallager’s original bit-flipping decoder. Compared with this complexity figure,
the key reconstruction part is negligible.

7.3 Some Discussions

We discuss more about the decoding procedure employed in the implementation.

Using other decoding techniques The employed decoding algorithm in im-
plementation is Gallager’s bit-flipping algorithm, which is chosen not only be-
cause its relatively higher error-probability makes the implementation easier, but
also because it is the original iterative decoding algorithm for LDPC settling the
framework and the principle for the later improved decoders [15,27]. Hence, it
is reasonable to assume that replacing the Gallager’s bit-flipping decoder by an-
other more advanced decoder may increase the attack complexity by a factor of
around 2e, if the error probability is reduced with a factor of 2−e. However, the
attack complexity is still far less than the claimed security level.

23

For example, the best implementations of bit-flipping-type decoders found
in literature with respect to the decoding performance are the ones from [10]
and [8] both claiming a decoding error probability less than 10−8 for the 80-
bit secure QC-MDPC parameter set. These decoders improve upon the original
Gallager’s decoder by a factor of about 215.6. Therefore, we might estimate the
time complexity for attacking the 80-bit CPA (or CCA2) -secure version as 243.6
(or 255.3) operations, if these two decoders are instead implemented.

Moreover, some decoders (including the one in [29]) decrease the error prob-
ability by restarting the decoding process in the same decoding framework but
only employing different thresholds, when an error is detected. On one side,
since each calling of the bit-flipping algorithm might contribute to the varia-
tion between CASE-0 and CASE-1, the effects on the distinct decoding error
probabilities may accumulate after more and more decoding rounds, implying
that the estimation in the last paragraph is conservative. On the other hand, via
some side-channel attacks, an adversary might get the information of the initial
errors occurred, thereby reducing the problem to that of using a less powerful
decoder like the one being implemented. It is definitely beneficial to design a
countermeasure to withstand this type of attack.

We conjecture that this attack also works for the MDPC scheme employing
a soft-decision decoding implementation.

Moving to a higher security level The QC-MDPC scheme using the sug-
gested 80-bit secure parameter set is frequently discussed and implemented in
literature due to its applications in power-constraint devices, for which we choose
it as a study case. However, for the long-term security purpose, the bottom line
nowadays is to achieve 128-bit security. There is no evidence that the scheme
with the suggested 128-bit secure parameters will be invulnerable to the pro-
posed reaction attack, and frankly speaking, the situation is even worse due
to the larger gap between the current state-of-the-art implementation8 of bit-
flipping-type decoders and the required decoding performance9 with respect to
security.

Higher error probability Another meaningful observation is that when utiliz-
ing the designed highly unbalanced error pattern, the error probability is higher
than when harnessing a uniform distribution in the valid set of errors. This
increased error probability jeopardizes the security of the MDPC scheme by
boosting the proposed reaction attack further. Since we employ the same im-
plementation of Gallager’s bit-flipping decoder as in [15], the enlarged failure
probability is mainly due to the specific error pattern used: all the t error po-

8 With respect to the decoding performance, the best known implementation using
the suggested 80-bit secure parameter set outperforms the one using the suggested
128-bit secure parameters (10−8 in [8,10] vs. 10−7 in [29]).

9 One should decrease the decoding error probability for thwarting the proposed re-
action attack within 2128 operations.

24

sitions are gathered together in the first part of the error vector. We show the
numerical results in Table 6.

Table 6: The comparison of failure rates among different error patterns using
the QC-MDPC parameters for the 80-bit security.

Error weight all valid errors [15] this work

multiplicity 0 multiplicity 1

84 0.00051 0.00441 0.00091
90 0.24080 0.41539 0.24864

8 Conclusions and Future Work

In this paper, we have presented a reaction-type attack against the QC-MDPC
public key encryption scheme. This novel attack exploits the strong correlation
between certain structures in the secret key and the decoding error probabil-
ity when errors with arranged patterns are employed. It then rebuilds the se-
cret polynomial efficiently by executing a reconstruction procedure, therefore
breaking the QC-MDPC scheme. With a slight modification, it can also be ap-
plied to the CCA2 converted version of the scheme to break its claimed security
level against CCA2 attack. This (weaker) reaction attack can break the proved
(stronger) CCA2 security because the decoding error probability is excluded in
the proof models.

There are several research directions to be further investigated. A natural one
is to design a countermeasure to protect the QC-MDPC scheme against this new
attack. The most secure approach is to amend the employed iterative decoder to
reduce the decoding error probability to be less than 2−κ for κ-bit security. This
is a challenging task due to the large gap between the state-of-the-art and the
desired error levels, and also due to the lack of a precise theoretical error bound
on these iterative algorithms. That is, changing to a more powerful decoder can
enhance its security, but it is doubtful to claim that it can reach a quite high
security level. Moreover, when moving to a decoder with improved performance
via running itself more times with different algorithmic parameters if an error is
detected, some types of side-channel attacks — like timing attacks — should be
useful to know the original errors in the initial round, which can be used for a
faster reaction attack.

Other directions include characterizing the strong and weak keys to resist this
attack, deriving precise bounds on the decoding error probability for various error
patterns given a security parameter, and designing more advanced reconstruction
algorithms to handle more errors in the distance spectrum, e.t.c.. It would be

25

fascinating if one can extend this attack to break the CCA-secure version of
cryptosystems based on the LPN and LWE problems.

References

1. Augot, D., Batina, L., Bernstein, D.J., Bos, J., Buchmann, J., Castryck, W.,
Dunkelman, O., Güneysu, T., Gueron, S., Hülsing, A., et al.: Initial recommenda-
tions of long-term secure post-quantum systems. Available at http://pqcrypto.
eu.org/docs/initial-recommendations.pdf (2015)

2. Baldi, M., Chiaraluce, F., Garello, R., Mininni, F.: Quasi-Cyclic Low-Density
Parity-Check Codes in the McEliece Cryptosystem. In: Proceedings of IEEE Inter-
national Conference on Communications, ICC 2007, Glasgow, Scotland, 24-28 June
2007. pp. 951–956. IEEE (2007), http://dx.doi.org/10.1109/ICC.2007.161

3. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes
in 2

n
20 : How 1 + 1 = 0 improves information set decoding. In: Advances in

Cryptology—EUROCRYPT’12, pp. 520–536. Springer (2012)
4. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions

of security for public-key encryption schemes. In: Advances in Cryptology—
CRYPTO’98. pp. 26–45. Springer (1998)

5. Bernstein, D.J., Buchmann, J., Dahmen, E.: Post-quantum cryptography. Springer
Science & Business Media (2009)

6. Berson, T.A.: Failure of the McEliece public-key cryptosystem under message-
resend and related-message attack. In: Advances in Cryptology—CRYPTO’97, pp.
213–220. Springer (1997)

7. Canteaut, A., Sendrier, N.: Cryptanalysis of the original McEliece cryptosystem.
In: Advances in Cryptology—ASIACRYPT’98. pp. 187–199. Springer (1998)

8. Chaulet, J., Sendrier, N.: Worst case QC-MDPC decoder for McEliece cryp-
tosystem. In: IEEE International Symposium on Information Theory, ISIT 2016,
Barcelona, Spain, July 10-15, 2016. pp. 1366–1370. IEEE (2016), http://dx.doi.
org/10.1109/ISIT.2016.7541522

9. Chen, L., Jordan, S., Liu, Y.K., Moody, D., Peralta, R., Perlner, R., Smith-Tone,
D.: Report on post-quantum cryptography. National Institute of Standards and
Technology Internal Report 8105 (2016)

10. Chou, T.: QcBits: Constant-Time Small-Key Code-Based Cryptography. In: Gier-
lichs, B., Poschmann, A.Y. (eds.) Cryptographic Hardware and Embedded Systems
– CHES 2016: 18th International Conference, Santa Barbara, CA, USA, August 17-
19, 2016, Proceedings. pp. 280–300. Springer Berlin Heidelberg, Berlin, Heidelberg
(2016), http://dx.doi.org/10.1007/978-3-662-53140-2_14

11. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press
(2009)

12. Gallager, R.G.: Low-Density Parity-Check Codes. Ph.D. thesis, MIT Press, Cam-
bridge (1963)

13. Goppa, V.D.: A New Class of Linear Correcting Codes. In: Probl. Peredachi Inf.
vol. 6, pp. 24–30) (1970)

14. Hall, C., Goldberg, I., Schneier, B.: Reaction attacks against several public-key
cryptosystem. In: Information and Communication Security, pp. 2–12. Springer
(1999)

15. Heyse, S., Von Maurich, I., Güneysu, T.: Smaller keys for code-based cryptography:
QC-MDPC McEliece implementations on embedded devices. In: Cryptographic
Hardware and Embedded Systems-CHES 2013, pp. 273–292. Springer (2013)

26

http://pqcrypto.eu.org/docs/initial-recommendations.pdf
http://pqcrypto.eu.org/docs/initial-recommendations.pdf
http://dx.doi.org/10.1109/ICC.2007.161
http://dx.doi.org/10.1109/ISIT.2016.7541522
http://dx.doi.org/10.1109/ISIT.2016.7541522
http://dx.doi.org/10.1007/978-3-662-53140-2_14

16. Hoffstein, J., Pipher, J., Schanck, J.M., Silverman, J.H., Whyte, W., Zhang,
Z.: Choosing Parameters for NTRUEncrypt. Cryptology ePrint Archive, Report
2015/708 (2015), http://eprint.iacr.org/

17. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryp-
tosystem. In: Algorithmic number theory, pp. 267–288. Springer (1998)

18. Howgrave-Graham, N., Nguyen, P.Q., Pointcheval, D., Proos, J., Silverman, J.H.,
Singer, A., Whyte, W.: The impact of decryption failures on the security of NTRU
encryption. In: Advances in Cryptology—CRYPTO’03, pp. 226–246. Springer
(2003)

19. Howgrave-Graham, N., Silverman, J.H., Singer, A., Whyte, W., NTRU Cryptosys-
tems: NAEP: Provable Security in the Presence of Decryption Failures. IACR
Cryptology ePrint Archive 2003, 172 (2003)

20. Johansson, T., Jönsson, F.: On the complexity of some cryptographic problems
based on the general decoding problem. IEEE Transactions on Information Theory
48(10), 2669–2678 (2002)

21. Kobara, K., Imai, H.: Semantically secure McEliece public-key cryptosystems-
conversions for McEliece PKC. In: Public Key Cryptography. pp. 19–35. Springer
(2001)

22. Löndahl, C., Johansson, T.: A New Version of McEliece PKC Based on Convolu-
tional Codes. In: Chim, T.W., Yuen, T.H. (eds.) Information and Communications
Security - 14th International Conference, ICICS 2012, Hong Kong, China, Octo-
ber 29-31, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7618, pp.
461–470. Springer (2012), http://dx.doi.org/10.1007/978-3-642-34129-8_45

23. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes, vol. 16.
Elsevier (1977)

24. von Maurich, I., Güneysu, T.: Lightweight code-based cryptography: QC-MDPC
McEliece encryption on reconfigurable devices. In: Proceedings of the conference
on Design, Automation & Test in Europe. p. 38. European Design and Automation
Association (2014)

25. von Maurich, I., Güneysu, T.: Towards side-channel resistant implementations of
QC-MDPC McEliece encryption on constrained devices. In: Post-Quantum Cryp-
tography, pp. 266–282. Springer (2014)

26. von Maurich, I., Heberle, L., Güneysu, T.: IND-CCA Secure Hybrid Encryption
from QC-MDPC Niederreiter. In: Post-Quantum Cryptography, pp. 1–17. Springer
(2016)

27. Maurich, I.V., Oder, T., Güneysu, T.: Implementing QC-MDPC McEliece En-
cryption. ACM Transactions on Embedded Computing Systems (TECS) 14(3),
44 (2015)

28. McEliece, R.J.: A Public-Key Cryptosystem Based On Algebraic Coding Theory.
DSN Progress Report 42–44 pp. 114–116 (1978)

29. Misoczki, R., Tillich, J.P., Sendrier, N., Barreto, P.S.: MDPC-McEliece: New
McEliece variants from moderate density parity-check codes. In: Information The-
ory Proceedings (ISIT), 2013 IEEE International Symposium on. pp. 2069–2073.
IEEE (2013)

30. Overbeck, R., Sendrier, N.: Code-based cryptography. In: Post-quantum cryptog-
raphy, pp. 95–145. Springer (2009)

31. Repka, M., Zajac, P.: Overview of the Mceliece Cryptosystem and its Security.
Tatra Mountains Mathematical Publications 60(1), 57–83 (2014)

32. Sendrier, N.: Decoding one out of many. In: Post-quantum cryptography, pp. 51–
67. Springer (2011)

27

http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-34129-8_45

33. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and fac-
toring. In: 35th Annual Symposium on Foundations of Computer Science, 20-22
November 1994, Santa Fe, New Mexico, USA. pp. 124–134. IEEE Press (1994)

28

	A Key Recovery Attack on MDPC with CCA Security Using Decoding Errors

