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Abstract. Over the past decade, the hybrid lattice reduction and meet-
in-the middle attack (called the Hybrid Attack) has been used to eval-
uate the security of many lattice-based cryprocraphic schemes such as
NTRU, NTRU prime, BLISS, and more. However, unfortunately none of
the previous analyses of the Hybrid Attack is entirely satisfactory: they
are based on simplifying assumptions that may distort the security esti-
mates. Such simplifying assumptions include setting probabilities equal
to 1, which, for the parameter sets we analyze in this work, are in fact
as small as 2−80. Many of these assumptions lead to underestimating
the scheme’s security. However, some lead to security overestimates, and
without further analysis, it is not clear which is the case. Therefore, the
current security estimates against the Hybrid Attack are not reliable and
the actual security levels of many lattice-based schemes are unclear.
In this work we present an improved runtime analysis of the Hybrid At-
tack that gets rid of incorrect simplifying assumptions. Our improved
analysis can be used to derive reliable and accurate security estimates
for many lattice-based schemes. In addition, we reevaluate the secu-
rity against the Hybrid Attack for the NTRU, NTRU prime, and R-
BinLWEEnc encryption schemes as well as for the BLISS and GLP sig-
nature schemes. Our results show that there exist both security over-
and underestimates in the literature. Our results further show that the
common claim that the Hybrid Attack is the best attack on all NTRU
parameter sets is in fact a misconception based on incorrect analyses of
the attack.

Keywords: Hybrid Attack, Lattice-based Cryptography, Cryptanalysis, SVP,
LWE, NTRU, BLISS

1 Introduction

In 2007, Howgrave-Graham proposed the hybrid lattice-reduction and meet-in-
the-middle attack [22] (referred to as the Hybrid Attack in the following) against
the NTRU encryption scheme [21]. Several works [18–20, 22, 30] claim that the
Hybrid Attack is by far the best known attack on NTRUEncrypt. In the following
years, numerous cryptographers have applied the Hybrid Attack to their crypto-
graphic schemes in order to estimate their security. These considerations include



more variants of the NTRU encryption scheme [18,20,30], the recently proposed
encryption scheme NTRU prime [9], a lightweight encryption scheme based on
Ring-LWE with binary error [10,11], and the signature schemes BLISS [16] and
GLP [16,17]. In [30], Schanck even proposed a quantum version of the Hybrid At-
tack on NTRUencrypt that replaces the meet-in-the-middle phase with Grover’s
search algorithm. All of the above analyses of the Hybrid Attack have in com-
mon, that the authors claim that the Hybrid Attack is the best known attack
on the respective schemes. Unfortunately, they also all have in common that the
analyses are flawed, yielding unreliable security estimates of the schemes. These
flaws are mainly due to simplifying but incorrect assumptions that are made in
order to ease the theoretical analysis of the attack. Most of the time, the authors
are aware of these flaws and explicitly state when such incorrect assumptions
are introduced. Furthermore, many of these assumptions yield more conserva-
tive security estimates (lower than necessary), as they give more power to the
attacker. While this is not a problem from a security perspective, in those cases
the schemes might be instantiated more efficiently while preserving the desired
security level. On the other hand, there also exist the more dangerous cases in
which the security of a scheme is overestimated, i.e., the scheme is less secure
than it is claimed to be, as we show in this work. In [30], Schanck summarizes
the current state of the analyses of the Hybrid Attack as follows.

“[...] it should be noted that, in the author’s opinion, no analysis of the
hybrid attack presented thus far is entirely satisfactory. [...] it is hoped
that future work will answer some of the outstanding questions related
to the attack’s probability of success as a function of the effort spent in
lattice reduction and enumeration.”

The author further acknowledges that the fact that the Hybrid Attack is con-
sidered the best attack on NTRU might be due to flawed analyses resulting in
overly conservative security estimates.

“The hybrid attack gives the lowest estimate for the time complexity
of NTRU key recovery amongst all known classical attacks. Likewise
for message recovery. Perhaps this is because it is overly optimistic, in
particular by ignoring the probability of failure in approximate collision
search.”

In this quote, Schanck mentions the following common flaw appearing in many
previous runtime analyses of the Hybrid Attack. In many works [9,16,19,20,30]
the authors assume that collisions in the meet-in-the-middle phase of the attack
will always be detected. However, in reality collisions can only be detected with
a very low probability. For instance, for the cryptographic schemes we analyze
in this work this probability is sometimes as low as 2−80, see Table 3, but was
simply set equal to 1 in previous analyses in order to ease the runtime analysis
of the attack. These numbers showcase how unrealistic some assumptions made
in previous runtime estimates of the Hybrid Attack are in practice. Therefore,
there is reasonable doubt about the accuracy and reliability of currently existing
security estimates against the Hybrid Attack.
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Our contribution. In this work we rectify the current unsatisfactory state of
affairs regarding the unreliable security estimates against the Hybrid Attack.
This is achieved in the following way. We present a generalized version of the
Hybrid Attack applied to shortest vector problems (SVP) and show how it can
also be used to solve bounded distance decoding (BDD) problems. This general
framework for the Hybrid Attack can naturally be applied to many lattice-based
cryptocraphic constructions, as we also show in this work. We further provide a
detailed and improved analysis of the generalized version of the Hybrid Attack,
which can be used to derive reliable and accurate security estimates. We offer
formulas for security underestimates and formulas for security overestimates,
giving a (small) range of the actual security level. We thereby meet the demand
of a satisfactory analysis of the Hybrid Attack, which has been stated in previous
works. In our new analysis of the attack we get rid of unnecessary and incorrect
assumptions and clearly state the remaining necessary heuristics in order to offer
as much transparency as possible. Whenever there is need, we make distinct
assumptions on the attacker’s power for our security under- and overestimates.
We provide examples of typical unnecessary simplifying assumptions that have
frequently been made in previous analyses of the Hybrid Attack in order to
highlight the improvements of our analysis. We further show how researchers
can use our newly developed techniques in the future to accurately analyze the
security of their cryptographic schemes against the Hybrid Attack.

Our second main contribution is the following. Since previous analyses of the
Hybrid Attack are flawed, the security estimates of many lattice-based crypto-
graphic schemes against the Hybrid Attack might be inaccurate and their actual
security level is unclear. We therefore apply our new and improved analysis
to reevaluate the security of various cryptographic schemes against the Hybrid
Attack in order to derive updated security estimates that can be relied upon.
Our detailed security reevaluations against the Hybrid Attack are also meant to
serve as a guideline how to correctly apply the attack and estimate its runtime,
since some steps of the analysis are not obvious and might be overlooked at first
glance. Furthermore, we provide our implementations used for the optimization
of the attack parameters and the security estimates.1 We first revisit the hybrid
security estimates of the NTRU [20], NTRU prime [9], and R-BinLWEEnc [10]
encryption schemes and end with the BLISS [16] and GLP [17] signature schemes.
Our results show that there exist both security over- and underestimates against
the Hybrid Attack across the literature, which we rectify in this work. In addi-
tion, our results show that the common claim that the Hybrid Attack is the best
attack on all NTRU parameter sets is in fact a misconception based on incorrect
analyses of the attack.

Outline. This work is structured as follows. First, we fix notation and pro-
vide the necessary background in the Preliminaries. In Section 3 we describe
a generalized version of the Hybrid Attack on shortest vector problems (SVP)

1 The implementation is available on https://www.cdc.informatik.tu-darmstadt.

de/cdc/personen/thomas-wunderer.
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and further explain how it can also be used to solve bounded distance decod-
ing (BDD) problems. Our detailed and improved runtime analysis of the Hybrid
Attack is presented in Section 4. In the following Section 5 we apply our new im-
proved analysis of the Hybrid Attack to various cryptographic schemes in order
to derive updated and reliable security estimates against the Hybrid Attack that
replace the unreliable previous ones. We end this work by giving a conclusion
and outlook for possible future work.

2 Preliminaries

Notation. In this work, we write vectors in bold lowercase letters, e.g., a, and
matrices in bold uppercase letters, e.g., A. Polynomials are written in normal
lower case letters, e.g., a. We frequently identify polynomials a =

∑n
i=0 aix

i with
their coefficient vectors a = (a0, . . . , an), indicated by using the corresponding
bold letter. Let n, q ∈ N, f ∈ Z [x] be a polynomial of degree n and Rq =
Zq[x]/(f). We define the rotation matrix of a polynomial a ∈ Rq as rot(a) =
(a,ax,ax2, . . . ,axn−1) ∈ Zn×nq . Then for a, b ∈ Rq, the matrix-vector product
rot(a) · b mod q corresponds to the product of polynomials ab ∈ Rq.

We use the abbreviation log(·) for log2(·). We further write ‖·‖ instead of ‖·‖2
for the Euclidean norm. For N ∈ N0 and m1, . . . ,mk ∈ N0 with m1 + . . .+mk =
N the multinomial coefficient is defined as(

N
m1, . . . ,mk

)
=

N !

m1! · . . . ·mk!
.

Lattices and bases. In this work we use the following definition of lattices. A
discrete additive subgroup of Rm for some m ∈ N is called a lattice. Let m be a
positive integer. For a set of vectors B = {b1, ...,bn} ⊂ Rm, the lattice spanned
by B is defined as

Λ(B) =

{
x ∈ Rm | x =

m∑
i=1

αibi for αi ∈ Z

}
.

Let Λ ⊂ Rm be a lattice. A set of vectors B = {b1, ...,bn} ⊂ Rm is called a
basis of Λ if B is R-linearly independent and Λ = Λ(B). Abusing notation, we
identify lattice bases with matrices and vice versa by taking the basis vectors as
the columns of the matrix. The number of vectors in a basis of a lattice is called
the dimension (or rank) of the lattice. Let q be a positive integer. The length
of the shortest non-zero vectors of a lattice Λ is denoted by λ1(Λ). A lattice Λ
that contains qZm is called a q-ary lattice. For a matrix A ∈ Zm×nq , we define
the q-ary lattice

Λq(A) := {v ∈ Zm | ∃w ∈ Zn : Aw = v mod q}.

For a lattice basis B = {b1, . . . ,bm} ⊂ Rm its fundamental parallelepiped is
defined as

P(B) =

{
x =

m∑
i=1

αibi ∈ Rm | −1/2 ≤ αi < 1/2 for all i ∈ {1, . . . ,m}

}
.
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The determinant det(Λ) of a lattice Λ ⊂ Rm is defined as the m-dimensional
volume of the fundamental parallelepiped of a basis of Λ. Note that the determi-
nant of the lattice is well defined, i.e., it is independent of the basis. The Hermite
delta (or Hermite factor) δ of a lattice basis B = {b1, . . . ,bm} ⊂ Rm is defined
via the equation ‖b1‖ = δm det(Λ)1/m. It provides a measure for the quality of
the basis.

Lattice-based cryptography is based on the presumed hardness of computa-
tional problems in lattices. Two of the most important lattice problems are the
following.
Shortest vector problem (SVP). Given a lattice basis B, the task is to find
a shortest non-zero vector in the lattice Λ(B).
Bounded distance decoding (BDD). Given α ∈ R≥0, a lattice basis B ⊂ Rm
and a target vector t ∈ Rm with dist(t, Λ(B)) < αλ1(Λ(B)), the task is to find
a vector e ∈ Rm with ‖e‖ < αλ1(Λ(B)) such that t− e ∈ Λ(B).

Babai’s Nearest Plane. Babai’s Nearest Plane algorithm [5] (denoted by NP in
the following) is an important building block of the Hybrid Attack. For more
details on the algorithm we refer to Babai’s original work [5] or Lindner and
Peikert’s work [25]. We use the Nearest Plane algorithm in a black box manner.
For the reader it is sufficient to know the following. The input for the Nearest
Plane algorithm is a lattice basis B ⊂ Zm and a target vector t ∈ Rm and the
corresponding output is a vector e ∈ Rm such that t− e ∈ Λ(B). We denote the
output by NPB(t) = e. If there is no risk of confusion, we might omit the basis
in the notation, writing NP(t) instead of NPB(t). The output of Nearest Plane
algorithm satisfies the following condition, as shown in [6].

Lemma 1. Let B ⊂ Zm be a lattice basis and t ∈ Rm be a target vector. Then
NPB(t) is the unique vector e ∈ P(B) that satisfies t − e ∈ Λ(B), where B is
the Gram-Schmidt basis of B.

The lengths of the Gram-Schmidt vectors of a reduced basis can be estimated
by the following heuristic (for more details, we refer to [25]).

Heuristic (Geometric Series Assumption (GSA)). Let B ⊂ Zm be a reduced
basis of some full-rank lattice with Hermite delta δ and let D denote the deter-
minant of Λ(B). Further let b1, . . . ,bm denote the corresponding Gram-Schmidt
vectors of B. Then the length of bi is approximately∥∥bi∥∥ ≈ δ−2(i−1)+mD 1

m .

3 The Hybrid Attack

In this section we present a generalized version of the Hybrid Attack to solve
shortest vector problems. Our framework for the Hybrid Attack is the following:
the task is to find a shortest vector v in a lattice Λ, given a basis of Λ of the
form
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B′ =

(
B C
0 Ir

)
∈ Zm×m,

where 0 < r < m is the meet-in-the-middle dimension, B ∈ Z(m−r)×(m−r), and
C ∈ Z(m−r)×r. In Appendix A.1 we show that for q-ary lattices, where q is prime,
one can always construct a basis of this form, provided that the determinant of
the lattice is at most qm−r. Additionally, in Section 5 we show that our this
framework can be applied to many lattice-based cryptographic schemes.

The main idea of the attack is the following. Let v be a short vector contained
in the lattice Λ. We split the short vector v into two parts v = (vl,vg)

t with
vl ∈ Zm−r and vg ∈ Zr. The second part vg represents the part of v that
is recovered by guessing (meet-in-the-middle) during the attack, while the first
part vl is recovered with lattice techniques (solving BDD problems). Because of
the special form of the basis B′, we have that

v =

(
vl
vg

)
= B′

(
x
vg

)
=

(
Bx + Cvg

vg

)
for some vector x ∈ Zm−r, hence Cvg = −Bx + vl. This means Cvg is close
to the lattice Λ(B), since it only differs from the lattice by the short vector vl,
and therefore vl can be recovered solving a BDD problem if vg is know. The
idea now is that if we can correctly guess the vector vg, we can hope to find vl
using the Nearest Plane algorithm (see the Preliminaries) via NPB(Cvg) = vl,
which is the case if the basis B is sufficiently reduced. Solving the BDD problem
using Nearest Plane is the lattice part of the attack. The lattice Λ(B) in which
we need to solve BDD has the same determinant as the lattice Λ(B′) in which
we want to solve SVP, but it has smaller dimension, i.e., m − r instead of r.
Therefore we expect the newly obtained BDD problem to be easier to solve than
the original SVP instance.

In the following we explain how one can speed up the guessing part of the
attack by Odlyzkos meet-in-the-middle approach. Using this technique one is
able to reduce the number of necessary guesses to the square root of the number
of guesses needed in a naive brute-force approach. Odlyzko’s meet-in-the-middle
attack on NTRU was first described in [23] and applied in the hybrid lattice-
reduction and meet-in-the-middle attack against NTRU in [22]. The idea is that
instead of guessing vg directly in a large set M of possible vectors, we guess
sparser vectors v′g and v′′g in a smaller set N of vectors such that v′g + v′′g = vg.
In our attack the larger set M will be the set of all vectors with a fixed number
2ci of the non-zero entries equal to i for all i ∈ {±1, . . . ,±k}, where k = ‖vg‖∞.
The smaller set N will be the set of all vectors with only half as many, i.e.,
only ci, of the non-zero entries equal to i for all i ∈ {±1, . . . ,±k}. Assume
that NPB(Cvg) = vl. First, we guess vectors v′g and v′′g in the smaller set
N . We then compute v′l = NPB(Cv′g) and v′′l = NPB(Cv′′g ). We hope that if
v′g + v′′g = vg, then also v′l + v′′l = vl, i.e., that Nearest Plane is additively
homomorphic on those inputs. The probability that this additive property holds
is one crucial element in the runtime analysis of the attack. We further need to
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detect when this property holds during the attack, i.e., we need to be able to
recognize matching vectors v′g and v′′g with v′g + v′′g = vg and v′l + v′′l = vl,
which we call a collision. In order to do so, we store v′g and v′′g in (hash) boxes
whose addresses depend on v′l and v′′l , respectively, such that they collide in at
least one box. To define those addresses properly, note that in case of a collision
we have v′l = −v′′l +vl. Thus v′l and −v′′l differ only by a vector of infinity norm
y = ‖vl‖∞. Therefore, the addresses must be crafted such that for any x ∈ Zm
and z ∈ Zm with ‖z‖∞ ≤ y it holds that the intersection of the addresses

of x and x + z is non-empty, i.e., A(m,y)
x ∩ A(m,y)

x+z 6= ∅. Furthermore, the set
of addresses should not be unnecessarily large so the hash tables do not grow
too big and unwanted collisions are unlikely to happen. The following definition
satisfies these properties, as can easily be verified.

Definition 1. Let m, y ∈ N. For a vector x ∈ Zm the set A(m,y)
x ⊂ {0, 1}m is

defined as

A(m,y)
x =

{
a ∈ {0, 1}m

∣∣∣∣ (a)i = 1 if (x)i > dy2 − 1e for i ∈ {1, . . . ,m},
(a)i = 0 if (x)i < −by2 c for i ∈ {1, . . . ,m}

}
.

We illustrate Definition 1 with some examples.

Example. Let m = 5 be fix. For varying bounds y and input vectors x we have

A(5,1)
(7,0,−1,1,−5) = {(1, 0, 0, 1, 0), (1, 1, 0, 1, 0)}

A(5,2)
(8,0,−1,1,−2) = {(1, 0, 0, 1, 0), (1, 1, 0, 1, 0), (1, 0, 1, 1, 0), (1, 1, 1, 1, 0)}

A(5,3)
(2,−1,9,1,−2) = {(1, 0, 1, 0, 0), (1, 0, 1, 1, 0), (1, 1, 1, 0, 0), (1, 1, 1, 1, 0)}

A(5,4)
(2,−5,0,7,−2) = {(1, 0, 0, 1, 0), (1, 0, 0, 1, 1), (1, 0, 1, 1, 0), (1, 0, 1, 1, 1)}

The Hybrid Attack on SVP without precomputation is presented in Algo-
rithm 1. A list of the attack parameters and the parameters used in the runtime
analysis of the attack and their meaning is given in Table 1. In order to in-
crease the chance of Algorithm 1 being successful one performs a basis reduction
step as precomputation. Therefore, the complete Hybrid Attack, presented in
Algorithm 2, is in fact a combination of a basis reduction step and Algorithm 1.

The Hybrid Attack on BDD

The Hybrid Attack can also be applied to BDD instead of SVP by rewriting a
BDD instance into an SVP instance. This can be done in the following way (see
for example [1]). Let B′ be a lattice basis of the form

B′ =

(
B C
0 Ir

)
∈ Zm×m,
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Algorithm 1: The Hybrid Attack on SVP without basis reduction

Input : m, r ∈ N with r < m, y, k ∈ N, c−k, . . . , ck ∈ N0 with r =
∑k

i=−k ci,

B′ =

(
B C

0 Ir

)
∈ Zm×m, where B ∈ Z(m−r)×(m−r) and C ∈ Z(m−r)×r

1 while true do
2 guess v′g ∈ {−k, . . . , k}r with exactly ci entries equal to i for all

i ∈ {−k, . . . , k};
3 calculate v′l = NPB(Cv′g) ∈ Zm−r ;

4 store v′g in all the boxes addressed by A(m−r,y)

v′
l

∪ A(m−r,y)

−v′
l

;

5 for all v′′g 6= v′g in all the boxes addressed by A(m−r,y)

v′
l

∪ A(m−r,y)

−v′
l

do

6 set vg = v′g + v′′g and calculate vl = NPB(Cvg) ∈ Zm−r;

7 if v =

(
vl

vg

)
∈ Λ(B′) and ‖vl‖∞ ≤ y and ‖vg‖∞ ≤ k then

8 return v;

Algorithm 2: The Hybrid Attack on SVP including basis reduction

Input : m, r ∈ N with r < m, y, k ∈ N, c−k, . . . , c−1, c1, . . . , ck ∈ N0 with
r =

∑k
i=−k ci,

B′ =

(
B C

0 Ir

)
∈ Zm×m, where B ∈ Z(m−r)×(m−r) and C ∈ Z(m−r)×r

1 reduce B to some basis B̃;

2 run Algorithm 1 on input m, r, y, k, c−k, . . . , c−1, c1, . . . , ck,

(
B̃ C

0 Ir

)
;

with B ∈ Z(m−r)×(m−r),C ∈ Z(m−r)×r and let t be a target vector for BDD.
Suppose t − v ∈ Λ(B′), where v is the short (bounded) vector we are looking
for. Then the short vector (v, 1)t is contained in the lattice Λ(B′′) spanned by

B′′ =

(
B′ t
0 1

)
∈ Z(m+1)×(m+1),

which is of the required form for the Hybrid Attack on SVP. Therefore we can
apply the Hybrid Attack on SVP to find (v, 1)t, solving the BDD problem.
The SVP lattice Λ(B′′) has the same determinant as the BDD lattice Λ(B′)
and dimension m + 1 instead of m. However, the additional dimension can be
ignored, since we know the last entry of (v, 1)t and therefore do not have to
guess it during the meet-in-the-middle phase. Note that by definition of BDD it
is very likely that ±v are the only short vectors in the lattice Λ(B′′). By fixing
the last coordinate to be plus one, only v, not also −v, can be found by the
attack.
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Parameter Meaning
m lattice dimension
r meet-in-the-middle dimension
B′ lattice basis of the whole lattice
B partially reduced lattice basis of the sublattice
ci number of i-entries guessed during attack
y infinity norm bound on vl
k infinity norm bound on vg
Y expected Euclidean norm of vl
Ri Gram-Schmidt lengths corresponding to B
ri scaled Gram-Schmidt lengths corresponding to B
Table 1. Attack parameters and parameters in the runtime analysis

4 Analysis

In this section we analyze the runtime of the Hybrid Attack. First, in our Main
Result in Section 4.1, we estimate the runtime of the attack in case sufficient
success conditions are satisfied. In Section 4.2, we then show how to determine
the probability that those sufficient conditions are satisfied, i.e., how to determine
(a lower bound on) the success probability. We conclude the runtime analysis
of the attack by showing how to optimize the attack parameters to minimize
its runtime in Section 4.3. We end the section by highlighting typical flaws of
previous analyses of the Hybrid Attack, see Section 4.4. This showcases the
improvements achieved by our new, precise analysis of the attack. Our new
analysis is more detailed than all previous analyses of the Hybrid Attack, while
at the same time applicable to a wider range of attack scenarios.

4.1 Runtime Analysis

We now present our main result about the runtime of the generalized Hybrid
Attack. It shows that under sufficient conditions the attack is successful and
estimates the expected runtime.

Main Result. Let all inputs be denoted as in Algorithm 1, Y ∈ R≥0, and
let R1, . . . , Rm−r denote the lengths of the Gram-Schmidt basis vectors of the
basis B. Further let S ⊂ Λ(B′) denote the set of all non-zero lattice vectors
v = (vl,vg)

t ∈ Λ(B′), where vl ∈ Zm−r and vg ∈ Zr with ‖vl‖∞ ≤ y, ‖vl‖ ≈ Y ,
‖vg‖∞ ≤ k, exactly 2ci entries of vg are equal to i for all i ∈ {±1, . . .± k}, and
NPB(Cvg) = vl. Assume that the set S is non-empty.

Then Algorithm 1 is successful and the expected number of loops can be esti-
mated by

L =

(
r

c−k, . . . , ck

)p · |S| · ∏
i∈{±1,...,±k}

(
2ci
ci

)− 1
2

,
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where

p =

m−r∏
i=1

(
1− 1

riB( (m−r)−1
2 , 12 )

∫ −ri
−ri−1

∫ z+ri

max(−1,z−ri)
(1− t2)

(m−r)−3
2 dtdz

)
,

B(·, ·) denotes the Euler beta function (see [28]), and

ri =
Ri
2Y

for all i ∈ {1, . . . ,m− r}.

Furthermore, the expected number of operations of Algorithm 1 for security
under- and overestimates can be estimated by

Thyb,under = (m− r)/21.06L and Thyb,over = (m− r)2/21.06L.

In the following remark we explain the meaning of the (attack) parameters
that appear in the Main Result in more detail.

Remark 1. 1) The parameters r, y, k, c−k, . . . , ck are the attack parameters
that can be chosen by the attacker. The meet-in-the-middle dimension and
the remaining lattice dimension are determined by the parameter r. The
remaining parameters must be chosen in such a way that the requirements
of the Main Result are likely to be fulfilled in order to obtain a high success
probability of the attack. Choosing those parameters depends heavily on the
distribution of the short vectors v ∈ S. In order to obtain more flexibility,
this distribution is not specified in the Main Result. However, in Section 5
we show how one can choose the attack parameters and calculate the success
probability for several distributions arising in various cryptographic schemes.
At this point we only want to remark that y should be (an upper bound on)
‖vl‖∞, k (an upper bound on) ‖vg‖∞, and 2ci the (expected) number of
entries of vg that is equal to i for i ∈ {±1, . . . ,±k}.

2) The attacker can further influence the lengths R1, . . . , Rm−r of the Gram-
Schmidt vectors by providing a different basis than B with Gram-Schmidt
lengths that lead to a more efficient attack. This is typically done by perform-
ing a basis reduction on B or parts of B as precomputation, see Algorithm 2.
The lengths of the Gram-Schmidt vectors achieved by the basis reduction
with Hermite delta δ are typically estimated by the GSA (see the Prelimi-
naries). However, for q-ary lattices the GSA needs to be modified in order to
accurately reflect reality. For further details, see Appendix A.2. Notice that
spending more time on basis reduction increases the probability p in the
Main Result and the probability that the condition NPB(Cvg) = vl holds,
as can be seen later in this section and Section 4.2.

3) Because of the previous remark, the complete attack – presented in Algo-
rithm 2 – is actually a combination of precomputation (basis reduction) and
Algorithm 1. Therefore the runtime of both steps must be considered and
they have to be balanced in order to estimate the total runtime. We show
how to optimize the total runtime in Section 4.3.
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In the following we show how the Main Result can be derived. For the rest
of this section let all notations be as in the Main Result. We further assume in
the following that the assumption of the Main Result, i.e., S 6= ∅, is satisfied.
We first provide the following useful definition already given in [22] and [11]. We
use the notation of [11].

Definition 2. Let n ∈ N. A vector x ∈ Zn is called y-admissible for some vector
y ∈ Zn if NP(x) = NP(x− y) + y.

This means, that if x is y-admissible then NP(x) and NP(x − y) yield the
same lattice vector. We recall the following Lemma from [11] about Definition 2.
It showcases the relevance of the definition by relating it to the equation NP(t1)+
NP(t2) = NP(t1 + t2), which is necessary to hold for our attack to work.

Lemma 2. [Lemma 2 of [11]] Let t1 ∈ Rn, t2 ∈ Rn be two arbitrary target
vectors. Then the following are equivalent.

1. NP(t1) + NP(t2) = NP(t1 + t2).
2. t1 is NP(t1 + t2)-admissible.
3. t2 is NP(t1 + t2)-admissible.

Success of the Attack and Number of Loops

We now estimate the expected number of loops in case Algorithm 1 terminates.
In each loop of the algorithm we sample a vector v′g in the set

W = {w ∈ Zr | exactly ci entries of w are equal to i ∀i ∈ {−k, . . . , k}}.

The attack succeeds if v′g ∈ W and v′′g ∈ W such that v′g + v′′g = vg and
NPB(Cv′g) + NPB(Cv′′g ) = vl for some vector v = (vl,vg)

t ∈ S are sampled in
different loops of the algorithm. By Lemma 2 the second condition is equivalent
to the fact that NPB(Cv′g) is vl-admissible. We assume that the algorithm only
succeeds in this case. We are therefore interested in the following subset of W :

V =

{
w ∈W vg −w ∈W and NPB(Cw) is vl-admissible

for some v = (vl,vg)
t ∈ S

}
.

For all v = (vl,vg)
t ∈ S, with vl ∈ Zm−r and vg ∈ Zr let p(v) denote the

probability
p(v) = Pr

w←W
[NPB(Cw) is vl-admissible]

and p1(v) denote the probability

p1(v) = Pr
w←W

[vg −w ∈W ].

By construction we have that p1(v) is constant for all v ∈ S, so we can simply
write p1 instead of p1(v). We make the following reasonable assumption on p(v)
and p1.
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Assumption 1. For all v = (vl,vg)
t ∈ S, with vl ∈ Zm−r and vg ∈ Zr we

assume that the independence condition

p(v) = Pr
w←W

[NPB(Cw) is vl-admissible|vg −w ∈W ]

holds, where B is the Gram-Schmidt basis of B. We further assume that p(v) is
equal to some constant probability p for all v ∈ S.

Based on Assumption 1, we can make the following reasonable assumption.

Assumption 2. We assume that

|V |
|W |

= Pr
w←W

[w ∈ V ] = p1p|S|.

From Assumption 2 it follows that |V | = p1p|W ||S|. The probability p1 is
calculated by

p1 =

∏
i∈{±1,...,±k}

(
2ci
ci

)
|W |

, where |W | =
(

r
c−k, . . . , ck

)
.

We further make the following assumption, which is fulfilled unless the proba-
bility p is extremely small (p is calculated later).

Assumption 3. We assume that V 6= ∅.
Assumption 3 implies that the attack is successful, since by Lemma 2 if

v′g ∈ V then also v′′g = vg − v′g ∈ V for all v = (vl,vg)
t ∈ S. Such two vectors

v′g and v′′g in V will eventually be guessed in two separate loops of the algorithm
and they are recognized as a collision, since by the assumption ‖vl‖∞ ≤ y of
the Main Result they share at least one common address. By Assumption 2
we expect that during the algorithm we sample in V every 1

p1p|S| loops and by

the birthday paradox we expect to find a collision v′g ∈ V and v′′g ∈ V with

v′′g + v′g = vg after L ≈ 1
p1p|S|

√
|V | loops. In conclusion, we can estimate the

expected number of loops by

L ≈
√
|V |

p1p|S|
=

√
|W |√
p1p|S|

=

(
r

c−k, . . . , ck

)p|S| ∏
i∈{±1,...,±k}

(
2ci
ci

)− 1
2

.

It remains to calculate the probability p. This can be done analogously as in
Heuristic 3 of [11] and the calculations following it. For a detailed and convincing
justification of the heuristic we refer to [11]. Following the calculations of [11]
we obtain the following assumption.

Assumption 4. We assume that the probability p is approximately

p ≈
m−r∏
i=1

(
1− 1

riB( (m−r)−1
2 , 12 )

∫ −ri
−ri−1

∫ z+ri

max(−1,z−ri)
(1− t2)

(m−r)−3
2 dtdz

)
,

where B(·, ·) and r1, . . . , rm−r are defined as in the Main Result.
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In order to calculate p one needs to estimate the lengths ri, as discussed in
the following remark.

Remark 2. Note that the probability p depends on the scaled Gram-Schmidt
lengths ri and therefore on the quality of the basis, i.e., its Hermite delta δ. For
the scaling factor one simply needs to estimate ‖vl‖. The Gram-Schmidt lengths
obtained after performing a basis reduction with quality δ can be predicted by
the GSA, see the Preliminaries. For q-ary lattices, this assumption needs to be
modified appropriately, see Appendix A.2.

This concludes the estimation for the necessary number of loops.

Number of Operations

We now estimate the expected total number of operations of the Hybrid Attack
under the conditions of the Main Result. In order to do so we need to estimate
the runtime of one inner loop and multiply it by the expected number of loops.
As in [22] and [11] we make the following assumption, which is plausible as long
the sets of addresses are not extremely large.

Assumption 5. We assume that the number of operations of one inner loop of
Algorithm 1 is dominated by the number of operations of one Nearest Plane call.

We remark that we see Assumption 5 as one of the more critical ones. Obvi-
ously, it does not hold for all parameter choices2, but it is reasonable to believe
that it holds for many relevant parameter sets, as claimed in [22]and [11]. How-
ever, the claim in [22] is based on the observation that for random vectors in
Zmq it is highly unlikely that adding a binary vector will flip the sign of many
coordinates (i.e., that a random vector in Zmq has many minus one coordinates).
While this is true, the vectors in question are in fact not random vectors in Zmq
but outputs of a Nearest Plane call, and thus potentially shorter than typical
vectors in Zmq . Therefore it can be expected that adding a binary vector will
flip more signs. Additionally, in general it is not only a binary vector that is
added, but a vector of infinity norm y, which makes flipping signs even more
likely. However, we believe that Assumption 5 is still plausible for most relevant
parameter sets and small y, and even in the worst case the assumption leads to
more conservative security estimates.

In [18], Hirschhorn et al. give an experimentally verified number of bit op-
erations (defined as in [24]) of one Nearest Plane call and state a conservative
assumption on the runtime of Nearest Plane using precomputation. Based on
their results, we make the following assumption for our security estimates (over
and under).

2 For instance, if the infinity norm y is too big, it is likely to have exponentially many
addresses per vector and storing a vector at all addresses takes more time than a
Nearest Plane call.
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Assumption 6. Let d ∈ N be the lattice dimension. For our security overesti-
mates, we assume that the number of bit operations of one Nearest Plane call
is approximately d2/21.06. For our security underestimates, we assume that the
number of bit operations of one Nearest Plane call is approximately d/21.06.

In conclusion, under the conditions of the Main Result the expected number
of operations of Algorithm 1 for security under- and overestimates is approxi-
mately

Thyb,under = (m− r)/21.06L and Thyb,over = (m− r)2/21.06L.

4.2 Determining the success probability.

In the Main Result it is guaranteed that Algorithm 1 is successful if the lattice
Λ contains a non-empty set S of short vectors of the form v = (vl,vg)

t, where
vl ∈ Zm−r and vg ∈ Zr, with ‖vl‖ ≈ Y , ‖vl‖∞ ≤ y, ‖vg‖∞ ≤ k, exactly 2ci
entries of vg are equal to i for all i ∈ {±1, . . . ± k}, and NPB(Cvg) = vl. In
order to determine a lower bound on the success probability, one must calculate
the probability that the set S of such vectors is non-empty, since

psucc ≥ Pr[S 6= ∅].

However, this probability depends heavily on the distribution of the short vec-
tors contained in Λ and is therefore not done in the Main Result, allowing for
more flexibility. In consequence, this analysis must be performed for the specific
distribution at hand originating from the cryptographic scheme that is to be
analyzed. The most involved part in calculating the success probability is typ-
ically calculating the probability pNP that NPB(Cvg) = vl. As shown in [11],
the probability pNP is approximately

pNP ≈
m∏
i=1

(
1− 2

B( (m−r)−1
2 , 12 )

∫ max(−ri,−1)

−1
(1− t2)

(m−r)−3
2 dt

)
,

where ri are defined as in the Main Result and obtained as in Remark 2.

4.3 Optimizing the Runtime

The final step in our analysis is to determine the runtime of the complete Hybrid
Attack (Algorithm 2) including precomputation, which involves the runtime of
the basis reduction Tred, the runtime of the actual attack Thyb, and the success
probability psucc. All these quantities depend on the attack parameter r and
the quality of the basis B given by the lengths of the Gram-Schmidt vectors
achieved by the basis reduction performed in the precomputation step of the
attack. The quality of the basis can be measured by its Hermite Delta δ (see
the Preliminaries). In order to unfold the full potential of the attack, one must
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minimize the runtime over all possible attack parameters r and δ. For our security
overestimates, we assume that the total runtime (which is to be minimized) is
given by

Ttotal,over(δ, r) =
Tred,over(δ, r) + Thyb,over(δ, r)

psucc(δ, r)
.

For our security underestimates, we conservatively assume that given a reduced
basis with quality δ it is significantly easier to find another reduced basis with
same quality δ than it is to find one given an arbitrary non-reduced basis. We
therefore assume that even if the attack is not successful and needs to be run
again, the large precomputation cost for the basis reduction only needs to be
paid once, and hence

Ttotal,under(δ, r) = Tred,under(δ, r) +
Thyb,under(δ, r)

psucc(δ, r)
.

In order to calculate Ttotal,under(δ, r) and Ttotal,over(δ, r) one must calculate
Thyb,under(δ, r), Thyb,over(δ, r), Tred,under(δ, r), Tred,over(δ, r), and psucc(δ, r). How to
calculate Ttotal,under(δ, r) and Ttotal,over(δ, r) is shown in the Main Result. The
success probability psucc(δ, r) is calculated in Section 4.2.

Basis reduction. Estimating the necessary runtime Tred(δ, r) for a basis reduc-
tion of quality δ is highly non-trivial and still an active research area. For our
security overestimates we apply the following the approach. We first determine
the (minimal) block size β necessary to achieve the targeted Hermite delta δ via

δ ≈

(
β · (πβ)

1
β

2πe

) 1
2(β−1)

according to Chen’s thesis [13] (see also [2, 3, 15]). We then use the BKZ 2.0
simulator of the full version of [14] to determine the corresponding necessary
number of rounds k. Finally use the estimate

Estimateover(β, n, k) = 0.187281β log(β)− 1.0192β + log(n · k) + 16.1

provided in [2] to determine the (base-two) logarithm of the runtime, where n
is the lattice dimension. For our implementations we used the publicly available
sage code of the BKZ 2.0 simulator on van Vredendaal’s website [31].

For the security underestimates we assume that only one round of BKZ 2.0
with the determined block size β is needed. The reason for this assumption is that
one can use progressive BKZ strategies to reduce the number of rounds needed
with blocksize β by running BKZ with block sizes smaller than β in advance,
see [4,13]. Since BKZ with smaller block sizes is considerably cheaper, we do not
consider the BKZ costs with smaller block sizes in our security underestimates.
Furthermore, for our security underestimates we assume that the number of
rounds can be brought down to one, giving

Estimateunder(β, n) = 0.187281β log(β)− 1.0192β + log(n+ 1− β) + 16.1.
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Note that if someone wishes to replace the model of the behavior of basis reduc-
tion by a different one, this can simply be done while the rest of the analysis
remains intact.

Runtime optimization. The optimization of the total runtime Ttotal(δ, r) is per-
formed in the following way. For each possible r we find the optimal δr that
minimizes the runtime Ttotal(δ, r). Consequently, the optimal runtime is given
by min{Ttotal(δr, r)}, the smallest of those minimized runtimes. Note that for
fixed r the optimal δr for our security underestimates can easily be found in the
following way. For fixed r the function Tred,under(δ, r) is monotonically decreas-

ing in δ and the function
Thyb,under(δ,r)
psucc(δ,r)

is monotonically increasing in δ. Therefore

Ttotal,under(δ, r) is (close to) optimal when both those functions are balanced, i.e.,
take the same value. Thus the optimal δr can for example be found by a simple
binary search.

For our security overestimates, we assume the function
Tred,over(δ,r)
psucc(δ,r)

is monotoni-

cally decreasing in δ in the relevant range, hence the optimal Ttotal,over(δ, r) can

be found by balancing the functions
Tred,over(δ,r)
psucc(δ,r)

and
Thyb,over(δ,r)
psucc(δ,r)

as above. Note

that this assumption might note be true, but it surely leads to upper bounds on
the optimal runtime of the attack.

4.4 Typical Flaws in Previous Analyses of the Hybrid Attack

We end this section by listing the major flaws we frequently found in previous
analyses of the Hybrid Attack which lead to unreliable and inaccurate security
estimates. We also found several minor flaws in previous analyses, but in this
section we restrict our focus to the flaws we think have the most influence on
the security estimates. We remark that some flaws lead to overestimating the
security of the schemes and others to underestimating it. In some analyses,
both types of flaws occurred at the same time and somewhat magically almost
canceled out each others effect on the security estimates for some parameter
sets. Even though the security estimates in those cases are not wrong per se,
they can not be relied upon, since without further analysis it is not clear if the
security estimates are correct, over-, or underestimates. We straighten out this
unsatisfying state of affairs by providing updated security estimates for various
cryptographic schemes using our newly developed, detailed, and accurate way
to analyze the Hybrid Attack, see Section 5.

Ignoring the probability p. One of the most frequently encountered prob-
lems that appeared in several works is the lack of a (correct) calculation of the
probability p defined in Assumption 1. As can be seen in the Main Result, this
probability plays a crucial role in the runtime analysis of the attack. Nevertheless,
in several works [9, 16, 19, 20, 30] the authors completely ignore the presence of
this probability by setting p = 1 for the sake of simplicity. However, even though
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we took the probability into account when optimizing the attack parameters3,
for the parameter sets we analyze in Section 5 the probability p was sometimes
as low as 2−80, see Table 3. Note that the wrong assumption p = 1 gives more
power to the attacker, since it assumes that collisions can always be detected by
the attacker although this is not the case, resulting in security underestimates.
We also remark that in some works the probability p is not completely ignored
but determined in a purely experimental way [22] or calculated using additional
unnecessary assumptions [18], introducing inaccuracies into the analysis.

Unnecessary demands on the basis reduction. In most works [9, 16, 18–
20, 22, 30], the authors demand a sufficiently good basis reduction such that
the Nearest Plane algorithm must unveil the searched short vector (or at least
with very high probability). To be more precise, Lemma 1 of [22] is used to
determine what sufficiently good exactly means. In our opinion, this demand,
which leads to overestimating the security of the schemes, is unreasonable, and
instead we account for the probability of this event in the success probability. In
our opinion, this approach reflects the attacker’s power in a more accurate way.
In addition, in most cases Lemma 1 of [22] is not even applicable in the way it is
claimed in several works. We briefly sketch way this is the case. Often, Lemma 1
of [22] is applied to determine the necessary quality of a reduced basis such that
Nearest Plane (on correct input) unveils a vector v of infinity norm at most
y. However, this lemma is only applicable if the basis matrix is in triangular
form, which is not the case is general. Therefore, one needs to transform the
basis with an orthonormal matrix Y in order to obtain a triangular basis. This
basis however does not span the same lattice but an isomorphic one, which
contains the transformed vector vY, but (in general) not the vector v. While
the transformation Y preserves the Euclidean norm of the vector v, it does not
preserve its infinity norm. Therefore the lemma can not be applied with the same
infinity norm bound y, which is done in most works. In fact, in the worst case the
new infinity norm bound can be up to

√
my, where m is the lattice dimension.

In consequence one would have to apply Lemma 1 of [22] with infinity norm
bound

√
my instead of y, which demands a much better basis reduction. This

problem is already mentioned – but not solve – in [30]. We remark that assuming
one can apply Lemma 1 of [22] with the same infinity norm bound y anyways
is a conservative, but not realistic assumption, that is no longer needed in our
analysis.

Missing or incorrect optimization. In some works such as [16, 22] the op-
timization of the attack parameters is either completely missing, ignoring the
fact that there is a trade-off between the time spent on basis reduction and the
actual attack, or incorrect. As a result one only obtains upper bounds on the
estimated security level but not precise estimates.

3 If the probability p is ignored in the optimization process, it can even be lower for
the “optimized” attack parameters.
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Other inaccuracies. Further inaccuracies we encountered include the follow-
ing.

(1) Implicitly assuming that the meet-in-the-middle part vg of the short vector
has the right number of i-entries for each i [9, 16, 19, 20, 30]. This is not
the case in general and therefore needs to be accounted for in the success
probability.

(2) Simplifying the structure of the secret key when convenient in order to ease
the analysis [20,30]. This can drastically change the norm of the secret vector
and in consequence manipulate the runtime estimates.

(3) Assuming that an attacker could maybe utilize some algebraic structure
without any evidence that this is the case [18,20,30]. This assumption results
in security underestimates if the assumption is in fact wrong.

(4) Assuming that the GSA holds for q-ary lattices without modification [10].
We show how the GSA can be modified for q-ary lattices in Appendix A.2.

5 Updating Security Estimates Against the Hybrid
Attack

In the recent years, the Hybrid Attack has been applied to various lattice-based
cryptographic schemes in order to evaluate their security. However, most of these
security estimates are unreliable due to flaws in their analysis of the Hybrid At-
tack. Therefore, the security estimates must be updated in such a way that they
can be relied upon. In Section 4 we presented a detailed way to accurately es-
timate the runtime of the Hybrid Attack. In this section we apply the Hybrid
Attack to various cryptographic schemes and correctly analyze its runtime in
order to reevaluate their security and derive updated and reliable security esti-
mates.
The section is structures as follows. Each scheme is analyzed in a separate sub-
section. We begin with subsections on the encryption schemes NTRU, NTRU
prime and R-BinLWEEnc and end with subsections on the signature schemes
BLISS and GLP. In each subsection we first give a brief introduction to the
scheme and explain how the previous security analysis against the Hybrid At-
tack is flawed. We then apply the Hybrid Attack to the scheme and analyze its
complexity according to Section 4. This analysis is performed the following four
steps steps.

1) Constructing the lattice. We first construct a lattice of the required form
which contains the secret key as a short vector.

2) Determining the attack parameters. We find suitable attack parameters
ci (depending on the meet-in-the-middle dimension r), infinity norm bounds
y and k, and estimate the Euclidean Y .

3) Determining the success probability. We determine the success proba-
bility of the attack according to Section 4.2.

4) Optimizing the runtime. We optimize the runtime of the attack for our
security under- and overestimate according to Section 4.3.
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We end each subsection by providing a table of updated security estimates
against the Hybrid Attack obtained by our analysis. In the tables we also pro-
vide the optimal attack parameters (δr, r) derived by our optimization process
and the corresponding probability p with whom collisions can be detected. For
comparison, we further provide the security estimates of the previous works. In
our runtime optimization of the attack we optimized with a precision of up to
one bit. As a result there may not be one unique optimal attack parameter pair
(δr, r) and for the table we simply pick one that minimizes the runtime (up to
one bit precision).

5.1 NTRU

The NTRU encryption system was officially introduced in [21] and is one of the
most important lattice-based encryption schemes today due to its high efficiency.
The Hybrid Attack was first developed to attack NTRU [22] and has been ap-
plied to various proposed parameter sets since [18–20, 22, 30]. In this work we
restrict our studies to the most recent parameter selection paper [20]. In [20],
the authors analyze the Hybrid Attack making typical simplifying assumptions
such as setting the probability p equal to one or demanding a certain quality of
the basis reduction. Furthermore, for simplicity the authors sometimes treat the
private keys as if they were trinary vectors, even though they are of the harder
to analyze product form. In consequence we conclude that the security estimates
given in [20] are not reliable. We therefore accurately reevaluate the security of
the NTRU EESS # 1 parameter sets given in Table 3 of [20] in order to provide
new, reliable security estimates.

Constructing the Lattice

The NTRU cryptosystem is defined over the ring Rq = Zq[X]/(XN − 1), where
N, q ∈ N and N is prime. The parameters N and q are public. Furthermore there
exist public parameters d1, d2, d3, dg ∈ Z. For the parameter sets considered
in [20], the private key is a pair of polynomials (f, g) ∈ R2

q , where g is a trinary
polynomial with exactly dg+1 ones and dg minus ones and f = 1+3F invertible
in Rq with F = A1A2 + A3 for some trinary polynomials Ai with exactly di
one and di minus one entries. The corresponding public key is (1, h), where
h = f−1g. In the following we assume that h and 3 are invertible in Rq. We
further identify polynomials with their coefficient vectors. We can recover the
private key by finding the secret vector v = (F,g)t.4 Since h = (1 + 3F )−1g we
have 3−1h−1g = F + 3−1 and therefore it holds that

v +

(
3−1

0

)
=

(
3−1h−1g + qw

g

)
=

(
qIn 3−1H
0 In

)(
w
g

)
4 Note that we put g in the half of the vector v that is guessed in the meet-in-the-

middle part of the attack. The reason for this choice is that we exactly know the
structure of g but not the structure of the product form polynomial F.
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for some w ∈ Zn, where H is the rotation matrix of h−1. Hence v can be
recovered by solving BDD on input (−3−1,0)t in the q-ary lattice

Λ = Λ

((
qIn 3−1H
0 In

))
,

since (−3−1,0)t − v ∈ Λ.5 A similar way to recover the private key was already
mentioned in [30]. The lattice Λ has dimension 2n and determinant qn. Since we
take the BDD approach for the Hybrid Attack, we assume that only v, not its
rotations or additive inverse, can be found by the attack, see Section 3. Hence
we assume that the set S, as defined in the Main Result, contains of at most one
element.

Determining the Attack Parameters

Let v = (F,g)t = (vl,vg)
t with vl ∈ Z2n−r and vg ∈ Zr. Since g is a trinary

vector, we can set the infinity norm bound k on vg equal to one. In contrast,
determining an infinity norm bound on the vector vl is not that trivial, since
F is not trinary but of product form. For a specific parameter set this can
either be done theoretically or experimentally. The same holds for estimating the
Euclidean norm of vl. For our runtime estimates we determined the expected
Euclidean norm of F experimentally and set the expected Euclidean norm of vl
to

‖vl‖ ≈
√
‖F‖2 +

n− r
r
· (2dg + 1).

We set 2c−1 = r
n ·(dg+1) and 2c1 = r

n ·dg to be equal to the expected number of
minus one entries and one entries, respectively, in g.6 For simplicity we assume
that c−1 and c1 are integers in the following in order to avoid writing down the
rounding operates.

Determining the Success Probability

The next step is to determine the success probability psucc, i.e., the probability
that v has exactly 2c−1 entries equal to minus one, 2c1 entries equal to one,
and NPB(Cvg) = vl holds, where B is as given in the Main Result. Assuming
independence, the success probability is approximately

psucc = pc · pNP,

5 It is also possible to construct a lattice that contains (f ,g) as a short vector instead.
However, since f = 1 + 3F has norm larger than F , this leads to a less efficient
attack.

6 Note that this must not necessarily be the optimal choice for the ci. However, we
expect that this choice comes very close to the optimal one and therefore restrict
our studies to this case.
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where pc is the probability that v has exactly 2c−1 entries equal to minus one
and 2c1 entries equal to one and pNP is defined and calculated as in Section 4.2.
Obviously, pc is given by

pc =

(
r

2c̃0, 2c−1, 2c1

)(
n− r

d0 − 2c̃0, dg − 2c−1, dg + 1− 2c1

)
(

n
d0, dg, dg + 1

) ,

where 2c̃0 = r − 2c−1 − 2c1 and d0 = n − (dg + 1) − dg. As explained earlier,
since we use the BDD approach of the Hybrid Attack, we assume that |S| = 1
in case the attack is successful.

Optimizing the Runtime

We determined the optimal attack parameters to estimate the minimal runtime
of the Hybrid Attack for the NTRU EESS # 1 parameter sets given in Table 3
of [20]. The results, including the optimal r, corresponding δr, and resulting
probability p that collisions can be found, are presented in Table 2. Our analysis
shows that the security levels against the Hybrid Attack claimed in [20] are
lower than the actual security levels for all parameter sets. In addition, our
results show that for all of the analyzed parameter sets the Hybrid Attack does
not perform better than a purely combinatorial meet-in-the-middle search, see
Table 3 of [20]. Our results therefore disprove the common claim that the Hybrid
Attack is necessarily the best attack on NTRU.

Parameter set n = 401 n = 439 n = 593 n = 743

Optimal runder/rover 104/122 122/140 206/219 290/308

Optimal δr,under 1.00544 1.00509 1.00412 1.00352
Optimal δr,over 1.00552 1.00518 1.00420 1.00357

Corresponding punder/pover 2−70/2−43 2−56/2−47 2−67/2−62 2−78/2−69

Security under/over in bits 145/162 165/182 249/267 335/354

In [20] conserv./normal 116/127 133/145 204/236 280/330

runder/rover used in [20] 154/166 175/192 264/303 360/423
Table 2. Optimal attack parameters and security levels against the Hybrid Attack for
NTRU.

5.2 NTRU prime

The NTRU prime encryption scheme was recently introduced [9] in order to elim-
inate worrisome algebraic structures that exist within NTRU [21] or Ring-LWE
based encryption schemes such as [3,26]. The authors considered the application

21



of the Hybrid Attack to their scheme to derive their security estimates. However,
their analysis follows the methodology of [20] and is therefore flawed in the same
way and consequently the security estimates are not reliable, see Section 5.1. We
therefore reevaluate the security of NTRU prime, eliminating the flaws in the
analysis and providing reliable security estimates.

Constructing the Lattice

The Streamlined NTRU prime family of cryptosystems is parameterized by three
integers (n, q, t) ∈ N3, where n and q are odd primes. The base ring for Stream-
lined NTRU prime is Rq = Zq[X]/(Xn−X−1). The private key is (essentially) a
pair of polynomials (g, f) ∈ R2

q , where g is drawn uniformly at random from the
set of all trinary polynomials and f is drawn uniformly at random from the set
of all trinary polynomials with exactly 2t non-zero coefficients. The correspond-
ing public key is h = g(3f)−1 ∈ Rq. In the following we identify polynomials
with their coefficient vectors. As described in [9], the secret vector v = (g, f) is
contained in the q-ary lattice

Λ = Λ

((
qIn 3H
0 In

))
,

where H is the rotation matrix of h, since(
qIn 3H
0 In

)(
w
f

)
=

(
qw + 3hf

f

)
=

(
g
f

)
= v

for some w ∈ Zn. The determinant of the lattice Λ is given by qn and its
dimension is equal to 2n. Note that in the case of Streamlined NTRU prime the
rotations of a trinary polynomial are not necessarily trinary, but it is likely the
some are. The authors of [9] conservatively assume that the maximum number
of good rotations of v that can be utilized by the attack is n− t, which we also
assume in the following. Counting their additive inverses leaves us 2(n− t) short
vectors that can be found by the attack.

Determining the Attack Parameters

Let v = (f ,g)t = (vl,vg)
t with vl ∈ Z2n−r and vg ∈ Zr. Since v is trinary, we

can set the infinity norm bounds y and k equal to one. The expected Euclidean
norm of vl is given by

‖vl‖ ≈
√

2

3
n+

n− r
n

2t.

We set 2c1 = 2c−1 = r
n ·

t
2 equal to the expected number of one entries (or minus

one entries, respectively) in f . For simplicity we assume that c1 is an integer in
the following.
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Determining the Success Probability

Next, we determine the success probability psucc = Pr[S 6= ∅], where S denotes
the following subset of the lattice Λ:

S =

w ∈ Λ |
w = (wl,wg)

t with wl ∈ {0,±1}2n−r,wg ∈ {0,±1}r,
exactly 2ci entries of wg equal to i ∀i ∈ {−1, 1},
NPB(Cwg) = wl

 ,

where B is as defined in the Main Result. We assume that S is a subset of all
the rotations of v that can be utilized by the attack and their additive inverses.
In particular, we assume that S has at most 2(n− t) elements. Note that if some
vector w is contained in S, then we also have −w ∈ S. Assuming independence,
the probability pS that v ∈ S is approximately given by

pS ≈

(
r

2c̃0, 2c−1, 2c1

)(
n− r

2t− 4c1

)
22t−4c1(

n
2t

)
22t

· pNP,

where d0 = n − 2t and 2c̃0 = r − 4c1 and pNP is defined and calculated as in
Section 4.2. Assuming independence, all of the n − t good rotations of v are
contained in S with probability pS as well. Therefore, the probability psucc that
we have at least one good rotation is approximately

psucc = Pr[S 6= ∅] ≈ 1− (1− pS)n−t.

Next, we estimate the size of the set S in the case S 6= ∅, i.e., Algorithm 1 is
successful. In that case, at least one rotation is contained in S. Then also its
additive inverse is contained in S, hence |S| ≥ 2. We can estimate the size of S
in case of success to be

|S| ≈ 2 + 2(n− t− 1)pS ,

where pS is defined as above.

Optimizing the Runtime

We applied our new techniques to estimate the minimal runtimes for several
NTRU prime parameter sets proposed in Appendix D of [9]. Besides the “case
study parameter set”, for our analysis we picked one parameter set that offers
the lowest bit security and one that offers the highest according to the analysis
of [9]. Our resulting security estimates are presented in Table 3. Our analysis
shows that the authors of [9] underestimate the security of their scheme for all
parameter sets we evaluated.
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Parameter set
n = 607 n = 739 n = 929

q = 18749 q = 9829 q = 12953

Optimal runder/rover 148/162 235/257 328/353

Optimal δr,under 1.00466 1.00405 1.00346
Optimal δr,over 1.00466 1.00407 1.00346

Corresponding punder/pover 2−63/2−54 2−73/2−60 2−80/2−65

Security under/over in bits 197/211 258/273 346/363

In [9] 128 228 310
Table 3. Optimal attack parameters and security levels against the Hybrid Attack for
NTRU prime.

5.3 R-BinLWEEnc

In [10], Buchmann et al. presented R-BinLWEEnc, a lightweight public key en-
cryption scheme based on binary Ring-LWE7. To determine the security of their
scheme the authors evaluate the hardness of binary LWE against the Hybrid
Attack. They use the methodology of [11]. However, they do not use the method-
ology of the updated full version of [11], but the original one, which makes an
unreasonable assumption and is therefore not reliable and has been updated in
the full version. For instance, the bit security of the R-BinLWEEnc-II parameter
set should be updated from 84 bits to 103 bits when using the updated version
of [11]. However, even the analysis of the Hybrid Attack provided in the updated
version of [11] is not completely satisfying. This is due to two issues. First, the
authors use the over-simplified formulas of [25] to estimate the runtime for basis
reduction and the Nearest Plane algorithm, which do not provide accurate pre-
dictions (see for example [2]). Second, the authors do not take into considerations
that the GSA needs to be modified for q-ary lattices to properly fit reality, see
Appendix A.2. Therefore we reevaluate the security of binary LWE against the
Hybrid Attack in order to obtain reliable security estimates for R-BinLWEEnc.

Constructing the Lattice

Let m,n, q ∈ Z with m > n and (A,b′ = As + e′ mod q) be a binary LWE
instance with A ∈ Zm×nq , s ∈ Znq , and binary error e′ ∈ {0, 1}.8 To obtain a
more efficient attack, we first subtract the vector consisting of all 1/2-entries
from both sides of the equation b′ = As + e′ mod q to obtain a new LWE
instance (A,b = As + e mod q), where e ∈ {±1/2}m. In the following we
only consider this transformed LWE instance with smaller error. Obviously e is
contained in the q-ary lattice

Λ = Λq(A
′) = {v ∈ Zm | ∃w ∈ Zn+1 : v = A′w mod q},

7 For more details on (the hardness of) LWE, Ring-LWE, and binary LWE we refer
to [2, 7, 11,26,27,29].

8 Note that with our approach we only need that error vector e′ is binary, and not
also that the secret vector s is binary, as demanded in [10,11].
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where A′ = (A | b) ∈ Zm×(n+1)
q . Note that constructing the lattice this way we

only need the error vector e′ to be binary and not also the secret s as in [10,11].
The dimension of the lattice Λ is equal to m and with high probability its
determinant is qm−(n+1), see for example [7].

Determining the Attack Parameters

Let v = e = (vl,vg)
t with vl ∈ {±1/2}m−r and vg ∈ {±1/2}r. Then obviously

we have ‖v‖∞ ≤ 1/2, so we set the infinity norm bounds y = k = 1/2. Since vl
is a uniformly random vector in {±1/2}m−r, the expected Euclidean norm of vl
is

‖vl‖ ≈
√
m− r

4
.

We set 2c−1/2 = 2c1/2 = r
2 to be the expected number of −1/2 and 1/2 entries

of vg. In the following we assume that c−1/2 = c1/2 is an integer in order to not
have to deal with rounding operators.

Determining the Success Probability

We can approximate the success probability psucc by psucc ≈ pc · pNP, where pc
is the probability that vg hat exactly 2c−1/2 entries equal to −1/2 and 2c1/2
entries equal to 1/2 and pNP is defined as in Section 4.2. Using the fact that
2c−1/2 + 2c1/2 = r, we therefore obtain

psucc ≈ pc · pNP = 2−r
(

r
2c1/2

)
pNP.

We assume that if the attack is successful then |S| = 2, where S is defined as in
the Main Result, since e and −e are assumed to be the only vectors that can be
found by the attack.

Optimizing the Runtime

Parameter set Set-I Set-II Set-III

Optimal runder/rover 104/116 88/96 276/268

Optimal δr,under 1.00691 1.00731 1.00478
Optimal δr,over 1.00698 1.00741 1.00487

Corresponding punder/pover 2−33/2−27 2−31/2−28 2−38/2−43

Security under/over in bits 88/99 79/90 187/197

In [10] 94 84 190
Table 4. Optimal attack parameters and security levels against the Hybrid Attack for
R-BinLWEEnc.
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We reevaluated the security of the R-BinLWEEnc parameter sets proposed
in [10]. Our security estimates, the optimal attack parameters r and δr, and
the corresponding probability p are presented in Table 4. The original security
estimates given in [10] are within the security range we determined. Nevertheless,
we want to stress that even though we obtained similar security estimates, our
reevaluation was necessary and valuable since the original estimates were fraught
with doubt.

5.4 BLISS

The signature scheme BLISS, introduced in [16], is one of the most important
lattice-based signature schemes. In the original paper, the authors considered
the Hybrid Attack on their signature scheme for their security estimates, but the
analysis is rather vague. For instance, as frequently done, the authors assume
that collisions will always be detected, neglecting the fact that this is only the
case with a very small probability. In addition, the authors demand a basis
reduction of a certain quality for the attack. Furthermore, the authors do not
optimize the attack parameters, which ignores the fact that a non-trivial trade-
off between basis reduction and the Hybrid Attack is necessary for accurate
runtime estimates. The estimates given in [16] are therefore not reliable, and we
provide a detailed security analysis of the proposed parameter sets in order to
update the security estimates.

Constructing the Lattice

In the BLISS signature scheme the setup is the following. Let n be a power of two,
d1, d2 ∈ N such that d1 + d2 ≤ n holds, q a prime modulus with q ≡ 1 mod 2n,
and Rq = Zq[x]/(xn + 1). The signing key is of the form (s1, s2) = (f, 2g + 1),
where f ∈ R×q , g ∈ Rq, each with d1 coefficients in {±1} and d2 coefficients
in {±2}, and the remaining coefficients equal to 0. The public key is essentially
a = s2/s1 ∈ Rq. We assume that a is invertible inRq, which is the case with very
high probability. Hence we obtain the equation s1 = s2a

−1 ∈ Rq, or equivalently
f = 2ga−1 + a−1 mod q. In the following we identify polynomials with their
coefficient vectors.

In Order to recover the signing key, it is sufficient to find the vector v =
(f ,g)t. Similar to our previous analysis of NTRU in Section 5.1 we have that

v +

(
−a−1

0

)
=

(
2ga−1 + qw

g

)
=

(
qIn 2A
0 In

)(
w
g

)
for some w ∈ Zn, where A is the rotation matrix of a−1. Hence v can be
recovered by solving BDD on input (a−1,0)t in the q-ary lattice

Λ = Λ

((
qIn 2A
0 In

))
,

since (a−1,0)t−v ∈ Λ. The determinant of the lattice Λ is qn and its dimension
is equal to 2n.
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Determining the Attack Parameters

In the following let v = (f ,g)t = (vl,vg)
t with vl ∈ Zm−r and vg ∈ Zr. Since

we are using the Hybrid Attack to solve a BDD problem, the rotations of v can
not be utilized in the attack (or at least is is not known how), see Section 3. We
therefore assume that v is the only rotation useful in the attack, i.e. that the
set the set of good rotations S contains at most v. The first step is to determine
proper bounds y on ‖vl‖∞ and k on ‖vg‖∞ and find suitable guessing parameters
ci. By construction we obviously have ‖v‖∞ ≤ 2, thus we can set the infinity
norm bounds y = k = 2. The expected Euclidean norm of vl is given by

‖vl‖ ≈
√
d1 + 4d2 +

n− r
n

(1d1 + 4d2).

We set 2ci equal to the expected number of i-entries in vg, i.e., c−2 = c2 = r
n ·

1
4d2

and c−1 = c1 = r
n ·

1
4d1. For simplicity we assume that c1 and c2 are integers in

the following.

Determining the Success Probability

Next, we determine the success probability psucc, which is the probability that
NPB(Cvg) = vl and exactly 2ci entries of vg are equal to i for i ∈ {±1, . . . ,±k}.
The probability pc that exactly 2ci entries of the vector vg are equal to i for all
i ∈ {±1, . . . ,±k} is given by(

r
2c̃0, 2c−2, 2c2, 2c−4, 2c4

)(
n− r

d0 − 2c̃0, d1 − 4c2, d2 − 4c4

)
2d1+d2−4(c2+c4)(

n
d0, d1, d2

)
2d1+d2

,

where d0 = n− d1 − d2 and 2c̃0 = r− 2(c−2 + c2 + c−4 + c4) and pNP is defined
as in Section 4.2. The success probability is approximately given by

psucc ≈ pc · pNP.

As explained earlier, we assume that S ⊂ {v}, so if Algorithm 1 is successful
we have |S| = 1.

Optimizing the Runtime

We performed the optimization process for the BLISS parameter sets proposed
in [16]. The results are presented in Table 5. Besides the security levels against
the Hybrid Attack, we provide the optimal attack parameters r and δr leading
to a minimal runtime of the attack as well as the probability p. Our results show
that the security estimates for the BLISS-I, BLISS-II, and BLISS-III parameter
sets given in [16] are within the range of security we determined, whereas the
BLISS-IV parameter set is less secure than originally claimed. In addition, the
authors of [16] claim that there are at least 17 bits of security margins built into
their security estimates, which is incorrect for all parameter sets according to
our analysis.
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Parameter set BLISS-I BLISS-II BLISS-III BLISS-IV

Optimal runder/rover 152/152 152/152 109/144 99/137

Optimal δr,under 1.00588 1.00588 1.00532 1.00518
Optimal δr,over 1.00600 1.00600 1.00541 1.00524

Corresponding punder/pover 2−35/2−38 2−35/2−38 2−58/2−40 2−67/2−44

Security under/over in bits 124/139 124/139 152/170 160/182

In [16] 128 128 160 192

r used in [16] 194 194 183 201
Table 5. Optimal attack parameters and security levels against the Hybrid Attack for
BLISS.

5.5 GLP

The GLP signature scheme was introduced in [17]. In the original work the au-
thors did not consider the Hybrid Attack when deriving their security estimates.
Later, in [16], the Hybrid Attack was also applied to the GLP-I parameter set.
However, the analysis in [16] of the Hybrid Attack against GLP is flawed in the
same way as the analysis of the BLISS signature scheme, see Section 5.4. Fur-
thermore, the GLP-II parameter set has not been analyzed regarding the Hybrid
Attack so far. We therefore reevaluate the security of the GLP-I parameter set
against the Hybrid Attack and firstly evaluate the Hybrid Attack security of the
GLP-II parameter set.

Constructing the Lattice

For the GLP signature scheme the setup is the following. Let n be a power of two,
q a prime modulus with q ≡ 1 mod 2n, and Rq = Zq[x]/(xn + 1). The signing
key is of the form (s1, s2), where s1 and s1 are sampled uniformly at random
among all polynomials of Rq with coefficients in {−1, 0, 1}. The corresponding
public key is then of the form (a, b = as1 +s2) ∈ R2

q, where a is drawn uniformly
at random in Rq. So we know that 0 = −b + as1 + s2. Identifying polynomials
with their coefficient vectors we therefore have that

v :=

−1
s1
s2

 ∈ Λ := Λ⊥q (A) = {w ∈ Z2n+1 | Aw ≡ 0 mod q} ⊂ Z2n+1,

where A = (b|rot(a)|In) and rot(a) is the rotation matrix of a. Because of how
the lattice is constructed we do not assume that rotations of v can by utilized
by the attack.9 Therefore, with very high probability v and −v are the only
non-zero trinary vectors contained in Λ, which we assume in the following. Since

9 It is possible to construct a lattice which contains all the rotations as short vectors,
but this unnecessarily blows up the lattice dimension.
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q is prime and A has full rank, we have that detΛ = qn, see for example [8]. In
Appendix A.1 we show how to construct a basis of the form

B′ =

(
qIn ?
0 In+1

)
∈ Z(2n+1)×(2n+1)

for the q-ary lattice Λ.

Determining the Attack Parameters

Ignoring the first −1 coordinate, the short vector v is drawn uniformly from
{−1, 0, 1}2n+1. Let v = (vl,vg)

t with vl ∈ Zm−r and vg ∈ Zr. Then obviously
‖vl‖∞ ≤ 1 and ‖vg‖∞ ≤ 1 hold, so we can set the infinity norm bounds y and
k equal to one. The expected Euclidean norm of vl is approximately

‖vl‖ ≈
√

2(m− r)/3.

We set 2c−1 = 2c1 = r
3 to be the expected number of ones and minus ones. For

simplicity we assume that c−1 = c1 is an integer in the following.

Determining the Success Probability

The success probability psucc of the attack is approximately psucc ≈ pc · pNP,
where pc is the probability that vg hat exactly 2c−1 minus one entries and 2c1
one entries and pNP is defined as in Section 4.2. Calculating pc yields

psucc ≈ pc · pNP = 3−r
(

r
r/3, r/3, r/3

)
pNP.

As previously mentioned, we assume that if the attack is successful then |S| = 2.

Optimizing the Runtime

We performed the optimization for the GLP parameter sets proposed in [17]. The
results, including the optimal attack parameters r and δr and the probability
p, are shown in Table 6. The security level of the GLP-I parameter set claimed
in [16] is within the range of security we determined. In [16], the authors did
not analyze the Hybrid Attack for the GLP-II parameter set. Güneysu et al. [17]
claimed a security level of at least 256 bits (not considering the Hybrid Attack)
for the GLP-II parameter set, whereas we show that it offers at most 233 bits of
security against the Hybrid Attack.

6 Conclusion and Future Work

In this work we described a general version of the Hybrid Attack and presented
improved and detailed techniques to accurately analyze the runtime of the Hy-
brid Attack. For the first time, this enables researchers to correctly analyze the
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Parameter set GLP-I GLP-II

Optimal runder/rover 30/54 168/192

Optimal δr,under 1.00776 1.00450
Optimal δr,over 1.00769 1.00451

Corresponding punder/pover 2−41/2−25 2−61/2−49

Security under/over in bits 71/88 212/233

In [16], [17] 75 to 80 ≥ 256

r used in [16] 85 —
Table 6. Optimal attack parameters and security levels against the Hybrid Attack for
GLP.

security of their cryptographic schemes against the Hybrid Attack such that
the resulting security estimates can be relied upon. We strongly encourage re-
searchers to use our new improved methods for future security estimates instead
of the inaccurate approaches used previously. In the final part of this work we
reevaluated various cryptographic schemes regarding their security against the
Hybrid Attack. Our analysis shows that several the old security estimates of
previous works were in fact unreliable. By updating these unreliable estimates
we contributed to the trustworthiness of security estimates of lattice based cryp-
tography.

For future work, we hope that more provable statements about the practical-
ity of the Hybrid Attack can be derived. For instance, our results show that the
Hybrid Attack is not the best known attack on all NTRU instances as previously
thought. It would be interesting to prove that under certain conditions on the
key structure the Hybrid Attack is always outperformed by some other attack.
Another possible line of future work is applying the Hybrid Attack to a broader
range of cryptographic schemes than already done in this work.
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A Appendix

On q-ary Lattices

A.1 Constructing a Basis of the Required Form

In the following lemma we show that for q-ary lattices, where q is prime, there
always exists a basis of the form required for the attack. The size of the identity
in the bottom right corner of the basis depends on the determinant of the lattice.
In the proof we also show how to construct such a basis.

Lemma 3. Let q be prime, m ∈ N, and Λ ⊂ Zm a q-ary lattice.

1. There exists some k ∈ Z, 0 ≤ n ≤ m such that det(Λ) = qk.

2. Let det(Λ) = qk. Then there is a matrix A ∈ Zm×(m−k)q of rank m− k (over
Zq) such that Λ = Λq(A).

3. Let det(Λ) = qk and A =

(
A1

A2

)
with A1 ∈ Zk×(m−k)q ,A2 ∈ Z(m−k)×(m−k)

q

be a matrix of rank m−k (over Zq) such that Λ = Λq(A). If A2 is invertible
over Zq, then the columns of the matrix

B′ =

(
qIk A1A

−1
2

0 Im−k

)
∈ Zm×m (1)

form a basis of the lattice Λ.

Proof. 1. Obviously det(Λ) | det(qZm) = qm, since qZm ⊂ Λ, and therefore
det(Λ) is some non-negative power of q, because q is prime.

2. We have (Zm : qZm) = (Zm : Λ) · (Λ : qZm) and therefore

(Λ : qZm) =
(Zm : qZm)

(Zm : Λ)
=

det(qZm)

det(Λ)
= qm−k.

Let A′ ∈ Zm×mq be some lattice basis of Λ. Since Λ/qZm is in one-to-one
correspondence to the Zq–vector space spanned by A′.This vector space has
to be of dimension m − k and therefore A′ has rank m − k over Zq. This
implies that there is some matrix A consisting of m− k columns of A′ such
that Λ = Λ(qIm | A) = Λq(A).

3. By assumption A2 is invertible and thus we have

Λ =
{

v ∈ Zm | ∃w ∈ Z(m−k) : v = Aw mod q
}

=

{
v ∈ Zm | ∃w ∈ Z(m−k) : v =

(
A1

A2

)
A−12 w mod q

}
=

{(
A1A

−1
2

Im−k

)
w | w ∈ Z(m−k)

}
+ qZm.

Therefore the columns of the matrix(
qIm

∣∣A1A
−1
2

Im−k

)
∈ Zm×(m+(m−k))

form a generating set of the lattice Λ, which can be reduced to the basis B′.
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A.2 Modifying the GSA for q-ary Lattices

Typically, the Gram-Schmidt lengths obtained after performing a basis reduction
with quality δ can be approximated the Geometric Series Assumption (GSA),
see the Preliminaries. However, for q-ary lattices, this assumption needs to be
modified in order to accurately reflect the reality. This has already been consid-
ered and confirmed with experimental results in previous works, see for exam-
ple [18, 20, 22, 30]. However, in this work we derive simple formulas predicting
the quality of the reduction, and therefore explain how to obtain these formulas
in more detail. We begin by sketching the reason why the unmodified GSA does
not hold for q-ary lattices, given a lattice basis B of the form

B =

(
qIa ?
0 Ib

)
∈ Zd×d,

where d = a + b. How to construct such a basis for a q-ary lattice is shown in
Appendix A.1. Then, if the basis reduction is not strong enough, i.e. the Hermite
delta is too large, the GSA predicts that the first Gram-Schmidt vectors of the
reduced basis have norm bigger than q. However, in practice this will not happen,
since in this case the first vectors will simply not be reduced. This means, that
instead of reducing the whole basis B, one can just reduce the last vectors that
will actually be reduced. Let k denote the (so far unknown) number of the
last vectors that are actually reduced (i.e., their corresponding Gram-Schmidt
vectors according to the GSA have norm smaller than q). We assume that the
basis reduction is sufficiently weak that k < d and sufficiently strong such that
k > b. We write B in the form

B =

(
qId−k D

0 B1

)
for some B1 ∈ Zk×k and D ∈ Z(d−k)×k. Now instead of B we only reduce B1 to
B′1 = B1U for some unimodular U ∈ Zk×k. This yields a reduced basis

B′ =

(
qId−k DU

0 B′1

)
of B. The Gram-Schmidt basis of this new basis B′ is given by

B′ =

(
qId−k 0

0 B′1

)
.

Therefore, the lengths of the Gram-Schmidt basis vectors B′ are q for the first
d − k vectors and then equal to the lengths of the Gram-Schmidt basis vectors
B′1, which are smaller than q. In order to predict the lengths of B′ we can apply
the GSA to the lengths of the Gram-Schmidt basis vectors B′1, since they are
actually reduced. What remains is to determine k. Assume we apply a Basis
reduction on B1 that results in a reduced basis B′1 of Hermite Delta δ. By our
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construction we can assume that the first Gram-Schmidt basis vector of B′1 has
norm roughly equal to q, so the GSA implies

δk det(Λ(B1)
1
k ) = q.

Using the fact that det(Λ(B1)) = qk−b and k < d, we can solve for k and obtain

k = min

(⌊√
b

logq(δ)

⌋
, d

)
. (2)

Summarizing, we expect that after the basis reduction our Gram-Schmidt basis
B′1 has lengths R1, . . . , Rd, where

Ri =

{
q, if i ≤ d− k

δ−2(i−(d−k)−1)+kq
k−b
k , else

(3)

and k is given as in Equation 2.
Note that it might also happen that the last Gram-Schmidt lengths are pre-

dicted to be smaller than 1. In this case these last vectors will also not be
reduced in reality, since the basis matrix has the identity in the bottom right
corner. Therefore, in this case the GSA has to be further modified. However, for
realistic attack parameters this phenomenon never occurred during our runtime
optimizations and therefore we do not include it in our formulas and leave it to
the reader to do the easy calculations if needed.
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