
ParTI – Towards Combined Hardware
Countermeasures against Side-Channel and

Fault-Injection Attacks

Tobias Schneider1, Amir Moradi1, and Tim Güneysu2

1 Horst Görtz Institute for IT Security, Ruhr-Universität Bochum, Germany
{tobias.schneider-a7a, amir.moradi}@rub.de

2 University of Bremen and DFKI, Germany
tim.gueneysu@uni-bremen.de

Abstract. Side-channel analysis and fault-injection attacks are known
as major threats to any cryptographic implementation. Hardening cryp-
tographic implementations with appropriate countermeasures is thus es-
sential before they are deployed in the wild. However, countermeasures
for both threats are of completely different nature: Side-channel analysis
is mitigated by techniques that hide or mask key-dependent information
while resistance against fault-injection attacks can be achieved by redun-
dancy in the computation for immediate error detection. Since already
the integration of any single countermeasure in cryptographic hardware
comes with significant costs in terms of performance and area, a com-
bination of multiple countermeasures is expensive and often associated
with undesired side effects.
In this work, we introduce a countermeasure for cryptographic hardware
implementations that combines the concept of a provably-secure masking
scheme (i.e., threshold implementation) with an error detecting approach
against fault injection. As a case study, we apply our generic construction
to the lightweight LED cipher. Our LED instance achieves first-order
resistance against side-channel attacks combined with a fault detection
capability that is superior to that of simple duplication for most error
distributions at an increased area demand of 12%.

1 Introduction

Over the last years, implementation attacks have seen a rise in popularity due to
their ability to break cryptographic implementations which were believed to be
cryptanalytically secure. Their power is based on vulnerabilities in the physical
implementation instead of flaws in the cryptographic algorithm. The two most
popular types of implementation attacks are side-channel analysis (SCA) and
fault injection (FI) attacks.

SCA are passive attacks which exploit the information leakage related to
cryptographic device internals through side channels, e.g., power consumption
of a device [24]. Usually they involve a considerable number of measurements
and statistical tools to extract the sensitive information from the device. Over

2 Tobias Schneider, Amir Moradi, and Tim Güneysu

the years, various different types of attacks have been proposed with a large
variety in capabilities and complexity. As a consequence, a wide range of coun-
termeasures has been developed to thwart these attacks. Compared to other
types of countermeasures, masking (as a form of secret sharing) has attracted
the most interest inside the side-channel community. With its sound theoretical
foundation, masking can be applied at different levels of abstraction to secure
designs. Still the secure implementation of a masking scheme remains a major
challenge since effects such as glitches in hardware circuits can completely in-
validate the security assumptions of the schemes [26,27]. In response, Threshold
Implementation (TI) [32], as a concept between Boolean masking and multi-
party computation, has been specifically developed for hardware platforms to
maintain security properties even in the presence of glitches. The TI concept
has been applied to many algorithms including PRESENT [36], AES [5, 16, 29],
KATAN [6, 31], Keccak [4], arithmetic addition [43], Simon [44], PRINCE and
Midori [30], and all 4-bit Sboxes [8].

Active FI attacks pose a further serious threat to instantiated cryptographic
algorithms [3] by injecting a fault during its execution. The adversary then de-
rives sensitive information from the erroneous output of the device. For more
sophisticated attacks on symmetric schemes to work, multiple of these erroneous
outputs need to be combined. Like for SCA, there are a wealth of attacks and
possibilities to generate faults during the computation, e.g., by clock or power
glitches or positioned photon injection using lasers. In terms of countermeasures,
the majority of published concepts are based on the principle of concurrent error
detection (CED). The main idea is to utilize redundancy in time or area to en-
able quasi-immediate detection of faults. Some CED schemes integrate the use
of error detecting codes to enhance their level of protection. Over the years, var-
ious different codes have been studied to harden cryptographic implementations
against FI attacks. Due to its simplicity, parity check codes are commonly used
in this context [2, 23]. Other schemes based on non-linear codes (e.g., [21, 22])
were brought up to their beneficial fault coverage. Recently, the class of infective
countermeasures have been put forward which do not require an explicit final
check before returning the result. [17].

As previously discussed, it is mandatory for cryptographic devices to inte-
grate dedicated SCA and FI countermeasures if they are operated in untrusted
environments. Still the majority of proposed SCA and FI countermeasures have
been solely evaluated separately, though both classes need to be integrated in
a single device. For simple countermeasures (e.g., applying plain redundancy in
area and time), a separate evaluation is justified since multiple executions of the
same SCA-protected operation are admissible (with few exceptions). However,
more sophisticated FI countermeasures are likely to affect the SCA counter-
measure to a higher degree which can have a severe impact on the security
and efficiency of the combined scheme. For example, if parity bits used by FI
countermeasures are computed over unmasked intermediate values, it leads to
a side-channel leakage even if the rest of the design in perfectly masked. Thus,

Title Suppressed Due to Excessive Length 3

a careless integration may easily lead to contradicting the assumptions of the
underlying masking scheme, and hence failure of the masked design.

Related Work. In response, a few countermeasures have been proposed pro-
viding resistance against both kind of attacks. At the gate level, we refer to
dual-rail logic styles (e.g., WDDL [46]) which – due to the additional presence
of dual counterparts of the circuit – inherently offer a fault detection feature.
However, the error detection rate is limited to the concept of simple duplication.

Furthermore, coding schemes have been used for combined countermeasures
as well. Wiretap codes that have been applied as an SCA countermeasure [12,28]
at algorithm level, can also provide a certain level of fault detection. Additionally,
there are further examples [11] that use coding techniques for enhanced resistance
against both types of attacks. However, most of the schemes are either designed
for software implementations or provide only limited security at the expense of
high overheads.

Besides combined countermeasures, there are also combined attacks which
use a combination of fault injection and side-channel analysis to extract a se-
cret. Several different attacks have been proposed against protected AES im-
plementations where masking together with various fault countermeasures are
integrated [13,15,39]. Our analyses consider this powerful threat as well.

Our Contribution. We propose a new combined physical protection scheme
targeting hardware platforms. As mentioned before, the integration of CED
schemes by simple time or area redundancy into masked designs is straight-
forward (see [48] for definitions). However, such constructions are not able to
detect certain types of faults (e.g., identical faults which are injected in both
instances of the design) and rather costly. Therefore, our target in this work is
to merge more sophisticated information redundancy approaches (namely error
detecting codes) with provably secure masked hardware designs. More precisely,
we demonstrate how to integrate an error detecting code into first- (or higher-)
order TI designs, while preserving all security requirements and features of the
underlying TI concept. We formalize our methodology to allow various types
of codes which provide the most flexibility in terms of protection and area re-
quirement. We include a thorough analysis on the resistance of the combined
countermeasure regarding the chosen order of TI and the parameters of the
code. Note that the straightforward hardware duplication can be regarded as
subtype of our combined countermeasure, but our generic concept enables to
tweak the protection of the resulting design by the choice of code.

For practical evaluation we present a case-study on the cipher LED [19] that
simplifies the explanation of the underlying concept due to its simple structure.
We provide practical evaluations of our design implemented on an FPGA with
respect to any detectable first-order leakage. Moreover, we evaluate the perfor-
mance, area overhead as well as the fault coverage of the integrated information
redundancy scheme. Note that the representations included in this work primar-
ily discuss the case of a first-order TI design of LED with fault detection facility

4 Tobias Schneider, Amir Moradi, and Tim Güneysu

based on Hamming codes. But we like to emphasize that our generic construc-
tion can be similarly applied to any-order TI designs of other ciphers that are
using different error detecting codes.

2 Background

For self-containedness of this work we briefly discuss the relevant background in
this section.

2.1 Threshold Implementation

We briefly review the concept of Threshold Implementations (TI). For detailed
information we refer the interested reader to the original articles [6, 33].

For simplicity but without loss of generality, let us assume a 4-bit inter-
mediate value of an arbitrary cipher with 4-bit S-Box, e.g., PRESENT [10] or
LED [19]. We denote this corresponding 4-bit value as x = 〈x1, . . . , x4〉. In TI, x

is represented in n−1 order Boolean masked form (x1, . . . ,xn), where x =
n⊕

i=1

xi

and each xi similarly denotes a 4-bit vector 〈xi1, . . . , xi4〉.
The linear functions, such as MixColumns of AES or LED, can be simply

applied to the shares of x by L(x) =
n⊕

i=1

L(xi). However, the realization of the

S-Box over Boolean masking is not trivial. If the algebraic degree of the S-Box
is denoted by t, the minimum number of shares to realize an S-Box protected
against first-order attacks is n = t+1. To ensure correctness for the computation,
this S-Box needs to provide the output y = S(x) in shared form (y1, . . . ,ym)

with y =
m⊕
i=1

yi and m ≥ n for bijective S-Boxes. In case of bijective S-Boxes

(e.g., as for AES, PRESENT, and LED) the bit length of x and y (respectively
of their shared forms) are identical.

Each output share yj∈{1,...,m} is given by a component function fj(·) over a
subset of input shares. For first-order security, each component function fj∈{1,...,m}(·)
must be independent of at least one input share. This requirement on the inde-
pendence from at least one share is defined as non-completeness property.

Since the security of masking schemes is based on the uniform distribution
of the masks, the output of a TI S-Box must be also uniform since it is used
as input in further parts of the implementation (e.g., the S-Box output of one
cipher round which is given to the next S-Box after being processed by the
linear diffusion layers). This property of uniformity requires for a bijective S-
Box (n = m) each (x1, . . . ,xn) to be mapped to a unique (y1, . . . ,yn). In other
words, it is sufficient in this case to check whether the TI S-Box forms a bijection
with a 4 · n input (and output) bit length.

As an example, take the PRESENT (LED) S-Box which has algebraic degree
of t = 3. Hence, the number of input and output shares n = m > 3 what
directly affects the complexity of the circuit and its associated area overhead.

Title Suppressed Due to Excessive Length 5

Therefore, it is preferable to decompose the S-Box S(·) into smaller bijections,
e.g., g ◦ f(.), each with maximum algebraic degree of 2. The authors of [36]
presented a decomposition of the PRESENT S-Box into two bijections g and f,
each of which with an algebraic degree of 2. These parameters keep the number
of shares for input and output at a minimum, i.e., n = m = 3.

2.2 Error Detecting Codes

Error detecting codes (EDC) are primarily used to transmit data over an unre-
liable communication channel. Those properties and notation of EDC that are
also relevant for remainder of this work will be highlighted in the following [25].

Definition 1. A linear code C of length n over Fq is a vector subspace over Fn
q .

We only consider binary codes (i.e., q = 2) in this work since they provide the
best performance for our projected use-case in symmetric cryptography. A linear
code C that maps messages of length k to codewords of length n is commonly
denoted as an [n, k]-code.

Definition 2. A generator matrix G of an [n, k]-code C comprises n basis vec-
tors of C with length k.

A generator matrix can be used to transform a given message m ∈ Fk
q to the

corresponding code word c ∈ C as c = m ·G.

Definition 3. A matrix H ∈ F(n−k)×n
q with the property

0 = H · cT , ∀c ∈ C (1)

is denoted as parity check matrix of the code C.

Such matrix can be used to easily check if a given c is a valid codeword of C.

Definition 4. The minimum distance d of a linear code C is defined as

d = min({wt (c1 ⊕ c2) |c1, c2 ∈ C, c1 6= c2}), (2)

where wt(x) returns the number of 1’s in the vector x (known as Hamming
weight). We denote a linear code C of length n, rank k and minimum distance
d as an [n, k, d]-code. The minimum distance of a code determines its error
detection and correction property.

Definition 5. A code C with minimum distance d can be used to either detect
u = d− 1 or correct v =

⌊
d−1
2

⌋
errors. If d is even, C can simultaneously detect

u = d
2 and correct v = d−2

2 errors.

Given an erroneous codeword c′ = c⊕ e, where e is known as the error vector, a
u-error detecting code is able to detect that c′ is faulty as long as wt(e) ≤ u.

6 Tobias Schneider, Amir Moradi, and Tim Güneysu

Fig. 1. A common structure of CED schemes using EDC.

Definition 6. The generator matrix G of a systematic code C is of the form
G = [Ik|P] where Ik denotes the identity matrix of size k.

Each codeword c of a systematic code consist of the message itself which is
padded by check bits, i.e, c = [m|p]. The check bits p1 are generated by the
rearward part of the generator matrix G represented by P . Note that all linear
non-systematic codes can be transformed into a systematic code with the same
minimum distance [9].

2.3 Concurrent Error Detection

Concurrent Error Detection (CED) systems are commonly used to detect ar-
bitrary faults during the execution of an operation what makes them also an
appropriate countermeasure against FI attacks [20]. Typically CED techniques
rely on different types of redundancy to detect faulty computations. The most
straightforward approach implements redundancy by multiple executions which
results either in an increased area or in an increased time complexity. Certain
intermediate values of different runs are compared with each other to detect
errors.

As already indicated in the introduction, some CED schemes use error de-
tecting codes following a structure similar to Figure 1 to achieve a better fault
coverage. In this basic example, CED is used to protect an Operation which is
applied to a given Input. Initially, the CheckBits of the Input are generated
by means of the Generator matrix of the code. A Predictor takes Input and
CheckBits and returns the predicted check bits of the output of Operation.
These are compared with the actual CheckBits of the output. If a detectable
error (depending on the type of the code) occurred during the execution, these
two types of CheckBits will not be identical. Thus, a possible attack can be
detected and averted. It should be noted that, depending on the target algorithm
and the integrated code, the prediction functions can have an exalted level of
complexity. Thus, the overhead of some CED schemes using EDC can be similar
to a complete duplication of the operation.

1 Note that p can be also considered as a form of parity bits.

Title Suppressed Due to Excessive Length 7

Traditionally, the effectiveness of these fault detection countermeasures was
examined in a uniform fault model. However, recent publications [20] have shown
that this model does not closely resemble real-world attacks and that some of
the presented countermeasures are in fact vulnerable to biased fault attacks [35].

3 Methodology

In this section, we introduce our methodology to develop a combined coun-
termeasure against side-channel and fault injection attacks that is specifically
tailored for hardware platforms. We first discuss the necessary considerations
and restrictions of a combined scheme. This is followed by a detailed descrip-
tion of the attacker model and how to design a scheme to support arbitrary
applications.

3.1 Design Considerations

Firstly, our countermeasure is designed for hardware platforms. Thus, efficiency
in software is not a concern in the design process. As hardware circuits are
often used to achieve high performance, a primary design goal is to minimize
the impact of the countermeasure on the performance.

Secondly, in terms of SCA countermeasure we aim at providing provable
security (at least to a certain order). Therefore, hiding techniques are not appli-
cable and we have to rely on masking. Given the first design goal, this leaves us
with TI as it comes with a reasonable performance overhead compared to other
masking schemes in hardware circuits [37].

Thirdly, our scheme aims to be more secure against (realistic) FI attacks
than simple duplication. Doubling the masked hardware circuit is a straight-
forward way to combine masking with some form of redundancy. However as
mentioned before, simple duplication can be highly vulnerable to fault attacks
if the fault model follows a different distribution than uniform. Therefore, we
aim at building a scheme that is more robust against adversaries exploiting the
effect of (reasonably) biased distributions. In this context, we choose EDC due
to their sound theoretical foundation providing solid bounds on the number of
detectable errors. Nevertheless, the balance between the error detection capabil-
ity and runtime performance is essential to not severely impact our first design
goal.

3.2 Attacker Model

Since our scheme aims to provide resistance against both SCA and FI attacks,
we evaluate our methodology in a model that incorporates both types of threats.
In the following, we assume an adversary that can observe the physical charac-
teristics of the design during execution and further is able to inject faults in the
circuit.

8 Tobias Schneider, Amir Moradi, and Tim Güneysu

We assume a computationally bounded adversary that can observe the power
consumption of our design during a finite number of executions. Note that secu-
rity guarantees of TI also hold with respect to other side channels, e.g., electro-
magnetic emanations. Due to the computational restriction of the adversary, we
can bound the number of possible observations. Given that the complexity of an
attack increases with its order, we bound the adversary by the highest order of
an attack he is able to mount. In other words, the adversary is able to observe a
limited number of executions that is just enough to perform attacks of order d
but not of order d+1. The actual order depends on the platform and the desired
level of security.

Furthermore, the adversary is able to inject faults in the hardware circuit.
In our model, we assume that injected faults only target the data path of the
implementation and exclude the control flow. This is a different aspect of fault
attacks which is not specific to our scheme. Given that the control flow usually
does not need to be protected by masking, it is not considered in our combined
countermeasure. Nevertheless, our combined countermeasure needs to be im-
plemented together with a protected control flow to ensure complete security.
There are various solutions to this problem. Even the EDC aspect from our
combined countermeasure can be used to harden the control flow as described
in [45]. Therefore, we model the injected faults as an error random variable E
following a specific distribution E . In our model, an error vector e ∈ Fn

q with
probability Pr[E = e] is sampled for each injected fault from the distribution
and added (XORed) to the current state of the execution as state′ = state⊕ e.
The execution continues the computation with the altered state state′. In the
following, we consider two different types of the error distribution.

Since most existing works assume a uniform fault model, we also first examine
our combined countermeasures against an adversary with a uniform distribution
EU so that Pr[E = e1] = Pr[E = e2], ∀e1, e2 ∈ E.

Furthermore, we consider a biased distribution EB , where one specific set of
error vectors E1 ⊂ E is significantly more probable than the set of remaining
error vectors E2 ⊂ E with Pr[E = e1] � Pr[E = e2], ∀e1 ∈ E1, e2 ∈ E2. The
sets are determined by the type of faults that are considered in the model, e.g.,
E1 : ∀e, wt(e) ≤ u. In an extreme case, E1 only contains one specific error vector
e with wt(e) = 1. This scenario is akin to laser-based fault injections in which
single bits can be targeted.

3.3 Code Selection

Obviously, the choice of the code strongly affects the efficiency and fault coverage
of the resulting combined scheme. In this context, it is not possible to provide one
specific code that exhaustively fits to all possible application scenarios. Instead,
the code needs to be specifically chosen according to the target algorithm to
yield optimal results. A poorly chosen code can cause a significant overhead
while offering only little benefit in terms of fault coverage. In this subsection we
discuss about necessary considerations made in the code selection process and
give guidelines on the criteria how to pick a code.

Title Suppressed Due to Excessive Length 9

Linear Codes. One important aspect in the design of a TI is the algebraic de-
gree of the targeted functions. As explained in Section 2.1, the algebraic degree
determines the minimum number of necessary shares. Given that the prediction
functions are also part of the intended TI, it is crucial that they possess the
same algebraic degree as the original function. Otherwise, the requirement of an
additional share negatively affects the area complexity of the resulting design.
This property is trivially fulfilled by linear codes. The encoding and decoding
functions of linear codes are linear. Therefore, adding a decoding function before
and an encoding function after the target function (cf. Figure 3) to obtain the
predictor guarantees that the emerging function has the same algebraic degree
as the target function. For non-linear codes this property is not always satisfied.
In addition, the encoding/decoding functions of linear codes can be implemented
extremely efficiently which makes the necessary error check also very efficient.
In the remainder of this work, we therefore only consider linear codes.

Systematic Codes. Systematic codes are advantageous to improve the efficiency.
Due to their specially structured generator matrix (cf. Definition 6), the output
of the targeted function does not need to be decoded to recover the correct
result since the message is part of the codeword. This helps to eliminate one
otherwise necessary step at the end of the design. Furthermore, the distinction
between target function and predictor – as depicted in Figure 1 – is otherwise
not easily possible. Since one half of the design is nearly completely unaltered
by the inclusion of fault countermeasure, it also allows the reuse of existing TI
designs. This design decision does not limit the choice of codes since (as already
mentioned in Section 2.2) every linear non-systematic code can be transformed
into a systematic code with the same minimum distance.

Code Parameters. The choice of the three parameters of a linear code n, k, and d
depends on the target algorithm. A good practice is to derive the code dimension
k from the size of a single element that is used in most functions of the targeted
algorithm, e.g., for an algorithm that performs most of its operations in GF (28)
it is advisable to set k = 8. This way unnecessary overhead due to the split
or merge of check bits is avoided. Furthermore, the code length n also affects
both the efficiency and fault coverage of the design. To achieve a desired error
detecting level of u = d − 1, a certain minimal size of n is required. However,
if n is chosen too large, the number of check bits increases resulting in a high
area complexity. Therefore, it is important to find a good tradeoff between the
length of the code n and its minimum distance d. In the following, we aim at
a design in which the predictors work solely on the check bits. To achieve this,
it is necessary that the message m can be fully recovered using the check bits
p. Assuming that the message has full entropy (which is usually the case in
symmetric cryptographic applications), it is advisable to set the rank to at least
n ≥ 2k.

10 Tobias Schneider, Amir Moradi, and Tim Güneysu

3.4 Threshold Implementations with Error Detecting Codes

To achieve the desired level of security against SCA adversaries, it is necessary to
implement all required functions according to the principles of TI. In particular,
this includes the prediction functions as well. As it was already thoroughly dis-
cussed in [7, 8] we omit the detailed explanation how to construct TI-compliant
shared representations of arbitrary functions. Instead, we describe the specifics
of including EDC in a TI design and how to easily find the TI of the predictors.

Notation. In the following, we assume a systematic linear code, which allows
message recovery from the check bits. Further, we denote the input to the tar-
get algorithm by mi with nm = |mi| as its bit length and the corresponding
check bits as pi with np = |pi|. The output of the target algorithm and its cor-
responding check bits are indicated by mo and po respectively. Since the code
does not change during the execution, the outputs have the same size as their
corresponding inputs. Further, we assume that the TI of the target algorithm
requires a minimum of s shares to be secure. To this end, the messages and their
corresponding check bits need to be masked accordingly as

mi =

s⊕
j=1

mj
i , pi =

s⊕
j=1

pj
i , mo =

s⊕
j=1

mj
o, po =

s⊕
j=1

pj
o.

Basic Structure. Due to the special characteristics of the chosen code, it is pos-
sible to split up the computations of the underlying target algorithm and the
predictors. The two output values mo and po are calculated completely inde-
pendent of each other. This leads to the basic structure as depicted in Figure 2.
There is an additional element (Error Check) which receives intermediate
states of both circuits as input and checks if an error has occurred. The fre-
quency for these checks is a variable in the specific design process, but it affects
both the area and the fault coverage of the complete circuits. The higher the
check frequency, the higher is the fault coverage but also the area requirements.
In the most basic approach, only mo and po are checked after a cipher run is
complete.

For some TI designs a mask refresh during the execution is necessary to re-
tain uniformity, e.g., for the AES S-Box [5]. Given that our proposed predictors
are identical to the target function with an initial and final affine transformation,
it is likely that they require a mask refresh depending on the shared function.
Obviously, this can lead to a non-negligible overhead depending on the target
algorithm. However, the separate computation paths (of the original and pre-
dictors) allow reusing the fresh randomness to some degree. Since both parts
are completely independent and their respective intermediate values are never
given to a joint function (except for the error check), it is possible to use the
same random bits to refresh both sides. In the other case, where the predictors
get inputs from both sides, this is not feasible without harming the uniformity
property which would violate the security proofs of TI. For the error check, it is
necessary to compute a function which takes inputs from both sides. However,

Title Suppressed Due to Excessive Length 11

Fig. 2. The basic structure of our combined scheme.

in our scheme (and many others) this check can be implemented in a way that
it only leaks the occurrence of a fault. For this to work, it is necessary that
both sides use the same random masks which enables a separate error check
on every share as also proposed as a countermeasure against combined attacks
in [15,39]. This has obviously an impact on the efficiency of the design since the
total amount of randomness is reduced due to the mask reuse.

We illustrate this problem with an example. Let us assume a function F with
two input bits a, b with F (a, b) = ab. The corresponding check bit is defined as
c = a+b with the predictor Fp(a, c) = a+ac. As noted in [8], there is no uniform
sharing of F . Instead, a virtual share is added to achieve uniformity. The shared
functions using one virtual share are

F1 = a2b2 + a2b3 + a3b2 + r (3)

F2 = a3b3 + a1b3 + a3b1 + a1r + b1r (4)

F3 = a1b1 + a1b2 + a2b1 + a1r + b1r + r, (5)

where r is randomly drawn from a uniform distribution. Analogously, the pre-
dictor can be shared as

Fp1 = a2 + a2c2 + a2c3 + a3c2 + r (6)

Fp2 = a3 + a3c3 + a1c3 + a3c1 + c1r (7)

Fp3 = a1 + a1c1 + a1c2 + a2c1 + c1r + r. (8)

If both (F1, F2, F3) and (Fp1, Fp2, Fp3) share the same r, the resulting six output
bits would not be jointly uniform. Meaning that, they cannot be used as input
to another joint function (i.e., another predictor) without violating the uniform
input property of TI. To fix this, double amount of fresh randomness (i.e., one
r bit for each part) is required.

Shared Predictors. Contrary to ordinary CED schemes, our predictors need to
comply with the requirements of TI. In other words, the prediction functions

12 Tobias Schneider, Amir Moradi, and Tim Güneysu

(a) affine (b) non-linear

Fig. 3. Derivation of shared predictors for three shares.

work on masked check bits and fulfill the non-completeness, correctness, and
uniformity properties. Finding functions with all these characteristics can be
difficult for certain codes. However, in our presented scenario (i.e., a systematic
linear code with a sufficiently large rank) it can be significantly simplified.

The general approach is shown in Figure 3 with the example of affine and
non-linear functions with three shares. π : Fnm

2 → Fnp

2 denotes the generation
of the check bits using P , the right part the generator matrix. Respectively,
π−1 : Fnp

2 → Fnm
2 is defined as its inverse, i.e., recovery of the message from

the check bits. To derive the shared representation of the predictor from the
target functions, each input share is first transformed using π−1. Then the tar-
get function is applied and each resulting share is run through π to generate the
corresponding check bits again. Of course, the steps do not have to be performed
segregated. Instead, they are merged and subsequently optimized to achieve a
better performance. The resulting functions trivially comply with the correct-
ness property. Given that π and π−1 operate on single shares, non-completeness
is also maintained. Regarding the uniformity of the output shares, we need to
differentiate between two cases. For np = nm, the uniformity property is pre-
served from the target functions as noted in [41]. The encoding and decoding
operations are only affine transformations which do not influence the uniformity
in this setting. However, for np > nm this observation does not generally hold. If
the steps are performed in an isolated manner, the reduction of the input shares
to size nm will come with a reduction in entropy. In result, the enlarged output
shares are no longer uniform. A trivial solution would be the inclusion of a fresh
random value to restore uniformity. However, this reduces the performance of
the design and is therefore undesirable. A more efficient solution is to merge the
three steps (i.e., π−1, F , π) and eliminate the reduction of the input shares.

Depending on the operation, this optimization can be very effective. Espe-
cially if π and π−1 are linear over the F they can be partially canceled out. As
mentioned before, functions with a high degree are often decomposed to reduce
the number of shares. Usually there are multiple possibilities for decomposition
with different efficiencies. Depending on the scenario, these decompositions do
not need to be the same for the predictors. In these cases, the final result is still
the same but not necessarily the intermediate values. This enables more efficient

Title Suppressed Due to Excessive Length 13

designs while leading to some limitations in the error detection, as discussed
later on.

Error Detection. As noted before, the rate of error detection inside the algorithm
affects the performance, area consumption and fault coverage of the design.
Frequent error checking thwarts potential optimizations of the predictors what
finally leads to larger circuits.

The error checking is performed similar to Figure 1. However, in our basic
scenario (without reusing randomness) the intermediate values are split up into
multiple shares via Boolean masking. To still detect if an error has occurred,
a two-step approach denoted as Check-And-Combine is required. In the first
step Check, the parity check matrix is multiplied with each share of the code-
word. Thus, the resulting error check vectors vj

int are computed as

vj
int = H ·

(
cjint

)T
= π(mj

int)⊕ pj
int, 1 ≤ j ≤ s. (9)

If no error has occurred, these error vectors are a random sharing of the null
vector. To check this, the error vectors are combined via XOR in the second
step Combine. However, without any registers this procedure is equivalent to a
function which has all shares of both parts of the circuit as input. This certainly
violates the non-completeness property of TI. To this end, it is necessary to split
up the second step Combine into multiple parts and include registers in between.
In case of a first-order secure design, all but one of the shares are first combined.
The result and the last share are then stored in a register and combined as

vint =

s−1⊕
j=1

vj
int

⊕ vs
int. (10)

If vint is not the null vector, an error has been detected. The last XOR technically
violates the non-completeness property as it unmasks vint by merging all shares.
However, vint holds no information about the sensitive intermediate values of the
circuit. Therefore, the SCA resistance of the design is not jeopardized by this.
An exemplary error check procedure with three shares is depicted in Figure 4.

Fig. 4. Computation and unmasking of the error check vector for three shares in a
first-order secure design.

It should be noted that the initial input values are indeed in compliance with

14 Tobias Schneider, Amir Moradi, and Tim Güneysu

the uniformity property of TI. The input values v1,2
int and v3

int to the second
part (right of the registers) are not jointly uniform given that if no error has
occurred they are identical. Yet this does not affect the security of the resulting
design since (as argued before) vint does not hold any information related to
sensitive intermediate values. This security guarantee still holds if the same
randomness is used for masking both mint and pint. Even though the input
to the multiplication with H is not uniform, it does not pose a problem as it
is applied to each share separately and the resulting vint does not hold any
information related to sensitive intermediate values.

The Check-And-Combine procedure can be further simplified. To this end,
it is necessary that all randomness is reused and the check bits are carefully
generated and predicted during the cipher run. One possibility to generate the
check bits assuming np = nm is

pj
i =


π (mi)⊕ rj , for 1 ≤ j < s

π (mi)⊕

(
s−1⊕
j=1

rj

)
, for j = s

(11)

where rj denotes uniformly distributed fresh random masks with rj ∈R Fk
2 , 1 ≤

j < s. Hence, the same masks are used for mi and pi. However, each share of
the codeword cji = [mj

i |p
j
i] is for itself not a valid codeword. The Combine-step

is still necessary for error detection. To avoid this, the generation of the check
bits need to be adjusted to

pj
i = π(mj

i), 1 ≤ j ≤ s. (12)

Now each share of the codeword is valid and can be checked separately. In other
words, each pj

i can now be used to check its related mj
i which makes the Com-

bine-step unnecessary. Instead, if no error has occurred every vj
i will be the

null vector. To maintain this property, it is necessary that the predictors match
exactly the main functions with additional encoding. Therefore, the aforemen-
tioned optimization technique regarding the decompositions of functions cannot
be applied. Otherwise the pj

i would lose this characteristic and an additional
Combine-step becomes necessary. It should be noted that this only works given
that np = nm. Otherwise additional fresh randomness is required to achieve a
uniform sharing of pi making it impossible to check each share separately.

Overhead. The overhead of our scheme obviously depends on the chosen code and
the underlying algorithm. Simple duplication, for example, is just an extreme
case of our combined countermeasure in which P of the generator matrix is
set to the identity matrix. However, if randomness is reused and np ≤ n, the
amount of fresh randomness is independent of the chosen code. In this case,
our combined countermeasure uses the same amount of randomness as simple
duplication. For other metrics it is not possible to give such a definite rule. Both
area and performance can be worse or better than simple duplication, depending
on how good the predictors can be optimized.

Title Suppressed Due to Excessive Length 15

Combined Attacks. As mentioned in the introduction, there are combined at-
tacks which can break AES implementations with certain combinations of coun-
termeasures. Our proposed countermeasure can be also vulnerable to these kind
of attacks depending on the underlying cipher and chosen code. However, most of
these attacks focus on the error check and exploit that usually a combination of
multiple shares is required. As described before our scheme can be instantiated
without the necessity of a Combine-step which helps to prevent these attacks
that rely on this as a point of attack. In this case, the leakage only contains
information if an error has occurred but not more.

3.5 Security Analysis

We now discuss about the security properties of our combined countermeasure
under the previously defined attacker model. Here, we distinguish between re-
sistance against SCA attacks and FI attacks. In the latter case, our combined
countermeasure is generally compared with a simple duplication of the TI.

SCA Resistance. As mentioned before, the security of a TI is derived from its
order. A first-order TI is provable secure against first-order attacks [32]. Given
that the adversary in our model can perform attacks up to order d, a TI of order
d is accordingly required to protect our design. By following our proposed ap-
proach, the shared predictors are in compliance with the principle of a d-order TI.
Therefore, they provide the same level of security as the d-order TI of the main
circuit. Therefore, our proposed combined countermeasure has the exact level of
SCA-security as a plain d-order TI without FI countermeasures. Furthermore,
this level is independent of the chosen code meaning that simple duplication
does not provide better or worse SCA-protection than a more complex EDC.

FI Resistance. The level of security against FI attacks depends on the parame-
ters of the chosen code. In particular, the code distance d is important for the
detection of certain types of errors. In this context, we can model the simple
duplication countermeasure as a linear [2k, k, 2]-code D with d = 2. This is a
comparably low distance given that such a distance can be achieved by a (in
most cases) much shorter parity [k + 1, k, 2]-code.

The efficiency of a fault countermeasure can be assessed by its fault cover-
age rate which measures the proportion of undetectable faults. To simplify the
analysis, we first assume that the fault is injected into an intermediate state of
the execution which is used for error detection. That is, pint are valid check bits
for mint. As defined before, a fault is modeled as an error vector e 6= 0 that is
added to the state cint = [mint|pint]. For a fault to be undetectable, e needs to
be a valid codeword of the deployed code C. This is rooted in the characteristic
of linear codes in which every valid codeword can be written as the sum of two
valid codewords as

c3 = c1 + c2 = m1 ·G+m2 ·G = (m1 +m2) ·G,

16 Tobias Schneider, Amir Moradi, and Tim Güneysu

with c1, c2, c3 ∈ C. Therefore, if e is not a valid codeword of C the erroneous
result would also not be a valid codeword. Note that the aforementioned addition
property of linear codes still holds for shared codewords. Meaning that if a valid
codeword is added to one of the shares, it would result in a new shared codeword.
With this, we can formally define the fault coverage of a code C as

CoverageC[E ∼ E] = 1− Pr[e ∈ C ∧ e 6= 0], (13)

where the error variable E follows an error distribution E .
Usually the rank of the code k is not chosen to be equal to the size of the

whole input of the algorithm for efficiency reasons. Therefore, the intermediate
state of the execution consists of multiple valid codewords. To further simplify
the analysis we first assume that the adversary only injects one fault in one share
of one codeword of the intermediate state. With |C| = 2k and |E| = 2n we can
derive Pr[e ∈ C∧ e 6= 0] = (2k− 1)/2n and define the fault coverage of the code
C as

CoverageC[E ∼ EU] = 1− 2k − 1

2n
,

in the uniform fault model. Notably, the fault coverage in this model is indepen-
dent of the code distance d. It means that it depends only on the rank k and
the length n. Consequently, simple duplication provides the same fault coverage
as any other code with the same k and n against this type of faults. For D the
length is derived from the rank as n = 2k. The coverage can then be simplified
to

CoverageD[E ∼ EU] = 1− 1

2k
+

1

22k
.

As noted before, the uniform fault model is not a realistic assumption for all
scenarios. Therefore, it is closer to reality to assume that the error distribution
is biased to a certain degree [20]. For example, a clock glitch might cause similar
errors in identical circuits which are close together (i.e., simple duplication). In
this scenario, the fault coverage is severely reduced given that simple duplication
cannot detect identical errors in both circuits. In the following, we assume that
only a limited number of bits is affected by the fault. In the most extreme case,
only one bit is affected which is related to laser fault injection2. We consider a
biased distribution EBb

with the corresponding subsets

E1 = {e | e ∈ E ∧ wt(e) ≤ b} with Pr[e ∈ E1] = 1, (14)

E2 = {e | e ∈ E ∧ wt(e) > b} with Pr[e ∈ E2] = 0. (15)

2 Note that bit flips which we assume in our attacker model might not be realistic for
laser fault injection in certain scenarios [40]. However, we still use it in our model.
The ability to set and reset bits instead of flipping enables trivial attacks in which the
adversary tests each bit of the key to be zero or one. This attack cannot be directly
prevented by our method without additional logic (e.g., allow only a certain number
of faults). However, this is true for a majority of countermeasures and therefore not
an issue unique to our methodology. The designer needs to include further counter-
measures against this attack vector, e.g., splitting the key into multiple shares can
increase the complexity of the attack.

Title Suppressed Due to Excessive Length 17

We assume further that the error vectors in E1 are all equally probable. Depend-
ing on the method of fault injection, certain values of b are easier to achieve than
others. Following this definition, EBn

is equivalent to EU . In this fault model, it
is possible to give specific bounds in which a complete fault coverage is achieved
by our proposed countermeasure. It is trivial to see that an [n, k, d]-code which
can detect u = d− 1 errors still achieves a complete fault coverage in the model
following EBu . However, it depends on the specific code how the fault cover-
age evolves for higher values of b > u. For simple duplication it can be easily
calculated as

CoverageD[E ∼ EBb
] = 1−

b b
2c∑

j=1

(
k
j

)
b∑

i=1

(
n
i

) .
It is notable that a simple duplication scheme achieves full fault coverage only
for b = 1.

Depending on the scenario, there are other possible biased distributions. For
example, if the attacker is only able to inject faults in one part of the design
(target algorithm or check bits) the full fault coverage is achieved for all codes
with d > 1. Furthermore, the ability to inject symmetric errors in both parts
strongly reduces the security of simple duplication. In the most extreme case,
the adversary can pick bits to fault, e.g., by laser injection. In this case the error
detecting capability is directly proportional to the attack complexity assuming
that targeting more single bits by laser at different places increases the costs of
the attack.

In reality, it might not be possible to only target one specific codeword, e.g.,
with round-based architectures. This affects the fault coverage since the error
vector e needs to be valid codeword for every element of the state. Therefore,
the estimation of the coverage can be adapted to include the number of state
elements ns

CoverageC[E ∼ E] = 1− (Pr[e ∈ C ∧ e 6= 0])
ns . (16)

We assume an error check in which each share is not checked separately. There-
fore, the number of shares does not play any role in this estimation since it is
enough to check whether the sum of all shares is a valid codeword as

(c1 ⊕ e1)⊕ (c2 ⊕ e2)⊕ (c3 ⊕ e3) = c⊕ e. (17)

If each share is checked separately, the fault coverage needs to include the number
of shares in the calculation similar to ns.

Up to now, we only considered faults that are injected at one point in time
into an encoded state which is checked for errors. Depending on the power of
the adversary, this scenario may be realistic. However, there are also other cases
in which an attacker is more powerful and can inject more sophisticated types
of errors.

18 Tobias Schneider, Amir Moradi, and Tim Güneysu

One of these types are faults which are injected into a state between layers
that is not directly checked. Instead, multiple operations are first performed on
the erroneous state before it is checked. In this case, the fault coverage rate stays
the same based on the fact that none of the operations change the validity of
a codeword. In other words, if the error is detectable in one state, it should be
also detectable in every following state.

Another important aspect for fault coverage is multiple faults at different
points in time. Assume for example a linear transformation F of a codeword c
in which an error e is injected before the transformation is applied. This results
in

F (c⊕ e) = F (c)⊕ F (e) (18)

meaning that the output of F is combined with a transformed error F (e). Given
the structure of the functions and predictors, F (.) cannot make a valid codeword
F (e) if e is not a valid codeword. Therefore, the fault coverage is not impaired
for faults at a single point in time. However, F (.) can increase the Hamming
weight of e making it easier for an attacker to inject an additional error after
the transformation. In the most extreme case, an attacker injects only two errors
e1, e2 with wt(e1) = wt(e2) = 1 and can create an undetectable fault as

F (c⊕ e1)⊕ e2 = F (c)⊕ F (e1)⊕ e2, (19)

with wt(F (e1)) = d − 1. This approach works similarly for non-linear layers.
However, in this case the output of the function is not the sum of the two
transformed values. This attack vector can be prevented by introducing more
error checks in the design. If every encoded state before a transformation is
checked, this attack can be thwarted since the injection of the first error F (c⊕e1)
would be detected. Introducing more checks can obviously result in an increased
area complexity.

As of now, all of the errors are added to an encoded state between layers.
However, depending on the scenario it might be also possible to inject faults in-
side the combinatorial logic between these states. Since the logic usually consists
of a cascade of multiple gates modeling, the fault as an addition of an error vec-
tors is not trivial. However, depending on the abilities of the attacker this type of
fault can be powerful. For example, an attacker can target one gate which derives
multiple output bits. In this case, we have the same scenario as in the previous
example that the injected fault e has wt(e) = 1 but it cannot be detected when
the check is performed on the output of the combinatorial circuit where such e
leads to e′ ∈ C. To completely avoid this type of attack it is necessary to isolate
the logic for all output lines from each other. This way a faulty gate can only
affect one of the output bits which prevents the aforementioned attack.

As illustrated by the previous example, it is important to realistically es-
timate the power of potential FI attackers. Choosing a code with a large dis-
tance and implementing the previously proposed countermeasures might lead to
a highly secure system. However, each of these aspects can negatively influence
the size of the design. As for many other systems, the balance between area and
the level of security is an important aspect in the design process.

Title Suppressed Due to Excessive Length 19

4 Case Study: LED

Up to now, our combined countermeasure has been only discussed from the
theoretic perspective without targeting a specific algorithm. To better illustrate
the rationales and parameters of the design process, we implement a block cipher
according to our methodology. For the sake of comprehensibility, a relatively
straightforward example is picked to explain the design choices in detail.

The most obvious target for this would be AES as it is the most widely de-
ployed cipher. However, while the predictors for the linear layers of AES are com-
parably easy to implement, the TI of its non-linear layer poses still a challenge
even without FI resistance [5]. In particular, it requires a significant amount of
fresh randomness to achieve all the necessary TI properties. Another standard-
ized cipher, for which an efficient TI exists, is PRESENT [10]. Its 4-bit S-Box
can be efficiently implemented in various ways [7,41]. Contrary to AES, its per-
mutation layer is very efficient in hardware, but its predictors are comparably
inefficient. A brief assessment of the permutation layer of PRESENT is given in
Appendix B.

A better example to demonstrate our combined countermeasure is LED.
It combined the best aspects of AES and PRESENT by incorporating the
PRESENT S-Box and AES-like linear layers. Thus, an efficient TI and predictors
can easily be achieved. In our case study, we present one way to implement LED
with our methodology. Note that depending on the targeted attacker model,
different choices are possible, e.g., higher-order TI or another code with a large
distance. The SCA security of the final design is practically evaluated using
an FPGA prototype, while the FI resistance is examined using the previously
introduced attacker models.

4.1 Cipher Description

LED is a lightweight block cipher introduced in 2011 [19]. It has a 64-bit state and
can be instantiated with different key sizes (primarily 64 or 128 bits). The basic
structure of the cipher as depicted in Figure 5 consists of addition of the round
keys (addRoundKey) and so-called steps (step). In each step, four rounds
of encryption are applied to the state. One round is made up of four layers
AddConstants, SubCells, ShiftRows and MixColumnsSerial. During
AddConstants constants which are derived from an LFSR are added to half
of the state. The following three layers are similar to the layers of AES [34] and
consist of a nibble-wise substitution and row/column-wise affine transformations.
For 128-bit key (resp. 64-bit keys) LED-128 (resp. LED-64) performs 12 steps
in total (resp. 8 steps) with key additions between them.

One important characteristic of LED is its very simple key schedule. Instead
of using different round keys derived by a schedule function applied on a main
key, the cipher directly uses 64 bits from the user-defined key for each round.
This means that for the 64-bit version all round keys are the same, while in the
128-bit instantiation the key halves are used alternately.

20 Tobias Schneider, Amir Moradi, and Tim Güneysu

Fig. 5. The basic structure of LED-128.

4.2 Design and Implementation

We implement a design that is secure against first-order attacks. We decompose
the S-Box that allows us to implement TI using three shares. In the following,
we explain the selection of the code and the predictors for each layer of LED in
detail.

Code Selection. Given that LED is a nibble-oriented cipher in which all op-
erations work on either one or multiple nibbles of the state, we consider only
codes with a rank of k = 4. This way, expensive merge or split of codewords
can be minimized. Furthermore, we decided to set the length of the code to
n = 8 = 2 · k to avoid additional fresh randomness. It would be beneficial to
select a code over GF (24), since most of the LED operations are in this field3.
However, none of the 16 possible [8, 4]-codes has a distance larger than d = 3.
Therefore, to achieve a higher level of protection against FI attacks, we choose
a different code outside of GF (24) but with a better error detection property.

The extended Hamming code is a basic extension of the [7, 4, 3]-Hamming
code. By adding an extra parity bit the code is transformed to a [8, 4, 4]-code,
i.e., with d = 4. In our implementation we use the following generator and parity
check matrices:

G =


1 0 0 0 1 1 1 0
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1

 , H =


1 1 1 0 1 0 0 0
1 1 0 1 0 1 0 0
1 0 1 1 0 0 1 0
0 1 1 1 0 0 0 1

 . (20)

3 In this case, P is chosen in such a way that p = π (m) = m · x with x ∈ GF (24).

Title Suppressed Due to Excessive Length 21

Due to its simplicity, the code enables the use of efficient predictors while still
achieving a high error detection capability with respect to its length.

Linear Layers. As described before, LED consists of four different linear layers.
We discuss the application of the extended Hamming code to each layer without
specifically considering TI, since every linear layer and corresponding predictor
can be applied to each share separately as explained in Section 3.4. Note that
the key and constants are not shared, following the same design strategy as
in [5,29,36,41]. Therefore, in the two layers (AddRoundKey, AddConstants)
where a value is added to the state, it is applied only to one share (of three).

AddRoundKey. Since this layer only consists of a basic addition in GF (24) of
the round key to the state of the cipher, its predictor can be implemented very
efficiently. It can be optimized to

pint2 = π
(
π−1 (pint1)⊕ key

)
= pint1 ⊕ π (key) , (21)

where pint1 (resp. pint2) denotes the input (resp. output) check bits to Ad-
dRoundKey, and key a round key. Furthermore, LED does not include a key
schedule. Thus, by computing π (key) (of both key halves for LED-128) once at
the start of the cipher, the predictor for the key addition can be easily realized
without additional overhead.

AddConstants. Two types of round constants are added to the state. One is
derived from the key length and does not change over the course of the cipher.
The bit size of the key length is stored in eight bits (ks7ks6ks5ks4 ks3ks2ks1ks0).
The lower and upper four bits of the bitstring are each considered as one encoded
element. Since the key size does not change during the execution, this type of
constant does not need to be updated. For LED-128 the specific bits are

(ks7ks6ks5ks4 ks3ks2ks1ks0) = (1000 0000), (22)

(ksp7ksp6ksp5ksp4 ksp3ksp2ksp1ksp0) = (1110 0000)

where kspi denotes the corresponding check bits for this constant.
The other constant consists of six bits (rc5rc4 rc3rc2rc1rc0) which are up-

dated for every round by an LFSR. The update function can be represented by
a matrix multiplication in GF (2) as

rc′0
rc′1
rc′2
rc′3
rc′4
rc′5

 =


0 0 0 0 1 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0


︸ ︷︷ ︸

U

·


rc0
rc1
rc2
rc3
rc4
rc5

+


1
0
0
0
0
0


︸ ︷︷ ︸

c

, (23)

22 Tobias Schneider, Amir Moradi, and Tim Güneysu

where U denotes the update matrix. The related check bits defined as

(rcp3rcp2rcp1rcp0) = π(rc3rc2rc1rc0) (24)

(rcp3rcp2rcp1rcp0) = π(00|rc5rc4) (25)

need to be updated accordingly. To this end, the update matrix is first enlarged
to incorporate the two padded zeros to

UL =



0 0 0 0 1 1 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


. (26)

The update matrix for the check bits (ULcheck
) can be derived from by π

(
UL

(
π−1 (·)

))
.

Therefore, we can write (note that P is self-inverse):

ULcheck
=



1 1 1 0 0 0 0 0
1 1 0 1 0 0 0 0
1 0 1 1 0 0 0 0
0 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0
0 0 0 0 1 1 0 1
0 0 0 0 1 0 1 1
0 0 0 0 0 1 1 1


· UL ·



1 1 1 0 0 0 0 0
1 1 0 1 0 0 0 0
1 0 1 1 0 0 0 0
0 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0
0 0 0 0 1 1 0 1
0 0 0 0 1 0 1 1
0 0 0 0 0 1 1 1


. (27)

The same procedure is applied to the constant factor of the update function
(denoted as c in Eq. (23)). Overall, the check bits of the round constant can be
updated as 

rcp′0
rcp′1
rcp′2
rcp′3
rcp′4
rcp′5
rcp′6
rcp′7


=



0 0 1 1 0 0 1 1
0 1 0 1 0 0 1 1
0 1 1 0 0 0 1 1
1 0 0 0 0 0 0 0
0 1 1 1 1 1 1 0
0 1 1 1 1 1 1 0
0 1 1 1 0 0 0 1
0 0 0 0 1 1 1 0


︸ ︷︷ ︸

ULcheck

·



rcp0
rcp1
rcp2
rcp3
rcp4
rcp5
rcp5
rcp5


+



1
1
1
0
0
0
0
0


︸ ︷︷ ︸

cp

. (28)

It is obvious that the update of the check bits requires additional resources. Still
this overhead is negligible since the round constant update is only a small part
of the cipher and not split up into multiple shares.

Title Suppressed Due to Excessive Length 23

ShiftRows. This layer manipulates the state in a nibble-wise fashion. Since
the codewords are not modified in any way, it is sufficient to apply the same
permutation on the check bits.

MixColumnSerial. Four nibbles of the state are combined using a matrix A
four consecutive times. The matrix multiplication is performed in GF (24). Since
addition is linear over GF (2), we do not need to change the values of A for the
check bits. Only the field multiplications with 2 and 4 need to be adapted to the
predictor. The two multiplications with the reduction polynomial X4 + X + 1
can be represented as a matrix multiplications in GF(2) as

2 ·


m0

m1

m2

m3

 =


0 0 0 1
1 0 0 1
0 1 0 0
0 0 1 0

 ·

m0

m1

m2

m3

 , 4 ·


m0

m1

m2

m3

 =


0 0 1 0
0 0 1 1
1 0 0 1
0 1 0 0

 ·

m0

m1

m2

m3

 . (29)

For the check bits, these matrices need to be adapted similar to Equation (27)
but with 4× 4 matrices. The resulting matrices for the check bits are

π

2 · π−1


p0
p1
p2
p3


=


0 0 1 1
0 1 0 1
0 0 0 1
1 1 1 1

·

p0
p1
p2
p3

, π

4 · π−1


p0
p1
p2
p3


=


1 1 1 0
1 0 1 0
1 1 1 1
1 0 0 0

·

p0
p1
p2
p3

 . (30)

This layer is also slightly more costly for the check bits. However, the overhead
is not as significant as for PRESENT (cf. Appendix B).

Non-Linear Layer. Similar to [36], we decomposed the S-Box into two steps
to reduce the number of required shares to three. The functions for the state and
check bits are optimized independently of each other. As mentioned before, this
procedure results in a more efficient implementation in terms of area with the
penalty of not being able to check the correctness of each share individually. To
find an area-efficient representation, we applied the same idea as in [7]. In par-
ticular, different affine transformations with different combinations of quadratic
bijective classes (as defined in [8]) are tested and compared by their number of
XOR and AND operations [36]. For the non-encoded TI we tested combinations
of the form

S = A3 ◦ T2 ◦A2 ◦ T1 ◦A1, (31)

where A1, A2, A3 are affine transformations and T1, T2 are quadratic bijections.
We tested all possible valid combinations of Table 1 from [41] and decomposed
the S-Box as S(m) = F (G (x)) ,∀m with

F = A3 ◦ T2, G = A2 ◦ T1 ◦A1.

For the check bits Equation (31) is slightly adjusted to

Sp = π ◦ S ◦ π−1 = π ◦A3 ◦ T2 ◦ π−1 ◦ π ◦A2 ◦ T1 ◦A1 ◦ π−1, (32)

24 Tobias Schneider, Amir Moradi, and Tim Güneysu

and the S-Box for the check bits is split as Sp(p) = Q (R (p)) ,∀p with

Q = π ◦A3 ◦ T2 ◦ π−1, R = π ◦A2 ◦ T1 ◦A1 ◦ π−1.

We found the most efficient decomposition for the classical TI using the quadratic
class Q12 for both T1, T2 (see [7]). For the check bits the most efficient decom-
position was obtained by the quadratic classes Q294 and Q299 for T1 and T2,
respectively.

As a side note, since R 6= π ◦G ◦ π−1 (and likewise for Q and F), the error-
checking procedure cannot be performed in-between the S-Box computation.
Below we list the algebraic normal form (ANF) of the derived (and applied)
functions (a and e as least significant bits).

G(d, c, b, a) = (h, g, f, e) : e = a+ c+ d+ cb f = a (33)

g = 1 + a+ d+ b+ cb h = 1 + a+ bc+ bd+ cd

F (d, c, b, a) = (h, g, f, e) : e = a f = c+ d+ bd (34)

g = 1 + a+ b+ c+ cd h = c+ bd

R(d, c, b, a) = (h, g, f, e) : e = a+ b+ db+ dc f = b+ c (35)

g = c+ ba+ ca h = d+ b+ cb

Q(d, c, b, a) = (h, g, f, e) :

e = 1 + a+ b+ c+ db+ dc f = 1 + a+ b (36)

g = a+ d+ db+ dc h = c+ ab+ ac+ ad+ bc+ bd

The uniform shared representations of the component functions (G1, G2, G3),
(F1, F2, F3), (R1, R2, R3), (Q1, Q2, Q3) can be derived by direct sharing [8]. All
required formulas are given in Appendix A.

Basic Structure. We implemented the LED encryption with our countermea-
sure following a round-based architecture. The basic structure of our design is
depicted in Figure 6 with the predictors in the left half. As stated above, the
S-Box and its corresponding function on check bits do not follow the same decom-
position. Therefore, we perform the error check only at the first registered state

State
i∈{1,2,3}
1 . The Error Check module has been implemented following the

concept of Check-And-Combine, illustrated in Section 3.4. Both AddRound-
Key and AddConstants are only applied to the first share since the key and
the constants are not shared. An additional register stage is necessary inside
SubCells (between G and F as well as between R and Q) to avoid the prop-
agation of glitches. The initial randomness is shared between both parts of the
circuit and none of the layers requires additional fresh randomness to achieve
uniformity. It should be noted that except for the initial loading (right half with

Title Suppressed Due to Excessive Length 25

Fig. 6. The basic structure of our proposed LED design. Multiplexers for the plaintext
and AddRoundKey are omitted.

shared plaintext, and left half with shared corresponding check bits) the two
halves of the design do not interact with each other, and each one operates
independently. At every clock cycle, the Error Check module examines the
consistency of the state and its corresponding check bits.

The proposed design can be easily extended to provide security against
higher-order attacks by increasing the number of shares. As the linear func-
tions are applied on each share separately, their basic structure does not change,
while non-linear functions require further adjustment. A second-order TI of the
PRESENT S-Box is given in [31]. However, mask refreshing might be neces-
sary to ensure resistance against multivariate higher-order attacks as indicated
in [38]. Note, however, that for higher-order TI the error check needs to be
also adjusted accordingly to comply with the TI properties. In other words, ex-
tra registers should be integrated into Combine step of Check-And-Combine
module (see Figure 4) and the Combine should be performed in several clock
cycles to ensure that the desired higher-order resistance is not violated.

4.3 Area Comparison

We synthesized our implementations with the Synopsys Design Compiler using
the UMCL18G212T3 [47] ASIC standard cell library (UMC 0.18µm). The results
are presented in Table 1.

As expected, the state registers constitute a significant portion of each circuit
part (in the following referred to as Original and Predictors). Furthermore, the
decomposed S-Box is in both cases the largest layer of the design. Since we
make use of Check-And-Combine, the error detection circuitry is relatively
large due to the required additional registers of the Combine step. Overall, the
predictors require around 27% more area than the original TI. With the same
error detection module, our design with the extended Hamming code is around
12% bigger than simple duplication.

26 Tobias Schneider, Amir Moradi, and Tim Güneysu

Table 1. Size of our design for an ASIC platform.

Module Area [GE]

Original Predictors Error Detection Control
AddRoundKey 171 171 - -
AddConstants 32 32 - -
SubCells 1 1750 1584 - -
SubCells 2 1051 2795 - -
ShiftRows 0 0 - -
MixColumnSerial 1532 2048 - -

Total 7891 10028 2023 270

LED-ParTI 20212

The synthesized circuit can operate at the maximum frequency of 148 MHz
and requires 96 clock cycles for one encryption. The design forms a pipeline,
where two plaintexts can be consecutively fed. This results in a maximum through-
put of 197.3 Mbit/s. In comparison, the unprotected round-based implementa-
tion requires 46 clock cycles for one encryption and can operate at a maximum
frequency of 131 MHz. This results in a throughput of 174.7 Mbit/s since the
design does not allow a pipeline.

4.4 Resistance against SCA

Given that all functions are compliant to the principles of TI, our design is prov-
ably secure against first-order attacks. Nevertheless, we also evaluated the secu-
rity of our design experimentally using an FPGA and ported our design to the
FPGA-based side-channel evaluation platform SAKURA-G [1] populated with
a Xilinx Spartan-6 FPGA. The power traces obtained for our the design have
been collected by means of a digital oscilloscope at sampling rate of 500 MS/s
while the design was operating at a frequency of 3 MHz.

As an evaluation metric we used the non-specific t-test as proposed in [14,18]
which has become a popular generic evaluation method in recent years [42]. In
such a test, the leakages related to two sets of measurements are compared, one
with a fixed input (plaintext) and the other one with randomly selected input.
During the measurements, for both sets (which are also randomly interleaved)
the 128-bit masks (used for initial sharing of the plaintexts as well as the check
bits) are randomly selected with a uniform distribution.

While the test can examine the existence of detectable leakage at certain
orders, we omit the details here. For further information, the interested reader
is referred to the original articles [14, 18, 42]. Figure 7 depicts the results for
univariate tests at first, second and third orders using 100 million measurements.
The diagram show that our design is indeed first-order secure while – as expected
– leakages for higher orders can be observed.

Title Suppressed Due to Excessive Length 27

0 10 20 30

Time [µs]

-40

-20

0

V
ol

ta
ge

 [m
V

]

(a) trace

0 10 20 30

−4.5

0

4.5

Time [µs]

t

(b) first order

0 10 20 30
−25

0

25

Time [µs]

t

(c) second order

0 10 20 30
−12

0

12

Time [µs]

t

(d) third order

Fig. 7. A sample trace and the result of non-specific t-tests at orders one to three.

4.5 Resistance against FI

We further examined the fault coverage of our scheme considering the previously
introduced attacker model. Given that the extended Hamming [8, 4, 4]-code has
a distance of d = 4, it can detect errors up to wt(e) ≤ u = 3. The coverage
of this code is compared to the coverage that can be achieved with a simple
[8, 4, 2]-duplication code with u = 1. We compute the fault coverage of both
codes for the uniform distribution as well as for biased distributions EB1

to EB8
.

We consider both the best case (BC) and worst case (WC) for an attacker. In
the best case, the attacker is able to inject a fault into one share of a single
codeword. In the worst case, he can inject faults into all shares of all codewords
simultaneously. Given that the TI of LED operates on a 16-element state, the
fault coverage is significantly increased in this case. Since we do not check each
share separately, the number of shares does not influence the fault coverage rate
of the worst case.

Table 2 represents the fault coverage rates for the examined cases for both
codes. We already discussed how to compute the fault coverage for a duplica-
tion code in Section 3.5. In order to derive the corresponding fault coverage for
the [8, 4, 4]-code, we look at the distribution of the Hamming weight of the code-
words. Since k = 4, there exist 16 different codewords. 14 of them have Hamming
weight wt(c) = 4, while there are two codewords with wt(c) = 0 and wt(c) = 8
respectively. Therefore, only some error vectors with Hamming weight of 4 or 8
(excluding the zero error vector) have the possibility to be undetectable by our
scheme4.

4 Since d = 4, errors which flip 4 or 8 bits can turn a valid codeword into another
valid codeword, and are hence undetectable.

28 Tobias Schneider, Amir Moradi, and Tim Güneysu

Table 2. Fault coverage for different distributions and codes.

EU EB1 EB2 EB3 EB4 EB5 EB6 EB7

[8,4,4]
BC 0.94 1.00 1.00 1.00 0.91 0.93 0.94 0.94
WC 1− 2−65 1.00 1.00 1.00 1− 2−56 1− 2−63 1− 2−66 1− 2−66

[8,4,2]
BC 0.94 1.00 0.89 0.95 0.93 0.95 0.94 0.94
WC 1− 2−65 1.00 1− 2−51 1− 2−72 1− 2−64 1− 2−71 1− 2−66 1− 2−66

This observation is confirmed by the results in Table 2. The [8, 4, 4]-code
provides full fault coverage in the biased model up to EB3 . Given that most
of the valid codewords have a Hamming weight of 4, and d = 4, the biased
distribution EB4

leads to the lowest fault coverage. In short, EB4
and EB5

are
the only distributions with which the simple duplication scheme is better than
the extended Hamming code. For all other cases, the extended Hamming code
outperforms (or is equal to) the simple duplication scheme. As expected, the
worst case leads to very high fault coverage given that the probability to inject
an error which results in a valid codeword for every element of the state is very
low.

5 Conclusions

We presented an advanced hardware countermeasure which offers resistance both
against SCA and FI attacks. In short, we proposed a construction to combine
error detecting codes with the concept of threshold implementations. We have
identified and discussed generic strategies to that additions for information re-
dundancy do not contradict to the assumptions and requirements of the under-
lying masking scheme.

From an general point of view, our combined countermeasure can be applied
to arbitrary ciphers and supports different level of protections, i.e., first- or
higher-order SCA resistance as well as various fault coverage settings. As an
example, we have illustrated how to apply our methodology on the LED block
cipher with the aim of maintaining first-order SCA protection while integrating
an extended Hamming code to detect faults. Supported by our experimental
validation, we have demonstrated how to realize an efficient design that satisfies
the requirement to provide protection against SCA and FI.

Acknowledgment

The authors want to thank Falk Schellenberg for his helpful discussions and
comments. The research in this work was supported in part by the DFG Research
Training Group GRK 1817/1.

Title Suppressed Due to Excessive Length 29

References

1. Side-channel AttacK User Reference Architecture. http://satoh.cs.uec.ac.jp/

SAKURA/index.html.
2. G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri. Error Analysis and

Detection Procedures for a Hardware Implementation of the Advanced Encryption
Standard. IEEE Trans. Computers, 52(4):492–505, 2003.

3. E. Biham and A. Shamir. Differential Fault Analysis of Secret Key Cryptosystems.
In CRYPTO, volume 1294 of LNCS, pages 513–525. Springer, 1997.

4. B. Bilgin, J. Daemen, V. Nikov, S. Nikova, V. Rijmen, and G. V. Assche. Efficient
and First-Order DPA Resistant Implementations of Keccak. In CARDIS 2013,
volume 8419 of LNCS, pages 187–199. Springer, 2013.

5. B. Bilgin, B. Gierlichs, S. Nikova, V. Nikov, and V. Rijmen. A More Efficient AES
Threshold Implementation. In Progress in Cryptology - AFRICACRYPT 2014,
volume 8469 of LNCS, pages 267–284. Springer, 2014.

6. B. Bilgin, B. Gierlichs, S. Nikova, V. Nikov, and V. Rijmen. Higher-Order Thresh-
old Implementations. In Advances in Cryptology - ASIACRYPT 2014, Part II,
volume 8874 of LNCS, pages 326–343. Springer, 2014.

7. B. Bilgin, S. Nikova, V. Nikov, V. Rijmen, and G. Stütz. Threshold Implementa-
tions of All 3 Ö3 and 4 Ö4 S-Boxes. In CHES 2012, volume 7428 of LNCS, pages
76–91. Springer, 2012.

8. B. Bilgin, S. Nikova, V. Nikov, V. Rijmen, N. Tokareva, and V. Vitkup. Threshold
implementations of small S-boxes. Cryptography and Communications, 7(1):3–33,
2015.

9. R. E. Blahut. Algebraic codes for data transmission. Cambridge Univ. Press,
Cambridge, 2003.

10. A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Rob-
shaw, Y. Seurin, and C. Vikkelsoe. PRESENT: An Ultra-Lightweight Block Cipher.
In CHES, volume 4727 of LNCS, pages 450–466. Springer, 2007.

11. J. Bringer, C. Carlet, H. Chabanne, S. Guilley, and H. Maghrebi. Orthogonal Direct
Sum Masking - A Smartcard Friendly Computation Paradigm in a Code, with
Builtin Protection against Side-Channel and Fault Attacks. In WISTP, volume
8501 of LNCS, pages 40–56. Springer, 2014.

12. J. Bringer, H. Chabanne, and T. Le. Protecting AES against side-channel analysis
using wire-tap codes. J. Cryptographic Engineering, 2(2):129–141, 2012.

13. C. Clavier, B. Feix, G. Gagnerot, and M. Roussellet. Passive and active combined
attacks on aes???combining fault attacks and side channel analysis. In FDTC,
pages 10–19. IEEE Computer Society, 2010.

14. J. Cooper, E. Demulder, G. Goodwill, J. Jaffe, G. Kenworthy, and P. Rohatgi.
Test Vector Leakage Assessment (TVLA) Methodology in Practice. International
Cryptographic Module Conference, 2013.

15. F. Dassance and A. Venelli. Combined fault and side-channel attacks on the AES
key schedule. In FDTC, pages 63–71. IEEE Computer Society, 2012.

16. T. De Cnudde, B. Bilgin, O. Reparaz, V. Nikov, and S. Nikova. Higher-Order
Threshold Implementation of the AES S-box. In CARDIS 2015, 2015.

17. B. Gierlichs, J. Schmidt, and M. Tunstall. Infective Computation and Dummy
Rounds: Fault Protection for Block Ciphers without Check-before-Output. In
LATINCRYPT, volume 7533 of LNCS, pages 305–321. Springer, 2012.

18. G. Goodwill, B. Jun, J. Jaffe, and P. Rohatgi. A testing methodology for side
channel resistance validation. In NIST non-invasive attack testing workshop, 2011.

30 Tobias Schneider, Amir Moradi, and Tim Güneysu

19. J. Guo, T. Peyrin, A. Poschmann, and M. J. B. Robshaw. The LED Block Ci-
pher. In B. Preneel and T. Takagi, editors, Cryptographic Hardware and Embedded
Systems - CHES 2011, volume 6917 of LNCS, pages 326–341. Springer, 2011.

20. X. Guo, D. Mukhopadhyay, C. Jin, and R. Karri. Security analysis of concurrent
error detection against differential fault analysis. J. Cryptographic Engineering,
5(3):153–169, 2015.

21. M. G. Karpovsky, K. J. Kulikowski, and A. Taubin. Differential fault analysis
attack resistant architectures for the advanced encryption standard. In CARDIS,
volume 153 of IFIP, pages 177–192. Kluwer/Springer, 2004.

22. M. G. Karpovsky, K. J. Kulikowski, and A. Taubin. Robust Protection against
Fault-Injection Attacks on Smart Cards Implementing the Advanced Encryption
Standard. In DSN, pages 93–101. IEEE Computer Society, 2004.

23. R. Karri, G. Kuznetsov, and M. Gössel. Parity-Based Concurrent Error Detection
of Substitution-Permutation Network Block Ciphers. In CHES 2003, volume 2779
of LNCS, pages 113–124. Springer, 2003.

24. P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In Advances in
Cryptology - CRYPTO ’99, volume 1666 of LNCS, pages 388–397. Springer, 1999.

25. F. J. MacWilliams and N. J. A. N. J. A. Sloane. The theory of error correcting
codes. North-Holland mathematical library. North-Holland Pub. Co. New York,
Amsterdam, New York, 1977. Includes index.

26. S. Mangard, T. Popp, and B. M. Gammel. Side-Channel Leakage of Masked CMOS
Gates. In CT-RSA 2005, volume 3376 of LNCS, pages 351–365. Springer, 2005.

27. S. Mangard, N. Pramstaller, and E. Oswald. Successfully Attacking Masked AES
Hardware Implementations. In CHES 2005, volume 3659 of LNCS, pages 157–171.
Springer, 2005.

28. A. Moradi. Wire-Tap Codes as Side-Channel Countermeasure - An FPGA-Based
Experiment -. In INDOCRYPT, volume 8885 of LNCS, pages 341–359. Springer,
2014.

29. A. Moradi, A. Poschmann, S. Ling, C. Paar, and H. Wang. Pushing the Limits: A
Very Compact and a Threshold Implementation of AES. In Advances in Cryptology
- EUROCRYPT 2011, volume 6632 of LNCS, pages 69–88. Springer, 2011.

30. A. Moradi and T. Schneider. Side-Channel Analysis Protection and Low-Latency
in Action - case study of PRINCE and Midori. Cryptology ePrint Archive, Report
2016/481, 2016. http://eprint.iacr.org/.

31. A. Moradi and A. Wild. Assessment of Hiding the Higher-Order Leakages in
Hardware - What Are the Achievements Versus Overheads? In CHES 2015, volume
9293 of LNCS, pages 453–474. Springer, 2015.

32. S. Nikova, C. Rechberger, and V. Rijmen. Threshold Implementations Against
Side-Channel Attacks and Glitches. In ICICS 2006, volume 4307 of LNCS, pages
529–545. Springer, 2006.

33. S. Nikova, V. Rijmen, and M. Schläffer. Secure Hardware Implementation of Non-
linear Functions in the Presence of Glitches. J. Cryptology, 24(2):292–321, 2011.

34. NIST. FIPS PUB 197: Advanced Encryption Standard. http://csrc.nist.gov/

publications/fips/fips197/fips-197.pdf, as of June 22, 2016.

35. S. Patranabis, A. Chakraborty, P. H. Nguyen, and D. Mukhopadhyay. A Biased
Fault Attack on the Time Redundancy Countermeasure for AES. In COSADE,
volume 9064 of LNCS, pages 189–203. Springer, 2015.

36. A. Poschmann, A. Moradi, K. Khoo, C. Lim, H. Wang, and S. Ling. Side-Channel
Resistant Crypto for Less than 2,300 GE. J. Cryptology, 24(2):322–345, 2011.

Title Suppressed Due to Excessive Length 31

37. E. Prouff and T. Roche. Higher-Order Glitches Free Implementation of the AES
Using Secure Multi-party Computation Protocols. In CHES, volume 6917 of LNCS,
pages 63–78. Springer, 2011.

38. O. Reparaz, B. Bilgin, S. Nikova, B. Gierlichs, and I. Verbauwhede. Consolidat-
ing Masking Schemes. In CRYPTO 2015, volume 9215 of LNCS, pages 764–783.
Springer, 2015.

39. T. Roche, V. Lomné, and K. Khalfallah. Combined fault and side-channel attack
on protected implementations of AES. In CARDIS, volume 7079 of Lecture Notes
in Computer Science, pages 65–83. Springer, 2011.

40. C. Roscian, A. Sarafianos, J. Dutertre, and A. Tria. Fault Model Analysis of Laser-
Induced Faults in SRAM Memory Cells. In FDTC, pages 89–98. IEEE Computer
Society, 2013.

41. P. Sasdrich, A. Moradi, and T. Güneysu. Affine Equivalence and its Application to
Tightening Threshold Implementations. In SAC 2015, volume ?, page ? Springer,
2015. http://eprint.iacr.org/2015/749.

42. T. Schneider and A. Moradi. Leakage Assessment Methodology - A Clear Roadmap
for Side-Channel Evaluations. In CHES, volume 9293 of LNCS, pages 495–513.
Springer, 2015.

43. T. Schneider, A. Moradi, and T. Güneysu. Arithmetic Addition over Boolean
Masking - Towards First- and Second-Order Resistance in Hardware. In ACNS
2015, volume 9092 of LNCS, pages 559–578. Springer, 2015.

44. A. Shahverdi, M. Taha, and T. Eisenbarth. Silent Simon: A threshold implemen-
tation under 100 slices. In HOST 2015, pages 1–6. IEEE, 2015.

45. B. Sunar, G. Gaubatz, and E. Savas. Sequential circuit design for embedded cryp-
tographic applications resilient to adversarial faults. IEEE Trans. Computers,
57(1):126–138, 2008.

46. K. Tiri and I. Verbauwhede. A Logic Level Design Methodology for a Secure
DPA Resistant ASIC or FPGA Implementation. In DATE, pages 246–251. IEEE
Computer Society, 2004.

47. Virtual Silicon Inc. 0.18 µm VIP Standard Cell Library Tape Out Ready, Part
Number: UMCL18G212T3, Process: UMC Logic 0.18 µm Generic II Technology:
0.18µm, July 2004.

48. D. M. Xiaofei Guo and R. Karri. Provably Secure Concurrent Error Detection
Against Differential Fault Analysis. Cryptology ePrint Archive, Report 2012/552,
2012. http://eprint.iacr.org/.

32 Tobias Schneider, Amir Moradi, and Tim Güneysu

A Shared Functions S-Box

In this section we give the shared representation of the functions used for the
S-Box with three shares.

G1(d2, c2, b2, a2, d3, c3, b3, a3) = (h1, g1, f1, e1) (37)

e1 = a2 + b2 + c2 + d2 + b3 + c2b3 + b2c3 + b3c3

f1 = a2

g1 = 1 + a2 + d2 + b3 + c2b3 + b2c3 + b3c3

h1 = 1 + a2 + b2 + b3 + c2b3 + d2b3 + b2c3 + d2c3 + b3c3

+ b2d3 + c2d3 + b3d3 + c3d3

G2(d3, c3, b3, a3, d1, c1, b1, a1) = (h2, g2, f2, e2) (38)

e2 = a3 + b3 + c3 + d3 + b1 + c3b1 + b3c1 + b1c1

f2 = a3

g2 = 1 + a3 + d3 + b1 + c3b1 + b3c1 + b1c1

h2 = 1 + a3 + b3 + b1 + c3b1 + d3b1 + b3c1 + d3c1 + b1c1

+ b3d1 + c3d1 + b1d1 + c1d1

G3(d1, c1, b1, a1, d2, c2, b2, a2) = (h3, g3, f3, e3) (39)

e3 = a1 + b1 + c1 + d1 + b2 + c1b2 + b1c2 + b2c2

f3 = a1

g3 = 1 + a1 + d1 + b2 + c1b2 + b1c2 + b2c2

h3 = 1 + a1 + b1 + b2 + c1b2 + d1b2 + b1c2 + d1c2 + b2c2

+ b1d2 + c1d2 + b2d2 + c2d2

F1(d2, c2, b2, a2, d3, c3, b3, a3) = (h1, g1, f1, e1) (40)

e1 = a2

f1 = c2 + d2 + d2b3 + b2d3 + b3d3

g1 = 1 + a2 + b2 + c2 + d2c3 + c2d3 + c3d3

h1 = c2 + d2b3 + b2d3 + b3d3

Title Suppressed Due to Excessive Length 33

F2(d3, c3, b3, a3, d1, c1, b1, a1) = (h2, g2, f2, e2) (41)

e2 = a3

f2 = c3 + d3 + d3b1 + b3d1 + b1d1

g2 = 1 + a3 + b3 + c3 + d3c1 + c3d1 + c1d1

h2 = c3 + d3b1 + b3d1 + b1d1

F3(d1, c1, b1, a1, d2, c2, b2, a2) = (h3, g3, f3, e3) (42)

e3 = a1

f3 = c1 + d1 + d1b2 + b1d2 + b2d2

g3 = 1 + a1 + b1 + c1 + d1c2 + c1d2 + c2d2

h3 = c1 + d1b2 + b1d2 + b2d2

R1(d2, c2, b2, a2, d3, c3, b3, a3) = (h1, g1, f1, e1) (43)

e1 = a2 + b2 + d2b3 + d2c3 + b2d3 + c2d3 + b3d3 + c3d3

f1 = b2 + c2

g1 = c2 + b2a3 + c2a3 + a2b3 + a3b3 + a2c3 + a3c3

h1 = d2 + b3 + c2b3 + b2c3 + b3c3

R2(d3, c3, b3, a3, d1, c1, b1, a1) = (h2, g2, f2, e2) (44)

e2 = a3 + b3 + d3b1 + d3c1 + b3d1 + c3d1 + b1d1 + c1d1

f2 = b3 + c3

g2 = c3 + b3a1 + c3a1 + a3b1 + a1b1 + a3c1 + a1c1

h2 = d3 + b1 + c3b1 + b3c1 + b1c1

R3(d1, c1, b1, a1, d2, c2, b2, a2) = (h3, g3, f3, e3) (45)

e3 = a1 + b1 + d1b2 + d1c2 + b1d2 + c1d2 + b2d2 + c2d2

f3 = b1 + c1

g3 = c1 + b1a2 + c1a2 + a1b2 + a2b2 + a1c2 + a2c2

h3 = d1 + b2 + c1b2 + b1c2 + b2c2

34 Tobias Schneider, Amir Moradi, and Tim Güneysu

Q1(d2, c2, b2, a2, d3, c3, b3, a3) = (h1, g1, f1, e1) (46)

e1 = 1 + a2 + b3 + c3 + d2b3 + d2c3 + b2d3 + c2d3 + b3d3 + c3d3

f1 = 1 + a2 + b2

g1 = a2 + b2 + c2 + d2 + b3 + c3 + d2b3 + d2c3 + b2d3 + c2d3 + b3d3 + c3d3

h1 = d2 + c3 + d3 + b2a3 + c2a3 + d2a3 + a2b3 + c2b3 + d2b3 + a3b3

+ a2c3 + b2c3 + a3c3 + b3c3 + a2d3 + b2d3 + a3d3 + b3d3

Q2(d3, c3, b3, a3, d1, c1, b1, a1) = (h2, g2, f2, e2) (47)

e2 = 1 + a3 + b1 + c1 + d3b1 + d3c1 + b3d1 + c3d1 + b1d1 + c1d1

f2 = 1 + a3 + b3

g2 = a3 + b3 + c3 + d3 + b1 + c1 + d3b1 + d3c1 + b3d1 + c3d1 + b1d1 + c1d1

h2 = d3 + c1 + d1 + b3a1 + c3a1 + d3a1 + a3b1 + c3b1 + d3b1 + a1b1

+ a3c1 + b3c1 + a1c1 + b1c1 + a3d1 + b3d1 + a1d1 + b1d1

Q3(d1, c1, b1, a1, d2, c2, b2, a2) = (h3, g3, f3, e3) (48)

e3 = 1 + a1 + b2 + c2 + d1b2 + d1c2 + b1d2 + c1d2 + b2d2 + c2d2

f3 = 1 + a1 + b1

g3 = a1 + b1 + c1 + d1 + b2 + c2 + d1b2 + d1c2 + b1d2 + c1d2 + b2d2 + c2d2

h3 = d1 + c2 + d2 + b1a2 + c1a2 + d1a2 + a1b2 + c1b2 + d1b2 + a2b2

+ a1c2 + b1c2 + a2c2 + b2c2 + a1d2 + b1d2 + a2d2 + b2d2

B Encoded PRESENT Permutation Layer

The permutation layer of PRESENT is very efficient in hardware. It consists
of simple bit permutation over the whole 64-bit state and, therefore, does not
require any gates. The predictor for this layer using the extended Hamming code
can be found similar to Equation (27) by transforming the 64× 64 permutation

Title Suppressed Due to Excessive Length 35

matrix. To this end the permutation matrix need to be twice multiplied with

P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 P 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 P 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 P 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 P 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 P 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 P 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 P 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 P 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 P 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 P 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 P 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 P 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 P 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 P 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 P



. (49)

In our scenario the two matrices P and 0 are defined as

P =


1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

 and 0 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

 . (50)

While the original permutation matrix has only a single ’1’ per row, this is not the
case for the predictors. Compared to the original permutation, the corresponding
predictor requires several XOR gates to transform, split and merge the separate
codewords. Therefore, it requires a non-negligible overhead to be implemented.

