
Side-Channel Analysis of Keymill

Christoph Dobraunig, Maria Eichlseder, Thomas Korak, and Florian Mendel

Graz University of Technology, Austria
christoph.dobraunig@iaik.tugraz.at

Abstract. One prominent countermeasure against side-channel attacks,
especially differential power analysis (DPA), is fresh re-keying. In such
schemes, the so-called re-keying function takes the burden of protecting
a cryptographic primitive against DPA. To ensure the security of the
scheme against side-channel analysis, the re-keying function has to with-
stand both simple power analysis (SPA) and differential power analysis
(DPA). Recently, at SAC 2016, Taha et al. proposed Keymill, a side-
channel resilient key generator (or re-keying function), which is claimed
to be inherently secure against side-channel attacks. In this work, how-
ever, we present a DPA attack on Keymill, which is based on the dy-
namic power consumption of a digital circuit that is tied to the 0 → 1
and 1 → 0 switches of its logical gates. Hence, the power consumption
of the shift-registers used in Keymill depends on the 0 → 1 and 1 → 0
switches of its internal state. This information is sufficient to obtain the
internal differential pattern (up to a small number of bits, which have
to be brute-forced) of the 4 shift-registers of Keymill after the nonce has
been absorbed. This leads to a practical key-recovery attack on Keymill.

Keywords: side-channel analysis · fresh re-keying · differential power
analysis

1 Introduction

Side-channel attacks like differential power analysis (DPA) pose a serious threat
to devices operating in a hostile environment. Such scenarios quite naturally
appear in our current information infrastructure whenever an entity has physical
access to a device which uses a cryptographic key that must be kept secret from
this entity. Hence, it is necessary to protect such devices against the extraction
of the secret key by means of side-channel analysis like SPA and DPA [7]. In
particular, for resource-constrained or low-cost devices that are used for the
Internet of Things or in RFID applications, the use of protection mechanisms
is not straightforward, since applied protection mechanisms have to be cheap
and efficient. One protection mechanism that suits such applications very well
is fresh re-keying.

Fresh re-keying [9] is an approach for precluding DPA on cryptographic prim-
itives. The resistance against DPA is achieved by a separation-of-duties principle,
where a re-keying function takes the burden of protection against DPA away
from the cryptographic primitive. In this construction, the re-keying function

This article is a minor revision of an article that appears in the proceedings of COSADE 2017. The
final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-64647-3_9.

http://dx.doi.org/10.1007/978-3-319-64647-3_9


processes a nonce and master key to compute a fresh session key. This session
key is then used by the cryptographic primitive. The nonce, or initial value
(IV), is generated uniquely for each encryption, and must never be reused for
another encryption. The nonce is considered public information and has to be
transmitted to (or synchronized with) the decrypting recipient together with
the ciphertext. Since the cryptographic primitive is only called once per session
key, DPA attacks are naturally prevented, and only dedicated countermeasures
against SPA are needed. However, the re-keying function has to provide resis-
tance against SPA and DPA attacks, either by its design, or by application of
countermeasures like threshold implementations [10], masking [12], hiding [2],
shuffling [6], etc. The intention behind re-keying schemes is that the re-keying
function itself can be protected more easily against DPA than the cryptographic
scheme, or that it can even be designed to provide inherent security against
DPA. Both options profit from the fact that the re-keying function itself does
not need to fulfill strong cryptographic requirements [9].

Re-keying functions. Medwed et al. [9] proposed polynomial multiplication as
re-keying function, which has further been extended to the multi-user setting [8].
While such a polynomial multiplication lacks inherent protection against DPA,
it is easy to mask and additionally allows easy-to-implement countermeasures
against SPA, such as shuffling [9]. However, Pessl and Mangard [11] showed at
CT-RSA 2016 that this multiplication is vulnerable to side-channel analysis, in
particular at the point where its masks have to be combined and the session
key is used in the cryptographic scheme. Additionally, the original scheme by
Medwed et al. is susceptible to time-memory trade-off attacks [3]. Recently at
Crypto 2016, Dziembowski et al. [4] presented a more formal treatment of re-
keying functions and proposed two schemes. The first is based on learning parity
with leakage, the second on learning with rounding, and both are efficient and
easy to mask.

Keymill. In contrast to designs relying on side-channel countermeasures like
masking for side-channel protection, Keymill [14] claims to be secure against
side-channel analysis inherently by design without requiring any redundant cir-
cuit. Having a re-keying function which provides inherent security against side-
channel analysis is beneficial with respect to implementation metrics. Since such
schemes do not require masking to withstand DPA, no randomness is needed to
create and update masks, and masks do not have to be stored and processed
in the first place. A comparison of a modular multiplication and Keymill by
Taha et al. [14] shows that a hardware implementation of Keymill requires 775
gate equivalents (GE), while an implementation of a modular multiplication with
first-order masking requires 7300 GE [9].

To achieve such low implementation costs, Keymill only uses 4 nonlinear
feedback shift-registers taken from the stream cipher Achterbahn [5]. The shift-
registers are connected via a rotating cross-connect, which shifts the output of
each shift-register’s nonlinear feedback function into another shift-register. This



cross-connect joins the function outputs with shift-register inputs cyclically per
clock. For this construction and also for a toy example consisting of two 8-bit
registers involving a similar rotating cross-connect, the authors claim that no
DPA attacks are feasible without constructing a hypothesis for the whole key,
or equivalently for the whole internal state of the four shift-registers, and thus
render DPA attacks infeasible.

Our Contribution. In this work, we present a DPA attack on Keymill. Our
attack shows that the claim of Keymill to be inherently secure against side-
channel attacks without the need of additional circuits does not hold. The basic
idea of the attack is as follows. Instead of making a hypothesis about the exact
values of the internal state bits or the secret key, we target the internal difference
between neighboring bits of the shift-registers. As observed by Burman et al. [1],
and Zadeh and Heys [15], the dynamic power consumption of shift-registers
depends on the number of internal differences of neighboring bits. The more
internal differences we have, the more power the shift-register consumes. We
recover those internal differences bit by bit by comparing the power consumption
of a reference nonce (e.g., 0), with power traces of a modified nonce where a single
bit has been flipped. Knowing these internal differences allows to recover the full
state and consequently the master key by guessing a few additional bits.

Our attack requires the attacker to obtain traces for related (partially chosen)
pairs of nonce values, but without violating the single-use requirement for nonces.
This scenario is explicitly covered by the security claim of Keymill, although
similar to chosen-plaintext attacks, it might not be easy to collect such data
in a practical application. We verified the validity and robustness of the attack
both for simulated data and for measurements from an FPGA implementation
of Keymill.

Outline. In Sect. 2, we give a brief background on fresh re-keying and restate the
specification of Keymill. Then, we describe the side-channel attack on Keymill
and on a variant of Toy Model II given in the Keymill specification in Sect. 3.
Sect. 4 gives experiments for our attack and discusses the influence of different
levels of noise. Finally, we conclude in Sect. 5.

2 Background

In this section, we first give a brief introduction to the concept of fresh re-
keying, where we restate the requirements on re-keying functions. Then, we
briefly summarize the specification of Keymill and finally, discuss time-memory
trade-off attacks on such re-keying schemes.

2.1 Fresh Re-Keying

Fresh re-keying has been proposed by Medwed et al. [9] as a countermeasure
against side-channel and fault attacks for low-cost devices. A typical scenario



where fresh re-keying can be applied is the communication of an RFID tag with
an RFID reader. Typically, RFID tags are low-cost devices that additionally
have strict requirements regarding power consumption, not allowing costly pro-
tection mechanisms against side-channel and fault attacks of the implemented
cryptographic primitives. This stands in contrast to the more expensive RFID
readers, where costly protection mechanisms like masking are usually affordable.

Fig. 1 shows the working principle of fresh re-keying in a communication
scenario between an RFID reader and an RFID tag. For sending a message, the
tag generates a nonce and derives a session key k∗ by using a re-keying function
g. This session key is then used by the block cipher E to encrypt the message
m. The ciphertext c together with the nonce is sent to the reader, where it can
be decrypted.

g

E

n

k

m

k∗

Tag

g

E−1

k

k∗

Reader

m
c

Fig. 1. Fresh re-keying scheme of Medwed et al. [9].

Since the nonce is generated by the tag, the tag can ensure that the block
cipher E is always used with a new session key k∗, which will preclude DPA
on the block cipher. However, in the case of the reader, having a unique nonce
cannot be ensured, because the nonce is received over the communication channel
and thus, might be chosen by an attacker. Therefore, the implementation of the
block cipher E of the reader has to be protected against DPA by other means.
Apart from that, the implementation of g for both entities has to withstand
DPA, because here, the master key k is processed with a different nonce. On
the designer’s side, the challenge is to find a suitable re-keying function g which
fulfills the following six properties given by Medwed et al. [9]:

1. Good diffusion of the master key k.

2. No synchronization between parties. Hence, g should be stateless.

3. No need for additional key material.

4. Little hardware overhead. Total costs lower than protecting E alone.

5. Easy protection against side-channel attacks.

6. Regularity.



One option for a re-keying function is the polynomial multiplication in F28 [y]
modulo p(y) proposed by Medwed et al. [9]:

g : (F28 [y]/p(y))2 → F28 [y]/p(y), (k, n) 7→ k · n.

2.2 Brief Description of Keymill

Keymill [14] is a new keystream generator recently proposed by Taha et al. at
SAC 2016. In contrast to the fresh re-keying scheme by Medwed et al. discussed
in Sect. 2.1, Keymill does not only provide one session key k∗, instead it provides
a keystream. As indicated in Fig. 2, this is particularly useful when encrypting
longer messages that require several block cipher calls. The nonce n is required
to be unique, but is otherwise public.

Keystream Generator

E

n

k

m

k∗1

E

k∗2

E

k∗3

E

k∗4

c

Fig. 2. Re-keying using a keystream generator as shown in [14].

Keymill operates on an internal state of 128 bits, composed of 4 NLFSRs
as shown in Fig. 3. Shift-register R0 has 31 bits, shift-registers R1 and R2 have
32 bits, and shift-register R3 has 33 bits. The feedback functions F0, F1, F2 and
F3 are selected from the set of feedback functions used for the stream cipher
Achterbahn [5]:

F0(S) = s0 + s2 + s5 + s6 + s15 + s17 + s18 + s20 + s25 + s8s18 + s8s20

+ s12s21 + s14s19 + s17s21 + s20s22 + s4s12s22 + s4s19s22

+ s7s20s21 + s8s18s22 + s8s20s22 + s12s19s22 + s20s21s22

+ s4s7s12s21 + s4s7s19s21 + s4s12s21s22 + s4s19s21s22

+ s7s8s18s21 + s7s8s20s21 + s7s12s19s21 + s8s18s21s22

+ s8s20s21s22 + s12s19s21s22

F1(S) = F2(S) = s0 + s3 + s17 + s22 + s28 + s2s13 + s5s19 + s7s19

+ s8s12 + s8s13 + s13s15 + s2s12s13 + s7s8s12 + s7s8s14

+ s8s12s13 + s2s7s12s13 + s2s7s13s14 + s4s11s12s24

+ s7s8s12s13 + s7s8s13s14 + s4s7s11s12s24 + s4s7s11s14s24



F3(S) = s0 + s2 + s7 + s9 + s10 + s15 + s23 + s25 + s30 + s8s15 + s12s16

+ s13s15 + s13s25 + s1s8s14 + s1s8s18 + s8s12s16 + s8s14s18

+ s8s15s16 + s8s15s17 + s15s17s24 + s1s8s14s17 + s1s8s17s18

+ s1s14s17s24 + s1s17s18s24 + s8s12s16s17 + s8s14s17s18

+ s8s15s16s17 + s12s16s17s24 + s14s17s18s24 + s15s16s17s24

Note that all feedback functions are nonsingular and additionally do not depend
on the first bit s`−1 of each `-bit register, that is, they are of the form

Fj(S) = Fj(s0, . . . , s`−1) = s0 + F ′j(s1, . . . , s`−2).

The outputs of the feedback functions are then mixed via a rotating cross-
connect, depending on the current clock cycle index i:

Fj → Rj+i (mod 4) for j = 0, 1, 2, 3.

F1

k4i+1

IV4i+1

R1

F2

k4i+2

IV4i+2

R2

F3

k4i+3

IV4i+3

R3

F0

k4i

IV4i

R0

Fig. 3. Structure of Keymill

After loading the 128-bit secret key into the internal state, 4 bits of the
128-bit nonce that can be monitored (or controlled) by the attacker are added



to the feedback functions of the shift-registers in each clock cycle. After absorbing
the nonce in 32 clock cycles, the internal state is clocked 33 more times before
producing any output. Afterwards 4 bits of output are generated (one from each
shift-register) in each clock cycle. We refer to the specification of Keymill [14]
for a more detailed description.

The designers claim that this construction “expands the size of any useful key
hypothesis to the full entropy” [14]. More specifically, they claim that the SCA-
security (“the minimum size of a key hypothesis (in bits) such that the leakage-
model using the correct key correlates to the measured leakage significantly
higher than the leakage-model using any other key” [14]) is about 128 bits.

2.3 Remark on Time-Memory Trade-Off Attacks

As elaborated in [3], the re-keying scheme proposed by Medwed et al. [9] is sus-
ceptible to time-memory trade-off attacks dependent on the used re-keying func-
tion. For instance, if a polynomial multiplication is used together with AES-128,
the master key can be recovered with a complexity of 265 [3]. Since Keymill
has an internal state-size of 128-bits, similar attacks are possible on the scheme
shown in Fig. 2.

3 Side-Channel Attack on Keymill

In this section, we will present side-channel attacks on Keymill. First, we dis-
cuss the power consumption of shift-registers following the work of Zadeh and
Heys [15] and show how this power consumption can be used to recover the dif-
ferences of neighboring shift-register bits. This and the fact that the first bits of
the shift-registers are not used in the feedback functions of Keymill allows us to
mount a side-channel attack. For simplicity, we first demonstrate the attack on
a variant of Toy Model II given in the Keymill specification [14] and afterwards
discuss the application to Keymill.

3.1 Power Consumption of a Shift-Register

In all our attacks, we exploit the dynamic power consumption of the shift-
registers at the triggering edge of the clock (i.e., positive edge). More specifi-
cally, we observe the dynamic power consumption of the building blocks of the
shift-registers, the D-flip-flops. As shown by Zadeh and Heys [15], the dynamic
power consumption of a D-flip-flop at the triggering edge depends on whether
its state changes or not. If the state of the D-flip-flop changes, more power is
consumed than if it remains the same. As an example, Zadeh and Heys [15] ana-
lyze a D-flip-flop constructed out of 6 NAND gates. For such a flip-flop, 3 gates
change if the flip-flop changes its state, whereas only one gate changes if not.

Next, we have a look at the power consumption of a shift-register. For sim-
plicity, consider a 4-bit shift-register consisting of 4 flip-flops D0, D1, D2, and
D3. In the following, we assume that D4 is the input of our shift-register, which



is shifted towards D0. For instance, let us consider the power consumption of
the change from state S0 = 01102 to state S1 = 11012. For this transition,
D0 changes its state, D1 keeps its state, D2 changes its state, and D3 changes
its state. Since the power consumption of the flip-flops is higher if they change
their state, the power consumption of the shift-register is correlated with the
Hamming weight of S0⊕S1 (= 10112). In this example, 3 flip-flops change their
state.

Now, we want to consider a state change from S0 to S′1, where we shift in a 0

instead of a 1 as before. So we observe the power consumption for the change from
state S0 = 01102 to state S′1 = 11002. If this transition happens, only two flip-
flops change their state. Thus, we observe for the transition S0 → S′1 a smaller
power consumption than for S0 → S1. This allows us to derive information about
the difference of the bits stored in D4 and D3 of S′1 and S1, respectively. In more
detail, we know that they are equal for S′1 and different for S1. We will use this
observation in our side-channel attack on a variant of Toy Model II and Keymill
itself in the following sections.

3.2 Attack on Toy Model II

For the sake of simplicity, we first describe the working principle of our attack on
a slightly modified variant of Toy Model II given in the Keymill specification [14],
which has only two 8-bit shift-registers. In the attack, we assume that similar
to Keymill, the output of the first flip-flop of each shift-register is not connected
to the feedback function, as shown in Fig. 4. Besides nonsingularity, this is the
only assumption on the feedback function that is necessary to mount our attack.
We do not rely on any other specific properties of the feedback functions. The
shift-register is preinitialized with the secret key. After that, the 16-bit nonce is
absorbed, 2 bits per clock cycle. Our goal is to recover all internal differences of
both shift-registers after the nonce (e.g., n = 000016) has been absorbed.

F0

R0 IV2i

F1

R1IV2i+1

Fig. 4. Structure of modified Toy Model II

First, we collect two power traces, one for a nonce starting with 002 and one
for a nonce starting with 102. We look at the power consumption when the first
two bits of the nonce are absorbed in the first cycle. Here, we have a difference
in n0 for R0, but equal values in n1 for R1. Since the first flip-flop of each shift-
register is not connected to the feedback function, the circuit processes the same



information for both initial values, except for the first flip-flop of the left shift-
register R0. As already discussed in Sect. 3.1, this gives us information about
the difference of the first two bits of R0 after absorbing the first two bits of the
nonce. If the power consumption when absorbing 002 is higher than in the 102

case, we know that the first two bits of R0 are different after 002 is absorbed. If
the power consumption is lower, then they are equal.

Next, we use two initial values starting with 002 and 012. This allows us to
learn the internal difference of the first two bits of the shift-register R1 after 002 is
absorbed. Then, we use 00002 and 00102 to learn information of the difference of
the first two bits after 00002 has been absorbed, still preserving the information
of the difference of the now second and third bits of both shift-registers learned
in the steps before. By continuing in this way, we can learn the differences of all
neighboring bits of R0 and R1 after the nonce 000016 has been absorbed.

Now, guessing one bit in each shift-register determines the other 7 bits in
each shift-register. Hence, we are left with only 4 possible internal states. From
this states on, we can invert Toy Model II step by step until we get 4 key
candidates in total. Note that inversion of a fully known state is trivial due to
the nonsingularity of the feedback functions, which allows to recover the previous
last bit s0 from the known feedback output and the known values of the other
taps. Overall, if we are able to obtain noiseless measurements for about 16 chosen
nonces (one per bit of the state), we can recover the entire key k.

3.3 Attack on Keymill

Compared to Toy Model II, Keymill is essentially the same, except everything
is larger. As described in Sect. 2.2, we have 4 shift-registers: one 31-bit shift-
register, two 32-bit shift-registers, and one 33-bit shift-register. The 128-bit
nonce is absorbed in 32 cycles, each cycle taking 4 bits. Furthermore, the 4
feedback functions of Keymill do not consider the outputs of the first flip-flop of
each shift-register. As mentioned before, this fact is exploited in our side-channel
attack. Again, we want to recover the internal differential pattern of the used
shift-registers after a certain nonce, e.g., n = 0 · · · 0 has been absorbed. Please
note that the all 0 nonce is just an example taken for simplicity. The attack
works for every other choice of the nonce.

The attack proceeds in a similar way as described in Sect. 3.2. First, we
record a power trace for a nonce starting with 00002 and a second trace for
a nonce starting with 10002. We compare the power consumption for the two
traces at the time the first nibble of the nonce is absorbed. At this time, for
both traces, the processed values are equal except for the inputs of shift-register
R0. Since the output of the first flip-flop of R0 is not fed back into the feedback
function, the power consumption differs only because of the state changes of this
flip-flop. As discussed in Sect. 3.1, this is sufficient to recover the difference of
the first two bits of shift-register R0. The power traces of nonces starting with
01002, 00102, and 00012 can be used to learn the difference of shift-registers R1,
R2 and R3, respectively.



When the second nibble of the nonce is absorbed, those differences are shifted
by one position, but are still known, if the first nibble of the nonce starts
with 00002. Hence, we can use nonces starting with 0000 00002, 0000 10002,
0000 01002, 0000 00102, and 0000 00012 and learn the differences of the first
two bits of each shift-register, while retaining the knowledge of the differences
between the second and the third bits. Proceeding this way, we can learn at most
32 differences of neighboring bits per shift-register.

This means that we can learn all internal differences of all 4 shift-registers,
since one shift-register has 31 bits, two have 32 bits and one has 33 bits. So,
at most 30, two times 31, and 32 differences have to be learned. Since we know
all internal differences of each shift-register, a guess of one state bit in each
shift-register determines all others. Thus, guessing 4 bits in total leads to 16
different states we recover. From these states, we can invert Keymill, resulting
in 16 possible key candidates in total.

Summarizing, if we can obtain noiseless measurements for about 128 chosen
nonces, then we can recover the full internal state and consequently the secret key
k. In particular, we recover the internal state bit by bit by making a hypothesis
on 1 bit of “equivalent key information”, instead of an actual key bit value: The
xor difference of two neighboring state bits.

3.4 A Note on Filtering the Noise

The success of our attacks crucially depends on the ability to distinguish power
consumption changes for a change of the input values. This means that the noise
level has to be small enough to reliably identify these changes. If the attacker
is allowed to repeat nonces, averaging the traces and filtering the noise is no
problem. Even if the nonce is required to be unique (as usually the case), this
can easily be done, since the state of the shift-registers only depends on bits of
the nonce that have already been absorbed. Hence, we can use all the remaining
nonce bits after the relation we want to recover to average the power consumption
for this cycle. For Keymill, we can average over up to 16 power traces even if
we recover bit relations in the penultimate nonce-absorbing cycle. Dependent on
the noise level, it might happen that the last few internal differences of the state
cannot be recovered anymore, since there are too few traces to filter the noise.
So these bits might have to be guessed additionally at the end of the attack.

4 Practical Evaluation

In order to show the practicability of the attacks discussed in Sect. 3, we present
two experiments. First, we run the attack based on simulated leakage traces to
analyze the impact of noise on the success of the attack. For the second evalua-
tion, we use power measurements from an FPGA implementation of Keymill to
evaluate the practicability of the attack targeting real hardware.

First, we simulate the described attack targeting the proposed Keymill design
as shown in Fig. 3. Therefore, the four registers R0 . . . R3 and the corresponding



feedback functions F0 . . . F3, which compose the four NLFSRs, have been mod-
elled in software. At the start of the simulation, the registers are initialized with
the secret key. Then, for every clock cycle, the simulation returns the Hamming
distance produced by the shift registers. The current Hamming distance depends
on the values in the shift register, the results of the feedback functions F0 . . . F3

and the nonce.
Gaussian noise with zero mean (µnoise = 0) and varying standard devi-

ation σnoise can be added to the noise-free Hamming-distance measurements
(HDnoisefree) in order to simulate measurements captured from real hardware,
i.e. HDmeas (see Equation 1). In order to minimize the influence of the noise it
is possible to repeat the simulation with a similar nonce t times for calculating
the mean of the measurements.

HDmeas = HDnoisefree + noise, where noise← N (0, σnoise). (1)

For every setting (specific σnoise and specific t), we performed Nfull = 500 ex-
periments with randomly chosen initial states of the four shift-registers R0 . . . R3

to calculate the success rate SR of the attack,

SR =
Nsuccess

Nfull
,

where Nsuccess is the number of successful state recoveries. Fig. 5 depicts the
results of this simulation. It is clearly visible that SR decreases with increasing
noise. This effect can be compensated by repeating the attack with the same
nonce t times and calculate the mean of the measurements. For t = 1, the
success rate starts to decrease for noise levels above σnoise = 0.1. For t = 50, the
success rate remains 1 up to a noise level of σnoise = 1.3.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

σnoise

S
R

t = 1
t = 5
t = 10
t = 15
t = 20
t = 50

Fig. 5. Success rate (SR) for increasing noise levels (σnoise). For the graphs different
numbers (1–50) of Hamming-distance measurements have been used for calculating the
mean Hamming distance.



Fig. 6 shows the influence of σnoise on the Hamming-distance measurements
(HDmeas). For this specific plot, HDnoisefree = 64 has been selected. The ‘+’
markers represent single HD measurements. In the noise-free scenario, i.e. σnoise =
0, all HD measurements have the value 64. For a high noise level, i.e. σnoise = 2,
the HD measurements are in the range between 58 and 70.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

56

60

64

68

72

σnoise

H
D

m
e
a
s

Fig. 6. Hamming distance measurements for increasing σnoise, HDnoisefree = 64.

In a final experiment, Keymill is evaluated on real hardware. We chose the
Sakura G board [13], which is the reference platform for side-channel evalua-
tions of cryptographic hardware designs on FPGAs. The main FPGA (Xilinx
Spartan-6 LX75) has been configured with the Keymill design and the power
consumption during the initialization (i.e. the first 33 clock cycles where the bits
of the nonce are shifted into the shift registers, four bits per clock cycle) has
been measured with an oscilloscope. For every bit position of the nonce, two
trace sets have been recorded, one with the corresponding bit set to ‘0’ and one
with the corresponding bit set to ‘1’. In order to evaluate the number of traces
required for reaching a specific success rate, 10 000 traces have been recorded
for every nonce. The results of the evaluations are depicted in Fig. 7. It shows
that for the given FPGA implementation, at least 220 measurements for every
nonce are required for reaching a success rate of 1. In scenarios where repeated
measurements of the same nonce are prohibited, iterating over the last 8 bits of
the nonce can be done to average the measurements. This leads to 256 traces
per fixed 120 bits that can be used to filter the noise.

Comparing the means of the two trace sets allows to distinguish between the
Hamming distances. The higher amount of traces required for reaching a success
rate of 1 indicates that the noise on real hardware is significantly larger than
the noise during previously performed simulations. For the sake of completeness
we have performed the simulations for t = 220 and larger noise levels. The
results show that for σnoise ≥ 3.6 the success rate starts to decrease for t =



220. Experiments on the real hardware reveal that for recovering the whole
initial state, approximately 220 · 128 = 28 160 measurements are required in
total. The applied measurement setup allows us to collect the required amount
of measurements for reaching a success rate of 1 within an hour. With some
improvements of the setup the measurement time could be reduced to a few
minutes, but this was not the goal of this work.

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Number of traces for mean

S
R

Fig. 7. Evolution of the success rate (SR) for the attack on the FPGA with increasing
number of traces for calculating the mean.

5 Conclusion

In this work, we showed that a DPA attack on Keymill is feasible. In contrast to
the DPA attacks that are claimed to be thwarted by the specification of Keymill,
we do not make hypotheses on the actual values of Keymill’s key or internal
state. Instead, we first recover the internal differences of neighboring bits step by
step from side-channel measurements, and then take advantage of the resulting
entropy reduction to recover the actual values. Our attack violates the claim by
the designers that Keymill is inherently secure against side-channel attacks by
design. Indeed, we show that Keymill needs dedicated countermeasures against
DPA attacks exploiting internal differences.

Our attack requires the ability of an attacker to choose the nonces. Therefore,
guaranteeing that only random nonces can be used seems to be an efficient
countermeasure. Although this prevents a straightforward application of our
attack to recover all differences between state-bits, the recovery of just a fraction
of the differences of the first few bits still remains possible. Hence, it is part
of future work to evaluate if extensions of the presented attack concept are
applicable for random nonces.



Acknowledgments. This work has been supported in part by the Austrian
Science Fund (project P26494-N15) and by the Austrian Research Promotion
Agency (FFG) under grant number 845589 (SCALAS).

References

1. Burman, S., Mukhopadhyay, D., Veezhinathan, K.: LFSR based stream ciphers
are vulnerable to power attacks. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.)
INDOCRYPT 2007. LNCS, vol. 4859, pp. 384–392. Springer (2007)

2. Clavier, C., Coron, J.S., Dabbous, N.: Differential power analysis in the presence
of hardware countermeasures. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS,
vol. 1965, pp. 252–263. Springer (2000)

3. Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F.: On the security of fresh
re-keying to counteract side-channel and fault attacks. In: Joye, M., Moradi, A.
(eds.) CARDIS 2014. LNCS, vol. 8968, pp. 233–244. Springer (2014)

4. Dziembowski, S., Faust, S., Herold, G., Journault, A., Masny, D., Standaert, F.X.:
Towards sound fresh re-keying with hard (physical) learning problems. In: Rob-
shaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 272–301. Springer
(2016)

5. Gammel, B.M., Göttfert, R., Kniffler, O.: Achterbahn-128/80. eSTREAM,
ECRYPT Stream Cipher Project (2006)

6. Herbst, C., Oswald, E., Mangard, S.: An AES smart card implementation resistant
to power analysis attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS,
vol. 3989, pp. 239–252 (2006)

7. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J. (ed.)
CRYPTO ’99. LNCS, vol. 1666, pp. 388–397. Springer (1999)

8. Medwed, M., Petit, C., Regazzoni, F., Renauld, M., Standaert, F.X.: Fresh re-
keying II: Securing multiple parties against side-channel and fault attacks. In:
Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp. 115–132. Springer (2011)

9. Medwed, M., Standaert, F.X., Großschädl, J., Regazzoni, F.: Fresh re-keying: Secu-
rity against side-channel and fault attacks for low-cost devices. In: Bernstein, D.J.,
Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 279–296. Springer
(2010)

10. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of non-
linear functions in the presence of glitches. In: Lee, P.J., Cheon, J.H. (eds.) ICISC
2008. LNCS, vol. 5461, pp. 218–234. Springer (2008)

11. Pessl, P., Mangard, S.: Enhancing side-channel analysis of binary-field multiplica-
tion with bit reliability. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp.
255–270. Springer (2016)

12. Prouff, E., Rivain, M.: Masking against side-channel attacks: A formal security
proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 142–159. Springer (2013)

13. Sakura-G – Side-Channel Evaluation Board. http://satoh.cs.uec.ac.jp/

SAKURA/hardware/SAKURA-G.html, accessed: 2016-11-28
14. Taha, M., Reyhani-Masoleh, A., Schaumont, P.: Keymill: Side-channel resilient key

generator. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, Springer (2016), (to
appear). eprint version: http://eprint.iacr.org/2016/710

15. Zadeh, A.A., Heys, H.M.: Simple power analysis applied to nonlinear feedback shift
registers. IET Information Security 8(3), 188–198 (2014)

http://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-G.html
http://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-G.html
http://eprint.iacr.org/2016/710

	Side-Channel Analysis of Keymill

