
Functional Commitment Schemes: From Polynomial
Commitments to Pairing-Based Accumulators from

Simple Assumptions

Benôıt Libert1, Somindu C. Ramanna1, and Moti Yung2

1 ENS de Lyon, LIP Laboratory, France
Email: benoit.libert@ens-lyon.fr, somindu.ramanna@ens-lyon.fr

2 Snapchat and Columbia University, USA
Email: moti@cs.columbia.edu

Abstract. We formalize a cryptographic primitive called functional commitment
(FC) which can be viewed as a generalization of vector commitments (VCs), poly-
nomial commitments and many other special kinds of commitment schemes. A
non-interactive functional commitment allows committing to a message in such
a way that the committer has the flexibility of only revealing a function F (M)
of the committed message during the opening phase. We provide constructions
for the functionality of linear functions, where messages consist of vectors of n
elements over some domain D (e.g., ~m = (m1, . . . ,mn) ∈ Dn) and commitments
can later be opened to a specific linear function

∑n
i=1 mixi = y ∈ R of the vector

coordinates. An opening for a function F : Dn → R thus generates a witness for
the fact that F (~m) indeed evaluates to y. One security requirement is called func-
tion binding and requires that it be infeasible open a commitment to two different
evaluations y, y′ for the same function F .
We propose a construction of functional commitment (FC) for linear functions
based on constant-size assumptions in composite order groups endowed with a
bilinear map. The construction has commitments and openings of constant size
(i.e., independent of n or function description) and is perfectly hiding – the under-
lying message is information theoretically hidden. Our security proofs build on the
Déjà Q framework of Chase and Meiklejohn (Eurocrypt 2014) and its extension by
Wee (TCC 2016) to encryption primitives, thus relying on constant-size subgroup
decisional assumptions. We show that FCs for linear functions are sufficiently
powerful to solve four open problems. They, first, imply polynomial commitments,
and, then, give cryptographic accumulators (i.e., an algebraic hash function which
makes it possible to efficiently prove that some input belongs to a hashed set).
In particular, specializing our FC construction leads to the first pairing-based
polynomial commitments and accumulators for large universes, known to achieve
security under simple assumptions. We also substantially extend our pairing-based
accumulator to handle subset queries which requires a non-trivial extension of the
Déjà Q framework.

Keywords. Cryptography, commitment schemes, functional commitments, ac-
cumulators, provable security, pairing-based, simple assumptions.

1 Introduction

Commitment schemes [8] are fundamental primitives used as building blocks in a number
of cryptographic protocols. A commitment scheme emulates a publicly observed safe; it

allows a party to commit to a message m so that this message is not revealed until a
later moment when the commitment is opened and the receiver gets convinced that the
message was indeed m. Two important security properties of commitment schemes are
called hiding and binding. The former requires that no information about the committed
message is revealed to an observer. The latter property means that the committing party
cannot change the message after committing to it.

Several works considered commitment schemes where the committer has the flexibil-
ity of only revealing some partial information about the message (rather than the entire
message) during the opening phase. In vector commitments [35, 18], messages are vectors
and commitments are only opened with respect to specific positions. Another example
is polynomial commitments, where users commit to a polynomial and only reveal evalu-
ations of this polynomial on certain inputs.

In this work, we consider functional commitments (FC) for linear functions. Namely,
messages consist of vectors (m1, . . . ,mn) and commitments can be partially opened by
having the sender verifiably reveal a linear combination

∑n
i=1 xi·mi, for public coefficients

{xi}ni=1. We show that this functionality implies many other natural functionalities, in-
cluding vector commitments, polynomial commitments and cryptographic accumulators.
We provide an efficient FC realization for linear functions based on well-studied assump-
tions in groups with a bilinear map. In turn, our scheme implies solutions to past natural
questions. We give the first constructions under constant-size assumptions of two im-
portant primitives: polynomial commitments and cryptographic accumulators. In both
cases, earlier solutions were based on non-standard assumptions where the number of
input elements (and thus the strength of the assumption) depended on specific features
of the schemes (like the maximal degree of committed polynomials). Our third result is
a solution to an accumulator supporting subset queries, which is also based on constant
size assumption.

1.1 Related Works and the Open Problems

Functional commitments. Functional commitments can be seen as the natural com-
mitment analogue of functional encryption [46, 13]. The latter primitive allows restricting
what the receiver learns about encrypted data: when a decryption operation is conducted
using a secret key SKF for the function F , the decryptor learns F (x) and nothing else.
Likewise, FC schemes allow the committer to accurately control what the opening phase
can reveal about the committed message.

In their most general form, functional commitments were implicitly suggested by Gor-
bunov, Vaikuntanathan and Wichs [28] who described a statistically-hiding commitment
scheme for which the sender is able to only reveal a circuit evaluation C(x) when x is
the committed input. While their solution supports arbitrary circuits and relies on well-
studied lattice assumptions, its inputs x must be committed to in a bit-by-bit manner
(or at least by splitting x into small blocks). We remark that, assuming a common refer-
ence string, non-interactive FC for general functionalities can be realized by combining
ordinary statistically-hiding commitments with non-interactive zero-knowledge (NIZK)
proofs [9]. Here, we focus on the problem of achieving a better efficiency for more re-
stricted (yet, sufficiently powerful for many applications) functionalities. Assuming a
common reference string (as in all non-interactive perfectly hiding commitments), we
aim at efficient construction supporting short witnesses without resorting to the machin-
ery of NIZK proofs. In particular, we aim at constant-size commitment strings (regardless
of how long the committed message is) supporting constant-size witnesses.

2

In the literature, a number of earlier works consider settings where a sender is given
the flexibility of revealing only a partial information about committed data. Verifiable
random functions [39], for example, can be seen as a perfectly binding commitment to a
pseudo-random function key for which the committer can convince a verifier about the
correct function evaluation for the committed key on a given input. Selective-opening
security [26, 4] addresses the problem of proving the security of un-opened commitments
when an adversary gets to see the opening of other commitments to possibly correlated
messages.

Zero-knowledge sets, as introduced by Micali, Rabin and Kilian [38], are another
prominent example where users commit to a set S or an elementary database and sub-
sequently prove the (non-)membership of some elements without revealing any further
information (not even the cardinality of the committed set S). Ostrovsky, Rackoff and
Smith [42] envisioned committed databases for which the sender can demonstrate more
general statements than just membership of non-membership.

Vector commitments. Concise vector commitments were first suggested by Libert and
Yung [35] and further developed by Catalano and Fiore [18]. They basically consist of
Pedersen-like [45] commitments to vectors (m1, . . . ,mn) where a constant-size opening
(where “constant” means independent of n) allows the sender to open the commitment
for only one coordinate mi without revealing anything on other coordinates. The initial
motivation of vector commitments was the design of zero-knowledge databases with short
proofs [19, 35] via mercurial commitments [22] supporting short coordinate-wise openings
[35]. Other applications in the context of verifiable databases [7] were suggested in [18].
While concise vector commitments can be based on long-lived hardness assumptions like
RSA or Computational Diffie-Hellman [18], they either require groups of hidden order
(making them incompatible with zero-knowledge proofs in the standard model [29]) or
public keys of size O(n2) if n is the dimension of committed vectors. In contrast, solutions
based on variable-size assumptions allow for public keys of size O(n), which leaves open
the following problem.

Problem 1: Is there a concise vector commitment scheme achieving linear-size public
keys under constant-size assumptions in groups with a bilinear map?

Polynomial commitments. As introduced by Kate, Zaverucha and Goldberg [31],
polynomial commitments are a mechanism whereby a sender can generate a constant-size
commitment to a polynomial P [Z] (where “constant” means independent of the degree)
in such a way that a constant-size witness can convince a verifier that the committed P [Z]
indeed evaluates to P (i) for a given i. Polynomial commitments find natural applications
in the context of verifiable secret sharing [21, 27], anonymous credentials with attributes
[16] or in optimized flavours of zero-knowledge databases which do not seek to hide
the size of the committed set. They also imply vector commitments, as observed in
[16]. Camenisch et al. [16] used vector commitments in a modular design of anonymous
credentials where users’s credentials are associated with descriptive attributes. While the
commitments in [31, 16] were based on parameterized assumptions, the problem described
below has been open.

Problem 2: Design a polynomial commitment based on constant-size assumptions.

Accumulators. Cryptographic accumulators can be interpreted as commitments, es-
pecially when the hashing algorithm is randomized. Accumulators [6] are closely related

3

to zero-knowledge sets in that they make it possible to hash a set S while efficiently
generating witnesses guaranteeing the inclusion of certain elements in the hashed set.
Unlike zero-knowledge sets, they do not hide the cardinality of the underlying set but
usually achieve a better efficiency via short membership witnesses. The first family of
accumulators based on number theoretic techniques relies on groups of hidden order [6,
3, 36, 11] and includes proposals based on the Strong RSA assumption [3, 34]. The second
family [41, 14], which was first explored by Nguyen [41], appeals to bilinear maps (a.k.a.
pairings) and assumptions, like the Strong Diffie-Hellman assumption [10], whose hard-
ness depends on a parameter q determined by features of the scheme or the number of
adversarial queries.

Solutions based on the Strong RSA assumption feature short public parameters and
readily extend into universal accumulators [34] (where non-membership witnesses can
show that a given input was not accumulated) or dynamic accumulators [17] (where wit-
nesses can be autonomously updated when the hashed set is modified). On the other hand,
they usually require expensive operations to injectively encode set elements as prime num-
bers. While pairing-based schemes [41, 14] do not need such a prime-number-encoding,
they require linear-size public parameters in the maximal number of accumulated ele-
ments. On the positive side, they are useful in applications [2, 20], like e-cash systems,
where the number of hashed elements cannot exceed a pre-determined bound. Pairing-
based accumulators also proved useful in the context of authenticated data structures.
Papamanthou et al. [43] used them to authenticate set operations and notably prove
(using a constant-size witness) the inclusion of a given set in the accumulated set. The
same technique was extended [43] to provide evidence that two accumulated sets have a
given intersection.

A third family of accumulators [44, 11] builds on Merkle trees [37] rather than number
theoretic assumptions. Its main disadvantage is that the use of hash trees entails wit-
nesses of size O(logN) (where N denote the cardinality of hashed sets) whereas number-
theoretic solutions enable O(1)-size witnesses.

The security properties of accumulators were recently re-formalized by Derler et al.
[25] who showed connections with other primitives. It was notably showed that, when
endowed with an indistinguishability property, accumulators imply non-interactive com-
mitment schemes and are implied by zero-knowledge sets.

Despite their numerous applications, cryptographic accumulators still have relatively
few assumptions to rely on. So far, known candidates based on standard assumption
arise from a generic construction from vector commitments [18]. While implying solu-
tions based on RSA or Diffie-Hellman, the generic construction of [18] only supports
inputs living in a small domain: the public key size is indeed linear in the size of the in-
put universe, which prevents from hashing elements consisting of arbitrary strings. This
leaves open Problem 3.

Problem 3: Does there exist a pairing-based accumulator for large input universes secure
under constant-size assumptions?

As mentioned earlier, accumulators are applicable in authenticating set operations ([43])
and a useful extension would allow creating witnesses for set inclusion and intersection
that are of constant size. Namely, a short witness can serve as evidence that some set X
is a subset of the accumulated set or that two sets X1, X2 have a particular intersection
I. In this domain, the following problem still remains open.

4

Problem 4: Construct a pairing-based accumulator supporting set operations with
constant-size witnesses achieving security under simple assumptions.

1.2 Our Contributions

We first generalize the notion of vector commitments (VCs) to what we call functional
commitments (FCs) for linear functions. Similar to VCs, such a commitment scheme
allows committing to vectors of messages which can later be opened to specific function
evaluations. While possible [28], the design of FCs for arbitrary functionalities seems
unlikely to lead to truly efficient solutions. Instead, we aim at FCs for linear function
families {F~x : Dn × Dn → D}~x∈Dn defined by F~x(~m) = 〈~x, ~m〉 =

∑n
i=1 ximi for ~m ∈

Dn that suffice for many important applications. An FC scheme for a family of linear
functions {F~x : Dn → D}~x∈Dn produces commitments to messages of the form ~m =
(m1, . . . ,mn) ∈ Dn over the domain D. Fixing a specific ~x ∈ Dn, such that F~x(~m) =∑n
i=1 ximi = y ∈ D, an opening for F~x demonstrates that F~x(~m) indeed evaluates to

y. The security notions of hiding and binding extend to our setting in a natural way. In
addition, we require the commitments and witnesses to be concise i.e., their size should
be independent of the length of messages or function description.

Our first contribution is a construction of functional commitment for linear functions
based on well-studied assumptions in composite order bilinear groups. The scheme is
perfectly hiding and computationally binding under subgroup decision assumptions. The
construction can be seen as a variant of the vector commitment scheme of Izabachène et
al. [30] which was only proved secure under a non-standard variable-size assumption. We
show that the composite-order setting makes it possible to use the Déjà Q framework
of [23] so as to obtain security from constant size assumptions. As FC for linear functions
implies vector commitments, our construction provides a positive answer to Problem 1.

As a second contribution, we show that our FC scheme implies polynomial commit-
ments and large-universe accumulators supporting subset queries. The resulting schemes
are secure under subgroup decision assumptions of constant-size thus settling Problem
2 and Problem 3. We finally extend our accumulator into a scheme supporting sub-
set queries while retaining security from constant size assumptions, partially answering
Problem 4 in the affirmative.

Overview of our Construction. We now present the top level idea of our construc-
tion. Let e : G×G→ GT be a bilinear map with common group order N = p1p2p3 and
let Gq denote the subgroup of G of order q (here q would be of the form pe11 p

e2
2 p

e3
3 for

e1, e2, e3 ∈ {0, 1}). The linear functions will be defined over ZN . The commitment key

consists of elements {gαj}nj=1, {Uj = uα
j}j∈[1,2n]\{n+1} for some g, u ∈ Gp1 . The trap-

door key is Un+1 = uα
n+1

. Commitment to a vector ~m is defined as C = gγ ·
∏n
j=1 g

αjmj .

Witness for a linear function evaluation 〈~x, ~m〉 = y is defined as Wy =
∏n
i=1W

xi
i with

the Gp1 component of Wi being uα
n−i+1γ ·

∏n
j=1,j 6=i u

αn+1+j−imj for each i = 1, . . . , n.

The absence of the trapdoor uα
n+1

in the witness enables us to verify that y = 〈~x, ~m〉 by

checking whether e(C,
∏n
i=1 u

αn−i+1xi) = e(gα, uα
n

)y · e(g,Wy) holds. The u-components
are additionally randomized with elements of Gp3 . This modification does not affect ver-
ification since the Gp3 components get cancelled upon pairing with Gp1 elements. The
scheme is a simple composite-order analogue of the vector commitment scheme proposed
in [35].

5

Proof Idea. We fix some notation first (similar to [47]). A (q1 → q2) subgroup deci-
sion assumption requires random elements of Gq1 to be indistinguishable from random
elements of Gq2 . Using Wee’s adaptation [47] of the Déjà Q framework, we prove secu-
rity of our FC scheme based on (p1 → p1p2) and (p1p3 → p1p2p3) subgroup decision
assumptions. An adversary breaking the binding property is successful if it can produce
a commitment C and two conflicting witnesses Wy and Wy′ for evaluation of a function
~x. Given that both witnesses satisfy the associated verification equations, one can say

that the adversary can essentially produce ∆W =
(
Wy′/Wy

)1/(y−y′)
which is of the form

u(α
n+1) · gr22 · g

r3
3 for some r2, r3 ∈ ZN and generators g2 ∈ Gp2 and g3 ∈ Gp3 . The Gp1

component of ∆W is identical to that of the trapdoor key. Define two types of keys (at-
tacks) according to {Uj}2nj=1 (∆W) containing a Gp2 component or not. We argue that
the attacker cannot mount an attack of a type different from that of the key based on
the (p1 → p1p2) The distribution of Gp2 components for the keys are changed gradually
via the transition described below.

uα
i

R3,i
subgroup−−−−−−→ uα

i

gr1α
i

2 R3,i
CRT−−−→ uα

i

g
r1α

i
1

2 R3,i,

where α1 is uniformly distributed over ZN . The first step of the transition uses the p1p3 →
p1p2p3 subgroup decision assumptions and the second transition is based on the Chinese
remainder theorem (CRT) that states that α mod p1 and α mod p2 are uncorrelated.
We can thus replace α mod p2 by α1 mod p2 as long as α mod p2 is not revealed in any
information provided to the attacker. By repeated application of the transition 2n times,

we obtain the transformation: uα
i → uα

i

g
∑2n
j=1 rjα

i
j

2 R′3,i.
The exponent of g2 is a pseudorandom function [23, 47] and hence can be replaced

by a random exponent, RF (i) for Ui in particular. After the final transition, creating
∆W consistent with these keys amounts to predicting the value of the random function
evaluated at n+ 1 (for the trapdoor Un+1), which is statistically infeasible.

Polynomial Commitments from Simple Assumptions. We wish to commit to a
polynomial P [Z] = a0 + a1Z + · · · + an−1Z

n−1 of degree n over D and reveal an open-
ing for P (x) for x ∈ D. Using the FC scheme for linear functions, we can commit to
(a0, . . . , an−1) ∈ Dn so that an opening to P (x) is a witness for 〈~x, ~m〉 = P (x) where
~x = (1, x, . . . , xn−1).

Accumulators for Large Universes. An accumulator allows hashing a set to a sin-
gle element so that one can prove the membership of a value in the set. Vector commit-
ments are known to imply accumulators [18], but via a construction that only supports a
small universe of values. Our polynomial commitment naturally leads to an accumulator
for large universes (i.e., the domain size can be exponential in the security parameter).
To accumulate a set of values S = {y1, . . . , yn−1}, use a polynomial commitment to

P [Z] =
∏n−1
i=1 (Z − yi). A witness for x ∈ S (or x /∈ S) is generated based on the fact

P [x] = 0 if and only if x ∈ S.

Tackling Subset Queries.As explained above, polynomial commitments and universal
accumulators can be seen as direct consequences of the FC for linear functions. On the
other hand, proving security for accumulators with concise subset witnesses requires a
novel extension of the Déjà Q framework. We now provide a brief outline of the same.

Let n be the maximal number of values that can be accumulated and let d be the
maximal size of “provable” subsets. In the commitment scheme, keys consisted of powers

6

of α in the exponent over the interval [1, 2n] with a hole at position n + 1 (the n + 1-
st exponent being the trapdoor key). We extend this interval to [1, (d + 1)n] making
n + 1, 2n + 1, . . . , dn + 1 part of the trapdoor. The witness component for a specific
position i of the linear function was defined as Wi = uα

n−i+1γ ·
∏n
j=1,j 6=i u

αn+1+j−imj . In
order to combine witnesses for several (at most d) values into a constant size witness, we
define the witness for the i-th position of the `-th element as a “shift” of Wi by a factor
` in the exponent. More precisely, W`,i is defined to have

uα
`n−i+1γ ·

n∏
j=1,j 6=i

uα
`n+1+j−imj

as its Gp1 component.
Security for accumulators is captured by the notion of collision-freeness which asserts

that it is computationally infeasible for an attacker to produce a set S and a witness WX

for a subset X = {x1, . . . , xk} 6⊆ S that verifies correctly with an accumulated value
for S (generated using randomness specified by the adversary). Given the randomness,
the reduction can compute valid witnesses of membership and non-membership for in-
dividual values in X (as in the normal accumulator scheme). Combining appropriate
“shifts” of these witnesses gives us WX∩S (combined membership witness) and WX\S
(combined non-membership witness). We then observe that WX/(WX∩SWX\S) has a

Gp1 -component of the form u
∑
`∈[1,k],x` /∈S

w`α
`n+1

(w` 6= 0) which means that the attacker
essentially produces a linear combination of the discrete logarithms of trapdoor keys in
the exponent. The rest of the reduction proceeds similar to the FC scheme with the
pseudorandom function now extending to the larger interval. Using this pseudorandom
function, the distribution of the keys is gradually modified until the Gp2 components of
all Ui’s are truly random. We argue that generating such a witness requires the adversary
to predict a linear combination of at most d specific evaluations of a random function
which is clearly infeasible.

2 Background

2.1 Bilinear Maps and Complexity Assumptions

We use groups (G,GT) of composite order N = p1p2p3 endowed with an efficiently
computable map (a.k.a. pairing) e : G×G→ GT such that: (1) e(ga, hb) = e(g, h)ab for
any (g, h) ∈ G × G and a, b ∈ Z; (2) if e(g, h) = 1GT for each h ∈ G, then g = 1G. An
important property of composite order groups is that pairing two elements of order pi
and pj , with i 6= j, always gives the identity element 1GT .

In the following, for each i ∈ {1, 2, 3}, we denote by Gpi the subgroup of order pi.
For all distinct i, j ∈ {1, 2, 3}, we call Gpipj the subgroup of order pipj . We rely on the
following assumptions introduced in [33], which are non-interactive, falsifiable [40]. In
both of them, the number of input elements is constant (regardless of the number of
adversarial queries).

Assumption 1 Given a description of (G,GT) as well as g
R← Gp1 , X3

R← Gp3 and
T ∈ G, it is infeasible to efficiently decide if T ∈ Gp1p2 or T ∈ Gp1 .

Assumption 2 Let g,X1
R← Gp1 , X2, Y2

R← Gp2 , Y3, Z3
R← Gp3 . Given a description of

(G,GT), (g,X1X2, Z3, Y2Y3) and T , it is hard to decide if T ∈R Gp1p3 or T ∈R G.

7

2.2 Vector Commitment Schemes

In prime order groups, Libert and Yung [35] introduced concise vector commitment
schemes, which are commitments that can be opened with a short de-commitment string
for each individual coordinate. Such commitments were described in [35, 18]. In [35], the

commitment key is CK = (g, g1, . . . , gn, gn+2, . . . , g2n) ∈ G2n, where gi = g(α
i) for each i.

The trapdoor is gn+1. To commit to ~m = (m1, . . . ,mn), one picks r
R← Zp and computes

C = gr ·
∏n
j=1 g

mκ
n+1−j . A single element Wi = gri ·

∏n
j=1,j 6=i g

mj
n+1−j+i provides evidence

that mi is the i-th component of ~m as it satisfies e(gi, C) = e(g,Wi) · e(g1, gn)mi . The
infeasibility of opening C to two distinct messages for some i relies on a parametrized
assumption [12].

2.3 Functional Commitments for Linear Functions: Definitions

In [30], Izabachène et al. implicitly showed that the vector commitment scheme of [35]
can be generalized into a commitment scheme allowing to commit to a vector ~m while
proving – via a partial opening made of a short piece of information – that the committed
vector ~m satisfies ~m ·~x = y, for some public ~m and y. We call such a primitive functional
commitment for linear functions. In this section, we formally define this primitive and
its security.

Definition 1 (Functional Commitments). Let D be a domain and consider linear
functions 〈·, ·〉 : Dn × Dn → D defined by 〈~x, ~m〉 =

∑n
i=1 ximi for ~x, ~m ∈ Dn with

~x = (x1, . . . , xn), ~m = (m1, . . . ,mn). A functional commitment scheme FC for (D, n, 〈·, ·〉)
is a tuple of four (possibly probabilistic) polynomial time algorithms – (Setup,Commit,
Open,Verify).

Setup(1λ, 1n): takes in a security parameter λ ∈ N, a desired message length n ∈ poly(λ)
and outputs a commitment key CK and, optionally, a trapdoor TK.

Commit(CK, ~m): takes as input the commitment key CK, a message vector ~m ∈ Dn and
outputs a commitment C for ~m and auxiliary information denotes aux.

Open(CK,C, aux, ~x): takes as input the commitment key CK, a commitment C (to ~m),
auxiliary information (possibly containing ~m) and a vector ~x ∈ Dn; computes a
witness Wy for y = 〈~x, ~m〉 i.e., Wy is a witness for the fact that the linear function
defined by ~x when evaluated on ~m gives y.

Verify(CK,C,Wy, ~x, y): takes as input the commitment key CK, a commitment C, a
witness Wy, a vector ~x ∈ Dn and y ∈ D; outputs 1 if Wy is a witness for C being a
commitment for some ~m ∈ Dn such that 〈~x, ~y〉 = y and outputs 0 otherwise.

The correctness condition for a functional commitment scheme requires that for every
(CK,TK) ← Setup(λ, n), for all ~m, ~x ∈ Dn, if (C, aux) ← Commit(CK, ~m) and Wy ←
Open(CK,C, aux, ~x), then Verify(CK,C,Wy, ~x, y) = 1 with probability 1.

In some applications (e.g., [32]), it may be useful to extend the syntax with an equiv-
ocation algorithm which allows generating witnesses for arbitrary values y using the
trapdoor TK. This equivocation algorithm Equivocate takes as input a pair (C, aux) pro-
duced as (C, aux) ← Commit(CK, ~m), a vector ~x ∈ Dn, an arbitrary value y and the
trapdoor TK. It outputs a witness Wy such that Verify(CK,C,Wy, ~x, y) = 1. While our
construction readily extends to support such a mechanism, we omit it from the syntax
for simplicity.

The security requirements of functional commitments are formalized as follows.

8

Definition 2 (Perfectly Hiding). A commitment scheme is perfectly hiding if for a
key CK generated by an honest setup, for all ~m1, ~m2 ∈ Dn with ~m1 6= ~m2, the two
distributions {CK,Commit(CK, ~m1)} and {CK,Commit(CK, ~m2)} are identical given
that the random coins of Commit are chosen according to the uniform distribution from
the respective domain.

The binding property requires the infeasibility of generating a commitment C and
accepting witnesses for two distinct values y, y′ without knowing the trapdoor TK.

Definition 3 (Function Binding). A functional commitment scheme FC = (Setup,
Commit,Open,Verify) for (D, n, 〈·, ·〉) is said to be computationally binding if any PPT
adversary A has negligible advantage in winning the following game.

1. The challenger generates (CK,TK) by running Setup(λ, n) and gives CK to A.
2. The adversary A outputs a commitment C, a vector ~x ∈ Dn, two values y, y′ ∈ D

and two witnesses Wy,Wy′ . We say that A wins the game if the following conditions
hold.

(i) y 6= y′; (ii) Verify(CK,C,Wy, ~x, y) = Verify(CK,C,Wy′ , ~x, y
′) = 1.

2.4 Cryptographic Accumulators

The basic functionality of an accumulator is to combine a set S of values into a single
value V so that for any x ∈ S it is possible to prove that x is accumulated in V .

Definition 4 (Accumulator). Let D be a domain. An accumulator scheme Acc for D
is a tuple (Setup,Eval,WitCreate,Verify) of PPT algorithms defined as follows.

Setup(1λ, 1n): takes as input a security parameter λ and an integer n ∈ N upper bounding
the number of elements that can be accumulated; outputs a pair of keys (PK,SK).

Eval(PK,S): inputs a key PK, a set S ⊂ D of elements (with |S| ≤ n) to be accumulated
and outputs an accumulated value V along with some auxiliary information aux.

WitCreate(PK,S, V, aux, x, type): inputs a public key PK, a set S, a pair of accumulated
value and state information (V, aux) generated by Eval(PK,S), an element x ∈ D
and a boolean value type ∈ {0, 1} indicating whether the output should be membership
or non-membership witness according as its value is 1 or 0 respectively.

Case type = 1: If x /∈ S, it returns ⊥. Otherwise, a membership witness W is re-
turned.

Case type = 0: It returns ⊥ if x ∈ S and a non-membership witness W otherwise.

Verify(PK, V,W, x, type): takes as input the public key PK, an accumulator V for set S,
a witness W , an element x ∈ D and a boolean value type. Returns 1 if and only if
either

– W is a valid witness for x ∈ S and type = 1
– W is a valid witness for x /∈ S and type = 0.

The above definition consider static accumulators. In dynamic accumulators, the accu-
mulated value as well as witnesses can be publicly updated whenever an element is added
to or deleted from the set. In this work, we only consider static accumulators.

The correctness condition requires that for all honestly generated keys, all honestly
competed accumulators and witnesses, the Verify algorithm always accepts. An accumu-
lator scheme is deemed secure if it is at least collision-free. Collision-freeness ensures
the computational infeasibility of producing either a membership witness for an non-
accumulated value or a non-membership witness for an accumulated value.

9

2.5 Accumulators Supporting Subset Queries

In accumulators supporting subset queries, witnesses can be generated for a subset of the
accumulated set rather than individual elements. While accumulators have been defined
in the universal setting, i.e., both membership and non-membership witnesses can be
generated, here we only consider the non-universal setting.

Definition 5 (Accumulator with subset queries). Let D be a domain. An accumu-
lator scheme Acc for D is defined by a tuple (Setup,Eval,WitCreate,Verify) of probabilistic
polynomial time algorithms defined as follows.

Setup(1λ, 1n, 1d): takes as input a security parameter λ, an upper bound n ∈ N on the
number of elements that can be accumulated and an integer d ∈ N denoting the
maximum size of a set for which a witness can be created; outputs a pair of keys
(PK,SK).

Eval(PK,S): takes in a public key PK, a set S ⊂ D of elements (with |S| ≤ n) to be
accumulated and outputs an accumulated value V with some auxiliary information
aux.

WitCreate(PK,S, V, aux, X): inputs a public key PK, a set S, a pair of accumulated
value and state information (V, aux) generated by Eval(PK,S), a set X ⊆ S with
|X| ≤ d and outputs a witness WX .

Verify(PK, V,WX , X): takes as input the public key PK, an accumulator V for set S, a
witness WX , a set X ⊆ S. Returns 1 if WX is a witness for X ⊆ S and ⊥ otherwise.

In the above syntax, we assume that the auxiliary information aux includes the random-
ness that was used to compute V when Eval is a probabilistic algorithm.

3 A Functional Commitment from Subgroup Decision
Assumptions

We prove that the Déjà Q framework [23] allows proving security of the functional com-
mitment of [30] under constant size assumptions by switching to composite order groups.

Setup(1λ, 1n): Choose bilinear groups (G,GT) of composite order N = p1p2p3, where

pi > 2l(λ) for each i ∈ {1, 2, 3}, for a suitable polynomial l : N → N. Choose g, u
R←

Gp1 , R3
R← Gp3 and α

R← ZN at random in order to define Gj = gα
j

for each j ∈ [1, n]
and

U1 = uα ·R3,1, . . . Un = u(α
n) ·R3,n

Un+2 = u(α
n+2) ·R3,n+2, . . . U2n = u(α

2n) ·R3,2n,

where R3,j
R← Gp3 for each j ∈ [1, 2n]\{n+1}. Define the commitment key to consist

of
CK :=

(
g, {Gj}nj=1, {Uj}j∈[1,2n]\{n+1}, R3

)
.

The trapdoor is TK := Un+1 = u(α
n+1) ·R3,n+1, where R3,n+1

R← Gp3 .

Commit(CK, ~m): Given ~m = (m1, . . . ,mn) ∈ ZnN , compute C = gγ ·
∏n
j=1G

mj
j for a ran-

domly chosen γ
R← ZN and output the commitment C with the auxiliary information

aux = (m1, . . . ,mn, γ).

10

Open(CK,C, aux, ~x): Given ~x = (x1, . . . , xn) ∈ Zn, the information aux = (m1, . . . ,mn, γ)
allows generating a witness for the function ~m · ~x =

∑n
i=1mi · xi by computing

Wi = Uγn−i+1 ·
n∏

j=1,j 6=i

U
mj
n+1+j−i ∀i ∈ {1, . . . , n}, (1)

and outputting Wy =
∏n
i=1W

xi
i .

Verify(CK,C,Wy, ~x, y): Given C ∈ G and ~x = (x1, . . . , xn) ∈ ZnN , accept Wy ∈ G as
evidence that C is a commitment to ~m ∈ ZnN such that y = 〈~m, ~x〉 if and only if
it holds that e(C,

∏n
i=1 U

xi
n−i+1) = e(G1, Un)y · e(g,Wy). If so, output 1. Otherwise,

return 0.

The correctness is verified by observing that, for each i ∈ {1, . . . , n}, (1) implies that

e(C,Un−i+1) = e(g, u)(α
n+1)·mi · e

(
g, Uγn−i+1 ·

n∏
j=1,j 6=i

U
mj
n+j−i+1

)
= e(G1, Un)mi · e(g,Wi)

By raising both members of the above equality to the power xi ∈ ZN and taking the
product over all i ∈ [1, n], we find that Wy satisfies

e(C,

n∏
i=1

Uxin−i+1) = e(G1, Un)〈~m,~x〉 · e(g,Wy).

It is clear that the commitment is perfectly hiding: since C lives in the cyclic subgroup
Gp1 , any vector (m1, . . . ,mn) ∈ ZnN has a corresponding opening γ ∈ ZN (and even p2p3
openings since only γ mod p1 is fixed by ~m).

We now prove it computationally binding under subgroup assumptions. While this
property can be proved via a reduction from the one-wayness of Wee’s broadcast encryp-
tion [47, Section 4], we found it interesting to give a direct proof based on the underlying
assumptions for two reasons. First, this proof allows relying on a computational (rather
than decisional) analogue of Assumption 1. Second, the proof provides insights allowing
to prove the security of variants of the primitives implied by this commitment. For ex-
ample, by adapting the proof of Theorem 1, we design an accumulator supporting subset
queries in Section 5. Since the latter scheme has a public key containing more elements
than in [47], its security can hardly be proved secure via a reduction from the security
of Wee’s broadcast encryption [47].

The proof involves two computationally indistinguishable distributions of parameters
(CK,TK). The normal distribution is as in the real scheme whereas the semi-functional
distribution allows CK and TK to have a Gp2 component. As in [47, Theorem 2], we use
the Déjà Q framework so as to gradually move to a game where the {Ui}2ni=1 all contain a

Gp2 component g
R(i)
2 which is determined by a random function R : [1, 2n]→ Zp2 . As in

[35, 30], we rely on the fact that any attack against the binding property publicly reveals

a value Un+1 which contains u(α
n+1) as its Gp1 component. Depending on whether Un+1

contains a Gp2 component or not, we speak of Type B or Type A attacks. The proof uses
a subsequence of 2n games where, in the k-th game, the Gp2 component of Ui is of the

form g
Fk(i)
2 , where Fk : [1, 2n]→ Zp2 is a k-wise independent function. The strategy of the

proof is to show that, unless either Assumption 1 or Assumption 2 can broken, the attack

on the binding property also reveals a Un+1 of the form Un+1 = u(α
n+1) · gFk(n+1)

2 · R3,

11

for some R3 ∈ Gp3 in the k-th game. Said otherwise, the attack reveals a trapdoor
Un+1 which mimics the distribution of the commitment key CK. When we reach the
2n-th game, the Gp2 component of each Ui is determined by F2n(i). Since F2n(.) is a
2n-wise independent function, the Gp2 of Un+1 is thus statistically independent of those
of {Ui}i∈[1,2n]\{i}, which appear in the public key. The detailed proof of Theorem 1 is
given in Appendix C.

Theorem 1. The scheme is binding if Assumption 1 and Assumption 2 both hold.

4 Further Constructions

4.1 Polynomial Commitments from Constant-Size Assumptions

It is easy to see that any functional commitment for linear functions implies a polynomial
commitment scheme. Indeed, in order to commit to a polynomial P [Z] = a0 + a1Z +
· · · + an−1Z

n−1 of degree n − 1, we can simply commit to the vector containing the
coefficients ~m = (a0, a1, . . . , an−1) ∈ ZnN . When the sender wants to convince a verifier
that P (x) = y, for some public x, y ∈ ZN , it is sufficient to generate a witness Wy

showing that 〈~m, ~x〉 = y, where ~x = (1, x, x2, . . . , xn−1). Our construction of Section
3 thus implies the first polynomial commitment based on constant-size assumptions.
Indeed, the schemes of [31, 16] rely on q-type assumptions where q is proportional to the
maximal degree of committed polynomials.

4.2 Large-Universe Pairing-Based (Universal) Accumulators from
Constant-Size Assumptions

In [18], Catalano and Fiore showed how to construct cryptographic accumulators from
vector commitments. While their construction notably yields an accumulator based on
the Computational Diffie-Hellman assumption, it only supports small universes. Namely,
accumulated values should be taken from a polynomial-size domain since the public key
has linear size in the cardinality of this domain.

It is easy to see that polynomial commitments imply accumulators for exponential-size
universes. While the size of the public key is linear in the maximal number of accumulated
values (as in Nguyen’s accumulator [41]), it does not depend of the universe size. As a
result, we can accumulate inputs consisting of arbitrary strings of polynomial length.

In order to accumulate a set S = {x1, . . . , xn−1}, one can simply commit to the n-
dimensional vector (a0, a1, . . . , an−2, 1) that contains the coefficients of the polynomial

P [Z] =
∏n−1
j=1 (Z−xj) =

∑n−2
j=0 ajZ

j +Zn−1 and rely on the fact that x ∈ S if and only if
P (x) = 0. A witness that xi ∈ S (resp. xi 6∈ S) is obtained by generating a witness that
the committed polynomial satisfies P (xi) = 0 (resp. P (xi) 6= 0)). A concrete construction
based on Assumptions 1 and 2 is described in Appendix B.

5 Accumulators Supporting Subset Queries

We now generalize the accumulator of Section 4.2 so that a constant-size witness W ∈ G
can provide evidence that a purported set X is contained in the hashed set S. Such a
commitment was previously designed by Papamanthou et al. [43] under a non-standard
q-type assumption. Our construction is thus the first realization based on fixed-size as-
sumptions.

12

Gen(1λ, 1n): Choose bilinear groups (G,GT) of composite order N = p1p2p3, where pi >

2l(λ) for each i ∈ {1, 2, 3}, for a suitable polynomial l : N → N. Choose g, u
R← Gp1 ,

R3
R← Gp3 and α

R← ZN at random. Let d ≤ n be the bound placed on size of a subset

(also polynomial in the security parameter). Define Gi = g(α
i) for each i ∈ [1, n] and

U1 = uα ·R3,1, U2 = u(α
2) ·R3,2, . . . , Un = u(α

n) ·R3,n

Un+2 = u(α
n+2) ·R3,n+2, . . . , U2n = u(α

2n) ·R3,2n,
. . .

Udn+2 = u(α
dn+2) ·R3,dn+2, . . . , U(d+1)n = u(α

(d+1)n) ·R3,(d+1)n,

where R3,j
R← Gp3 for each j ∈ [1, (d + 1)n]. The secret key is SK := {U`n+1}d`=1,

where U`n+1 = u(α
`n+1) · R3,`n+1 with R3,`n+1

R← Gp3 for all ` ∈ [1, d]. The public
key is

PK :=
(
g, {Gj}nj=1, {Uj}j∈[1,(d+1)n]\{n+1,2n+1,...,dn+1}, R3

)
.

Eval(PK,S): To hash a set S = {y1, . . . , yn′} of cardinality n′ ≤ n − 2, expand the

polynomial PS [Z] =
∏n′

j=1(Z − yj) =
∑n′

j=0mj ·Zj . Choose γ
R← ZN to compute and

output

V = gγ ·
n′+1∏
j=1

G
mj−1

j = gγ+α·PS(α), aux = (S, γ) (2)

WitCreate(PK, V, S, aux, X): Given a set S = {y1, . . . , yn′}, a subsetX = {x1, . . . , xk} ⊆
S of size k ≤ d (we assume w.l.o.g. that x1, . . . , xk are arranged in some fixed lex-
icographical order), and the state information aux = (S, γ) such that (V, aux) was

produced by Eval(PK,S), compute PS [Z] =
∏n′

j=1(Z − yj) =
∑n′

j=0mj · Zj and
define the corresponding vector ~m = (m0,m1, . . . ,mn′ , 0, . . . , 0) ∈ ZnN . For each
` ∈ [1, k], define ~x` = (x`,1, . . . , x`,n) = (1, x`, x

2
` , . . . , x

n−2
` , 0) ∈ ZnN which satisfies

PS(x`) = 〈~m, ~x`〉 = 0. Note that the last component of ~x` is set to 0 since mn−1 is
always 0 given that n′ ≤ n− 2. For ` ∈ [1, k], generate a witness that 〈~m, ~x`〉 = 0 by
first using {U`n+1+j−i}j 6=i to compute

W`,i = Uγ`n−i+1 ·
n∏

j=1,j 6=i

U
mj
`n+1+j−i ∀i ∈ {1, . . . , n− 1}, (3)

which satisfies e(V,
∏n−1
i=1 U

x`,i
`n+1−i) = e(g,W`,i) for all ` ∈ [1, k] since 〈~m, ~x`〉 = 0.

Then, compute and output the witness WX =
∏k
`=1

∏n−1
i=1 W

x`,i
`,i .

Verify(PK, V,WX , X): Given an accumulator value V ∈ G, a subset X = {x1, . . . , xk},
where xi ∈ ZN for each i ∈ [1, k], and a candidate witness WX , do the following.

1. For each ` ∈ [1, k], define ~x` = (x`,1, . . . , x`,n) = (1, x`, . . . , x
n−2
` , 0) ∈ ZnN .

2. Return 1 if and only if e(V,
∏k
`=1

∏n−1
i=1 U

x`,i
`n+1−i) = e(g,WX).

From an efficiency standpoint, the size of PK is quadratic in n when we set d ≈ n so
as to handle queries for arbitrary subsets of size ≤ n. In comparison with [43], we thus
achieve security under simple assumptions at the expense of a somewhat larger public

13

key. We see it as an interesting open problem to retain O(n)-size public keys under simple,
constant-size assumptions.

We prove that the scheme provides collision-freeness (as defined in Appendix A) in the
sense that no PPT adversary can output a set S (of size ≤ n− 1) along with a verifying
witness WX for another set X which is not contained in S. We thus use a natural analogue
of the the definition of collision-freeness used in [25]: since our evaluation algorithm is
randomized, we assume that the adversary outputs the set S and the random coins γ
of the evaluation algorithm that lead to the accumulator value for which WX properly
verifies.

The proof crucially relies on the fact that the adversary outputs both the hashed set
S and the random coins γ of the hashing algorithm. It allows the reduction to use WX

in order to extract a membership witness for the difference X \S by taking advantage of
the homomorphic properties of the underlying commitment. Having obtained WX\S , the
reduction is also able to compute an aggregation of non-membership witnesses for the
same difference X \S. From these two conflicting witnesses, it is possible to extract some
linear combination of the secret key components {U`n+1}d`=1. In turn, when we adapt the
proof of Theorem 1, this forces the adversary to predict a linear combination of random
function evaluations (which is statistically unpredictible) in the final step of the sequence
of games.

Theorem 2. The scheme is collision-free if Assumption 1 and Assumption 2 hold. (The
proof is available in Appendix D.)

Acknowledgements

The first two authors were funded by the “Programme Avenir Lyon Saint-Etienne de
l’Université de Lyon” in the framework of the programme “Investissements d’Avenir”
(ANR-11-IDEX-0007). Part of this work was done while the third author was with Google
Inc. and visiting the Simons Institute for Theory of Computing at U.C. Berkeley.

We thank Olivier Blazy for pointing out errors in the accumulator constructions (and
proofs) present in an earlier version of this paper.

References

1. T. Acar, L. Nguyen. Revocation for Delegatable Anonymous Credentials. In PKC’11,
LNCS 6571, pp. 423–440, 2011.

2. M. H. Au, Q. Wu, W. Susilo, and Y. Mu. Compact E-Cash from Bounded Accumulator. In
CT-RSA 2007, volume 4377 of LNCS, pages 178–195. Springer, 2007.

3. N. Baric and B. Pfitzmann. Collision-Free Accumulators and Fail-Stop Signature Schemes
Without Trees. In EUROCRYPT 1997, volume 1233 of LNCS, pages 480–494. Springer,
1997.

4. M. Bellare, D. Hofheinz, S. Yilek. Possibility and Impossibility Results for Encryption and
Commitment Secure under Selective Opening. In Eurocrypt’09, LNCS 5479, pp. 1–35, 2009.

5. M. Bellare, P. Rogaway. Random Oracles are Practical: A Paradigm for Designing Efficient
Protocols. In 1st ACM Conference on Computer and Communications Security, pp. 62–73,
ACM Press, 1993.

6. J. Benaloh, M. de Mare. One-Way Accumulators: A Decentralized Alternative to Digital
Signatures. In Eurocrypt’93, LNCS 4948, pp. 274–285, 1993.

14

7. S. Benabbas, R. Gennaro, Y. Vahlis. Verifiable Delegation of Computation over Large
Datasets. In Crypto 2011, pp. 111–131, LNCS 6841, Springer, 2011.

8. M. Blum. Coin Flipping by Telephone. In Crypto’81, pp. 11-15, 1981.
9. M. Blum, J. Feldman, S. Micali. Non-Interactive Zero-Knowledge and its Applications. In

STOC’88, pp. 103–112, 1988.
10. D. Boneh, X. Boyen. Short Signatures Without Random Oracles. In Eurocrypt’04, LNCS

3027, pp. 56–73. Springer-Verlag, 2004.
11. D. Boneh and H. Corrigan-Gibbs. Bivariate Polynomials Modulo Composites and Their

Applications. In ASIACRYPT 2014, Part I, volume 8873 of LNCS, pages 42–62. Springer,
2014.

12. D. Boneh, C. Gentry and B. Waters. Collusion-Resistant Broadcast Encryption with Short
Ciphertexts and Private Keys. In Crypto’05, LNCS 3621, pp. 258–275, 2005.

13. D. Boneh, A. Sahai, B. Waters. Functional Encryption: Definitions and Challenges. In
TCC’11, LNCS 6597, pp. 253–273, 2011.

14. J. Camenisch, M. Kohlweiss, C. Soriente. An Accumulator Based on Bilinear Maps and
Efficient Revocation for Anonymous Credentials. In PKC’09, LNCS 5443, pp. 481–500,
2009.

15. J. Camenisch, M. Kohlweiss, C. Soriente. Solving Revocation with Efficient Update of
Anonymous Credentials. In SCN’10, LNCS 6280, pp. 454–471, 2010.

16. J. Camenisch, M. Dubovitskaya, K. Haralambiev, M. Kohlweiss. Composable & Modular
Anonymous Credentials: Definitions and Practical Constructions. In Asiacrypt’15, LNCS
9453, pp. 262–288, 2015.

17. J. Camenisch, A. Lysyanskaya. Dynamic Accumulators and Application to Efficient Revo-
cation of Anonymous Credentials. In Crypto’02, LNCS 2442, pp. 61–76, Springer, 2002.

18. D. Catalano, D. Fiore. Vector Commitments and their Applications. In PKC 2013, LNCS
7778, pp. 55–72, 2013.

19. D. Catalano, D. Fiore, M. Messina. Zero-Knowledge Sets with Short Proofs. In Euro-
crypt’08, LNCS 4965, pp. 433–450, 2008.

20. S. Canard and A. Gouget. Multiple Denominations in E-cash with Compact Transaction
Data. In FC 2010, volume 6052 of LNCS, pages 82–97. Springer, 2010.

21. B. Chor, S. Goldwasser, S. Micali, B. Awerbuch. Verifiable Secret Sharing and Achieving
Simultaneity in the Presence of Faults. In FOCS’85, pp. 383–395, 1985.

22. M. Chase, A. Healy, A. Lysyanskaya, T. Malkin, L. Reyzin. Mercurial Commitments with
Applications to Zero-Knowledge Sets. In Eurocrypt’05, LNCS 3494, pp. 422–439, Springer,
2005.

23. M. Chase, S. Meiklejohn. Déjà Q: Using Dual Systems to Revisit q-Type Assumptions In
Eurocrypt 2014, LNCS 8441, pp. 622–639, Springer, 2014.

24. I. Damg̊ard, N. Triandopoulos. Supporting Non-membership Proofs with Bilinear-map Ac-
cumulators. In Cryptology ePrint Archive: Report 2008/538.

25. D. Derler, C. Hanser, D. Slamanig. Revisiting Cryptographic Accumulators, Additional
Properties and Relations to Other Primitives. In CT-RSA 2015, LNCS 9048, pp. 127-144,
Springer, 2015.

26. C. Dwork, M. Naor, O. Reingold, L. Stockmeyer. Magic Functions. In FOCS’99, pp. 523–
534, 1999.

27. P. Feldman. A Practical Scheme for Non-interactive Verifiable Secret Sharing. In FOCS’87,
pp. 427–437, 1987.

28. S. Gorbunov, V. Vaikuntanathan, D. Wichs. Leveled Fully Homomorphic Signatures from
Standard Lattices. In STOC 2015, pp. 469–477, 2015.

29. J. Groth, A. Sahai. Efficient non-interactive proof systems for bilinear groups. In Euro-
crypt’08, LNCS 4965, pp. 415–432, 2008.

30. M. Izabachène, B. Libert, D. Vergnaud. Blockwise P-Signatures and Non-Interactive Anony-
mous Credentials with Efficient Attributes. In IMACC 2011, pp. 431–450, Springer, 2011.

31. A. Kate, G. Zaverucha, I. Goldberg. Constant-Size Commitments to Polynomials and their
Applications. In Asiacrypt 2010, pp. 177–194, LNCS 6477, Springer, 2010.

15

32. J. Krupp, D. Schröder, M. Simkin, D. Fiore, G. Ateniese, S. Nuernberger. Nearly Optimal
Verifiable Data Streaming. In PKC 2016, LNCS series, pp. 417–445, LNCS 9614, 2016.

33. A. Lewko, B. Waters. New Techniques for Dual System Encryption and Fully Secure HIBE
with Short Ciphertexts. In TCC 2010, LNCS 5978, Springer, 2010.

34. J. Li, N. Li, and R. Xue. Universal Accumulators with Efficient Nonmembership Proofs. In
ACNS 2007, volume 4521 of LNCS, pages 253–269. Springer, 2007.

35. B. Libert and M. Yung. Concise Mercurial Vector Commitments and Independent Zero-
Knowledge Sets with Short Proofs. In TCC 2010, LNCS 5978, pp. 499–517, 2010.

36. H. Lipmaa. Secure Accumulators from Euclidean Rings Without Trusted Setup. In ACNS
2012, volume 7341 of LNCS, pages 224–240. Springer, 2012.

37. R. C. Merkle. A Certified Digital Signature. In CRYPTO 1989, volume 435 of LNCS, pages
218–238. Springer, 1989.

38. S. Micali, M.-O. Rabin, J. Kilian. Zero-Knowledge Sets. In FOCS 2003, pp. 80–91, 2003.

39. S. Micali, M.-O. Rabin, S. Vadhan. Verifiable Random Functions. In FOCS 1999, pp.
120–130, 1999.

40. M. Naor. On Cryptographic Assumptions and Challenges. In Crypto’03, LNCS 2729, pp.
96–109. Springer-Verlag, 2003.

41. L. Nguyen. Accumulators from Bilinear Pairings and Applications. In CT-RSA’05, LNCS
3376, pp. 275–292, 2005.

42. R. Ostrovsky, C. Rackoff, A. Smith. Efficient Consistency Proofs for Generalized Queries
on a Committed Database. In ICALP’04, LNCS 3142, pp. 1041–1053, 2004.

43. C. Papamanthou, R. Tamassia, N. Triandopoulos. Optimal Verification of Operations on
Dynamic Sets. In Crypto 2011, LNCS 6841, pp. 91–110, 2011.

44. C. Papamanthou, E. Shi, R. Tamassia, and K. Yi. Streaming Authenticated Data Structures.
In EUROCRYPT 2013, volume 7881 of LNCS, pages 353–370. Springer, 2013.

45. T. Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing.
In Crypto’91, LNCS 576, pp. 129–140, 1991.

46. A. Sahai, B. Waters. Fuzzy Identity-Based Encryption In Eurocrypt’05, LNCS 3494, pp.
457–473, 2005.

47. H. Wee. Déjà Q Encore! Un petit IBE. In TCC 2016, LNCS 9563, pp. 237–258, 2016.

A Security Definitions for Cryptographic Accumulators

This section recalls two important security notions for accumulators.
Informally undeniability requires that no PPT attacker be able to generate both

membership and non-membership witnesses for any element of the domain.

Definition 6 (Undeniability). A cryptographic accumulator is undeniable if every
PPT adversary A has negligible advantage in winning the following game.

– The challenger generates a pair of keys (PK,SK) by running the Setup algorithms
and provides PK to the adversary A.

– The adversary A eventually halts and outputs (V, x,W, Ŵ). It wins if the conditions

Verify(PK, V,W, x, 1) = 1 and Verify(PK, V, Ŵ , x, 0) = 1 are simultaneously satisfied.

As shown by [25], the notion of undeniability implies that of collision-freeness and is
actually strictly stronger. It was shown that there exist accumulators that are collision-
free but are not undeniable.

The notion of indistinguishability captures that the accumulations of any two distinct
sets be computationally indistinguishable.

16

Definition 7 (Indistinguishability). An accumulator if for any PPT adversary A has
negligible advantage in winning the following game.

– The challenger generates a pair of keys (PK,SK) by running the Setup algorithms
and provides PK to the adversary A.

– A returns two sets S0, S1. The challenger picks a random bit β ∈ {0, 1}, computes
(V, aux)← Eval(PK,Sb) and provides V to A.

– A returns a bit β′. A wins the game if β = β′.

Definition 8 (Collision-Freeness). An accumulator supporting subset queries is col-
lision free if every PPT adversary A has negligible advantage in winning the following
game.

– The challenger generates a pair of keys (PK,SK) by running the Setup algorithms
and provides PK to the adversary A.

– A outputs (S, aux, X,WX) with |S| ≤ n, |X| ≤ d and wins if Verify(PK, V,WX , X) =
1 and X 6⊂ S, where V is the accumulator value produced by Eval on input of X and
the randomness contained in aux.

B A Concrete Universal Accumulator based on Subgroup
Decision Assumptions

Our universal accumulator uses a randomized evaluation algorithm so as to achieve the
indistinguishability property of [25]. It can be made deterministic setting γ = 0. The
construction is a universal accumulator in that it supports both membership and non-
membership witnesses. The scheme can be seen as a variant of Nguyen’s accumulator
[41] and goes as follows.

Gen(1λ, 1n): Choose bilinear groups (G,GT) of composite order N = p1p2p3, where pi >

2l(λ) for each i ∈ {1, 2, 3}, for a suitable polynomial l : N → N. Choose g, u
R← Gp1 ,

R3
R← Gp3 and α

R← ZN at random in order to define

G1 = gα, G2 = g(α
2), . . . , Gn = g(α

n)

and

U1 = uα ·R3,1, , Un = u(α
n) ·R3,n

Un+2 = u(α
2) ·R3,n+2, , U2n = u(α

2n) ·R3,2n,

where R3,j
R← Gp3 for each j ∈ [1, 2n]\{n+ 1}. Define the public key as

PK :=
(
g, {Gj}nj=1, {Uj}j∈[1,2n]\{n+1}, R3

)
.

The secret key is SK := α.

Eval(PK,S): To hash a set S = {y1, . . . , yn′} of cardinality n′ ≤ n − 2, define the

polynomial P [Z] =
∏n′

j=1(Z − yj) =
∑n′

j=0 aj · Zj (where an′ = 1) and the vector

17

~m = (m1, . . . ,mn) = (a0, a1, . . . , an′−1, 1, 0, . . . , 0) ∈ ZnN . Then, choose γ
R← ZN and

compute

V = gγ ·
n∏
j=1

G
mj
j = gγ+α·P (α) (4)

and output V and aux = (m1, . . . ,mn, γ).

WitCreate(PK, V, S, aux, x, type): Given a set S = {y1, . . . , yn′} and the state informa-
tion aux = (y1, . . . , yn′ , γ) such that (V, aux) was produced by Acc(PK,S) and a
Boolean value type ∈ {0, 1}, do the following:

- If type = 1, return ⊥ if x 6∈ S. Otherwise, a membership witness is generated as a
witness showing that V is a deterministic commitment to
~m = (a0, a1, . . . , an′−1, an′ , 0, . . . , 0), (with an′ = 1) such that
~m · (1, x, x2, . . . , xn−1) = 0. Namely, for the linear function ~m · ~x =

∑n
i=1mi · xi

by computing

Wi = Uγn−i+1

n′+1∏
j=1,j 6=i

U
aj−1

n+1+j−i ∀i ∈ {1, . . . , n},

and outputting the witness

W =

n∏
i=1

W
(xi−1)
i .

- If type = 0, return ⊥ if x ∈ S. Otherwise, a non-membership witness obtained by
first defining the vector ~m = (a0, a1, . . . , an′−1, 1, 0, . . . , 0) containing the coeffi-

cients of P [Z] =
∑n′−1
j=0 ajZ

j +Zn
′

=
∏
u∈S(Z −u). The first part of the witness

is the value wx = ~m · (1, x, x2, . . . , xn−1) = P (x) and the witness Wx showing
that ~m · ~x = wx. The non-membership witness (wx,WX) is returned.

Verify(PK, V,W, x, type): Given an accumulator value V ∈ G, a witness W , an element
x of the universe ZN and a bit type ∈ {0, 1}, do the following:

- If type = 1, parse the witness as W ∈ G (and return 0 if it does not parse
properly), define the vector ~x = (1, x, x2, . . . , xn−1) ∈ ZnN and return 1 if and
only if

e(V,

n−1∏
i=1

U
(xi−1)
n−i+1) = e(g,W). (5)

Otherwise, return 0.
- If type = 0, parse the witness W as (wx,Wx) ∈ ZN×G and output 0 if it does not

parse properly. Using x ∈ ZN , define ~x = (1, x, x2, . . . , xn−1) ∈ ZnN and return 1
if and only if y 6= 0 and

e(V,

n∏
i=1

U
(xi−1)
n−i+1) = e(G1, Un)wx · e(g,Wx). (6)

Otherwise, return 0.

18

From relation (4), we immediately see the similarity between Nguyen’s accumulator

[41] and ours. In both schemes, the public key contains {g(αi)}ni=0 and, in the deterministic
version of our scheme (i.e., when γ = 0), the accumulator value is generated in the same
way. The main difference is that, by introducing O(n) additional elements {Ui}i∈[n+2,2n]

in the public key (which only increases its length by a small constant factor), we can
generate witnesses in a different way.

Theorem 3. The above universal accumulator is unconditionally indistinguishable and
provides undeniability if Assumption 1 and Assumption 2 hold.

Proof. The proof of indistinguishability is straightforward. As for the undeniability prop-
erty, let us assume that, on input of a public key PK, an adversary A can produce an
accumulator value V ∈ G and an element x ∈ ZN for which it manages to output ac-
cepting membership and non-membership witnesses W and (wx,Wx) that satisfy (5) and
(6), respectively. Such an adversary immediately implies an algorithm B that breaks the
binding property of the functional commitment in Section 3. In the game of Definition 3,
the binding adversary B outputs the vector ~x = (1, x, x2, . . . , xn−1) ∈ ZnN and witnesses
W , Wx, which convincingly prove ~m · ~x = 0, ~m · ~x = xx, respectively. ut

C Proof of Theorem 1

Proof. Recall that, in order to break the binding property of the scheme, an adversary
A must come up with a commitment C ∈ G, a vector ~x = (x1, . . . , xn) ∈ ZnN and two
distinct values y, y′ ∈ ZN with witnesses Wy,Wy′ ∈ G such that

e(C,

n∏
i=1

Uxin−i+1) = e(G1, Un)y · e(g,Wy), (7)

e(C,

n∏
i=1

Uxin−i+1) = e(G1, Un)y
′
· e(g,Wy′).

By dividing the two equations of (7), we find that e(G1, Un)y−y
′

= e(g,Wy′/Wy). We
first assume that y′ 6= y mod pi for each i ∈ {1, 2, 3} since, otherwise, the reduction would
be able to find a non-trivial factor of N , which would contradict either Assumption 1

or Assumption 2. If gcd(y′ − y,N) = 1, ∆W =
(
Wy′/Wy

)1/(y−y′)
is thus of the form

∆W = u(α
n+1) · gr22 · g

r3
3 , for some r2 ∈ Zp2 and r3 ∈ Zp3 . Note that ∆W can be seen as a

“semi-functional” trapdoor in that it is equivalent to a product of the normal trapdoor
TK with a Gp2 component.

In the proof, we will distinguish two kinds of attacks against the binding property.

Type A attacks: are those for which ∆W =
(
Wy′/Wy

)1/(y−y′)
lives in the subgroup

Gp1p3 .
Type B attacks: are such that ∆W has a Gp2 component (i.e., r2 6= 0) and is thus a

semi-functional trapdoor.

The proof proceeds via a sequence of games involving alternative distributions of the
commitment key CK and the trapdoor TK. To define these alternative distributions, it
will be convenient to define a family of functions {Fk : [1, 2n]→ Zp2}2nk=0 such that

Fk(i) =

k∑
j=1

rj · αij mod p2 ∀k ∈ [1, 2n], F0(i) = 0 ∀i ∈ [1, 2n],

19

where r1, . . . , r2n, α1, . . . , α2n
R← Zp2 are chosen at random by the challenger that gener-

ates CK for the adversary. Having defined the function family {Fk(.)}2nk=1, we can further
consider several sub-classes of Type B attacks, where the semi-functional component of
∆W is determined by {Fk(.)}2nk=1:

Type B.k attacks (0 ≤ k ≤ 2n): are such that ∆W =
(
Wy′/Wy

)1/(y−y′)
is of the form

∆W = u(α
n+1) · gFk(n+1)

2 · S3, for some S3 ∈ Gp3 . In this case, we say that ∆W is a
Type B.k semi-functional trapdoor.

Using the function family {Fk}2nk=1, we finally define gradually modified distributions for
the commitment key CK and the trapdoor TK := Un+1.

Type k parameters (0 ≤ k ≤ 2n): are parameters where elements {Ui}i∈[1,2n] now have
a Gp2 component determined by the function Fk(.): namely,

Ui = u(α
i) · gFk(i)2 ·R3,i ∀i ∈ [1, n].

These elements induce a modified joint distribution of CK, which contains the group
elements {Ui}i∈[1,2n]\{n+1}, and TK = Un+1.

For convenience, we define Type B.0 attacks and Type 0 keys (CK,TK) as being identical
to Type A attacks and normal keys (i.e., distributed like those of the real scheme),
respectively.

The sequence of games begins with the real attack game, where the adversary is given
a normal commitment key (with the same distribution as in the real scheme). Then, we
gradually modify the distribution of CK and prove that, unless either Assumption 1 or
Assumption 2 is false, the adversary will produce an attack of Type B.k when fed with
parameters of Type k. In the last game, CK consists of Type B.2n parameters and we
argue that the adversary’s advantage in producing a Type B.2n attack is statistically
negligible.

For each index 0 ≤ k ≤ 2n, we denote by wink the event that the adversary wins in
Game k. We also define Ek to be the event that A mounts a Type B.k attack when the
commitment key CK is generated using Type k parameters.

Game 0: The adversaryA receives a commitment key CK which is as in the real scheme.
In Appendix C, Lemma 1 shows that, if Assumption 1 holds, any PPT adversary
cannot produce anything but a Type A attack. Namely, Pr[win0 ∧¬E0] ≤ Adv1

B(λ),
where Adv1

B(λ) denotes B’s advantage in breaking Assumption 1.

Since Pr[win0] = Pr[win0∧E0]+Pr[win0∧¬E0], we are left with the task of bounding the
term Pr[win0 ∧E0]. To this end, we will show that, if Assumption 2 holds, Pr[win0 ∧E0]
is negligibly different from Pr[win2n ∧ E2n], which is negligible.

Game k (1 ≤ k ≤ 2n): The commitment key CK and the trapdoor TK := Un+1 now
have a modified distribution obtained by having the challenger generate Type k
parameters before giving CK to A. Specifically, elements {Uj}j∈[1,2n] now have a
Gp2 component determined by the function Fk(.):

Ui = u(α
i) · gFk(i)2 ·R3,i ∀i ∈ [1, n]

Lemma 2 shows that, under Assumption 2, the probability that A’s attack reveals a
semi-functional TK of the same type as CK is about the same in Game k − 1 and
Game k. Said otherwise, |Pr[wink ∧ Ek]− Pr[wink−1 ∧ Ek−1]| ≤ Adv2

B(λ).

20

We conclude the proof by arguing that Pr[win2n∧E2n] ≤ 1/p2, which is negligible. To see
this, it suffices to observe that F2n : [1, 2n]→ Zp2 is a random function in the adversary’s
view, as shown in [47, Theorem 2]. Hence, conditionally on {F2n(j)}j∈[1,2n]\{n+1}, the
function evaluation F2n(n+ 1) is uniformly distributed over Zp2 . ut

Lemma 1. In Game 0, any adversary producing a Type B attack implies a distinguisher
for Assumption 1. We have Pr[win0 ∧ ¬E0] ≤ Adv1

B(λ).

Proof. Let A be an adversary that mounts a Type B attack when fed with a commitment
key CK of Type A. We build an algorithm B that takes as input (g ∈ Gp1 , X3 ∈ Gp3 , T)
and finds an element η of Gp2p3 with a non-trivial Gp2 component. In turn, such an
η ∈ Gp2p3 allows deciding whether T ∈ Gp1 or T ∈ Gp1p2 since e(η, T) = 1GT when
T ∈ Gp1 .

Algorithm B can faithfully generate the commitment key CK using its input elements
g ∈ Gp1 and X3 ∈ Gp3 . By hypothesis, A outputs a commitment C, two distinct values
y, y′ ∈ ZN and their corresponding witnesses Wy,Wy′ ∈ G such that relations (7) are

satisfied and ∆W =
(
Wy′/Wy

)1/(y−y′)
has a non-trivial Gp2 component. Moreover, B

can cancel out the Gp1 component of ∆W by computing η = ∆W/u(α
n+1), which is

indeed an element of Gp2p3 with a non-trivial Gp2 component. At this point, B returns 1
(meaning that T ∈ Gp1) if e(η, T) = 1GT and 0 otherwise. ut

Lemma 2. Under Assumption 2, the probability of A’s attack to be a Type B.k attack
in Game k is negligibly far apart from its probability of being a Type B.(k − 1) attack in
Game k − 1. Concretely, there exists a distinguisher B running in about the same time
as A and such that

|Pr[wink ∧ Ek]− Pr[wink−1 ∧ Ek−1]]| ≤ Adv2
B(λ).

Proof. Let us assume that there exist an index k ∈ [1, 2n] and an adversary A such that
ε = |Pr[wink ∧ Ek] − Pr[wink−1 ∧ Ek−1]]| is non-negligible. We build a distinguisher B
with advantage ≥ ε against Assumption 2.

Algorithm B takes as input (g,X1X2, Z3, Y2Y3, T) and uses A to decide if T ∈R Gp1p3
or T ∈R G. To this end, B generates the commitment key CK and the trapdoor TK as

follows. It picks α
R← ZN and defines

Gi = g(α
i) ∀i ∈ [1, n].

It also chooses α1, . . . , αk−1, r1, . . . , rk−1
R← ZN and computes

Ui = T (αi) · (Y2Y3)
∑k−1
j=1 rj ·α

i
j ·R3,i ∀i ∈ [1, 2n],

for randomly drawn R3,i
R← Gp3 , so that u is implicitly defined to be the Gp1 component of

T . The commitment key CK =
(
g, {Gj}nj=1, {Uj}j∈[1,2n]\{n+1}, Z3

)
is given to A while B

keeps the trapdoor TK := Un+1 to itself. Then,A is expected to output C ∈ G, y, y′ ∈ ZN
and Wy,Wy′ ∈ G such that y 6= y′ and which satisfy relations (7). At this point, B
computes ∆W =

(
Wy′/Wy

)1/(y−y′)
, which must be of the form ∆W = u(α

n+1) ·Y r22 ·Y
r3
3 .

From ∆W , checks whether the equality

e(X1X2, ∆W/Un+1) = 1GT (8)

21

holds, which means that ∆W and Un+1 are identical in their Gp1p2 component. If so, it
also means that ∆W is a trapdoor of the same type as the commitment key CK. If (8)
is indeed satisfied, B outputs 0 which indicates its belief that T ∈ Gp1p3 . Otherwise, it
infers that T has a Gp2 component and outputs 1.

We remark that, if T ∈R Gp1p2 , then B is playing Game k − 1 with A since we have

Ui = u(α
i) · Y

∑k−1
j=1 rj ·α

i
j

2 · R̃3,i ∀i ∈ [1, 2n],

for some random R̃3,i ∈R Gp3 . If T ∈R G, it can be written T = u · Y s22 · Y
s3
3 , so that we

have

Ui = u(α
i) · Y s2·α

i+
∑k−1
j=1 rj ·α

i
j

2 · R̃3,i ∀i ∈ [1, 2n],

with uniformly random R̃3,i ∈R Gp3 . In this case, A’s view is identical to its view in
Game k, where rk = s2 mod p2 and αk = α mod p2 (note that α mod p2 is uncorrelated
to α mod p1, so that α mod p2 does not appear anywhere but in {Ui}i 6=n+1).

As a consequence, if moving from Game k − 1 to Game k significantly increases A’s
probability of mounting an attack of a different type than CK, then B outputs 1 with
noticeably different probabilities when T ∈R Gp1p3 and T ∈R G. This clearly contradicts
Assumption 2. ut

D Proof of Theorem 2

Proof. To break the collision-freeness of the scheme, the adversary must produce a set
S = {y1, . . . , yn′} of size n′ ≤ n− 2, another set X = {x1, . . . , xk} such that X 6⊆ S and
k ≤ d, an exponent γ ∈ ZN , and a witness WX such that

e(V,

k∏
`=1

n−1∏
i=1

U
(xi−1
`)

`n+1−i) = e(g,WX), (9)

where
~x` = (x`,1, . . . , x`,n) = (1, x`, x

2
` , . . . , x

n−2
` , 0) ∀` ∈ [1, k]

and V is computed by defining the polynomial PS [Z] =
∏n′

j=1(Z − yj) =
∑n′

j=0mjZ
j

and its corresponding vector ~m = (m0, . . . ,mn′ , 0, . . . , 0) ∈ ZnN before computing the

accumulator value V = gγ ·
∏n′+1
j=1 G

mj−1

j .
By hypothesis, we know that there exists t ∈ [1, k] such that xt ∈ X \ S. For each

xt ∈ X \ S, we assume that there exists no element yi ∈ S such that xt = yi mod p1,
but xt 6= yi mod p2 or xt 6= yi mod p3. Otherwise, a non-trivial factor of N would be
exposed.

For each xt ∈ X \S (where t denotes the position of xt in X in lexicographical order),
we know that the vector ~m = (m0, . . . ,mn′ , 0, . . . , 0) ∈ ZnN satisfies wt = 〈~m, ~xt〉 6=
0 mod N . We can assume w.l.o.g. that wt = 〈~m, ~xt〉 6= 0 mod p2 since, otherwise, a
factor of N would be extractable.

Knowing the vector ~m = (m0, . . . ,mn′ , 0, . . . , 0) ∈ ZnN and the adversarially-supplied

randomness γ ∈ ZN such that V = gγ ·
∏n′+1
j=1 G

mj−1

j , for each such xt ∈ X \ S, the
reduction B can compute Wt ∈ G such that

e(V,

n−1∏
i=1

U
(xi−1
t)

tn+1−i) = e(G1, Utn)wt · e(g,Wt), (10)

22

(where t ∈ [1, k] is the position of xt in X in lexicographical order) so that their product
WX\S =

∏
{t:xt∈X\S}Wt satisfies

e
(
V,

∏
t:xt∈X\S

n−1∏
i=1

U
(xi−1
t)

tn+1−i
)

=
∏

t:xt∈X\S

e(G1, Utn)wt · e(g,WX\S). (11)

Moreover, for each ` such that x` ∈ X ∩ S (where ` ∈ [1, k] is the position of x` in X in
lexicographical order), the reduction can compute a witness W` such that

e(V,

n−1∏
i=1

U
x
(i−1)
`

`n+1−i) = e(G1, U`n)0 · e(g,W`),

since 〈~m, ~x`〉 = 0 mod N . If we compute the witness product WX∩S =
∏
{`:x`∈X∩S}W`,

it thus satisfies

e
(
V,

∏
`:x`∈X∩S

n−1∏
i=1

U
(xi−1
`)

`n+1−i
)

= e(g,WX∩S). (12)

Dividing (12) from (9), the reduction B can compute W̃X\S = WX/WX∩S such that

e
(
V,

∏
`:x`∈X\S

n−1∏
i=1

U
(xi−1
`)

`n+1−i
)

= e(g, W̃X\S).

If we further divide the above equality out of (11), we find that W̃ = W̃X\S/WX\S
satisfies ∏

t:xt∈X\S

e(G1, Utn)wt = e(g, W̃). (13)

From (13), it is clear that W̃ is of the form

W̃ = u
∑
t:xt∈X\S

wt·(αtn+1) · gt22 · g
t3
3 , (14)

for some t2 ∈ Zp2 and t3 ∈ Zp3 . The exponent of u in W̃ is thus a linear combination of
the discrete logarithms of secret key components Un+1, U2n+1, . . . , Udn+1.

In the proof, we will distinguish two kinds of attacks against the collision-freeness
property.

Type A attacks: are those for which W̃ lives in the subgroup Gp1p3 (i.e., t2 = 0).

Type B attacks: are such that W̃ has a Gp2 component (i.e., t2 6= 0).

The proof is organized as a hybrid argument over a sequence of (d + 1)n + 1 games
with gradually varying distributions of PK and SK which are determined by a family
of functions

{Fν : [1, (d+ 1)n]→ Zp2}
(d+1)n
ν=0

such that for all j ∈ [1, (d+ 1)n],

Fν(j) =

{
0 if ν = 0∑ν
i=1 rj · α

j
i mod p2 if ν ∈ [1, (d+ 1)n]

23

where r1, . . . , r(d+1)n, α1, . . . , α(d+1)n are randomly distributed in Zp2 .
The sequence of games is – Game 0 (the real security game) followed by Game 1,

Game 2, . . . , Game (d+ 1)n. In Game ν (ν ∈ [0, (d+ 1)n]), the challenger provides the
adversary with Type ν public keys, which are defined analogously to Type ν parameters
in the proof of Theorem 1. In particular, Type 0 public keys refer to normal public keys,
which are distributed as in the real scheme as {Uj}j∈[1,(d+1)n] do not contain a Gp2
component. In Type ν public keys, the group element Uj (for j ∈ [1, (d + 1)n],) has a
Gp2 component determined by Fν :

Uj = uα
j

· gFν(j)2 ·R3,j ∀j,

thus defining a joint distribution on PK and SK = {U`n+1}d`=1.

Using the function family {Fν}(d+1)n
ν=1 , we can further classify Type B attacks into

Type B.ν attacks for 1 ≤ ν ≤ (d+ 1)n:

Type B.ν attacks: are those where, in (14), the Gp2 component gt22 of W̃ is such that

t2 =
∑

t:xt∈X\S

wt · Fν(tn+ 1) mod p2. (15)

For notational convenience, we define Type B.0 attacks to be identical to Type A attacks.

As in the proof of Theorem 1, for each ν ∈ [1, (d + 1)n], we call winν the event that
the adversary A wins in Game ν. We also denote by Eν the event that A mounts a
Type B.ν attack when provided with a Type ν public key. We now describe the games
and prove that, unless either Assumption 1 or Assumption 2 is false, A always mounts
a Type B.ν attack when run on input of Type ν parameters. In Game (d+ 1)n, we also
argue that the probability Pr[E(d+1)n] can only be statistically negligible because the
values {Fν(tn+ 1)}t∈[1,d] are totally unpredictable: indeed, so long as wt 6= 0 mod p2 for
at least one t ∈ X\S, relation (15) holds with negligible probability.

In Game 0, the public key PK provided to the adversary is generated as in the
real scheme. We have Pr[win0] = Pr[win0 ∧ E0] + Pr[win0 ∧ ¬E0]. The second term is
bounded above by the advantage in breaking Assumption 1, as established by Lemma
3. Essentially, it says that a PPT adversary can only mount a Type A attack when fed
with Type 0 parameters.

To bound the first term, Lemma 4 first implies that, under Assumption 2, the prob-
ability Pr[winν ∧ Eν] of A mounting an attack of the same type as the public key re-
mains essentially the same throughout the entire sequence of games. As a consequence,
Pr[win0 ∧E0] and Pr[win(d+1)n ∧E(d+1)n] are negligibly far apart if Assumption 2 holds.

It only remains to show that Pr[win(d+1)n ∧E(d+1)n] is negligible. This is established

in the proof of Lemma 5. Thus we have, Pr[win0] ≤ Adv1
B(λ) + (d+ 1)n ·Adv2

B(λ) + 1
q2

,
which is negligible under Assumption 1 and Assumption 2. ut

Lemma 3. If A is given a Type 0 public key and produces a Type B attack, then there
exists an algorithm B such that Pr[win0 ∧¬E0] ≤ Adv1

B(λ), where Adv1
B(λ) denotes B’s

advantage in breaking Assumption 1.

Proof. Let A be an adversary that mounts a Type B attack when given a public key PK
of Type A. We build an algorithm B that takes as input (g ∈ Gp1 , X3 ∈ Gp3 , T) and

24

finds an element η of Gp2p3 with a non-trivial Gp2 component. In turn, such an η ∈ Gp2p3
allows deciding whether T ∈ Gp1 or T ∈ Gp1p2 since e(η, T) = 1GT when T ∈ Gp1 .

Algorithm B can faithfully generate PK using its input elements g ∈ Gp1 and X3 ∈
Gp3 . By hypothesis, A outputs set S and randomness γ that determine an accumulator

value V as well as X 6⊆ S for which W̃ = W̃X\S/WX\S (as computed in the proof of
Theorem 2) has a non-trivial Gp2 component. Moreover, from (14) se see that B can

cancel out the Gp1 component of W̃ by computing η = W̃/u
∑
t:xt∈X\S

wt·(αtn+1), which
indeed lives in Gp2p3 and has a non-trivial Gp2 component. At this point, B returns 1
(meaning that T ∈ Gp1) if e(η, T) = 1GT and 0 otherwise. ut

Lemma 4. For all ν ∈ [1, (d + 1)n] , we have |Pr[winν ∧ Eν] − Pr[winν−1 ∧ Eν−1]| ≤
Adv2

B(λ), where Adv2
B(λ) denotes the maximal advantage of any PPT distinguisher B

for Assumption 2.

Proof. Let us assume that there exist an index ν ∈ [1, (d + 1)n] and an adversary A
such that Pr[winν ∧ Eν] is noticeably different from Pr[winν−1 ∧ Eν−1]. We construct a
distinguisher B for Assumption 2.

Algorithm B inputs (g,X1X2, Z3, Y2Y3, T) and uses A to decide if T ∈R Gp1p3 or
T ∈R G. To this end, B generates the public key PK and the secret key SK as follows.

It picks α
R← ZN and defines

Gj = g(α
j) ∀j ∈ [1, n].

It also chooses α1, . . . , αν−1, r1, . . . , rν−1
R← ZN and computes

Uj = T (αj) · (Y2Y3)
∑ν−1
i=1 rj ·α

j
i ·R3,j ∀j ∈ [1, (d+ 1)n],

for random R3,j
R← Gp3 , so that u coincides with the Gp1 component of T . The public

key
PK =

(
g, {Gj}nj=1, {Uj}j∈[1,(d+1)n]\{n+1,2n+1,...,dn+1}, Z3

)
is given to A while B keeps the secret key SK := {Un+1, U2n+1, . . . , Udn+1}. Then, the
adversary A is expected to come up with a set S = {y1, . . . , yn′} of size n′ ≤ n − 1,
another set X = {x1, . . . , xk} such that X 6⊆ S, an exponent γ ∈ ZN , and a witness WX

satisfying relation (9).
At this point, B computes W̃ = W̃X\S/WX\S as explained in the proof of Theorem

2. We know that W̃ is of the form

W̃ = u
∑
t:xt∈X\S

wt·(αtn+1) · gt22 · g
t3
3 ,

where u ∈ Gp1 is the Gp1 component of T . From W̃ , checks whether the equality

e

X1X2, W̃ /
∏

t:xt∈X\S

Uwttn+1

 = 1GT (16)

is satisfied. If so, it means that W̃ and
∏
t:xt∈X\S U

wt
tn+1 are identical in their Gp1p2

component (and not only in their Gp1 component). It also means that the Gp2 component

gt22 of W̃ satisfies the condition (15). If the equality (16) is satisfied, B deduces that A’s

25

attack and the resulting W̃ match the distribution of PK and outputs 0 (meaning that
T ∈R Gp1p3). If (16) does not hold, B rather bets that T ∈ G and outputs 1.

We remark that, if T ∈R Gp1p3 , then B is playing Game ν − 1 with A since we have

Uj = u(α
j) · Y

∑ν−1
i=1 ri·α

j
i

2 · R̃3,j ∀j ∈ [1, (d+ 1)n],

for some R̃3,j ∈R Gp3 and relation (16) implies that event winν−1 ∧ Eν−1 has occurred.
If T ∈R G, it can be written T = u · Y s22 · Y

s3
3 , so that we have

Uj = u(α
j) · Y s2·α

j+
∑ν−1
i=1 ri·α

j
i

2 · R̃3,j ∀j ∈ [1, (d+ 1)n],

with uniformly random R̃3,j ∈R Gp3 . In this case, A’s view is identical to its view in
Game ν, where rν = s2 mod p2 and αν = α mod p2 (note that α mod p2 is uncorrelated
to α mod p1) and relation (16) is equivalent to event winν ∧ Eν .

As a consequence, if moving from Game ν − 1 to Game ν significantly affects A’s
probability of mounting an attack of the same type as PK, so does it increase B’s
probability of outputting 1 when T ∈R Gp1p3 is replaced by T ∈R G. ut

Lemma 5. Pr[win(d+1)n ∧ E(d+1)n] ≤ 1/p2.

Proof. In the adversary’s view, F(d+1)n(·) is a random function. For this reason, the
values F(d+1)n(n+1), F(d+1)n(2n+1), . . . , F(d+1)n(dn+1) are independent and uniformly
distributed over Zp2 conditioned on

{F(d+1)n(j)}j∈[1,(d+1)n]\{n+1,2n+1,...,dn+1}.

In the expression of W̃ in the proof of Theorem 2, to keep the exponent t2 of g2 consistent
with the public key, the adversary has to predict∑

t:xt∈X\S

wt · F(d+1)n(tn+ 1) mod p2,

which is a linear combination of random function outputs. Since this combination has
at least one non-zero coefficient wt 6= 0 mod p2, the probability of predicting the above
(and thus the probability that (16) holds true) value is at most 1/p2. ut

26

