Key-Homomorphic Signatures: Definitions and
Applications to Multiparty Signatures and
Non-Interactive Zero-Knowledge

David Derler"* and Daniel Slamanig?*

! DFINITY
david@dfinity.org
2 AIT Austrian Institute of Technology
daniel.slamanig@ait.ac.at

Abstract. Key-homomorphic properties of cryptographic objects, i.e.,
homomorphisms on their key space, have proven to be useful, both from
a theoretical as well as a practical perspective. Important cryptographic
objects such as pseudorandom functions or (public key) encryption have
been studied previously with respect to key-homomorphisms. Interestingly,
however, signature schemes have not been explicitly investigated in this
context so far.

We close this gap and initiate the study of key-homomorphic signatures,
which turns out to be an interesting and versatile concept. In doing so, we
firstly propose a definitional framework for key-homomorphic signatures
distilling various natural flavours of key-homomorphic properties. Those
properties aim to classify existing signature schemes and thus allow to
infer general statements about signature schemes from those classes by
simply making black-box use of the respective properties. We apply our
definitional framework to show elegant and simple compilers from classes
of signature schemes admitting different types of key-homomorphisms to
a number of other interesting primitives such as ring signature schemes,
(universal) designated verifier signature schemes, simulation-sound ex-
tractable non-interactive zero-knowledge (NIZK) arguments, and mul-
tisignature schemes. Additionally, using the formalisms provided by our
framework, we can prove a tight implication from single-user security to
key-prefixed multi-user security for a class of schemes admitting a certain
key-homomorphism.

Finally, we discuss schemes that provide homomorphic properties
on the message space of signatures under different keys in context of
key-homomorphisms and present some first constructive results from
key-homomorphic schemes.

¥ Work done while with Graz University of Technology.

mailto:david.derler@tugraz.at
mailto:daniel.slamanig@ait.ac.at

Table of Contents

Key-Homomorphic Signatures: Definitions and Applications to
Multiparty Signatures and Non-Interactive Zero-Knowledge
David Derler and Daniel Slamanig
1 Introduction. i
1.1 Contribution.
1.2 Differences to the Journal Version [DS18].....................
2 Preliminarieso
3 Key-Homomorphic Signatures
3.1 Definitional Framework for Key-Homomorphic Signatures
4 Overview of Key-Homomorphic Schemes
4.1 Schnorr Signatures [Sch91]..
4.2 Guillou-Quisquater [GQ88]ttt
4.3 BLS Signatures [BLSO4]
4.4 Katz-Wang Signatures [KW03, GIKWO07]
4.5 Waters’ Signatures [Wat05]
4.6 PS Signatures [PS16]
4.7 Randomizable SPS by Abe et al. [AGOT14]
4.8 Ghadafi’s Short SPS [Ghal6]ccoiiiiiiiieo..
5 Applications to Multiparty Signatures
5.1 Ring Signatures
5.2 Universal Designated Verifier Signatures......................
5.3 Multisignatures i
6 Applications to Simulation-Sound Extractable NIZK
6.1 Weak Simulation-Sound Extractability
6.2 Signatures of Knowledge i
6.3 Performance Advantagesc..ooiiiiiiiiiiiii,
7 Tight Multi-User Security from Key-Homomorphisms...............
Summary and Conclusiont
A Homomorphisms on Key and Message Space.......................
A.1 Multikey-Homomorphic Signatures from Key-Homomorphisms . .

oo

1 Introduction

The design of cryptographic schemes that possess certain homomorphic properties
on their message space has witnessed significant research within the last years. In
the domain of encryption, the first candidate construction of fully homomorphic
encryption (FHE) due to Gentry [Gen09] has initiated a fruitful area of research
with important applications to computations on (outsourced) encrypted data. In
the domain of signatures, the line of work on homomorphic signatures [JMSW02],
i.e., signatures that are homomorphic with respect to the message space, has only
quite recently attracted attention. Firstly, due to the introduction of computing
on authenticated data [ABCT12]. Secondly, due to the growing interest in the
application to verifiable delegation of computations (cf. [Cat14] for a quite recent
overview), and, finally, due to the recent construction of fully homomorphic
signatures [GVW15, BFS14].

In this paper we are interested in another type of homomorphic schemes, so
called key-homomorphic schemes, that is, schemes that possess certain homo-
morphic properties on their key space. Specifically, we study key-homomorphic
signature schemes and will show that this concept turns out to be a very in-
teresting and versatile tool. Looking ahead, in context of signatures, we can
define key-homomorphisms in various different ways. We subsequently sketch
two examples to provide a first intuition. One notion is to require that given two
signatures for the same message m valid under some pk; and pk, respectively,
one can publicly compute a signature to message m that is valid for a public
key pk’ that is obtained via some operation on pk, and pk,. Another variant for
instance is to require that, given a signature o to a message m that verifies under
pk, o can be adapted to a signature to m under pk’. Thereby, pk and pk’ have a
well defined relationship (cf. Section 3 for the details).

Although key-homomorphic signatures have never been discussed or studied
explicitly , some implicit use of key-homomorphisms can be found. A recent work
by Kiltz et al. [KMP16] introduces a property for canonical identification schemes
denoted as random self-reducibility. This basically formalizes the re-randomization
of key-pairs as well as adapting parts of transcripts of identification protocols
consistently. Earlier, Fischlin and Fleischhacker in [FF13] used re-randomization of
key-pairs implicitly in their meta reduction technique against Schnorr signatures.
This concept has recently been formalized, yielding the notion of signatures
with re-randomizable keys [FKMT16].! These signatures with re-randomizable
keys are then used as basis of an elegant construction of unlinkable sanitizable
signatures (cf. [FKM116]). Allowing the adversary to also access signatures under
re-randomized (related) keys, has earlier been studied in context of security
of signature schemes against related-key attacks (RKAs) [BCM11, BPT12].
In context of RKA, the goal is to prevent that signature schemes have key-
homomorphic properties that allow to adapt signatures under related keys to
signatures under the original key (cf. e.g., [MSM™15]).

! In such schemes the EUF-CMA security notion is slightly modified, by additionally
allowing the adversary to see signatures under re-randomized keys.

Previous Work on Key-Homomorphic Primitives. While our work is the
first that explicitly studies key-homomorphic properties of signatures, some other
primitives have already been studied with respect to key-homomorphic properties
previously. Applebaum et al. in [AHI11] studied key-homomorphic symmetric
encryption schemes in context of related key attacks (RKAs). Recently, Dodis et
al. [DMS16] have shown that any such key-homomorphic symmetric encryption
schemes implies public key encryption. Rothblum [Rot11] implicitly uses key mal-
leability to construct (weakly) homomorphic public key bit-encryption schemes
from private key ones. Goldwasser et al. in [GLW12], and subsequently Tessaro
and Wilson in [TW14], use public key encryption schemes with linear homomor-
phisms over their keys (and some related properties) to construct a weaker form
of identity-based encryption (IBE), namely bounded-collusion IBE. Recently,
Boneh et al. introduced the most general notion of fully key-homomorphic en-
cryption [BGGT14]. In such a scheme, when given a ciphertext under a public key
pk, anyone can translate it into a ciphertext to the same plaintext under public
key (f(pk), f) for any efficiently computable function f. Another line of work
recently initiated by Boneh et al. [BLMR13] is concerned with key-homomorphic
pseudorandom functions (PRFs) and pseudo random generators (PRGs). Loosely
speaking, a secure PRF family F' : K x X —), is key-homomorphic if the keys
live in a group (K, +), and, given two evaluations F'(ki,z) and F(ks,z) for the
same value under two keys, one can efficiently compute F'(k1 4 k2, x). Such PRFs
turn out to yield interesting applications such as distributed PRFs, symmetric
key proxy re-encryption or updatable encryption. Continuing the work in this
direction, alternative constructions [BP14] and extended functionality in the
form of constrained key-homomorphic PRFs have been proposed [BFPT15]. We
note that the result from Dodis et al. [DMS16], although not mentioned, answers
the open question posed by Boneh et al. [BLMR13] “whether key-homomorphic
PRFs whose performance is comparable to real-world block ciphers such as
AES exist” in a negative way. Finally, Benhamouda et al. use key-homomorphic
smooth projective hash functions to construct aggregator oblivious encryption
schemes [BJL16] and inner-product functional encryption schemes [BBL17].

1.1 Contribution

We initiate the study of key-homomorphic signature schemes. In doing so, we
propose various natural definitions of key-homomorphic properties for signatures,
which can be used to classify existing signature schemes. This allows to infer
general statements about signature schemes from the respective classes by simply
making black-box use of the respective properties. On our way we rule out
certain combinations of key-homomorphism and existing unforgeability notions
of signature schemes. We then show how different types of key-homomorphic
signature schemes allow to construct more advanced signature schemes and
efficient simulation-sound extractable NIZKs, and how they help to strengthen
the security of signatures in the multi-user setting. We study existing signature
schemes with respect to our key-homomorphic properties and explicitly provide
examples for all these classes, so that all our results can readily be instantiated.

From a theoretical viewpoint our results contribute towards establishing a
better understanding of the paradigms which are necessary to construct certain
schemes and/or to achieve certain security notions. In particular, we start from
very mild security requirements and show how to use our framework to amplify
those to yield relatively strong security guarantees. From a practical viewpoint,
our so obtained constructions compare favorably to existing work: they are
conceptually very easy to understand and implement and therefore less prone to
wrong usage. At the same time, our results yield instantiations with no or even
reduced overhead when compared to existing work.

More specifically, besides our definitional framework for key-homomorphic
signatures, which we see as a contribution on its own, the contributions in this
paper are as follows:2

Generic Compilers. We present compilers from classes of schemes providing
different types of key-homomorphisms to ring signatures [RSTO01], (universal)
designated verifier signatures [SBWP03], simulation-sound extractable NIZK
arguments [Gro06] (SSE NIZKs henceforth), and compact multisignatures [IN83].
The so obtained constructions, besides being very efficient, are simple from a
construction and security analysis point of view. Basically, for ring signatures,
(universal) designated verifier signatures and weakly SSE NIZKSs, one computes
a signature using any suitable key-homomorphic scheme under a freshly sampled
key and then proves a simple relation over public keys only. For SSE NIZKs we
additionally require a strong one-time signature scheme. Compact multisignatures
are directly implied by signatures with certain key-homomorphic properties.

Tight Key-Prefixed Multi-User Security. We prove a theorem which tightly
relates the single-user existential unforgeability under chosen message attacks
(EUF-CMA) security of a class of schemes admitting a particular key-homomorph-
ism to its key-prefixed multi-user EUF-CMA security. This theorem addresses a
frequently occurring question in the context of standardization and generalizes
existing theorems [Berl5, Lac18] (where such implications are proven for concrete
signature schemes) so that it is applicable to a larger class of signature schemes.

(Standard Model & Standard Assumption) Instantiations. We investi-
gate existing signature schemes with respect to whether they admit different
types of key-homomorphisms. Using our compilers, this directly yields previously
unknown instantiations of all variants of signature schemes mentioned above.
Most interestingly, we can show that a variant of Waters’ signatures [Wat05]
in Type-3 bilinear groups satisfies our notion of perfect adaptability. This, in
turn gives us novel and simple constructions of ring signatures, simulation-sound
extractable NIZK arguments, and universal designated verifier signatures without
random oracles from standard assumptions.® For universal designated verifier
signatures, we even obtain the first instantiation from standard assumptions in
the standard model. Likewise, our general theorem for multi-user security attests

2 We also present a compact summary of the results in Section 8, Figure 1.

3 We can use witness-indistinguishable Groth-Sahai [GS08] proofs as argument system
and for instance the strong one-time signatures under standard assumptions from
Groth [Gro06].

the multi-user security for schemes whose multi-user security was previously
unknown. All our instantiations compare favorably to existing constructions
regarding conceptual simplicity and/or come at no or even reduced computa-
tional overhead. For example, when instantiating our compiler for SSE NIZKs
without random oracles this mainly owes to the fact that—compared to earlier
work—our techniques yield to a reduced overhead for the part of the system
which involves proving knowledge of a signature on the proven statement. That
is, we only need to prove a simple relation between two keys (which can be done
with a single group element from G; when using the aforementioned Waters’s
variant) and can do the verification in plain instead of proving knowledge of an
(encrypted) signature. Additionally, when instantiating our compilers for ring
signatures and universal designated verifier signatures without random oracles
with Groth Sahai proofs and Waters’ signatures they enjoy similar properties
regarding easy implementation and only require to prove knowledge of a single
element from G; when looking at the overhead imposed by the proof (refer to
the last paragraph of Section 6 for more details).

Multikey-Homomorphic Signatures. We investigate so called multikey-homo-
morphic signatures, which provide homomorphic properties on the message space
of signatures under different keys?, in context of key-homomorphisms and present
some first constructive results on multikey-homomorphic signatures with a suc-
cinct verification key. Since we do not see this as the central contribution of this
paper, we postpone the presentation to Appendix A.

1.2 Differences to the Journal Version [DS18]

The journal version of this paper [DS18] does not to include the part on multikey-
homomorphic signatures. We include it in this full version as Appendix A.

2 Preliminaries

We denote algorithms by sans-serif letters, e.g., A, B. If not stated otherwise,
all algorithms are required to run in polynomial time and return a special
symbol L on error. By y + A(z), we denote that y is assigned the output of the
potentially probabilistic algorithm A on input x and fresh random coins. Similarly,
y <& S means that an element is sampled uniformly at random from a set S and
assigned to y, and we use Q <<z as a shorthand for Q + Q U {z}. We let
[n] :={1,...,n} and write Pr[§2 : £] to denote the probability of an event £ over
the probability space {2. We use C to denote challengers of security experiments,
and C, to make the security parameter explicit. A function £(-) : N — R

* Fiore et al. [FMNP16] in independent and concurrent work introduce the concept
of multi-key homomorphic authenticators (MACs and signatures). In another more
recent and independent work Lai et al. [LTWC18] study different multi-key homo-
morphic signatures under stronger security guarantees. We defer a discussion about
relations to Appendix A.

is called negligible, iff it vanishes faster than every inverse polynomial, i.e.,
Vk:3ng:Vn>ng:e(n) <n . We use p to denote the success ration of
an adversary, i.e., the quotient of its success probability and its running time.
Finally, we use poly(:) to denote a polynomial function.

One-Way Functions. Below, we recall the notion of one-way functions.

Definition 1 (One-Way Function). A function f:{0,1}* — {0,1}* is called
a one-way function, if (1) there exists a PPT algorithm A; so thatV x € {0,1}* :
Aq(z) = f(z), and if (2) for every PPT algorithm As there is a negligible function
e(+) such that it holds that

Pr [:r(ﬁ {0,1}7, a* « A (17, f(z)) : f(x) = f(x*)} < e(k).

Signature Schemes. Subsequently, we recall the definition of signature schemes.

Definition 2 (Signature Scheme). A signature scheme ¥ is a triple (KeyGen,
Sign, Verify) of PPT algorithms, which are defined as follows:

KeyGen(1%) : This algorithm takes a security parameter k as input and outputs
a secret (signing) key sk and a public (verification) key pk with associated
message space M (we may omit to make the message space M explicit).

Sign(sk,m) : This algorithm takes a secret key sk and a message m € M as input
and outputs a signature o.

Verify(pk, m, o) : This algorithm takes a public key pk, a message m € M and a
signature o as input and outputs a bit b € {0,1}.

We note that for a signature scheme many independently generated public keys
may be with respect to the same parameters pp, e.g., some elliptic curve group
parameters. In such a case we introduce an additional algorithm PGen which
is run by some (trusted) party to obtain PP < PGen(1%) and key generation
requires PP (which implicitly contain the security parameter) to produce keys as
(sk, pk) < KeyGen(ppP). Moreover, we then assume that pp is implicitly available
to the Sign and Verify algorithms, e.g., attached to every sk and pk.

A digital signature scheme ¥ needs to provide correctness as well as some
unforgeability notion. We first present the correctness definition.

Definition 3 (Correctness). A digital signature scheme X is correct, if for all
security parameters k € N, for all (sk, pk) < KeyGen(1%), for all m € M, we
have that Pr[Verify(pk, m, Sign(sk,m)) = 1] =1.

Note that the above definition captures correctness in the perfect sense. This is
because the schemes for which we present compilers also define correctness in
a perfect sense. We, however, note that our compilers also work with signature
schemes with a negligible correctness error if we relax the respective correctness
definitions for the schemes which are output by the compilers.

Below, we present two standard unforgeability notions required in our context
(ordered from weak to strong). We start with universal unforgeability under no
message attacks (UUF-NMA security).

Definition 4 (UUF-NMA). A signature scheme ¥ is UUF-NMA secure, if for all
PPT adversaries A there is a negligible function () such that

p {(sk, pk) < KeyGen(1%), m* <& M,

0" A(pk,m") Verify (pk, m*, o) = 1] < e(r).

The most common notion is existential unforgeability under adaptively chosen
message attacks (EUF-CMA security).

Definition 5 (EUF-CMA). A signature scheme ¥ is EUF-CMA secure, if for all
PPT adversaries A there is a negligible function () such that

(sk, pk) < KeyGen(1%), Verify(pk,m*,0*) =1 A
Pr |:(m*70*) - ASign(sk,-)(pk) : m* ¢ QSign <e(k),

where the environment keeps track of the queries to the signing oracle via QS€".

Security of Multiparty Signatures. Most security definitions for multiparty
signatures, i.e,. signatures that involve a set of (potential) signers such as ring
signatures or multisignatures, implicitly assume the so called knowledge of secret
key (KOSK) assumption, where the adversary is required to reveal the secret keys
it uses to the environment. This is important to prevent rogue-key attacks, i.e.,
attacks where the adversary constructs malicious public keys based on existing
public keys in the system so that it is not required to know all the corresponding
secret keys.

Ristenpart and Yilek [RY07] introduced and formalized an abstract key-reg-
istration concept for multiparty signatures. Any such key-registration protocol is
represented as a pair of interactive algorithms (RegP, RegV). A party registering a
key runs RegP with inputs public key pk and private key sk. A certifying authority
(CA) runs RegV, where the last message is from RegV to RegP and contains
either a pk or L. In the plain model RegP(pk, sk) simply sends pk to the CA and
RegV on receiving pk simply returns pk. For the KOSK assumption, RegP(pk, sk)
simply sends (pk, sk) to the CA, which checks if (sk, pk) € KeyGen(pP) and if so
replies with pk and | otherwise.

To get rid of the KOSK assumption without revealing the secret key in
real world protocols, one can require the adversary to prove knowledge of it’s
secret key in a way that it can be straight-line extracted by the environment.
Also note that this does not conflict with very efficient deployments in the
standard model: key registration can be interactive (e.g., a PKI may require
an interactive proof before issuing a certificate on a public key) and one can
use standard techniques without random oracles. We assume this to happen for
all our multiparty signature schemes constructed in Section 5. Yet, we do not
make it explicit to avoid complicated models and we simply introduce an RKey
oracle that allows the adversary to register key pairs. We stress that our goal is
not to study multiparty signatures with respect to real world key-registration
procedures, as done in [RYO07].

Non-Interactive Proof Systems. Now, we recall a standard definition of non-
interactive proof systems M. Our definitions are inspired by [DHLW10, ADK™'13].

Therefore, let Ly be an NP-language with witness relation R defined as Lr =
{z |3 w:R(z,w) =1}.

Definition 6 (Non-Interactive Proof System). A non-interactive proof sys-
tem M is a tuple of algorithms (Setup, Proof, Verify), which are defined as follows:

Setup(1¥) : This algorithm takes a security parameter k as input, and oulputs a
common reference string crs.

Proof (crs, x,w) : This algorithm takes a common reference string crs, a statement
x, and a witness w as input, and outputs a proof .

Verify(crs, z, 7) : This algorithm takes a common reference string crs, a statement
x, and a proof ™ as input, and outputs a bit b € {0,1}.

Now, we recall formal definitions of the security properties. We thereby relax our
definitions to computationally sound proof systems (argument systems).

Definition 7 (Completeness). A non-interactive proof system I is complete,
if for every adversary A it holds that

py | CrS Setup(1®), (z*,w*) < A(crs), Verify(crs,z*,m) =1| 1
7 < Proof(crs, z*, w*) ' Vo (ztw) ¢ R

Definition 8 (Soundness). A non-interactive proof system I is sound, if for
every PPT adversary A there is a negligible function e(-) such that

Verify(crs, z*,7*) = 1

K * * ’ I <

Pr [crs + Setup(1%), (z*,7*) < A(crs) Ao dLn| S e(k).
Definition 9 (Adaptive Witness-Indistinguishability). A non-interactive
proof system I is adaptively witness-indistinguishable, if for every PPT adversary
A there is a negligible function e(-) such that

Pr|crs < Setup(1%), b<2{0,1}, b* « AP (crs) : b= b*} < e(k),

where P(crs, x, wg,wy,b) = Proof(crs,x,wp), and P returns L if (z,wy) ¢
R V (z,w1) ¢ R.

If ¢ = 0, we have perfect adaptive witness-indistinguishability.

Definition 10 (Adaptive Zero-Knowledge). A non-interactive proof system
M is adaptively zero-knowledge, if there exists a PPT simulator S = (S1,S2)
such that for every adversary A there is a negligible function (-) such that

Pr[crs < Setup(1¥) : AP(°r5="')(crs) = 1} —
< e(k),
Pr{(crs,T) +— S1(1%) AS(C'S’T"")(crs) = 1]

where, T denotes a simulation trapdoor. Thereby, P and S return L if (x,w) ¢ R
or m < Proof(crs, x,w) and m < Sao(crs, T, x), respectively, otherwise.

If € = 0, we have perfect adaptive zero-knowledge. It is easy to show that adaptive
zero-knowledge implies adaptive witness indistinguishability.

Definition 11 (Proof of Knowledge). A non-interactive proof system N is a
proof of knowledge, if there exists a PPT extractor E = (E1,E3) such that for
every PPT adversary A there is a negligible function e1(-) such that

Prlcrs < Setup(1%) : A(ers) =1] —
Pri(crs,&) < E1(17) = A(ers) =1]
and for every PPT adversary A there is a negligible function eo(-) such that

(crs,7) « E1(17), (a*,7*) < A(crs), Verify(crs,z*, 7)) =1 A
Pr {w + Eo(crs, &, a*,) ’ (z*,w) ¢ R < ea(r).

Definition 12 (Simulation-Sound Extractability). An adaptively zero-kn-
owledge non-interactive proof system I is simulation-sound extractable, if there
exists a PPT extractor (S,E) such that for every adversary A it holds that

Pri(crs,7) « S1(1%) @ Afers,7) =1] —
Pr{(crs, 7,€) <= S(1%) : A(ers, 1) = 1]
and for every PPT adversary A there is a negligible function eo(-) such that

(crs, T,&) « S(17),
Pr| (z7,7) < ASCs7) (crs),
w < E(crs, &, z*, 1)

i EI(K’)’

207

Verify(crs, z*,) =1 A
(1) ¢ Qs A (o*w) ¢ R| =2

where S(crs, 7, x) == Sa(crs, 7,x) and Qs keeps track of the queries to and answers

of S.

Note that the definition of simulation-sound extractability of [Gro06] is stronger
than ours in the sense that the adversary also gets the trapdoor £ as input.
However, in our context this weaker notion (previously also used in other works
such as [DHLW10, ADK™"13)) is sufficient.

Definition 13 (Weak Simulation-Sound Extractability). An adaptively
zero-knowledge non-interactive proof system I is weakly simulation-sound ex-

tractable, if it satisfies Definition 12 with the following modified winning condition:
Verify(crs,z*,m*) =1 A (2%,-) ¢ Qs A (2*,w) ¢ R.

3 Key-Homomorphic Signatures

In this section, we introduce a definitional framework for key-homomorphic
signature schemes. In doing so, we propose different natural notions and relate
the definitions to previous work that already implicitly used functionality that
is related or covered by our definitions.® Finally, we discuss signatures with
homomorphic properties on their key and message space, i.e., we investigate
multi-key homomorphic signatures with respect to key-homomorphisms.

5 We note that the first parts (up to Definition 16) are more general versions of defini-
tions that we earlier have used for constructing specific redactable signatures [DKS16].

10

3.1 Definitional Framework for Key-Homomorphic Signatures

In the following let ¥ = (KeyGen, Sign, Verify) be a signature scheme and the
secret and public key elements live in groups (H, +) and (E, -), respectively. For
these two groups we require that group operations, inversions, membership testing
as well as sampling from the uniform distribution are efficient. We start with
the notion of an efficiently computable homomorphism between secret keys and
public keys.% Such a functionality has been implicitly used recently in [FKM™*16]
to define the notion of signatures with re-randomizable keys.

Definition 14 (Secret Key to Public Key Homomorphism). A signature
scheme ¥ provides a secret key to public key homomorphism, if there exists an
efficiently computable map p : H — B such that for all sk,sk’ € H it holds that
p(sk+sk’) = u(sk) - p(sk’), and for all (sk, pk) < KeyGen, it holds that pk = pu(sk).

As an illustrative example, think of the discrete logarithm setting, where we
often have sk < Z,, and pk = g*F with g being the generator of some group G of
prime order p. Here, it is obvious that there exists p : sk — g% that is efficiently
computable.

Now, we can introduce the first flavour of key-homomorphic signatures. We,
thereby, take a similar path as Boneh et al. [BLMR13] in their work on key-
homomorphic PRFs, and focus on the class of functions representing linear
shifts. We think that limiting ourselves to linear shifts makes the applications of
our framework much easier comprehensible, and, therefore, leave an extension
to other suitable function classes as future work. We stress that linear shifts
represent a finite set of functions, all with the same domain and range, and they
usually depend on the public key of the signature scheme (which we will not
make explicit). Moreover, they admit an efficient membership test, are efficiently
samplable, and, are efficiently computable. Note that since we are talking of
shifts, a function can be viewed as a “shift amount” A € H.

Definition 15 together with the adaptability of signatures (Definition 16) or
perfect adaption (Definition 17) are inspired by key-homomorphic encryption
schemes [AHI11].

Definition 15 (Key-Homomorphic Signatures). A signature scheme is called
key-homomorphic, if it provides a secret key to public key homomorphism and an
additional PPT algorithm Adapt, defined as:

Adapt(pk,m, o, A) : Takes a public key pk, a message m, a signature o, and a
function A as input, and outputs a public key pk’ and a signature o',

such that for all A € H and all (pk,sk) < KeyGen(1%), all messages m € M and
all o with Verify(pk,m,o) = 1 and (pk’,0’) < Adapt(pk,m, o, A) it holds that

Pr[Verify(pk',m,0’) =1] =1 A pk' = u(A) - pk.

6 This is analogous to the use in context of bounded-collusion identity-based encryption
(IBE) in [TW14].

11

An interesting property in the context of key-homomorphic signatures is
whether adapted signatures look like freshly generated signatures. Therefore,
we introduce two different flavours of such a notion, inspired by the context
hiding notion for P-homomorphic signatures [ABC*12, ALP12] as well as the
adaptability notion for equivalence class signatures [HS14] from [FHS15].

Definition 16 (Adaptability of Signatures). A key-homomorphic signature
scheme provides adaptability of signatures, if for every k € N and every message
m € M, it holds that

[(sk, pk), Adapt(pk, m, Sign(sk,m), A)],
where (sk, pk) < KeyGen(1%), A<~ H, and

[(Ska /J/(Sk))7 (/’(‘(Sk) : M(A)a Slgn(Sk + A7 m)))} ’
where sk <& H, AL H, are identically distributed.

Remark 1. Kiltz et al. [KMP16] have recently used a notion related to Defini-
tion 16 (denoted as random self-reducibility) in context of canonical identification
schemes. We observe that when turning canonical identification schemes into
signature schemes in the random oracle model (ROM) using the Fiat-Shamir
heuristic [FS86], every random-self-reducible scheme also satisfies adaptability.
However, the converse is not true as our notion covers a broader class of signa-
ture schemes, and in particular including schemes without random oracles as
illustrated in Section 4.

Thus, the examples of random-self-reducible canonical identification schemes
given in [KMP16] directly yield examples of adaptable signatures in the ROM. In
Section 4 we explicitly show that the Schnorr signatures [Sch91] scheme, a signa-
ture scheme due to Katz and Wang [KW03, GJKWO07] and the Guillou-Quisquater
(GQ) signature scheme [GQ88] are adaptable according to the definition above.

An even stronger notion for the indistinguishability of fresh signatures and
adapted signatures on the same message is achieved when requiring the distri-
butions to be indistinguishable even when the initial signature used in Adapt is
known. All schemes that satisfy this stronger notion (stated below) also satisfy
Definition 16.

Definition 17 (Perfect Adaption). A key-homomorphic signature scheme
provides perfect adaption, if for every k € N, every message m € M, it holds that

[0, (sk, pk), Adapt(pk, m, o, A)],
where (sk, pk) < KeyGen(1%), o < Sign(sk,m), A <> H, and
[0, (sk, pu(sk)), (uu(sk) - u(A), Sign(sk + A, m)))],

where sk <~ H, o + Sign(sk,m), A< H, are identically distributed.

12

One immediately sees that signatures from random-self-reducible canonical iden-
tification schemes, and, thus, Schnorr signatures, GQ signatures, as well as
Katz-Wang signatures, do not satisfy Definition 17 as the commitment sent
in the first phase remains fixed (cf. Section 4 for details). However, we note
that there are various existing schemes that satisfy Definition 17. For example,
BLS signatures [BLS04], the recent re-randomizable scheme by Pointcheval and
Sanders [PS16], a variant of the well known Waters’ signatures [Wat05], and
some structure-preserving signature (SPS) schemes” (cf. Section 4 for a formal
treatment of these schemes).

When looking at Definition 15, one could ask whether it is possible to replace
A in the Adapt algorithm with its public key u(A). However, it is easily seen
that the existence of such an algorithm contradicts even the weakest security
guarantees the underlying signature scheme would need to provide, i.e., universal
unforgeability under no-message attacks (UUF-NMA security).

Lemma 1. There cannot be an UUF-NMA secure key-homomorphic signature
scheme X for which there exists a modified PPT algorithm Adapt’ taking u(A)
instead of A that still satisfies Definition 15.

Proof. We prove this by showing that any such scheme implies an adversary
against UUF-NMA security of X. Let us assume that an UUF-NMA challenger
provides a public key pk* and a target message m*. Run (sk, pk) < KeyGen(1*)
being compatible with public key pk*, compute o < Sign(sk,m*), then compute
pk’ < pk* - pk~! and obtain a forgery o* for message m* under the target public
key pk* by running (o*, pk*) < Adapt(pk, m*, o, pk’). a

Now, we move to a definition that covers key-homomorphic signatures where the
adaption of a set of signatures, each to the same message, to a signature for the
same message under a combined public key does not even require the knowledge
of the relation between the secret signing keys.

Definition 18 (Publicly Key-Homomorphic Signatures). A signature sche-
me is called publicly key-homomorphic, if it provides a secret key to public key
homomorphism and an additional PPT algorithm Combine, defined as:

Combine((pk;)i_y,m, (03)i,) : Takes public keys (pk;)icn), @ message m, signa-

tures (0;)ie[n) as input, and outputs a public key pAk and a signature &,

such that for all n > 1, all ((sk,, pk;) < KeyGen(1%))_,, all messages m € M
and all (o; < Sign(sks, m))icin and (pk, &) < Combine((pk;)i,m, (03)i) it

7 SPS [AFGT10] are signatures defined over two groups Gi and Ga, equipped with a
bilinear map (pairing), and messages are vectors of group elements (from either G;
or, Gz, or both). Public keys and signatures also consist of group elements only and
signatures are verified by deciding group membership of their elements and evaluating
the pairing on elements from the public key, the message and the signature. They
are an important tool for protocol design due to their interoperability with the NIZK
proof system by Groth and Sahai [GSO08].

13

holds that

pk = H pk; A Pr|Verify(pk,m,5) = 1] = 1.
i=1

Analogously to Definitions 16 and 17, one can define indistinguishability of fresh
and combined signatures for publicly key-homomorphic signatures.

Definition 19 (Public Adaptability of Signatures). A publicly key-homo-
morphic signature scheme provides public adaptability of signatures, if for every
k €N, every n € poly(k), and every message m € M, it holds that

[(Ski7 Pki)ie[n]a Combine((pki)ie[n] ,m, (Sign(sk;, m))ie[n])])
where ((sk;, pk;) < KeyGen(1%));c[n, and

[(Skza pkz)ze[n]a (Hze[n] pku Slgn(Zze[n] Ski7 m))] ’

where ((ski, pk;) <= KeyGen(1*));c[n), are identically distributed.

Definition 20 (Perfect Public Adaptability of Signatures). A publicly
key-homomorphic signature scheme provides perfect public adaptability of signa-
tures, if for every k € N, every n € poly(k), and every message m € M, it holds
that

[(Skzﬁ pki7 Ui)ie[n]) Combine((pki)ie[n]7 m, (Uz)le[n])] 3
where ((sk;, pk;) <— KeyGen(1%), o; < Sign(sk;,m))ic[n, and

[(Skia pk;, Ui)ie[n]v (Hie[n] pk;, Sign(Zie[n] ski, m))] s

where ((sk;,pk;) < KeyGen(1%),0; < Sign(ski,m))ic[n), are identically dis-
tributed.

We want to mention that Definitions 18, 19 and 20 are, for instance, satisfied
by BLS signatures or Waters’ signatures with shared Waters’ hash parameters
(cf. [LOS106]) (cf. Section 4 for a more formal treatment).

4 Overview of Key-Homomorphic Schemes

In this section we present an evaluation of (a selection of) existing signature
schemes providing key-homomorphic properties which we compactly subsume in
Table 1 and present subsequently.®

8 While our focus is on signature schemes in classic algebraic settings, it is clearly
also interesting to look at instantiations of signature schemes in other settings
regarding their key-homomorphic properties. A prime example in this context is
the lattice setting. Unfortunately, we are not aware of any classical lattice-based
signatures scheme (e.g., hash-the-sign signatures [GPV08] or Fiat-Shamir transformed
identification schemes [Lyu08]) which exhibits key-homomorphic properties that
make it at least adaptable. Thus lattice-based schemes do not seem suitable for
our applications. Nevertheless, we consider it as an interesting future work to study
lattice-based signatures, or, more generally, the entire zoo of post-quantum signature
schemes with respect to key-homomorphisms.

14

‘sdnois resur[iq sejousp Hg pue sdnoid ygy sejousp ySy ‘sdnoid
prey wyjrreSo] 9391081p (9AInd onpdife) sejousp T(DH) “punoure Jiys jo o3paymouy] aaoid o} parmbal sjuswale Jo urewrop - (17)Hod
‘Ut 9AI[sjuUnoWR PIYS oY) a1oym urewop " " (y7)wo(q ‘ojqejdepe Apiqnd A[joejted - yndd ‘oqeldepe A[10ej1ed - yd ‘oqejdepe "y
:pueGer] “wsIdIomwowoy-A9y ® JIupe soweyds [y sorrodoid orgdiomwomoy-49y Yirm Souwerds oInjeudis Surnsixo jo soduwrexy T o[qel,

D4 7 x Y7 Y xTn 7 x 7 X roL [91EUD] (BUD) YEpPEUD
D4 iz x 97 19 x 19 47, x 7, x rP [FTLODV] LOOY
Dd 7 x Yz T xTn Y7 x 7 X rL [915d] sd
o4 15 CI éwﬁwwﬂw ﬁmww_ @mmﬁm rr P [£TDAE ‘G0reA] storepm
VSH N7z Nz Nz X x A [88DD] D
Ta) 7 R) 7 X XA (LMD ‘€0M] Suep-zyey
Dd 47 5 7 » rN [rosTd] 14
greifelcy) 7 o) d X X 2 [16y0s] 1I0ouUyDg
Suryes (V)Mod cl H Vdd Vvd V awaYPg

15

Below we present the schemes discussed in Table 1. Therefore let BGGen be a
bilinear group generator which on input of a security parameter 1 and a type
parameter t € {1,2,3} outputs a bilinear group description BG. If t = 2, BG is
defined as (G1, Ga,Gr,p,€,9,§,1), where G; = (g), G2 = (g), and Gr are three
groups of prime order p with x = logy p, e is a bilinear map G; x G2 — Gr,
and v is an isomorphism Gy — Gy. If t = 3 the isomorphism v is missing. If
t = 1 we have that G; = G5 denoted as G. Note that for all the schemes we
consider in this section, when given a signature o for message m under pk, if
Verify(pk,m, o) = 1 then it holds that o € {Sign(sk,m)}.

4.1 Schnorr Signatures [Sch91]

In Scheme 1 we recall the Schnorr signature scheme.

PGen(1%) : Choose a group G of prime order p with x = log, p, an elements g £ G,
and a hash function H : G x M — {0, 1}" uniformly at random from hash function
family {Hy}r. Set and return pp < (G, g, H).

KeyGen(pp) : Parse pp as (G, g, H), choose z & Zp, set pk < ¢g”, sk < x and output
(sk, pk).

Sign(sk,m) : Parse sk as « € Zj;, choose r&Zp, compute R < ¢", ¢ + H(R,m),
y < r+x - cmod p, and output o < (c,y)

Verify(pk,m, o) : Parse pk as g® and o as (c,y), verify whether ¢ = H((¢%) °g¥, m)
and output 1 if so and 0 otherwise.

Scheme 1: Schnorr Signatures

Lemma 2. Schnorr signatures are adaptable according to Definition 16.

Proof. We prove the lemma above by presenting an Adapt algorithm satisfying
the perfect adaptability notion.

Adapt(pk,m,0, A) : Let A € Z, and pk = g°. Return (pk’,o’), where pk’ «
g° - g® and o’ < (c,y') with v/ + y + c¢- A mod p.

It is immediate that adapted signatures are identical to fresh signatures under

pk’ = g"t4 as long as the initial signature is unknown.]

4.2 Guillou-Quisquater [GQ88]
In Scheme 2 we recall the GQ signature scheme.
Lemma 3. GQ signatures are adaptable according to Definition 16.

Proof. We prove the lemma above by presenting an Adapt algorithm satisfying
the perfect adaptability notion.

Adapt(pk,m, 0, A) : Let A € Z% and pk = X. Return (pk’,o’), where pk’ «
X - A®mod N and ¢’ + (¢,y') with 3/ < y - A° mod N.

It is immediate that adapted signatures are identical to fresh signatures under
pk’ = X - A° mod N as long as the initial signature is unknown. O

16

PGen(1%) : Sample two k/2-bit primes p,q, p # ¢, set N = pq, select an odd prime
e < ¢(N) and a hash function H : Zny X M — Z, uniformly at random from hash
function family {Hj}x. Set and return pp <— (NN, e).

KeyGen(pp) : Parse pp as (N, e), choose x L 7%, compute X < 2° mod N set pk < X,
sk < z and output (sk, pk).

Sign(sk,m) : Parse sk as * € ZJj, choose r <& 7%, compute R < r°mod N, ¢
H(R,m), y < z°-r mod N, and output o < (c,y)

Verify(pk,m, o) : Parse pk as X and o as (c,y), verify whether R = y¢ - X

= H(R,m), R € Z} and output 1 if so and 0 otherwise.

—H(R,m)

Scheme 2: Guillou-Quisquater Signatures
4.3 BLS Signatures [BLS04]

In Scheme 3 we recall BLS signatures in a Type-3 setting (cf. [CHKM10] for a
treatment of security of this BLS variant). We stress that the properties which we
discuss below are equally valid for the original BLS scheme in [BLS04] instantiated
in a Type-2 setting.

PGen(1”) : Run BG « BGGen(1",3), choose a hash function H : M — G; uniformly
at random from hash function family {Hx}x, set pp < (BG, H).

KeyGen(pp) : Parse pp as (BG, H), choose z <£Zp, set pk «+ g”, sk < z, and return
(sk, pk).

Sign(sk,m) : Parse sk as « € Z;, and return o < H(m)".

Verify(pk,m, o) : Parse pk as g%, verify whether e(H(m), ") = e(o, §) and return 1 if
so and 0 otherwise.

Scheme 3: Type-3 BLS Signatures

Lemma 4. BLS signatures are perfectly adaptable according to Definition 17.

Proof. We prove the lemma above by presenting an Adapt algorithm satisfying
the perfect adaptability notion.

Adapt(pk m,o,A): Let A € Z, and pk = §°. Return (pk’,o’), where pk’ <+
- §° and o’ < o - H(m)?.

It is immediate that adapted signatures are identical to fresh signatures under
! ~I+A
pk’ = o

Lemma 5. BLS signatures are perfectly publicly adaptable according to Defini-
tion 20.

Proof. We prove the lemma above by presenting a suitable Combine algorithm.

Combine((pk;)7_,,m, (0;)7_;) : Let pk; = §%. Run pk < [[I, §%, and & «
[T, i and return pk and 6.]

4.4 Katz-Wang Signatures [KW03, GIKWO07]

Katz and Wang in [KWO03] presented a signature scheme that enjoys a tight
security reduction to the DDH problem. Basically, the public key of the scheme

17

represents a Diffie-Hellman (DH) tuple and the signature is a non-interactive
zero-knowledge proof (obtained using the Fiat-Shamir heuristic) that the public
key indeed forms a DH tuple. We present the version from [GJKWO07] (Section 4)
in Scheme 4, which in contrast to the original one in [KWO03] does not include
the statement (public key) in the Fiat-Shamir transform.?

PGen(1%) : Choose a group G of prime order p with x = log, p, two elements g, h &G
and a hash function H : G x G x M — {0,1}" uniformly at random from hash
function family {Hy}x. Set and return pp < (G, g, h, H).

KeyGen(rp) : Parse pp as (G, g, h, H), choose z &Zp, set pk < (g®,h"), sk < x, and
return (sk, pk).

Sign(sk,m) : Parse sk as « € Zj,, choose <£Z;;7 set A< g", B« h",c+ H(A,B,m),
compute s < cx + r mod p and return o « (c, s).

Verify(pk,m, o) : Parse pk as (y1,y2) and o as (c,s) with ¢ € {0,1}" and s € Z,.
Compute A < ¢g°y; , B < h°y; © and return 1 if ¢ = H(A, B, m) and 0 otherwise.

Scheme 4: Katz-Wang Signatures.

Lemma 6. Katz-Wang signatures are adaptable according to Definition 16.

Proof. We prove the lemma above by presenting an Adapt algorithm satisfying
the adaptability notion.

Adapt(pk,m, 0, A) : Let A € Z,, pk = (y1,y2) and ¢ = (¢, s). Return (pk’, o),
where pk’ < (y1 - 92,92 - h?) and ¢’ + (¢, s+ cA (mod p)).

It is immediate that adapted signatures are identical to fresh signatures under
pk’ = (y1 - g2,y - h?) as long as the initial signature is unknown. O

4.5 Waters’ Signatures [Wat05]

Below we recall Waters’ signatures with shared hashing parameters in the Type-
3 bilinear group setting as used in [BFG13] (a similar variant is presented
in [CHKM10]). We note that for Waters’ signatures without shared hash param-
eters [Wat05] it seems to be impossible to define an Adapt algorithm satisfying
Definition 15.

PGen(1%) : Run BG <« BGGen(1%,3), choose U = (h,uo, ... un) < G and define
H: M — Gy as Him) ==wuo- [}, u"", where M = {0,1}". Set pp + (BG, U, H).

KeyGen(rp) : Parse pp as (BG, U, H), choose x il Zp, set pk < §°, sk « (h*,g%), and
return (sk, pk).

Sign(sk,m) : Parse sk as (h®,§") with « € Zj, choose r(EZ;, set a < h" - H(m)",
B+ g",v+ g and return o « («, 3,7).

Verify(pk,m, o) : Parse pk as §° and o as («, 3,7). Verify whether e(«, §) = e(h, §) -
e(H(m),B) A e(v,g) =e(g,B) and return 1 if it holds and 0 otherwise.

Scheme 5: Waters’ Signatures with Shared Hash Parameters

9 In case the statement is included in the Fiat-Shamir transform, then the scheme is
clearly not adaptable.

18

Lemma 7. Waters’ signatures with shared hash parameters are perfectly adapt-
able according to Definition 17.

Proof. We prove the lemma above by presenting an Adapt algorithm satisfying
the perfect adaptability notion.

Adapt(pk,m, 0, A) : Let A = (A;, Az) € G x G with e(Ay,§) = e(h, Az) and
let o = (a,3,7), and pk = §%. Choose 1’ <= Z,, and return (pk’,o’), where
pk' < §%- Ay and o/ < (o~ Ay - H(m)™ ,B-G" ,v-g").

Signatures output by Adapt are identically distributed as fresh signatures under

randomness 7 + r’ und key pk = §* - As, which proves the lemma. O

Note that the form of the secret key in the scheme above is favourable regarding
the extractability properties of the Groth-Sahai proof system. Observe that Ag
is implicitly given by the difference of the public keys and thus one only needs to
prove knowledge of a single group element being As.

Lemma 8. Waters’ signatures are perfectly publicly adaptable according to Defi-
nition 20.

Proof. We prove the lemma above by presenting a suitable Combine algorithm.

Combine((pk;)™,,m, (o)) : Let oy = (v, Bi,7:) and pk; = §%. Run pk
[T=, g%, ' < Zy and 6« (I[[2y e - H(m)" T2, Bi- g7 ITi=, vi g7) and
return pk and 4. O

4.6 PS Signatures [PS16]

In Scheme 6 we recall a recent signature scheme from [PS16], which provides
perfect adaption, but is not publicly key-homomorphic.

PGen(1%) : Run BG < BGGen(1"%, 3) set pp < BG.

KeyGen(pp) : Parse pp as BG, choose w,y(EZp, compute X + §*, Y « ¥ and set
pk < (X,Y), sk « (z,%), and return (sk, pk).

Sign(sk,m) : Parse sk as (z,y) with z,y € Zj, choose h & GY and return o
(h, RETY™),

Verify(pk, m, o) : Parse pk as (X,Y) and o as (01,02). Check whether o1 # 1g, and
e(o1, X - Y™) = e(02, §) holds. If both checks hold return 1 and 0 otherwise.

Scheme 6: PS Signatures

Lemma 9. PS signatures are perfectly adaptable according to Definition 17.

Proof. We prove the lemma above by presenting an Adapt algorithm satisfying
the perfect adaptability notion.

Adapt(pk,m, o, A) : Parse pk as (X,Y), o as (
and choose 7 <~ Z,. Compute pk’ «+ (g2
o142y and return (pk’, o).

01,02) and A as (Al,Ag) €z
% Y - §42) and o' <« (o7, (02 -

19

The key pk’ = (141, g¥t42) and o/ = (h", (h")* A1+ +22)) gutput by the
Adapt algorithm is identically distributed to a fresh signature under randomness
h™ and pk’. 0O

It is easy to see, that PS signatures are, however, not publicly key-homomorphic
as independently generated signatures are computed with respect to different
bases h with unknown discrete logarithms. Consequently, there is no efficient
means to obtain a succinct representation of & that is suitable for Verify.

4.7 Randomizable SPS by Abe et al. [AGOT14]

Subsequently, in Scheme 7 we present a rerandomizable secure structure-preserving
signature (SPS) scheme from Abe et al. [AGOT14].

PGen(1”%) : Run BG + BGGen(1",2) and set pp < BG.

KeyGen(rp) : Parse pp as BG, choose z,y @Zp, compute X + ¢”, Y < g¥, set pk <
(X,Y), sk « (x,y), and return (sk, pk).

Sign(sk,m) : Parse sk as (z,y) and m € G2, choose r il Zyp, compute o1 < §", 02
m” -§T2+y and output o « (o1, 02).

Rand(m, o) : Parse o as (o1, 02), choose « & Zy,, compute oy — 01-§%, 05 02-0%“@“2
and output o’ < (o7, 0%).

Verify(pk,m,o) : Parse pk as (X,Y), o as (01,02). Return 1 if m, 01,02 € G2 and
e(g,02) = e(X,m) - e(¢(o1),01) - e(Y, g). Otherwise return 0.

Scheme 7: Rerandomizable SPS

Lemma 10. The SPS in Scheme 7 is perfectly adaptable according to Defini-
tion 17.

Proof. We prove the lemma above by presenting an Adapt algorithm satisfying
the perfect adaptability notion.

Adapt(pk, m, o, A) : Parse pk as (X,Y), o as (01,02) and A as (41,4,) €
Z2. Compute pk' « (X - g2 - g2) and oy < m? - 322 and o/ «
Rand(m, (o1, 0%)) and return (pk’, o’).

Adapted signatures are of the form (§7+®, m* 41 . gr+e)*+(w+482)) and it is easy
to see that they are identical to fresh signatures under pk’ = (X - g2,V - g2)
with respect to randomness r + a. O

4.8 Ghadafi’s Short SPS [Ghal6]

As we will show below, the randomizable SPS by Ghadafi [Ghal6] is perfectly
adaptable. This scheme is defined for the Type-3 bilinear group setting and
signs pairs of messages (m,n) € G; X Gz having the same discrete logarithm
with respect to bases (g,) € G1 x G3 so that e(m, §) = e(g,n). Since we later
require the randomization algorithm presented in [Ghal6] in our proof for perfect
adaptability, we explicitly include the Rand algorithm when we recall the scheme
below.

20

PGen(1%) : Run BG <« BGGen(1",3), and return pp < BG.

KeyGen(pp) : Parse pp as BG, choose z,y <= Z, and set pk < (§°,3"), sk < (z,y), and
return (sk, pk).

Sign(sk, (m,n)) : Parse sk as (z,y) with z,y € Zp, choose « & Zy, set a <= g%, b < m®,
¢+ a®-bY. Return o = (a,b,c).

Rand(pk, (m,7),0) : Parse o as (a,b,c), select 7 < Zy,, set a’ « a”, b’ < b", ¢ « ",
and return o’ < (a’,b’,c’).

Verify(pk, (m,n),o) : Parse pk as (§*,¢Y) and o as (a,b,c). Return 1 if a,b,c € G,
a # lg,, and the following checks hold, and 0 otherwise:

e(m,g) = e(g,n) A e(a,n) =e(b,g) N e(c,g) = e(a,g")e(b, §").

Scheme 8: Ghadafi’s Short SPS

Lemma 11. Ghadafi’s short SPS are perfectly adaptable according to Defini-
tion 17.

Proof. We prove the lemma above by presenting an Adapt algorithm satisfying
the perfect adaptability notion.

Adapt(pk, (m,n), 0, A) : Parse pk as (§%,g¥) and A as (A1, Aq) € Zf). Set pk’
(5G4, 3Y34?), o' + Rand(pk’, (m,), (a,b, c-a?* -b42)), and return pk’ and

/

o'

Adapted signatures are of the form ((g®)", (m®)", ((g®)*+41 - (m®)¥y+42)") and it
is easy to see that they are identical to fresh signatures under pk’ = (§%§t, §¥52)
with respect to randomness « - 7. O

5 Applications to Multiparty Signatures

In the following we show how the various key-homomorphic properties introduced
in Section 3 can be used in a black-box way to obtain constructions of other
interesting variants of signature schemes, namely ring signatures, (universal)
designated verifier signatures as well as multisignatures.

5.1 Ring Signatures

Ring signature schemes [RST01] allow a member of an ad-hoc group R (the so
called ring), defined by the member’s public verification keys, to anonymously
sign a message on behalf of R. Given a ring signature and all public keys
for R, one can verify the validity of such a signature with respect to R, but
it is infeasible to identify the actual signer, i.e., the signer is unconditionally
anonymous. Due to this anonymity feature ring signatures have proven to be an
interesting tool for numerous applications, most notable for whistleblowing and
recently for providing privacy of transactions in emerging technologies such as
cryptocurrencies.!?® The two main lines of work in the design of ring signatures

10 yttps://getmonero.org/resources/moneropedia/ringCT. html

21

https://getmonero.org/resources/moneropedia/ringCT.html

target reducing the signature size or removing the requirement for random oracles
(e.g., [DKNS04, CGS07, GK15]).

Our framework allows for constructions that do not require random oracles
and the signature size depends on the design of the relation R below. Compared
to existing generic frameworks (cf. [BKM09, BK10]), it provides an alternative,
very simple, generic, and flexible framework to construct ring signatures.

We formally define ring signature schemes (adopting [BKMO09]) and note that
the model implicitly assumes knowledge of secret keys [RYO07] as discussed in
Section 2.

Definition 21. A ring signature scheme RS is a tuple RS = (Setup, Gen, Sign,
Verify) of PPT algorithms, which are defined as follows.

Setup(1®) : This algorithm takes as input a security parameter k and outputs
public parameters pp.

Gen(pP) : This algorithm takes as input the public parameter PP and oulputs a
keypair (sk, pk).

Sign(pp,sk;,m, R) : This algorithm takes as input the public parameters PP, a
secret key ski, a message m € M and a ring R = (pk;)je[n) of n public keys
such that pk; € R. It outputs a signature o.

Verify(pp,m, o, R) : This algorithm takes as input the public parameters PP, a
message m € M, a signature o and a ring R. It outputs a bit b € {0,1}.

A secure ring signature scheme needs to be correct, unforgeable, and anonymous.
While we omit the obvious correctness definition, we subsequently provide formal
definitions for the remaining properties following [BKM09]. We note that Bender
et al. in [BKMO09] have formalized multiple variants of these properties, where
we always use the strongest one.

Unforgeability requires that without any secret key sk; that corresponds to a
public key pk; € R, it is infeasible to produce valid signatures with respect to
arbitrary such rings R. Our unforgeability notion is the strongest notion defined
in [BKMO09] and is there called unforgeability w.r.t. insider corruption.

Definition 22 (Unforgeability). A ring signature scheme provides unforge-
ability, if for all PPT adversaries A, there exists a negligible function e(-) such
that it holds that

PP ¢ Setup(1"), Verify(m*, 0", R*) =1 A

P {(sk, Pk)-<— Gen(PP) }ic poly(x)] s . (,m*, R*) & QSiEn A | < e(r),
O ¢ {5i8(,). Key()): R* € {pk,}retpoo 0%
(m*,o*,R*) — A ({pki}ie[poly(n)]> - iJi€lpoly(k)\

where Sig(i, m, R) = Sign(sk;, m, R), Sig returns L if pk; ¢ R V i ¢ [poly(x)],
and Q€ records the queries to Sig. Furthermore, Key(i) returns sk; and QXY
records the queries to Key.

Anonymity requires that it is infeasible to tell which ring member produced a
certain signature as long as there are at least two honest members in the ring.
Our anonymity notion is the strongest notion defined in [BKMO09] and is there
called anonymity against full key exposure.

22

Definition 23 (Anonymity). A ring signature scheme provides anonymity, if
for all PPT adversaries A and for all polynomials n(-), there exists a negligible
function €(-) such that it holds that

PP + Setup(17),

{(sks, pk;) < Gen(PP)}iE[poly(n)]v

b< (0,1}, O© « {Sig(-,-,)}, . b=0b" A
(m,jo,jl, R, St) <~ AO({pki}ie[poly(n)])v ’ {pkjo’ pkjl} CR
o + Sign(sk;,,m, R),

b+ A9 (st, 0, {ski }icpoly(x)])

Pr <12+ e(k),

where Sig(i, m, R) = Sign(sk;,m, R).

Our Construction. In Scheme 9 we present our black-box construction of ring
signatures from any key-homomorphic EUF-CMA secure signature scheme ¥ with
adaptable signatures and any witness indistinguishable argument of knowledge
system [N. The idea behind the scheme is as follows. A ring signature for message
m with respect to ring R consists of a signature for m||R using ¥ with a randomly
generated key pair together with a proof of knowledge attesting the knowledge
of the “shift amount” from the random public key to (at least) one of the public
keys in R.!' Very briefly, unforgeability then holds because—given a valid ring
signature—one can always extract a valid signature of one of the ring members.
Anonymity holds because the witness indistinguishability of the argument system
guarantees that signatures of different ring members are indistinguishable.

Upon signing, we need to prove knowledge of a witness for the following NP
relation R.

((pk,cpk,R),sk’) € R <= I pk; € RU{cpk} : pk; = pk- pu(sk’)

For the sake of compactness, we assume that the relation is implicitly defined
by the scheme. One can obtain a straight forward instantiation by means of
disjunctive proofs of knowledge [CDS94] (similar as it is done in many known
constructions). Therefore one could use the following NP relation R.

((pk,cpk,R),sk’) € R <= (Vp,er Pk; = pk-pu(sk’)) V cpk = pk- p(sk’)

Using this approach, however, yields signatures of linear size. To reduce the
signature size, one could, e.g., follow the approach of [DKNS04].

Related Subsequent Work. We want to remark that a technique similar to
ours was recently also used in a construction of ring signatures in the standard
model by Malavolta and Schréder [MS17]. In particular, they rely on the related
concept of signatures with re-randomizable keys [FKMT16] to realize a similar
functionality as we do. This allows them to achieve simplicity and efficiency gains
comparable to ours. Compared to our work, they do not require a setup, but
have to rely on a non-falsifiable knowledge of exponent assumption [Nao03]. Such
assumption however are very strong and results relying on those assumption

1 For technical reasons we need an additional public key cpk in the public parameters.

23

should rather be viewed as intermediate results [GK16]. In contrast, our framework
can be instantiated under standard assumptions (using Waters’ signatures) at
the cost of relying on a setup.

Setup(1®) : Run crs < MM.Setup(1”), (csk, cpk) < KeyGen(1%), set pp < (1%, crs, cpk)
and return pp.

Gen(pp) : Run (sk;, pk;) < X.KeyGen(1™) and return (sk;, pk;).

Sign(pp,sk;,m, R) : Parse pp as (17, crs,cpk) and return L if u(sk;) ¢ R. Otherwise,
return o <+ (4, pk, 7), where

(sk, pk) < KeyGen(1¥), § < X.Sign(sk,m||R), and
7 M.Proof(crs, (pk, cpk, R), (sk; — sk)).

Verify(pp,m, 0, R) : Parse pp as (17, crs,cpk) and o as (J, pk,7) and return 1 if the
following holds, and 0 otherwise:

¥ Verify(pk,m||R,0) =1 A T.Verify(crs, (pk, cpk, R),7) = 1.

Scheme 9: Black-Box Construction of Ring Signatures

Theorem 1. If ¥ is correct, EUF-CMA secure, and provides adaptability of
signatures, T is complete and witness indistinguishable proof of knowledge, then
Scheme 9 is correct, unforgeable, and anonymous.

We show that Theorem 1 holds by proving the subsequent lemmas.
Lemma 12. If ¥ is correct, and 1 is complete, then Scheme 9 is correct.
Lemma 12 follows from inspection and the proof is therefore omitted.

Lemma 13. If ¥ is EUF-CMA secure, and provides adaptability of signatures,
and N is witness indistinguishable, then Scheme 9 is unforgeable.

Proof. We prove unforgeability using a sequence of games where we let ¢ <
poly(x) be the number of Sign queries.

Game 0: The original unforgeability game.

Game 1: As Game 0, but upon setup we store csk and simulate Sign using the
following modified algorithm Sign’, which additionally takes csk as input:
Sign’ (PP, sk;,m, R,) : Parse pp as (1%, crs,cpk) and return L if pu(sk;) ¢ R.

Otherwise, return o + (9, pk, 7), where

(sk, pk) < KeyGen(1"), § < X.Sign(sk,m||R), and
7 + M.Proof(crs, (pk, cpk, R), (—sk)).

Transition - Game 0 — Game 1: A distinguisher between D1 is a distinguisher
for adaptive witness indistinguishability of I, i.e., |Pr[So] — Pr[S1]| < ewi(k).

Game 2: As Game 1, but instead of generating crs upon setup, we obtain
(crs, &) < MN.E1(1%) and store &.

24

Transition - Game 1 — Game 2: A distinguisher between Game 1 and 2 distin-
guishes an honest crs from an extraction crs, i.e., |Pr[S1] — Pr[S2]| < ge1(K).

Game 3: As Game 2, but whenever the adversary outputs a forgery (m*,o*,
R*), where o* = (&*,pk",7") we extract a witness sk’ <+ M.Ex(crs, &, (pk”,
cpk, R*), 7*) and abort if the extractor fails.

Transition - Game 2 — Game 3: Game 2 and Game 3 proceed identically, unless
the extractor fails, i.e., |Pr[Sa] — Pr[Ss]| < €ea(k).

Game 4: As Game 3, but we further modify Sign’ as follows:

Sign'(PP,,m,R,csk) : Parse pp as (1%, crs, cpk) and return L if pk; ¢ R.
Otherwise, return o «+ (9, pk, 7), where

sk <" H, &' « ¥.Sign(csk, m||R)]
|(pk, 6) < ¥.Adapt(cpk, m||R,§, —sk)], and
7 < I.Proof(crs, (pk, cpk, R), ())

Transition - Game 8 — Game 4: Under adaptability of signatures, this game
change is conceptual, i.e., Pr[S3] = Pr[Sy].

Game 5: As Game 4, but we abort whenever we extract an sk’ so that cpk =
pk - pa(sk’).

Transition - Game 4 — Game 5: Game 4 and Game 5 proceed identical, unless
abort event F; happens. For the sake of contradiction assume that F; occurs
with non-negligible probability. Then we can engage with an EUF-CMA
challenger Cf to obtain cpk upon setup and simulate Sign as follows:

Sign’(pp, i, m, R,) : Parse pp as (17, crs, cpk) and return L if pk, ¢ R.
Otherwise, return o «+ (6, pk, 7), where

sk < H, |0 + CF.Sign(m||R)),
(pk,0) + X.Adapt(cpk,m||R,d’, —sk), and
7 + I.Proof (crs, (pk, cpk, R), (sk)).

Now, whenever F; happens, we use the forgery (m*,o*, R*), where o* =
(6%, pk*,) to obtain (cpk, §) < Adapt(pk, m*||R*, 6", sk’) and return (m*||R",
d) as an EUF-CMA forgery to Cf with probability Pr[E]. That is, |Pr[Sy] —
Pr[Ss]| < e (k).

Game 6: As Game 5, but we guess the index i* the adversary will attack at the
beginning of the game, and abort if our guess is wrong.

Transition - Game 5 — Game 6: The success probability in Game 5 is the same
as in Game 6, unless our guess is wrong, i.e., Pr[Sg] = m - Pr[Ss].

Game 7: As Game 6, but instead of running KeyGen for user i*, we engage with
an EUF-CMA challenger of ¥ to obtain pk..

Transition - Game 6 — Game 7: This change is conceptual, i.e., Pr[Sg] = Pr[S7].

25

If the adversary outputs a forgery (m*, o*, R*) in Game 7, we compute (pk;., 0)
Adapt(pk*, m*||R*,*,sk’) and return (o, m*||R*) as a valid forgery for ¥. That
is, Pr[S7] < ef(k) and we obtain Pr[Sp] < poly(k)-ef(k)+ewi(k)+ce1 (k) +eea(k) +
ef(k) as a bound for the success probability which concludes the proof. O

Lemma 14. If ¥ provides adaptability of signatures and I is witness indistin-
guishable, then Scheme 9 is anonymous.

Proof. We show that a simulation of the anonymity game for b = 0 is indistin-
guishable from a simulation of the anonymity game with b = 1.

Game 0: The anonymity game with b = 0.

Game 1: As Game 0, but instead of generating crs upon setup, we obtain crs
from a witness indistinguishability challenger C*' upon Setup.

Transition - Game 0 — Game 1: This change is conceptual, i.e., Pr[Sy] = Pr[S1].

Game 2: As Game 1, but instead of obtaining o via Sign, we execute the
following modified algorithm Sign’, which, besides pp, m and R, takes skg
and sk; as input:

Sign’ (PP, sko, ski,m, R) : Parse pp as (1%,crs) and return L if u(sko) ¢
R |V u(sky) ¢ R|. Otherwise, return o < (4, pk, 7), where

(sk, pk) < X.KeyGen(1"), § < X.Sign(sk,m||R), and
7 < I.Proof(crs, (pk, R), (—sk)).

Transition - Game 1 — Game 2: A distinguisher between D' ~? is a distinguisher
for adaptive witness indistinguishability of I, i.e., |Pr[S2] — Pr[S1]| < ewi(k).

Game 2 corresponds to the anonymity game for b = 1; |Pr[S2] — Pr[So]| < ewi(k),
which proves the lemma. 0O

5.2 Universal Designated Verifier Signatures

In designated verifier signatures [JSI96] a signer chooses a designated verifier
upon signing a message and, given this signature, only the designated verifier is
convinced of its authenticity. The idea behind those constructions is to ensure
that the designated verifier can “fake” signatures which are indistinguishable
from signatures of the original signer. Universal designated verifier signatures
(UDVS) [SBWPO03] further extend this concept by introducing an additional party,
which performs the designation process by converting a conventional signature to
a designated-verifier one. There exists a significant body of work on UDVS, and,
most notably, in [SS08] it was shown how to convert a large class of signature
schemes to UDVS. Latter approach can be seen as related to our approach, yet
they do not rely on key-homomorphisms and they only achieve weaker security
guarantees.12

12 We also note that [SS08] informally mention that their approach is also useful to
construct what they call hierarchical ring signatures. However their paradigm is not
useful to construct ring signatures as we did in the previous section.

26

While one can interpret designated verifier signatures as a special case of
ring signatures where |R| = 2, i.e., the ring is composed of the public keys of
signer and designated verifier (as noted in [RST01, BKMO09]), there seems to be
no obvious black-box relation turning ring signatures into UDVS. Mainly, since
UDVS require the functionality to convert standard signatures to designated
verifier ones.!?

To this end, we explicitly treat constructions of UDVS from key-homomorphic
signatures subsequently. We start by recalling the security model from [SBWP03]
including some notational adaptations and a strengthened version of the DV-
unforgeability notion which we introduce here.

Definition 24. A universal designated verifier signature scheme UDVS builds
up on a conventional signature scheme ¥ = (PGen, KeyGen, Sign, Verify) and
additionally provides the PPT algorithms (DVGen, Desig, Sim, DVerify), which are
defined as follows.

DVGen(pp) : This algorithm takes the public parameters PP as input and generates
and outputs a designated-verifier key pair (vsk, vpk).

Desig(pk, vpk,m, o) : This algorithm takes a signer public key pk, a designated-
verifier public key vpk, a message m, and a valid signature o as input, and
outputs a designated-verifier signature §.

Sim(pk, vsk, m) : This algorithm takes a signer public key pk, a designated-verifier
secret key vsk, and a message m as input, and outputs a designated-verifier
signature ¢.

DVerify(pk, vsk,m, d) : This algorithm takes a signer public key pk, a designated-
verifier secret key vsk, a message m, and a designated-verifier signature § as
input, and outputs a bit b € {0,1}.

Subsequently we formally recall the security properties, where we omit the obvious
correctness notion. For the remaining notions we largely follow [SBWP03, SS08].

DV-unforgeability captures the intuition that it should be infeasible to come up
with valid designated verifier signatures where no corresponding original signature
exists. Subsequently, we introduce a stronger variant of DV-unforgeability, which
we term simulation-sound DV-unforgeability. This notion additionally provides
the adversary with an oracle to simulate designated-verifier signatures on other
messages for the targeted designated verifier. It is easy to see that our notion
implies DV-unforgeability in the sense of [SBWPO03].

Definition 25 (Simulation-Sound DV-Unforgeability). An UDVS provides
simu-lation-sound DV-unforgeability, if for all PPT adversaries A, there exists a

13 We, however, note that an extension of the UDVS model to universal designated
verifier ring signatures would be straight forward and also our scheme is extensible
using the same techniques as in Scheme 9.

27

negligible function () such that it holds that

PP « PGen(1%),
(sk, pk) « KeyGen(pP),

Pr (vsk, vpk) «<— DVGen(pP), DVerify(pk, vsk,m*,6*) =1 A < (k)
O < {Sig(sk, -), Vrfy(pk,vsk,-,-), ° m* ¢ Q58 A mr ¢ Q5™ | = E)
S(pk, vsk,)},

(m*,6*) « A°(pk,vpk)

where Sig(sk, m) := Sign(sk, m), Vrfy(pk, vsk, m, d) := DVerify(pk, vsk,m,), and
S(pk, vsk,m) = Sim(pk, vsk, m). Furthermore, the environment keeps tracks of
the messages queried to Sig and S via Q38 and Q>™, respectively.

Non-transferability privacy models the requirement that the designated verifier
can simulate signatures which are indistinguishable from honestly designated
signatures.

Definition 26 (Non-Transferability Privacy). An UDVS provides non-transfer-
ability privacy, if for all PPT adversaries A, there exists a negligible function
e(+) such that it holds that

PP + PGen(17), (sk,pk) + KeyGen(pp),

b<2{0,1}, O « {Sig(sk,-),RKey(-,-,-)}, = b=0b A
(m*,st) < A (pk), o < Sign(sk,m*), " omr ¢ QS8
b* <_AOU{SOD(pk,',m*,U,b)}(St)

Pr < 12+ e(k),

where the oracles are defined as follows:

Sig(sk,m) : This oracle computes o < Sign(sk,m) and returns o.

RKey(i, vsk,vpk) : This oracle checks whether DVK[i] # L and returns L if so.
Otherwise, it checks whether (vsk, vpk) is a valid output of DVGen and sets
DVK[¢] < (vsk, vpk) if so.

SoD(pk,,m,0,b): This oracle obtains (vsk,vpk) < DVK[i] and returns L if no
entry for i exists. Then, if b =0, it computes & < Sim(pk,vsk,m), and, if
b =1 it computes 0 < Desig(pk,vpk,m,c). In the end it returns 6. This
oracle can only be called once.

Further, the environment maintains a list Q58 keeping track of the Sig queries.

The notion above captures non-transferability privacy in the sense of [SS08]. This
notion can be strengthened to what we call strong non-transferability privacy
which allows multiple calls to SoD (as in [SBWPO03]). While non-transferability
privacy is often sufficient in practice, we will prove that our construction provides
strong non-transferability privacy (clearly implying non-transferability privacy)
to obtain the most general result.

Our Construction. In Scheme 10, we present our construction of UDVS from
any key-homomorphic EUF-CMA secure ¥ with perfect adaption of signatures,
any witness indistinguishable argument of knowledge system [1, and any one-way

28

function f. Our construction uses the “OR-trick” [JSI96], known from DVS.!4
The basic idea is that the designation given a signature that verifies under pk,
generates a fresh signing key pair (sk’, pk’), adapts the signature to pk - pk’ and
then provides a proof that one either knows the secret key sk’ or the preimage
vsk of a one-way function vpk = f(vsk), where vpk represents the designated
verifiers public key. More formally, upon computing designations and simulations
of designated-verifier signatures, we require to prove knowledge of witnesses for
the following NP relation R:

((pk’,vpk), (sk’,vsk)) € R <= pk' = u(sk’) Vv vpk= f(vsk).

In case of a designation one uses the witness sk’, whereas in simulations the
witness vsk is used. For brevity we assume that the parameters pp generated upon
setup are implicit in every pk and vpk generated by Gen and DVGen respectively.
Furthermore, we assume that R is implicitly defined by the scheme. Note that,
while UDVS are defined so that the verification algorithm takes vsk as input, our
scheme would also work when vsk is replaced by vpk.

PGen(1%) : Run pp’ + L.PGen(1"), crs < M.Setup(1*), and return pp < (PP’, crs).

DVGen(pp) : Run vsk <= {0,1}", set vpk < f(vsk) and return (vsk,vpk).

Desig(pk, vpk, m, o) : Output & < (pk’, or,), where
(sk’, pk’) + X.KeyGen(1"), (pkg,or) < Z.Adapt(pk,m,a,sk’),
7 < [M.Proof(crs, (pk’, vpk), (sk’, L)).

Sim(pk, vsk, m) : Output § < (pk’, or,), where

(skr, pkg) + X.KeyGen(1%), pk’ < pkg - pk™', or « X.Sign(skg,m),
7 < M.Proof(crs, (pk’, f(vsk)), (L, vsk)).

DVerify(pk, vsk, m, §) : Parse § as (pk’,or,m) and return 1 if the following holds, and 0
otherwise:

¥ Verify(pk - pk’,m,or) =1 A .Verify(crs, (pk’, f(vsk)),7) = 1.

Scheme 10: Black-Box Construction of UDVS

Theorem 2. If ¥ is EUF-CMA secure and perfectly adapts signatures, f is a
one-way function, and N is a witness indistinguishable proof of knowledge, then
Scheme 10 is correct, simulation-sound DV-unforgeable, and provides strong
non-transfer-ability privacy.

We note that if non-transferability privacy is sufficient, ¥ only needs to be
adaptable. Then, besides the candidate schemes presented in Section 4, one
can, e.g., also instantiate Scheme 10 with the very efficient Schnorr signature

4 We note that our construction is inspired by earlier work of us on a variant of
redactable signatures [DKS16].

29

scheme. We subsequently show that Theorem 2 holds where we note that if
non-transferability privacy is sufficient, ¥ only needs to be adaptable.

Lemma 15. If ¥ is correct, and I is complete, then Scheme 10 is correct.
Lemma 15 follows from inspection and the proof is therefore omitted.

Lemma 16. If ¥ is EUF-CMA secure and adapts signatures, f is a one-way
function, and N is a witness indistinguishable proof of knowledge, then Scheme 10
s simulation-sound DV-unforgeable.

Proof. We followingly bound the success probability of an adversary using a
sequence of games, where we let gsim < poly(k) be the number Sim queries.

Game 0: The original DV-unforgeability game.
Game 1: As Game 0, but inside the S oracle we execute the following modified
Sim algorithm Sim’, which additionally takes sk as input.

Sim'(pk,vsk,m,) : Output § = (pk’, o,), where

(skg, pkg) + X.KeyGen(1%), pk’ < pkg - pk™!, o — Y .Sign(skg, m),
7+ M.Proof (crs, (pk’, f(vsk)),|(skr — sk, L)]).

Transition - Game 0 — Game 1: A distinguisher between D! is a disting-
uisher for adaptive witness indistinguishability of I, i.e., |Pr[So] — Pr[S1]| <
ewi(K).

Game 2: As Game 1, but instead of generating crs upon PGen, we obtain
(crs, &) + M.E1(1%) and store &.

Transition - Game 1 — Game 2: A distinguisher between Game 1 and 2 distin-
guishes an honest crs from an extraction crs, i.e., |Pr[S1] — Pr[Sa]| < €e1(k).

Game 3: As Game 2, but whenever the adversary outputs a forgery (m*,d*),
where & = (pk”*, 0k, 7m) we extract a witness (sk™,vsk™) « M.Ex(crs, &,
(pk™,vpk*),) and abort if the extractor fails.

Transition - Game 2 — Game 3: Game 2 and Game 3 proceed identically, unless
the extractor fails, i.e., |Pr[S1] — Pr[S2]| < €ea(k).

Game 4: As Game 3, but we further modify Sim’ as follows:

Sim’ (pk, vsk, m, sk) : Output § = (pk’, or, 7), where

‘O’ — X.Sign(sk, m)‘,

‘(sk’7 pk’) « L.KeyGen(1*), (pkg,oRr) < X.Adapt(pk,m, o, sk')‘,

7 < M.Proof (crs, (pk’, f(vsk)), (jsk|, L)).

Transition Game 3 — Game 4: Under adaptability of signatures, this change is
conceptual and Pr[S3] = Pr[S4].

30

Game 5: As Game 4, but instead of generating (sk, pk) <— Gen(pPP’), we obtain
pk from an EUF-CMA challenger. Further, whenever a signature under pk is
required, we use the Sign oracle provided by the challenger.

Transition - Game 4 — Game 5: This change is conceptual, i.e., Pr[Sy] = Pr[Ss].

Game 6: As Game 5, but we obtain vpk from a one-wayness challenger and set
vsk = 1. In addition, we simulate the Vrfy oracle by using vpk instead of
f(vsk) inside the DVerify algorithm.

Transition - Game 5 — Game 6: This change is conceptual, i.e., Pr[S5] = Pr[Ss].

In Game 6, we either have extracted vsk* so that f(vsk*) = vpk and we can output
vsk® to the one-wayness challenger, or we have extracted sk™ such that u(sk™) =
pk’ and can obtain (pk, o) < ¥.Adapt(pk - pk™, m*, of, —sk’*) and output (m*, o)
as a forgery for ¥. Taking the union bound yields Pr[Ss] < (k) + cow(k), and we
obtain Pr[Sp] < e¢(k) + cow(k) + ewi(k) + €e1 (k) + €e2(x)+ which is negligible. O

Lemma 17. If ¥ perfectly adapts signatures, and I is witness indistinguishable,
then Scheme 10 is strongly non-transferable private.

Proof. We bound the success probability using a sequence of games.

Game 0: The original non-transferability privacy game.

Game 1: As Game 0, but instead of generating crs upon setup, we obtain crs
from a witness indistinguishability challenger C* upon Setup.

Transition - Game 0 — Game 1: This change is conceptual, i.e., Pr[Sy] = Pr[S1].

Game 2: As Game 1, but inside SoD we execute the following modified the
Desig algorithm Desig’ which additionally takes vsk as input:

Desig’(pk,vpkﬂn,a,) : Output 6 < (pk’, or,), where
(sk’, pk’) - X.KeyGen(1%), (pkg,oRr) + X.Adapt(pk,m,a,sk’),

7 < M.Proof (crs, (pk’, vpk),|(L, vsk)|).

Transition - Game 1 — Game 2: A distinguisher between D' ~? is a distinguisher
for adaptive witness indistinguishability of I, i.e., |[Pr[S2] — Pr[Si]| < ewi(k).
Game 3: As Game 2, but we further modify Desig’ as follows:

Desig’ (pk, vpk, m, o, vsk) : Output § < (pk’, or,), where

|(skr, pkg) ¢ T.KeyGen(1%), pk’ < pkg - pk*, or + .Sign(skr,m)];
7 < M.Proof(crs, (pk’, vpk), (L, vsk)).

Transition - Game 2 — Game 3: By the perfect adaption of signatures, this
change is conceptual, i.e., Pr[Ss] = Pr[Ss].

In Game 3, Desig’ is identical to Sim. This means that SoD is simulated indepen-
dently of b and |Pr[S3] — Pr[Sp]| < eyi(k), which proves the lemma. O

31

5.3 Multisignatures

A multisignature scheme [IN83] allows a group of signers to jointly compute
a compact signature for a message. Well known schemes are the BMS [Bol03]
and the WMS [LOS*06] schemes that are directly based on the BLS [BLS04]
and variants of the Waters’ signature scheme [Wat05] respectively. Both of them
are secure under the knowledge of secret key (KOSK) assumption, but can be
shown to also be secure under (slightly tweaked) real-world proofs of possession
protocols [RYO07].

Our construction can be seen as a generalization of the paradigm behind all
existing multisignature schemes. Making this paradigm explicit eases the search
for new schemes, i.e., one can simply check whether a particular signature scheme
is publicly key-homomorphic.

We now give a formal definition of multisignatures, where we follow Ristenpart
and Yilek [RY07]. As already noted in Section 2, we use the KOSK modeled
via RKey for simplicity. Nevertheless, we stress that we could use any other key-
registration that provides extractability or also the extractable key-verification
notion by Bagherzandi and Jarecki [BJ08]. This does not make any difference for
our subsequent discussion as long as the secret keys are extractable.

Definition 27. A multisignature scheme MS is a tuple (PGen, KeyGen, Sign,
Verify) of PPT algorithms, which are defined as follows:

PGen(1%) : This parameter generation algorithm takes a security parameter
and produces global parameters PP (including the security parameters and a
description of the message space M).

KeyGen(pp) : This algorithm takes the global parameters PP as input and outputs
a secret (signing) key sk and a public (verification) key pk.

Sign(Pp, Pk, m, sk;) : This is an interactive multisignature algorithm executed by
a group of signers defined by PK, who intend to collectively sign the same
message m. Fach signer S; executes Sign on public inputs PP, public key
multiset PK, message m and its individual secret key sk;. At the end of the
protocol every signer outputs a multisignature o.

Verify(pp, Pk, m, o) : This algorithm takes public parameters PP, a public key

multiset PK, a message m and a multisignature o as input and outputs a bit
be{0,1}.

The above tuple of algorithms must satisfy correctness. For any « € N, any
n € poly(x), for any pp < PGen(1"), for any {(ski, pk;) < KeyGen(PP)};c[n, for
any m € M, if every signer i, ¢ € [n], honestly executes o < Sign(Pp, PK, m, sk;),
then Verify(pp, PK,m, o) = 1.

Besides correctness, we require existential unforgeability under a chosen
message attack against a single honest player.

32

Definition 28 (MSEUF-CMA). A multisignature scheme MS is MSEUF-CMA
secure, if for all PPT adversaries A there is a negligible function €(-) such that

PP + PGen(1%),

(sk*, pk*) < KeyGen(1%), '
O« {Sign('v ')’ RKey('v K)}7 .
(Pk*,m*, ") < A°(pp, pk*)

Verify (PP, Pk*, m*,0*) = 1 A
pk' € Pk* A m* ¢ Q58" A | < e(k),
(Pk \ {pk'}) \ Q% =0)

Pr

where the environment keeps track of signing and registration queries via Q8"
and QRKSY | respectively. The adversary has access to the following oracles:

Sign(pk,m) : This oracle obtains a public key set Pk and returns L if pk* ¢ PK.
Otherwise it simulates the honest signer by running Sign(Pp, Pk, m, sk*) and
interacting in a signing protocol with the other signers contained in PK (which
are controlled by the adversary). In the end it sets Q%&" <~ m.

RKey(sk, pk) : This oracle checks if (sk,pk) € KeyGen(pp) and sets QRK®Y <= pk
if so.

Our Construction. We restrict ourselves to non-interactive Sign protocols,
which means that every signer S; locally computes a signatures o; and then
broadcasts it to all other signers in Pk. Furthermore, we consider ¥ to work with
common parameters PP and in Scheme 11 let us for the sake of presentation
assume that Pk := (pkq, ..., pk,,) is an ordered set instead of a multiset.

PGen(1%) : Run pp + X.PGen(1") and return pp.

KeyGen(pp) : Run (sk, pk) < X.KeyGen(prp) and return (sk, pk).

Sign(pp, Pk, m, sk) : Let ¢ € [n]. Every participating S; with pk; € Pk proceeds as follows:

— Compute o; < X.Sign(sk;, m) and broadcast o;.
— Receive all signatures o; for j # .
— Compute (pk, o) <— Combine(rPk, m, (0¢)¢e[n)) and output o.

Verify(pp, Pk, m, o) : Return 1 if the following holds and 0 otherwise:

Z.Verify(HpkEPK pk, m, 0) =1.

Scheme 11: Black-Box Construction of Multisignatures

Theorem 3. If ¥ is correct, EUF-CMA secure, and publicly key-homomorphic,
then Scheme 11 is MSEUF-CMA secure.

Proof. We show that an efficient adversary A against MSEUF-CMA can be
efficiently turned into an efficient EUF-CMA adversary for . To do so, we
simulate the environment for A by obtaining pk* from an EUF-CMA challenger of
Y, then setting PP accordingly, and starting A on (PP, pk*). Additionally, we record
the secret keys provided to RKey in a list KEY indexed by the respective public
keys, i.e., KEY[pk] < sk. Whenever a signature with respect to pk* is required we

33

use the Sign oracle provided by the challenger. Eventually, the adversary outputs
(Pk*,m*,0*) such that Z.Verify(HpkepK* pk,m*,0*) =1, pk* € pk*, all other keys
in PK* were registered, yet m* was never queried to the signing oracle. We compute
sk’ ZpkEPK*\{pk*}} —KEY|[pk], compute o’ < ¥.Sign(sk’, m*), obtain (pk*, o) <

Combine(([[kep- PKs I Lokere (pke} pk™1),m*, (6%,0")) and output (m*,o) as a
forgery. O

6 Applications to Simulation-Sound Extractable NIZK

Some of the constructions in the previous sections implicitly use techniques to
ensure that even though we have to simulate proofs within our security reduction,
we can still extract the required witness for the forgery. In this section we isolate
the essence of this techniques and show that they are generally applicable to
extend witness indistinguishable argument systems admitting proofs of knowledge
to (weak) simulation-sound extractable NIZK arguments (SSE NIZKs) using EUF-
CMA secure signature schemes that adapt signatures. This makes our techniques
useful in a broader range of applications. For the stronger variant of simulation-
sound extractability we additionally require strong one-time signatures, while for
weak simulation-sound extractability we can avoid them.

We start by defining strong one-time signatures and an efficient instantiation
under standard assumptions can be found in [Gro06].

Definition 29 (Strong One-Time Signature Scheme). A strong one-time
signature scheme Lo provides the same interface as a conventional signature
scheme X and satisfies the following unforgeability notion: For all PPT adversaries
A there is a negligible function e(-) such that

(sk, pk) < KeyGen(1%), Verify(pk,m*,0*) =1 A

Pr (m*,a*) «— ASign(sk,-)(pk) : (m*,cr*) ¢ QSign

<e(k),

where the oracle Sign(sk, m) := ¥.Sign(sk,m) can only be called once.

For our construction, first let L be an arbitrary NP-language L = {z | 3w :
R(z,w) = 1}, for which we aim to construct a SSE NIZK, and let L’ be defined
via the NP-relation R’:

((z,cpk, pk), (w,csk —sk)) € R <= (x,w) € R V cpk = pk - u(csk — sk).

In Scheme 12 we present our construction of a SSE NIZK Mg for L. Our technique
is inspired by [GMY03, GMY06, Gro06] and also similar to [DHLW10, ADK*13]
but much easier to implement. This is mainly due to the fact that the adaptability
of the used signature scheme allows us to get rid of the requirement to prove
statements about the validity of the signature, and, instead, only requires us to
prove a simple statement demonstrating knowledge of the shift amount.
Essentially, the intuition of our construction is the following. We use a
combination of an adaptable EUF-CMA secure signature scheme ¥ and a strong
one-time signature scheme ¥ to add the required non-malleability guarantees

34

to the underlying argument system.'® Upon each proof computation, we use ¥ to
“certify” the public key of a newly generated key pair of X;. The associated secret
key of ¥ is then used to sign the parts of the proof which must be non-malleable.
Adaptability of ¥ makes it possible to also use newly generated keys of ¥ upon
each proof computation. In particular, the relation associated to L’ is designed
so that the second clause in the OR statement is the “shift amount” required to
shift such signatures to signatures under a key cpk in the crs. A proof for x € L
is easy to compute when given w such that (z,w) € R. One does not need a
satisfying assignment for the second clause in the OR statement, and can thus
compute all signatures under newly generated keys. To simulate proofs, however,
we can set up crs in a way that we know csk corresponding to cpk, compute
the “shift amount” and use it as a satisfying witness for the second clause in
the OR statement. Under this strategy, the witness indistinguishability of the
underlying argument system for L’, the crs indistinguishability provided by the
proof of knowledge property, and the secret-key to public-key homomorphism of
Y guarantees the zero-knowledge property of our argument system for L.

What remains is to argue that we can use the extractor of the underlying
argument system for L’ as an extractor for L in the simulation-sound extractability
setting. In fact, under the strategy we use, we never have to simulate proofs for
statements outside L’ which is sufficient for the extractor for L’ to work with
overwhelming probability. Furthermore, we can show that the probability to
extract a valid witness for the second clause in the OR statement is negligible,
as this either yields a forgery with respect to Lot under some pk,, previously
obtained from the simulator (if the adversary modified any of the non-malleable
parts of a proof previously obtained via the simulator) or for ¥ under cpk (if pkg,
has never been certified). Now we know, however, that the extractor for L’ works
with overwhelming probability by definition, which means that we will extract
a satisfying witness for x € L with overwhelming probability. Formally, we can
state:

Theorem 4. Let 1 be a complete, witness indistinguishable non-interactive
argument of knowledge system for the language L', let * be an EUF-CMA secure
signature scheme that adapts signatures, and let Lo be a strong one-time signature
scheme, then the argument system [Nse is a complete and simulation-sound
extractable argument system for language L.

We show that Theorem 4 holds by proving the subsequent lemmas.
Lemma 18. If 1 is complete and ¥ is correct, Mg is complete.
The lemma above follows from inspection and the proof is therefore omitted.

Lemma 19. If 1 is a witness indistinguishable proof of knowledge, and ¥ pro-
vides a secret-key to public-key homomorphism, then N is zero-knowledge.

Proof. We subsequently prove that zero-knowledge follows from witness indistin-
guishability.

15 ¥+ is only required as the signatures produced by ¥ may be malleable on their own.

35

Setup(1™) : Run crsn < N.Setup(1¥), (csk, cpk) <— X.KeyGen(1”) and return crs < (
crsp, cpk).

Proof(crs, z,w) : Run (sk,pk) « X.KeyGen(17), (skot, pky) ¢ Zot.KeyGen(17¥), and
return 7 < (7, pk, o, pky,, 0ot), where
mn < M.Proof(crs, (z, cpk, pk), (w, L)), o < X.Sign(sk, pk,,), and

Oot < Xot.Sign(skot, mn||z||pk||o).
Verify(crs, z, 7) : Parse 7 as (mn, pk, 0, pkyy, 0ot) and return 1 if the following holds and
0 otherwise:
M.Verify(crs, (z, cpk, pk),mn) =1 A X.Verify(pk, pky) =1 A
Yot Verify(pk.,, 7nl||z||pk||o) = 1.

ot?

S1(1%) : Run (crsp, L) < M.E((1%), (csk,cpk) + X.KeyGen(1™) and return (crs,7),
where
crs < (crsp, cpk) and 7 + csk.

Sao(crs, T,x) : Parse 7 as csk, run (sk, pk) <— X.KeyGen(1%), (skot, pkqy) Lot.KeyGen(
17), and return 7 < (7n, pk, o, pky, 0ot), where
mn < M.Proof(crs, (z, cpk, pk), (L, csk — sk)), o < X.Sign(sk, pk,,), and
Oot < Lot.Sign(sket, mn||z||pkl||o).
S(1%): Run (crsn, &) + ML.Ei(17%), (csk,cpk) + X.KeyGen(1") and return (crs,7,&),

where
crs < (crsp, cpk) and 7 « csk.

E(crs, &, z,m) : Run (w, L) + M.Ex(crs, &, z, m) and return w.

Scheme 12: Simulation-sound extractable NIZK Argument System [Mg.

Game 0: The zero-knowledge game, where we use the real Proof(crs, -, -) algo-
rithm on witnesses (w, L) to reply to queries of the adversary.

Game 1: As Game 0, but we store csk upon Setup.

Transition Game 0 — Game 1: This change is conceptual, i.e., Pr[Sy] = Pr[S1].

Game 2: As Game 1, but use the following modified Proof algorithm Proof’
which additionally takes csk as input:

Proof’(crs,x,w,) : Run (sk,pk) < X.KeyGen(1%), (skot,pke) <
Y ot.KeyGen(17), and return 7 < (7, pk, o, pkyy, ot), Where
7 < M.Proof(crs, (z, cpk, pk),|(L, csk — sk)|), o < X.Sign(sk, pke;), and
Oot < Lot-Sign(skot, mn||z||pk]||o).
Transition - Game 1 — Game 2: We present a hybrid game which shows that
both games are indistinguishable under the witness indistinguishability of

the argument system. First, we conceptually change the Setup algorithm to
Setup’ which obtains crspy from a witness indistinguishability challenger:

36

Setup(1”) : Run 7 (csk, cpk) < X.KeyGen(1%), return crs < (

crsp, cpk).

The change above is only conceptual. Furthermore, we use the following
Proof” algorithm instead of Proof’:

Proof”(crs,x,w,) : Run (sk,pk) <+ X.KeyGen(1%), (skot,pke;) <
Y oi-KeyGen(1%), and return 7 < (mn, pk, o, pkyy, 0ot), where

ot

‘Trn + C¥((x,cpk, pk), (w, L), (L,csk — sk))‘, o « X.Sign(sk, pk,,), and

Oot Lot-Sign(skot, mnl|z||pk||o).

Now depending of whether the challenger uses the first witness (b = 0) or the
second witness (b = 1) we either simulate Game 1 or Game 2. More precisely,
Proof” produces the identical distribution as Proof if b = 0 and the identical
distribution to Proof’ if b = 1. That is |Pr[S1] — Pr[S2]| < ewi(k).

Game 3: As Game 2, but we further modify Proof’ so that it no longer takes w
as input:

Proof’(crs, z,csk) : Run (sk, pk) + Z.KeyGen(1%), (skot, pkyy) < Zot-Key-
Gen(1"), and return 7 < (7, pk, o, pkyg, ot), Where

mn < MN.Proof(crs, (x, cpk, pk), (L, csk — sk)), o < X.Sign(sk, pk.;), and

Oot Lot-Sign(skot, mnl|z||pk||o).

Transition - Game 2 — Game 3: This change is conceptual, i.e., Pr[Ss] = Pr[Ss].

Game 4: As Game 3, but instead of obtaining crs using Setup, we obtain
(crs,7) < Sy (observe that 7 = csk, so we still know csk). Now the setup is
already as in the second distribution of the zero-knowledge game.

Transition - Game 8 — Game 4: A crs output by S; is indistinguishable from
an honest crs under the CRS indistinguishability provided by the proof of
knowledge property (observe that S; internally uses E; to obtain crs). Thus,
IPr[Sa] — Pr{Sll < o ().

Game 5: As Game 4, but we further modify Proof’ as follows:

Proof’(crs,,x): . Run (sk,pk) < X.KeyGen(1%), (skot,

pkot) < Lot-KeyGen(17), and return 7 < (mn, pk, o, pkqy, 0ot), Where

7 < M.Proof(crs, (z, cpk, pk), (L, csk — sk)), o < X.Sign(sk, pk,,), and
Oot Lot-Sign(skot, mnl|z||pk||o).

Now Proof’ is equivalent to S,.
Transition - Game 4 — Game 5: This change is conceptual, i.e., Pr[Sy] = Pr[Ss].

In Game 0 we simulate the first distribution of the zero-knowledge game whereas
in Game 5 we simulate the second distribution. We have that |Pr[Sy] — Pr[Ss]| <
ewi(k) + €poki (k) which concludes the proof. O

37

Now, we have already established the existence of a simulator by proving zero-
knowledge and can go on by proving simulation-sound extractability.

Lemma 20. IfT1 is a witness indistinguishable proof of knowledge and L is EUF-
CMA secure and adapts signatures, then MNgse is simulation-sound extractable.

We prove the lemma above by showing that even when the adversary sees
simulated proofs for arbitrary statements, we are still able to extract a witness w
from a proof 7 for a statement x* so that R(z*,w) =1 as long as (z*,7*) does
not correspond to an query-answer pair of the simulation oracle.

Proof. By Lemma 19, we know that (S1, S2) is a suitable zero-knowledge simulator.
In addition, we have that the output of S is identical to S; when restricted to
(crs, 7). This completes CRS indistinguishability part of the proof. To prove the
second part of simulation-sound extractability we proceed using a sequence of
games where we let ¢ < poly(k) be the number of queries to the simulator.

Game 0: The original simulation-sound extractability game.
Game 1: As Game 0, but we engage with an EUF-CMA challenger within S.
That is, we execute the following modified S algorithm S':

S/(1%) : Run (crsp, &) < M.E;(1%), cpk + C, and return (crs, 7, &), where

crs + (crsp,cpk) and 7« L.

This also requires us to modify the S, algorithm used for simulation to obtain
S,. Essentially, we leverage the adaptability of signatures to shift signatures
obtained from the signing oracle provided by the EUF-CMA challenger under
cpk to signatures under a random key. The “shift-amount” is then a valid
witness for the relation.

S5 (crs,z) : Obtain ‘sk' < H, pk < cpk - pu(sk’)|. Further, run (skot, pkoy) <
Y ot.KeyGen(17), and return 7 < (7, pk, o, pkyy, 0ot), Where

7n < M.Proof(crs, (x, cpk, pk), (J_,‘—sk/‘)), ‘a’ — C;.Sign(pkot)‘,

‘(O‘,J_) < ¥.Adapt(cpk, pl<0t,a’7sk’)‘7 and

Tot <= Lot-Sign(skot, mnl[z[[pk||).

Transition - Game 0 — Game 1: Under adaptability of signatures, this change
is only conceptual, i.e., Pr[Sp] = Pr[Sy].

Game 2: As Game 1, but we further modify S}, as follows: we engage with a
strong one-time signature challenger in each call and keep a mapping from
challengers to keys.

38

Sh(crs,z) : Obtain sk’ <= H, pk < cpk - u(sk’). Further, obtain

and return 7 < (7, pk, o, pkyy, 0ot), Where

7 < M.Proof(crs, (z, cpk, pk), (L, —sk)), o’ + Cf.Sign(pke,),
(0, L) + X.Adapt(cpk, pk,,,o’,sk’), and

ot?

|76 < C2t.Sign(mn||z||pk]|o)]

Transition - Game 1 — Game 2: This change is conceptual, i.e., Pr[S1] = Pr[Sa].

Game 3: As Game 2, but we assume that Es used inside E does not fail to
extract a valid witness with respect to L’ (i.e., we abort if it fails).

Transition - Game 2 — Game 3: We bound the probability that the adversary
outputs a tuple (z*, 7*) in Game 3 so that E; fails. We refer to this event as Fj.
For the sake of contradiction assume that Pr[Fi] is non-negligible. Then we
could obtain crsp from a proof of knowledge challenger and set £ <— L within
S|. Whenever the adversary outputs (x*,7*) we output it to the challenger.
Now, the probability for our reduction to win the proof of knowledge game
is exactly Pr[F1]. That is, we have that |Pr[Sa] — Pr[Ss]| < eea(x).

Game 4: As Game 3, but we assume that for every tuple (z*,7*) output by the
adversary, E never fails to output a witness w so that R(z,w) =1 (i.e., we
abort if it fails).

Transition Game 8 — Game 4: We bound the probability that the adversary
manages to come up with a tuple (z*,7*), where 7 = (75, pk*, 0, pki, 05),
so that we extract (L,ske) + Ea(crs, & %, 7*) inside E. We refer to this
event as Fy. If F5 happens, we obtain a signature (of, cpk) < X.Adapt(pk”,
pk:;, 0%, ske). By definition of the game we know that (x*,7*) is not a query-
answer pair of the simulator. Thus, we have two cases: (1) A signature on
pk:, was never obtained from the EUF-CMA challenger and we can output
(pks,, o) as a valid EUF-CMA forgery. (2) A signature on pk?, was previously
obtained. Then we have by definition that either mp||z*||pk*||c* or oF; is
different from the tuple signed by the strong one-time signature challenger
upon simulation and we can output (mf||z*||pk*||o*, 0%,) as a forgery for the
strong one-time signature scheme to the respective challenger. Taking the
union bound yields |Pr[S3] — Pr[S4]| < q - eot(k) + e¢(k).

In Game 4, we always extract a witness w such that R(z*,w) = 1, i.e., Pr[S4] = 0;
Game 0 and Game 4 are computationally indistinguishable. Overall, we obtain
Pr[So] < q - cot(k) + ef(k) + e2(x), which completes the proof. O

Remark 2. It is quite easy to see, that the theorem above could also be proven if ¥
only provides the weaker notion of non-adaptive CMA (naCMA see, e.g., [Kat10])
security, i.e., where the adversary has to define the list of message for which
it obtains signatures before seeing the public key of the scheme. That is, if we
let ¢ be the number of queries to the simulation oracle, the reduction would
generate ¢ one-time signing key pairs and obtain signatures on all the public keys
from the naCMA challenger in the beginning (as opposed to freshly generating

39

the one-time signing key pairs and adaptively obtaining signatures upon each
query to the simulation oracle). The reduction stores all the key pairs and
signatures and then uses a fresh tuple upon each call to the simulation oracle. We
decided to conduct our proof under EUF-CMA instead of naCMA for two reasons:
(1) it allows us to present the following construction of weak simulation-sound
extractable arguments of knowledge much more succinctly, and (2) one can
generically extend naCMA secure signatures to EUF-CMA secure signatures in
the standard model [ST01] via chameleon hashing and this extension does not
conflict with adaptabiltiy.

6.1 Weak Simulation-Sound Extractability

If one allows the proofs to be malleable and only requires non-malleability with
respect to the statements, one can omit the strong one-time signature scheme
and directly sign mn||z||pk using . We refer to this modified argument system
as Mysse-

Theorem 5. Let 1 be a complete, witness indistinguishable non-interactive
argument of knowledge system for the language L', and let ¥ be an EUF-CMA
secure signature scheme that adapts signatures, then the argument system [Mysse
is a complete, weakly simulation-sound extractable argument system for language

L.

Proof (Sketch). The proof for the theorem above is exactly the same as the one
for simulation-sound extractability, except that we do not need to engage with
challengers for the one-time signature scheme (i.e., in Game 2 nothing is changed)
and Pr[F3] is exactly the same as extracting a forgery for X in the transition
between Game 3 and Game 4. O

6.2 Signatures of Knowledge

Also note that using our techniques in a non-black box way directly yields
signatures of knowledge [CLO06]. That is, a signature of knowledge on a message
m with respect to statement x is simply a proof with respect to x, where
m is additionally included upon computing the signature using 2, i.e., one
signs mn||z||pk||o||m. Then one obtains signatures of knowledge in the strong
sense [BCCT15], where even the signature (i.e., the proof) is non-malleable.
If security in the original sense—the counterpart of weak simulation-sound
extractability where the signature (i.e., the proof 7) itself may be malleable—is
sufficient, one can even omit the strong one-time signature scheme and directly
sign mn||z||pk||m using T.

As already mentioned in [CLO6], a immediate application of signatures of
knowledge is the construction of ring signatures. Obtaining such a construction
based on our techniques presented in this section can thus be seen as an alternative
to the direct construction in Section 5.1.

40

6.3 Performance Advantages

Our technique provides nice properties when it comes to converting NIWI/NIZK
Groth-Sahai proofs [GS08] over pairing product equations to simulation-sound
extractable arguments of knowledge. We can thereby use Waters’ signatures
as described in Section 4.5 for an instantiation under standard assumptions.
Our technique constitutes an alternative to known techniques [Gro06, DHLW10,
ADK™13] and yields constructions that are much easier to implement with
favorable properties regarding efficiency when, e.g., compared to [Gro06, DHLW10,
ADK™"13] for SSE NIZKs or [BFG13] for signatures of knowledge without random
oracles.

When looking at the existing techniques to turn NIWI/NIZK proofs into
simulation sound extractable proof systems, one may observe that all of them
are similar in the sense that they modify the original language by adding an
additional disjunctive clause, which can be used by the simulator to simulate
proofs. Consequently, we can compare all the approaches by simply comparing
the respective overheads imposed by the additional disjunctive clause.

To make it explicit what we exactly mean by overhead, let us consider the
following set of pairing product equations

{e(zi,9) = e(h, &) Yicin)»

where we underline the variables of which we want to prove knowledge. Roughly
speaking, one will only reveal commitments to the underlined values when
conducting a Groth-Sahai proof, which is why we will henceforth speak of the
underlined values as commitments. What we want to prove in such a disjunctive
statement is that we know a satisfying value z; committed to in x; for at least
one i € [n]. Note that we have chosen this set of equations in a way that it is
exactly of the form as we require it when using Water’s signatures to instantiate
our compiler for ring signatures. That is, the first n — 1 equations represent the
statement to be proven'®, whereas the last equation with index n represents
the equation required to prove knowledge of the shift amount to cpk. Latter
remains the same, irrespective of the statement we want to prove, which is why
we simply look at the overhead imposed by this additional equation and the costs
for expressing the additional disjunction. We start by discussing how we realize
the disjunction. We follow the ideas of [Gro06] and prove the equations

{6(&, g) = e(haii)}ie[n]a (1)

e(g []g,9) =1, and (2)
€[]

{e(gi’ (fi)ilii) = 1}i€[n]~ (3)

16 The actual statement can of course be different if one chooses to use techniques
to achieve more compact ring signatures or in case one simply requires a different
statement when using SSE NIZKs in other applications.

41

Equation (1) modifies the original set of equations so that one additionally proves
knowledge of Z;. This set of equations is now trivially satisfiable. To ensure that
the prover actually uses a non-trivial witness for at least one of the equations,
one needs two additional equations. Equation (2) constitutes a selector equation,
which can only be satisfied if at least one g, is a commitment to g; # 1. Finally,
Equation (3) ensures that the commitment z; is actually a commitment to Z; for
every ¢ where 9, is a commitment to some g; # 1.

As we are working in the SXDH setting, we have that a single commitment in
Gy, 1 € {1, 2} requires two group elements in G;, whereas a proof requires at most
8 elements in G} x G3. The overhead imposed by proving the ”shift amount” in
an additional disjunctive clause is one additional commitment in the proof of
Equation (2) as well as two additional equations to prove, where the costs are
two commitments (one in Gy and one in G3) and one proof each (Equations (1)
and(3)). Furthermore, using the strong one-time signature from [Gro06] we require
4 group elements in G, for the verification key and 2 group elements in Z, for
the signature. All in all, this sums up to an overhead of 14 group elements in Gy
and 8 group elements in Gy and 2 elements from Z,. We note that, depending of
the form of the relation one desires to prove, one might have to instantiate the
disjunctive statement slightly different.

Regarding a comparison to existing work in the context of SSE NIZK, the
approaches in [Gro06, DHLW10] are theoretical results. For example, in [Gro06]
Groth says “Caveat: The constants are large, and therefore our schemes are not
practical”; and also Dodis et al. [DHLW10] do not consider an actual instantiation.
Abe et al. in [ADK™'13] consider a practical instantiation of the Dodis et al.
simulation-sound extractable NIZK arguments, but the overhead to achieve
simulation-sound extractability is much larger than when using the instantiation
of our scheme as detailed above.

In particular, when taking the smallest unbounded simulation-sound ex-
tractable!” scheme SE-NIZK1 from [ADK™'13] with the parameters they suggest
(d = 220), this yields an overhead of 21-d+43 = 463 group elements. Consequently
our approach can be seen as a considerable improvement in practical settings.
We present a concrete comparison in Table 2.

Scheme Overhead Setting Note
[ADKT13] 463 x G symmetric using SE-NIZK1
Ours 14 x G1 +8 x G2 + 2 x Z, SXDH using Waters’ signatures

Table 2. Comparison of the overheads required to achieve the SSE property compared
to just proving the plain statement. While [ADK™ 13] is using symmetric pairings, we
work in an SXDH setting which is why the approaches are not directly comparable.
However, transforming a symmetric scheme to the SXDH setting requires to duplicate
every element and maintaining a representation of it in both groups, G; and Gs. This
should make our performance advantages clear.

9

While our system currently inherits the non-tight security from the Waters
signature scheme, an interesting future direction would be to investigate whether

7 What they call unbounded simulation-sound extractability is equivalent to our notion
of simulation-sound extractability.

42

one can achieve such high efficiency and tight security at the same time. Finally, we
note that the signatures of knowledge from [BFG13] come close to our signatures
of knowledge, but they still have to prove knowledge of one group element more
than we have to. They also build upon Waters’ signatures, i.e., their security
reduction is also non-tight.

Additionally, we remark that in the example above one could additionally
reduce the overhead by four elements (either in G; or Gg) by applying the
optimizations from [EG14].

7 Tight Multi-User Security from Key-Homomorphisms

When using signature schemes in practice, it is often argued that EUF-CMA
security does not appropriately capture the requirements appearing in practical
settings [GMS02, MS04]. Currently we experience a growing interest in the
multi-user setting (e.g., [BJLS16, GHKW16, KMP16]), where an adversary can
attack one out of various public keys instead of a single one. This setting is also
a frequently discussed topic on the mailing list of the CFRG.®

Since many schemes have already been investigated regarding their single-user
security, an important question in this context is whether one can infer statements
about the multi-user security of a certain scheme based on its single-user security.
Without using any further properties of the signature scheme, every naive reduc-
tion looses a factor of N, where N is the number of users in the system [GMS02].19
Such a reduction is non-tight and drastically reduces the security guarantees a
scheme provably provides. Thus, it is important to come up with tight security
reductions. This was done in [GMS02], where a tight implication from single-user
EUF-CMA to multi-user EUF-CMA for Schnorr signatures was proven. Unfor-
tunately, a flaw in this proof was discovered by Bernstein in [Berl5], where it
was also shown that single-user EUF-CMA tightly implies key-prefixed mulit-user
EUF-CMA for Schnorr signatures. Recently, Lacharité in [Lacl8] showed this tight
implication under key-prefixing for BLS [BLS04] signatures and BGLS [BGLS03]
aggregate signatures. Subsequent to the work in [Ber15], Kiltz et al. [KMP16] stud-
ied multi-user security of random self-reducible canonical identification schemes
when turned to signatures in the random oracle model (ROM) using the Fiat-
Shamir heuristic. They show that for such schemes single-user security tightly
implies multi-user security without key-prefixing. This, in particular, holds for
Schnorr signatures.

Our theorem essentially generalizes the work of [Ber15, Lac18] to be applicable
to a larger class of signature schemes. For example, using our results from
Section 4, it attests the multi-user EUF-CMA security of various variants of
Waters’ signatures [Wat05] and PS signatures [PS16], which were previously
unknown to provide tight multi-user security. Furthermore, it can be seen as
orthogonal to the work of [KMP16], where the requirement of key-prefixing is

18 https://www.ietf.org/mail-archive/web/cfrg/current/maillist.html
19 For instance, assuming 23° keys in a system, such a reduction loss requires to
significantly increase the parameters.

43

https://www.ietf.org/mail-archive/web/cfrg/current/maillist.html

avoided at the cost of tailoring the results to a class of signature schemes from
specific canonical identification schemes in the ROM.

Subsequently, we will first recall a definition of multi-user EUF-CMA and then
prove Theorem 6, which formalizes the main result of this section.

Definition 30 (MU-EUF-CMA). 4 signature scheme ¥ is MU-EUF-CMA secure,
if for all PPT adversaries A there is a negligible function e(-) such that

P {(ski, pk;) < Keg_(-ien(l"”")}ie[pow(K)], : Verify(pki*,.m*,o*) = 15_/\ < (k)
(z*,m*,a*) +— A Ign(".)({pki}ie[poly(n)}) (Z*vm*) ¢ oen | —
where Sign(i, m) = L.Sign(sk;, m) and the environment keeps track of the queries

to the signing oracle via QS'&".

Theorem 6. Let ¥ = (KeyGen, Sign, Verify) be a signature scheme which pro-
vides adaptability of signatures where the success ratio of any EUF-CMA ad-
versary is p. Then the success ratio of any adversary against MU-EUF-CMA
of ¥' = (KeyGen’,Sign’, Verify') is p' ~ p, where KeyGen'(1%) := KeyGen(1"),
Sign’(sk, m) := Sign(sk, u(sk)||m), and Verify(pk, m, o) := Verify(pk, pk||m, o).

Proof. First, our reduction R obtains a public key pk; from an EUF-CMA chal-
lenger C and initializes an empty list SK. It sets SK[1] + 0, and for 2 < i <
poly(k), it chooses SK[i] <= H, and sets pk; <— pky - £(SK[i]). Then, it starts A on
{pk; }ic[poly(x)) and simulates Sign” inside the Sign(-,-) oracle as follows (where
C.Sign(-) denotes the signing oracle provided by C).

Sign(i,m) : Obtain o + C.Sign(pk,||m), compute (pk;,c’) < Adapt(pky, pk;||m,
o, 8K[i]), and return o’.

Eventually, A outputs a forgery (i*,m*, 0*), where (i*,m*) ¢ Q58" by definition.
Thus, R has never sent pk;. ||m* to the sign oracle of C and can obtain (pk,, 0’) «
Adapt(pk;«, pk;«||m*, 0%, —SK[i]) and output (pk; ||m*, o) as an EUF-CMA forgery.
Due to adaptability of signatures the simulation of the oracle is perfect; the
running time of R is approximately the same as the running time of A which
concludes the proof. O

Remark 3. 1t is straight forward to prove such an implication for weaker unforge-
ability notions. Essentially the security proof would be analogous, but without
the need to simulate the signing oracle. Furthermore, it is important to note that
for key-recovery attacks, where no signatures need to be simulated, a secret key
to public key homomorphism would be sufficient to tightly relate the single-user
setting to the key-prefixed multi-user setting.

8 Summary and Conclusion

In this paper we introduce a definitional framework distilling various natural
flavours of key-homomorphisms for signatures, and, classify a set of existing

44

signature schemes according to them. We present simple compilers turning sig-
nature schemes admitting particular key-homomorphisms into ring signatures,
universal designated verifier signatures, simulation-sound extractable NIZK ar-
gument systems, as well as multisignatures. Furthermore, we show that using
key-homomorphisms allows us to prove a tight implication from single-user se-
curity to key-prefixed multi-user security for the class of schemes admitting a
certain key-homomorphism. In Figure 1 we subsume the various relations and
implications obtained when using the formalisms provided by our definitional
framework. Plugging in concrete signature schemes into our compilers yields to

publicly key-hom. ¥ - - -----=="= > Multi-X [IN83]

W RSR can. ID [KMP16] __w tight KP MU-EUF-CMA ¥ [GMS02, MS04]
S *+RO; Remark 1 Th/m;6/ -

S “\ H m.
= adaptable ¥ — === :tW*I 0Tl Ring ¥ [RSTO1]

? T~ ~£WI s Thin.4+5 (CLO6]
~ A (weak) SSE MM [Gro06]

|

\

\

perfectly adaptable ¥ - - FWLN: Thin 2, UDV ¥ [SBWP03] Q

N Signatures of Knowledge [CLO06]

T - Lem2y, key-succinct multikey hom. ¥

Fig. 1. Summary of the contributions and their relations. Legend: underlined. . . variant
of key-homomorphism introduced in this paper, ——...trivial implication,
— — —...shown in this paper, sk — pk hom.. .. secret-key to public-key homomorphism,
Y ...signature scheme, RSR can. ID...random-self-reducible canonical identification
scheme, RO...random oracle, WI.. . witness indistinguishable, I1...non interactive
argument system, KP ... key-prefixed, MU ... multi-user, EUF-CMA ... existential un-
forgeability under chosen message attacks, SSE. . . simulation-sound extractable NIZKs,
UDV ... universal designated verifier.

novel instantiations of the various schemes, including instantiations under stan-
dard assumptions without random oracles and even standard model instantiations
under standard assumptions. They favorably compare to existing instantiations
regarding conceptual simplicity and efficiency. Furthermore, our results attest
the tight multi-user security of various schemes which were previously unknown
to provide tight multi-user security. We subsume these instantations in Table 3.

Compiler Hom| Schnorr GQ BLS Katz-Wang| Waters| PS AGOT Gha
Ring Signatures A v v v v v v v v
UDV Signatures A/PA| v vty i N N
SSE N A v v v v v v v v
Multisignatures PKH X X v X v X X X
tight KP MU-EUF-CMA A v v v v v v v v

Table 3. Possible instantiations of our compilers. I...compiler achieves non-
transferability privacy (strong non-transferability privacy requires perfect adaption).

Finally, we investigate the notion of multikey-homomorphic signatures in
context of key-homomorphisms and show that a secret-key to public-key homo-

45

morphism implies the existence of key-succinct multikey-homomorphic signatures.
We consider it to be interesting to find constructions of the various flavors of
multikey-homomorphic signatures, but as the focus in this paper lies on key-
homomorphisms, we leave a thorough investigation as future work.

While we already presented quite some applications of our framework for
key-homomorphic signatures, we believe that our framework will find much more
applications. This argument is underpinned by the fact that there is already a
first work presenting an additional application [PMT17].

Acknowledgements. The authors have been supported by EU H2020 project
PRISMACLOUD, grant agreement n°644962. We thank various anonymous referees
for their valuable comments.

References

[ABC*12] Jae Hyun Ahn, Dan Boneh, Jan Camenisch, Susan Hohenberger, Abhi
Shelat, and Brent Waters. Computing on authenticated data. In T'CC]
2012.

[ADK*13] Masayuki Abe, Bernardo David, Markulf Kohlweiss, Ryo Nishimaki, and
Miyako Ohkubo. Tagged one-time signatures: Tight security and optimal
tag size. In PKC, pages 312-331, 2013.

[AFGT10] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and
Miyako Ohkubo. Structure-preserving signatures and commitments to group
elements. In CRYPTO, 2010.

[AGOT14] Masayuki Abe, Jens Groth, Miyako Ohkubo, and Mehdi Tibouchi. Structure-
preserving signatures from type II pairings. In Advances in Cryptology -
CRYPTO 2014, pages 390—407, 2014.

[AHI11] Benny Applebaum, Danny Harnik, and Yuval Ishai. Semantic Security
under Related-Key Attacks and Applications. In ICS, 2011.

[ALP12] Nuttapong Attrapadung, Benoit Libert, and Thomas Peters. Computing
on Authenticated Data: New Privacy Definitions and Constructions. In
ASIACRYPT, 2012.

[BBL17] Fabrice Benhamouda, Florian Bourse, and Helger Lipmaa. CCA-secure
inner-product functional encryption from projective hash functions. PKC,
2017.

[BCCT15] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, Jens
Groth, and Christophe Petit. Short accountable ring signatures based on
DDH. In ESORICS, 2015.

[BCM11] Mihir Bellare, David Cash, and Rachel Miller. Cryptography Secure against
Related-Key Attacks and Tampering. In ASTACRYPT, 2011.

[Berl5] Daniel J. Bernstein. Multi-user schnorr security, revisited. JACR Cryptology
ePrint Archive, 2015, 2015.

[BF11] Dan Boneh and David Mandell Freeman. Homomorphic signatures for
polynomial functions. In FUROCRYPT. 2011.

[BFG13] David Bernhard, Georg Fuchsbauer, and Essam Ghadafi. Efficient signatures
of knowledge and DAA in the standard model. In ACNS, 2013.

[BFKWO09] Dan Boneh, David Mandell Freeman, Jonathan Katz, and Brent Waters.
Signing a Linear Subspace: Signature Schemes for Network Coding. In PKC,
20009.

46

[BFP*15]

[BFS14]

[BGGT14]

[BGI14]

[BGLS03]

[BJOS]

[BJL16]

[BJLS16]

[BK10]

[BKMO09]

[BLMR13]

[BLS04]

[Bol03]

[BP14]

[BPT12]

[Cat14]

[(CDS94]

[CFW14]

(CGS07]

Abhishek Banerjee, Georg Fuchsbauer, Chris Peikert, Krzysztof Pietrzak,
and Sophie Stevens. Key-Homomorphic Constrained Pseudorandom Func-
tions. In TCC, 2015.

Xavier Boyen, Xiong Fan, and Elaine Shi. Adaptively secure fully homo-
morphic signatures based on lattices. Cryptology ePrint Archive, Report
2014/916, 2014.

Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully
Key-Homomorphic Encryption, Arithmetic Circuit ABE and Compact
Garbled Circuits. In EUROCRYPT, 2014.

Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and
pseudorandom functions. In PKC| 2014.

Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and
verifiably encrypted signatures from bilinear maps. In EUROCRYPT, 2003.
Ali Bagherzandi and Stanislaw Jarecki. Multisignatures using proofs of
secret key possession, as secure as the diffie-hellman problem. In SCN, 2008.
Fabrice Benhamouda, Marc Joye, and Benoit Libert. A new framework for
privacy-preserving aggregation of time-series data. ACM Trans. Inf. Syst.
Secur., 18(3), 2016.

Christoph Bader, Tibor Jager, Yong Li, and Sven Schéige. On the impossi-
bility of tight cryptographic reductions. In EUROCRYPT, 2016.

Zvika Brakerski and Yael Tauman Kalai. A framework for efficient signatures,
ring signatures and identity based encryption in the standard model. JACR
Cryptology ePrint Archive, 2010.

Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring signatures:
Stronger definitions, and constructions without random oracles. J. Cryptol-
ogy, 22(1), 2009.

Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghu-
nathan. Key Homomorphic PRFs and Their Applications. In CRYPTO,
2013.

Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil
pairing. J. Cryptology, 17(4), 2004.

Alexandra Boldyreva. Threshold signatures, multisignatures and blind
signatures based on the gap-diffie-hellman-group signature scheme. In PKC,
2003.

Abhishek Banerjee and Chris Peikert. New and Improved Key-Homomorphic
Pseudorandom Functions. In CRYPTO, 2014.

Mihir Bellare, Kenneth G. Paterson, and Susan Thomson. RKA security
beyond the linear barrier: Ibe, encryption and signatures. In ASTACRYPT,
2012.

Dario Catalano. Homomorphic signatures and message authentication codes.
In SCN, 2014.

Ronald Cramer, Ivan Damgard, and Berry Schoenmakers. Proofs of partial
knowledge and simplified design of witness hiding protocols. In CRYPTO,
1994.

Dario Catalano, Dario Fiore, and Bogdan Warinschi. Homomorphic sig-
natures with efficient verification for polynomial functions. In CRYPTO.
2014.

Nishanth Chandran, Jens Groth, and Amit Sahai. Ring signatures of
sub-linear size without random oracles. In ICALP, 2007.

47

[CHKM10] Sanjit Chatterjee, Darrel Hankerson, Edward Knapp, and Alfred Menezes.

[CLO6]

[DHLW10]

[DKNS04]

[DKS16]
[DMS16]
[DS18]
[EG14]
[FF13]

[FHS15]

[FKM*16]

[FMNP16]
[Fre12]
[FS86]
[Gen09]

[Ghal6]

Comparing two pairing-based aggregate signature schemes. Des. Codes
Cryptography, 55(2-3), 2010.

Melissa Chase and Anna Lysyanskaya. On signatures of knowledge. In
CRYPTO, 2006.

Yevgeniy Dodis, Kristiyan Haralambiev, Adriana Lépez-Alt, and Daniel
Wichs. Efficient public-key cryptography in the presence of key leakage. In
ASIACRYPT, pages 613-631, 2010.

Yevgeniy Dodis, Aggelos Kiayias, Antonio Nicolosi, and Victor Shoup.
Anonymous identification in ad hoc groups. In EUROCRYPT, 2004.
David Derler, Stephan Krenn, and Daniel Slamanig. Signer-Anonymous
Designated-Verifier Redactable Signatures for Cloud-Based Data Sharing.
In CANS, 2016.

Yevgeniy Dodis, Ilya Mironov, and Noah Stephens-Davidowitz. Message
transmission with reverse firewalls - secure communication on corrupted
machines. In CRYPTO, 2016.

David Derler and Daniel Slamanig. Key-homomorphic signatures: defini-
tions and applications to multiparty signatures and non-interactive zero-
knowledge. Des. Codes Cryptogr., 2018.

Alex Escala and Jens Groth. Fine-tuning groth-sahai proofs. In PKC, 2014.
Marc Fischlin and Nils Fleischhacker. Limitations of the meta-reduction
technique: The case of schnorr signatures. In EUROCRYPT, 2013.

Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Practical round-
optimal blind signatures in the standard model. In CRYPTO, 2015.

Nils Fleischhacker, Johannes Krupp, Giulio Malavolta, Jonas Schneider,
Dominique Schroder, and Mark Simkin. Efficient Unlinkable Sanitizable
Signatures from Signatures with Re-randomizable Keys. In PKC, 2016.
Dario Fiore, Aikaterini Mitrokotsa, Luca Nizzardo, and Elena Pagnin. Multi-
key homomorphic authenticators. In ASITACRYPT, 2016.

David Mandell Freeman. Improved security for linearly homomorphic
signatures: A generic framework. 2012.

Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In CRYPTO, 1986.

Craig Gentry. Fully Homomorphic Encryption using Ideal Lattices. In
STOC, 2009.

Essam Ghadafi. Short structure-preserving signatures. In CT-RSA 2016,
pages 305321, 2016.

[GHKW16] Romain Gay, Dennis Hofheinz, Eike Kiltz, and Hoeteck Wee. Tightly

[GIKWO07]

[GK15]

[GK16]

[GLW12]

cca-secure encryption without pairings. In EUROCRYPT, 2016.

FEu-Jin Goh, Stanislaw Jarecki, Jonathan Katz, and Nan Wang. Efficient
signature schemes with tight reductions to the diffie-hellman problems. J.
Cryptology, 20(4), 2007.

Jens Groth and Markulf Kohlweiss. One-out-of-many proofs: Or how to
leak a secret and spend a coin. In EUROCRYPT, 2015.

Shafi Goldwasser and Yael Tauman Kalai. Cryptographic assumptions: A
position paper. In Theory of Cryptography - 13th International Conference,
TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part I,
pages 505-522, 2016.

Shafi Goldwasser, Allison B. Lewko, and David A. Wilson. Bounded-
Collusion IBE from Key Homomorphism. In TCC, 2012.

48

[GMS02]
[GMY03]
[GMYO06]

[GPVOS]

[GQss]

[Gro06]
[GS08]
[GVW15]

[HS14]

[IN83]
[IMSW02]
[JS196]

[Kat10]
[KMP16]

[KWO03]
[Lac18]

[LOS™06]

[LTV12]

[LTWC18]

[Lyu08]

[MS04]

Steven D. Galbraith, John Malone-Lee, and Nigel P. Smart. Public key
signatures in the multi-user setting. Inf. Process. Lett., 83(5), 2002.

Juan A. Garay, Philip D. MacKenzie, and Ke Yang. Strengthening zero-
knowledge protocols using signatures. In FUROCRYPT, 2003.

Juan A. Garay, Philip D. MacKenzie, and Ke Yang. Strengthening zero-
knowledge protocols using signatures. J. Cryptology, 19(2), 2006.

Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for
hard lattices and new cryptographic constructions. In STOC, pages 197-206,
2008.

Louis C. Guillou and Jean-Jacques Quisquater. A ”paradoxical” indentity-
based signature scheme resulting from zero-knowledge. In CRYPTO, pages
216-231, 1988.

Jens Groth. Simulation-sound NIZK proofs for a practical language and
constant size group signatures. In ASTACRYPT, 2006.

Jens Groth and Amit Sahai. Efficient non-interactive proof systems for
bilinear groups. In EUROCRYPT, 2008.

Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully
homomorphic signatures from standard lattices. In STOC, 2015.
Christian Hanser and Daniel Slamanig. Structure-preserving signatures
on equivalence classes and their application to anonymous credentials. In
ASIACRYPT, 2014.

K. Itakura and K. Nakamura. A public-key cryptosystem suitable for digital
multisignatures. NEC Research & Development, 71, 1983.

Robert Johnson, David Molnar, Dawn Xiaodong Song, and David Wagner.
Homomorphic signature schemes. In CT-RSA, 2002.

Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. Designated verifier
proofs and their applications. In EUROCRYPT, 1996.

Jonathan Katz. Digital Signatures. Springer, 2010.

Eike Kiltz, Daniel Masny, and Jiaxin Pan. Optimal security proofs for
signatures from identification schemes. In CRYPTO, 2016.

Jonathan Katz and Nan Wang. Efficiency improvements for signature
schemes with tight security reductions. In C'CS, 2003.

Marie-Sarah Lacharité. Security of BLS and BGLS signatures in a multi-user
setting. Cryptography and Communications, 10(1):41-58, 2018.

Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters.
Sequential aggregate signatures and multisignatures without random oracles.
In EUROCRYPT, 2006.

Adriana Loépez-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-
fly multiparty computation on the cloud via multikey fully homomorphic
encryption. In STOC; 2012.

Russell W. F. Lai, Raymond K. H. Tai, Harry W. H. Wong, and Sherman
S. M. Chow. Multi-key homomorphic signatures unforgeable under insider
corruption. In ASTACRYPT, 2018. To Appear.

Vadim Lyubashevsky. Lattice-based identification schemes secure under
active attacks. In Public Key Cryptography - PKC 2008, 11th International
Workshop on Practice and Theory in Public-Key Cryptography, Barcelona,
Spain, March 9-12, 2008. Proceedings, pages 162—179, 2008.

Alfred Menezes and Nigel P. Smart. Security of signature schemes in a
multi-user setting. Des. Codes Cryptography, 33(3), 2004.

49

[MS17] Giulio Malavolta and Dominique Schréder. Efficient ring signatures in the
standard model. In Advances in Cryptology - ASIACRYPT 2017, pages
128-157, 2017.

[MSM*15] Hiraku Morita, Jacob C. N. Schuldt, Takahiro Matsuda, Goichiro Hanaoka,
and Tetsu Iwata. On the security of the schnorr signature scheme and DSA
against related-key attacks. In ICISC, 2015.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In Advances in
Cryptology - CRYPTO 2003, 23rd Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 17-21, 2008, Proceedings,
pages 96-109, 2003.

[PMT17] Elena Pagnin, Aikaterini Mitrokotsa, and Keisuke Tanaka. Anonymous
single-round server-aided verification. Cryptology ePrint Archive, Report
2017/794, to appear at Latincrypt 2017, 2017.

[PS16] David Pointcheval and Olivier Sanders. Short Randomizable Signatures. In
CT-RSA, 2016.

[Rot11] Ron Rothblum. Homomorphic Encryption: From Private-Key to Public-Key.
In TCC, 2011.

[RST01] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In
ASIACRYPT, 2001.

[RYOT] Thomas Ristenpart and Scott Yilek. The Power of Proofs-of-Possession: Se-
curing Multiparty Signatures against Rogue-Key Attacks. In EUROCRYPT,
2007.

[SBWPO03] Ron Steinfeld, Laurence Bull, Huaxiong Wang, and Josef Pieprzyk. Universal
designated-verifier signatures. In ASTACRYPT, 2003.

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. J.
Cryptology, 4(3), 1991.
[SS08] Siamak Fayyaz Shahandashti and Reihaneh Safavi-Naini. Construction of

universal designated-verifier signatures and identity-based signatures from
standard signatures. In PKC, 2008.

[STO01] Adi Shamir and Yael Tauman. Improved online/offline signature schemes.
In CRYPTO, pages 355-367, 2001.

[TW14] Stefano Tessaro and David A. Wilson. Bounded-collusion identity-based
encryption from semantically-secure public-key encryption: Generic con-
structions with short ciphertexts. In PKC, 2014.

[Wat05] Brent Waters. Efficient identity-based encryption without random oracles.
In EUROCRYPT, 2005.

A Homomorphisms on Key and Message Space

As already mentioned in Section 1, signature schemes with homomorphic proper-
ties on their message space [JMSWO02] are well known. With such schemes, it is
possible for anyone to derive a signature for a message m’ from signatures on
messages (1;);c[n) under some public key pk as long as m’ = f(my,...,m,) for
f € F, where F is the set of so called admissible functions (determined by the
scheme). Among others (cf. [ABC*12, ALP12]) there are schemes for linear func-
tions [BFKWO09, Frel2], polynomial functions of higher degree [BF11, CFW14]
and meanwhile even (leveled) fully homomorphic signatures supporting arbi-
trary functions [GVW15, BFS14]. However, these constructions consider these

50

homomorphisms under a single key. While in context of encryption, construc-
tions working with distinct keys, i.e., so called multikey-homomorphic encryption
schemes (e.g., [LTV12]), are known, such a feature have only been studied recently
in this work and other independent concurrent works.

Independent and Concurrent Work. Fiore et al. [FMNP16] introduced the
concept of multikey-homomorphic authenticators, which also covers multikey-
homomorphic signatures. They present a construction of multikey-homomorphic
signatures from standard lattices based on the fully homomorphic signatures
in [GVW15]. Their model and construction focuses on achieving succinct combined
signatures, whereas the focus of our construction (feasibility result) is on achieving
succinct combined keys. We also note that the independent and concurrent work
of Lai et al. [LTWC18], among others, study multikey-homomorphic signatures
with succinct combined keys and signatures even under stronger security model
supporting insider corruption. To achieve this, they require rather heavy tools
(and assumptions) such as zk-SNARKS. We stress that the aforementioned works
do not focus on constructing multikey-homomorphic signatures with signatures
supporting key-homomorphisms.

A.1 Multikey-Homomorphic Signatures from Key-Homomorphisms

In this section we initiate the study of so called multikey-homomorphic signatures
and in particular propose a definitional framework for such schemes that support
a homomorphic property on the message space under distinct keys. Our focus is
then on investigating key-homomorphic properties in this context.

Below we present and discuss what we call multikey-homomorphic signatures,
where the homomorphic property on the message space is defined with respect
to a class F of admissible functions (e.g., represented as arithmetic circuits). In
contrast to the notions introduced above, which capture additional properties of
conventional signature schemes, multikey-homomorphic signatures are a separate
building block. To this end we explicitly formalize the algorithms as well as the
required correctness and unforgeability notion. We stress that, as the focus of
this work lies on key-homomorphic schemes, we will also focus on these aspects
in this section. In particular, while we present a general definition of multikey-
homomorphic schemes?®, we focus on schemes who use a succinct representation
of a combined public key in the verification.

Definition 31 (Multikey-Homomorphic Signatures). A multikey-homo-
morphic signature scheme for a class F of admissible functions, is a tuple of the
following PPT algorithms:

PGen(1%) : Takes a security parameter k as input, and outputs parameters PP.
KeyGen(pp) : Takes parameters PP as input, and outputs a keypair (sk, pk) (we
assume that PP is included in pk).

20 Our definition is analogous to the encryption case (e.g., [LTV12]), where the input of
a set of public keys into the verification of a combined signature is supported.

o1

Sign(sk,m,7) : Takes a secret key sk, a message m, and a tag T as input, and
outputs a signature o.

Verify(pk, m, o, 7) : Takes a public key pk a message m, a signature o, and a tag
T as input, and outputs a bit b.

Combine((pk;)icin], (M:4)ien)s [+ (0i)iem), T) + Takes public keys (pk;)ign), mes-
sages (M;)iepm), @ function f € F, signatures (0;)icn), and a tag T as input,
and outputs a public key pAk and a signature &.

Verify' (pk, 1, f,6,7) : Takes a combined public key pk, a message i, a function
f, a signature &, and a tag T as input, and outputs a bit b.

Subsequently, we formalize the security properties one would expect from such
schemes.

Definition 32 (Correctness). A multikey-homomorphic signature scheme for
a class F of admissible functions is correct, if for all security parameters k, for
all 1 < n < poly(k), all ((sks,pk;) <= KeyGen(1%))icny, all messages (m;)icpn),
all tags T, all functions f € F, all functions f' ¢ F, and all signatures
(0; < Sign(sk;, m;, 7)1, and results (pAk,) < Combine((pk;)icn]; (Mi)icn), [
(0i)iem), T) it holds that

(Verify(pk;, mi, 04, 7) = 1)icip A (Pk; € pAk)ie[n] A
Verify' (pk, i, f,6,7) =1 A Verify’(-,-, f,-,) =0,
where m = f(my,...,my).

We note that the predicate “€” for the check pk € F;k needs to be explicitly defined
by every concrete scheme (i.e., it is not necessarily a simple set membership
check).

Definition 33 (Unforgeability). A multikey-homomorphic signature scheme
for a class F of admissible functions is unforgeable, if for every PPT adversary
A there exists a negligible function €(-) such that it holds that

PP < PGen(1%), Verify' (pk', ", f*,6%,7) =1 A
(Ska pk) A KeyGen(PP)7 (pk S pAk* A ig meM:
P . : <
' O « {Sig(-,)}, (i €R(F (- ymy-) A| = e(k),

(pk', 1", 7,67, 7%) + A9(pk), (m,*) € O%8)) Vv m* ¢ R(f*)

where Sig(m,) = Sign(sk,m,) and Q€ records the Sig queries.

Observe that Definition 31 neither puts restrictions on the size of signatures &
nor public keys pAk. To really benefit from the functionality provided by multikey-
homomorphic signatures, one may additionally require that [fk is succinct. Inspired
by [BGI14], we subsequently provide a formal definition.

Definition 34 (Key Succinctness). A multikey-homomorphic signature sch-
eme is called key succinct, if for all k € N, for all n < poly(k), for all PP +
PGen(1*), for all ((ski,pk;) < KeyGen(PP))icn, for all (mi)icin) € M™, all

52

(Ui < Sign(Ski’ mi))ie[n]; all (pAka 5-) — Combine((pki)ie[n]a (mi)ie[n]a fa (Ui)ie[n])
it holds that

Ipk| < poly(k).

It turns out that secret key to public key homomorphic signature schemes already
imply the existence of key succinct multikey-homomorphic signature schemes for
a class F of functions with polynomially many members.

Lemma 21. If there exists an EUF-CMA secure secret key to public key homomor-
phic signature scheme ¥, then there exists a key succinct multikey-homomor-phic
signature scheme L x for a class F of functions with polynomially many members.

Proof. We prove this lemma by constructing such a scheme. In particular, we
base the construction on a wrapped version ¥z = (KeyGen £, Sign r, Verify r)
of the secret key to public key homomorphic signature scheme ¥ = (KeyGen,
Sign, Verify), where KeyGen(1%) := KeyGen(1*), Signr(sk,m,7) := Sign(sk,
m||T||F) and Verify z(pk, m, o, 7) := Verify(pk, m||7||F, o). Then Combine and
Verify’ can be defined as follows:

Combine((pk;)icin]> (Mi)iens [+ (i)iem), 7) + If f & F return L. Otherwise, com-
pute & < ((pk;, mi, 04))icln) and pk [T, pk; and return pk and 6.

Verify' (pk, 7, f,6,7) : Return 1, if (Verify z(pk;, m;, 04, 7) = Diem) A m =
f(my,...,my) A pk= [T, pk; A f€F, and 0 otherwise.

It is immediate that correctness holds. For unforgeability, note that since Verify'(
[fk*7m*, fr,6*,77) = 1 by definition, we know that pAk = Hie[n] pk;, where
(pk;)ic[n) is contained in the signature. Thus, we can simply engage with an
EUF-CMA challenger to obtain pk and simulate the game without knowing sk
by using the Sign oracle provided by the EUF-CMA challenger. If the adversary
eventually outputs a forgery, we either have an EUF-CMA forgery which hap-
pens with negligible probability or a message m* ¢ R(f*) which happens with
probability 0 as Verify’ does not accept such an input. Thus, the overall success
probability of any PPT adversary is negligible. O

While this proves the existence of key succinct multikey-homomorphic signatures,
one could also ask for signature succinctness as defined below.

Definition 35 (Signature Succinctness). A multikey-homomorphic signature
scheme is called signature succinct, if for all k € N, for all n < poly(k), for all
PP <— PGen(1%), for all ((ski, pk;) <— KeyGen(PP))ic[n, for all (m;)ic}n) € M™, all
(Ui <~ Sign(ski, mi))ie[n]; all (pkv 6) — Combine((pki)ie[n]a (mi)ie[n]a fa (UZ)ZE[H])
it holds that

|6| < poly(k).

It seems non-trivial to construct schemes under mild assumptions that satisfy
both succinctness definitions, i.e., provide succinct keys and signatures. We
suspect, that this requires a trick & la Dodis et al. [DKNS04] which was used
in the context of constructing constant-size ring signatures. Dodis et al. argue

93

that the sets of keys (rings) will often be determined a priori in practice and
can thus be represented by some compact description. Consequently, only a
compact description of such a set of keys is required in the actual signature and
the linear dependency on the ring size is removed. A similar argumentation also
holds in many application scenarios for multi-key homomorphic signatures (e.g.,
scenarios where the joint verification key pAk is already pre-distributed as also
discussed below). We note that when moving to very strong assumptions such
as knowledge assumptions, as in Lai et al. [LTWC18], then schemes that satisfy
both succinctness definitions can indeed be constructed.

54

	Key-Homomorphic Signatures: Definitions and Applications to Multiparty Signatures and Non-Interactive Zero-Knowledge
	Introduction
	Contribution
	Differences to the Journal Version

	Preliminaries
	Key-Homomorphic Signatures
	Definitional Framework for Key-Homomorphic Signatures

	Overview of Key-Homomorphic Schemes
	Schnorr Signatures
	Guillou-Quisquater
	BLS Signatures
	Katz-Wang Signatures
	Waters' Signatures
	PS Signatures
	Randomizable SPS by Abe et al.
	Ghadafi's Short SPS

	Applications to Multiparty Signatures
	Ring Signatures
	Universal Designated Verifier Signatures
	Multisignatures

	Applications to Simulation-Sound Extractable NIZK
	Weak Simulation-Sound Extractability
	Signatures of Knowledge
	Performance Advantages

	Tight Multi-User Security from Key-Homomorphisms
	Summary and Conclusion
	Homomorphisms on Key and Message Space
	Multikey-Homomorphic Signatures from Key-Homomorphisms

