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Abstract. Tracking bits through block ciphers and optimizing attacks
at hand is one of the tedious task symmetric cryptanalysts have to deal
with. It would be nice if a program will automatically handle them at
least for well-known attack techniques, so that cryptanalysts will only
focus on �nding new attacks. However, current automatic tools cannot be
used as is, either because they are tailored for speci�c ciphers or because
they only recover a speci�c part of the attacks and cryptographers are
still needed to �nalize the analysis.
In this paper we describe a generic algorithm exhausting the best meet-
in-the-middle and impossible di�erential attacks on a very large class
of block ciphers from byte to bit-oriented, SPN, Feistel and Lai-Massey
block ciphers. Contrary to previous tools that target to �nd the best
di�erential / linear paths in the cipher and leave the cryptanalysts to
�nd the attack using these paths, we automatically �nd the best attacks
by considering the cipher and the key schedule algorithms. The building
blocks of our algorithm led to two algorithms designed to �nd the best
simple meet-in-the-middle attacks and the best impossible truncated dif-
ferential attacks respectively. We recover and improve many attacks on
AES, mCRYPTON, SIMON, IDEA, KTANTAN, PRINCE and ZORRO.
We show that this tool can be used by designers to improve their analysis.

Keywords: automatic search, meet-in-the-middle, impossible truncated
di�erential, cryptanalysis

1 Introduction

To explore the exponential space of di�erentials or linears characteristics, crypt-
analysts usually implement some algorithms. Many tools have been proposed
for ciphers or hash functions [BDF11,DF13,FJP13,Leu12] but most of the time
they are not publicly available. Moreover, they are not very convenient for block
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cipher designers and are rarely used for many reasons. On the one hand, some
tools have been designed to explore precise ciphers and it is not easy to adapt
them for new designs. The main reason is that we hope that taking into ac-
count some particularities of the cipher, would lead to more e�cient attacks.
Consequently, some details of the analyzed ciphers are hard-coded into the tool
and it is not easy to make any changes. On the other hand, only cryptanalysts
can used such tools which are more computational-aid than real tools. Indeed,
some tools allow to �nd some di�erential paths, but more work has to be done
by cryptanalysts to �nd the best attack. However, this last part is usually not
completely trivial and it is not always the best di�erential paths, that would lead
to the best attacks. For instance, the best di�erential attack on DES does not
use the best and longest di�erential path [BS93] on 15 rounds, but a 13 rounds
di�erential path is used with meet-in-the-middle technique to extend this path,
leading to the so-called 3R attack. The meet-in-the-middle step is rarely consid-
ered in tools while it is computationally di�cult to exhaust the most e�cient
combination of say a di�erential path with the number of guesses. Indeed, once
a di�erential path is found, attackers have to guess some key bits in order to be
able to check the di�erential part. Consequently, the overall complexity of the
attack depends on the number of guesses and the probability of the di�erential.
The best attack has a complexity that is the maximum of both stages. The last
step is a meet-in-the-middle technique and it is well-known that it allows to �nd
the most e�cient attack since bad key guesses are quickly rejected. As a con-
clusion, if we want to automatically �nd the best attack, we need to be able to
automatically solve each stage: �nd many good di�erential paths and for each
of them evaluate the cost of the meet-in-the-middle part.

Automatic tools. Automatic search of symmetric attacks boils down to solv-
ing a system of equations in many variables as Shannon described in his seminal
work in 1949 on Communication Theory of Secrecy Systems: Breaking a good
cipher should require as much work as solving a system of simultaneous equa-
tions in a large number of unknowns of a complex type. Algebraic cryptanalysis
can be traced back to him and some attacks on stream ciphers have been very
e�cient [CM03]. However, solving these equations is not always easy and crypt-
analysts have to take into account the structure of such systems if they want to
e�ciently solve them. Indeed, Gröbner basis algorithms have been used, but they
never endanger the security of real block ciphers [BPW06a,BPW06b]. Cryptog-
raphers have to closely analyze the involved systems depending on the number
of variables, their degree, some symmetries in the equations if they want to �nd
some attacks. The other well-known tool consists in writing boolean equations
and feed them to a SAT solver such as CryptoMiniSAT [SNC09]. Black box use
of these two well-known solvers never lead to e�cient attacks. They can be used
either on a very small number of rounds [MS13] or when attacks are described in
order to speed up the search [SKPI07,MZ06]. Since solving a polynomial system
of equations in many variables is a NP-hard problem [GJ79], some cryptanalysts
try to better take into account the structure of these systems. Since block ciphers
are built iteratively in many rounds and each of them use a linear part (di�usion)
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and a non-linear part (Sbox essentially), one of the most interesting research
directions consists in writing linear equations by adding new variables for each
Sbox [BDF11,KBN09]. Consequently, we can write the system as a linear system
in variables x and S(x), where S is treated as an inert function. Such systems are
not easy to solve because there is a relation between these two kinds of variables
and classical gaussian technique does not work. In order to consider the system
of equations, Bouillaguet et al. in [BDF11] have used well-known cryptographic
techniques to solve such systems such as guess-and-determine and meet-in-the-
middle. The consequence is that the tool is very versatile and solves any such
systems by describing an algorithm to solve it with its average time/memory
complexity. For instance, they were able to �nd attacks on MAC and stream-
ciphers. However, it is not speci�c for block ciphers and it is not easy to search
attacks involving many messages. This tool is nevertheless interesting since it
is generic and for instance, Derbez and Fouque use it in [DF13] and Dinur and
Jean in [DJ14].

Related work. The original meet-in-the-middle attack [DS08] of Demirci and
Selçuk against AES has been improved and generalized by many researchers
and is nowadays well-understood. It relies on particular sets called δ-sets, which
were �rst introduced by Daemen et al. against the block cipher SQUARE. At
ASIACRYPT 2010, Dunkelman et al. [DKS10] presented several improvements
for the attack including the di�erential enumeration technique, a clever and
powerful memory/data trade-o� that does not change the time. Then at EURO-
CRYPT 2013, Derbez et al. [DFJ13] mainly showed that this technique leads to
much better attacks than expected by Dunkelman et al., and reached the best
known attacks against 7-round AES-128 and 9-round AES-256 in the single-key
model. Next, at FSE 2013, Derbez and Fouque [DF13] generalized the attack of
Demirci and Selçuk by searching a match on some equation and not only on the
byte state, and showed that approximately 216 di�erent attacks can be mounted
against the AES. In order to �nd the best ones among them, they used the tool
presented by Bouillaguet et al. [BDF11] at CRYPTO 2011 to take care of the
key schedule relations between the subkey bytes involved in the attacks.

This kind of attacks is very e�cient againsts round-reduced versions of the
AES and actually it may also be e�cient against non-SPN ciphers as showed
by Li and Jia in [LJ14] where they successfully applied the technique against
Camellia [AIK+00]. At ICISC 2013, Li et al. [LWWZ13] described an algorithm
to �nd the best distinguishers one can use to mount a Demirci-Selçuk attack
on a word-oriented block cipher. In particular, they showed that �nding the
distinguishers which have the least number of active cells can be turned into
an integer linear program that they solved. As a result, they found new attacks
against both Crypton-128 and mCrypton-96.

Our Contribution. Our �rst contribution is a new tool that allows to auto-
matically �nd meet-in-the-middle and impossible di�erential attack. Contrary to
other tools, this new one is publicly available and allows to recover di�erential
paths and complete attacks by extending them using well-known meet-in-the-
middle technique. One major contribution is that we determine speci�c problems
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that allow us to design a modular approach for our tool. Indeed, we will describe
some building blocks that allow us to automatically �nd impossible di�eren-
tial attack, truncated di�erential path and meet-in-the-middle attacks when we
combine them in a speci�c manner. Finally, we apply it on many block ciphers.

We show that our tool allows to discover automatically in a few seconds many
of the best meet-in-the-middle and impossible di�erential attacks on some bit
and byte oriented ciphers: CRYPTON, mCRYPTON, AES, SIMON, IDEA and
XTEA. On SIMON, the tool allows to recover all the attacks found by hand by
Boura et al. in [BNS14] and even improve them by one more round. Essentially,
the tool was able to discover that we can save some guesses by guessing the
xor of two key bits instead of each of the two bits. For IDEA, our results are
noteworthy and we think it is a good example of bit-oriented cipher since it mixes
various operations which prevent to use any larger �eld as in AES. This cipher
has been unattacked during 10 years after its publications and in 2002, Biryukov
and Demirci discovered a particular relation that allows them to break 2 rounds
among the 8.5 rounds. About 10 years after, Biham, Dunkelman, Keller and
Shamir use this relation to mount e�cient meet-in-the-middle attacks [BDKS15].
In a few seconds, our tool was able to automatically recover the Biryukov-Demirci
relation and to �nd all the attacks on 6 rounds [BDKS15]. On XTEA, the tool
was also able to recover the best impossible di�erential path of [MHL+02] on 12
rounds. If we only want to recover di�erential path and not the complete attack,
it is possible to ask it to the tool.

The main purpose of this tool is not only for cryptanalysis in order to �nd
attacks, but also for designers in order to test their new ciphers. The ZORRO
block cipher has been proposed by Gérard et al. at CHES 2013 [GGNS13] in
order to be secure and e�cient to mask. The main idea consists in using an
easy to mask Sbox and to reduce the number of Sbox at each round since the
overhead of masking comes from these two factors. The overall design is close
to AES. However, many attacks have been discovered on this cipher including
on the full number of rounds. Here, we exhaust using symmetries properties all
the family of ZORRO ciphers and we show that some strategic positions of the
Sboxes lead to stronger ciphers.

We describe a generic algorithm exhausting the best meet-in-the-middle and
impossible di�erential attacks on a very large class of block ciphers. Unlike Li
et al.'s algorithm, our is not restricted to word-oriented block ciphers and takes
into account the key schedule relations to directly give as output the best at-
tacks and their complexities. Actually, it is based on the tool of Bouillaguet et
al. to estimate the complexity of the attacks. Thus our algorithm only requires
as input a system of equations describing the targeted cipher and the type of
each variable: plaintext, ciphertext, key or state. Incidentally, the building blocks
of our algorithm led to two others algorithms designed to �nd the best simple
meet-in-the-middle attacks and the best impossible truncated di�erential attacks
respectively. Impossible di�erential cryptanalysis, which was simultaneously in-
troduced by Knudsen [Knu98] and Biham et al. [BBS99], is a powerful technique
against a large variety of block ciphers. While there are already algorithms de-
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signed to �nd impossible di�erential against various kind of block ciphers (for
instance [WW12]), our is the �rst one which outputs the complexities of the
best attacks. More precisely, our algorithm gives as output all the parameters
required to compute the complexity according to the general formula given at
ASIACRYPT 2014 by Boura et al. in [BNS14].

We implemented our algorithms in C++ and make them available at:

https://bitbucket.org/pderbez/crypto2016-tool/.

2 Preliminaries

First we present a generalization of the Demirci-Selçuk (GDS) meet-in-the-
middle technique for iterated block ciphers. Then, we recall some de�nitions
from Bouillaguet et al. [BDF11] about systems of AES-like equations.

The GDS attack is similar to the splice-and-cut technique [WRG+11] but
works with di�erences rather than state values. Demirci-Selçuk attacks have
been discovered for AES and �rst generalized by Derbez and Fouque in [DF13]
to match on a byte relation involving many bytes rather than on one state byte.
Here, we generalize it on iterated block ciphers.

2.1 Generalized Demirci-Selçuk (GDS) Attack

We illustrate GDS on an AES-like cipher and then we generalize it to other
ciphers. The basic idea is the following and assume that we have a relation
involving internal variables. It can be a linear relation between 5 active bytes
in an AES computation around the MixColumn operation. On the second line
of �gure 1, we represent such a relation between two states. Once, the variables
of this relation have been identi�ed, we propagate them to the plaintext and
ciphertext bits and we get, the bits that have to be guessed in the intermediate
states from the ciphertext and plaintext. The main problem is that the number
of bits that have to be guessed is very large as in the �gure. The main trick
to reduce them is to force some constraints on the di�erential path. They are
described by the �rst line, where some conditions are proposed. We will search
for plaintexts satisfying the di�erential path. It is classical in AES cryptanalysis
to use the di�erential path with one transition from one byte to 4 active bytes
after the MixColumn operation with probability one and we let it propagate to
the plaintext and ciphertext part with probability one. Finally, we get a GDS
attack on the third line that use the bytes in the intersection of the two sets
used in each state.

More formally, the original attack of Demirci and Selçuk [DS08] mainly relies
on two subcomponents: one truncated di�erential characteristic and one basic
meet-in-the-middle attack. More precisely, let E = E3 ◦E2 ◦E1 be an encryption
function splitted into three parts. For the �rst step we pick a truncated di�erence
∆X with bi active bits, propagate it through E

−1
1 (resp. E3◦E2) with probability

1 and denote the set of active bits by IP (resp. IC). Then, for the second step,
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Fig. 1: Example of GDS attack (on 6-round AES). IP is in blue, IC in green,
OP in red and OC in yellow. Hatched bytes play no roles and white bytes are
constant.

we mount a basic meet-in-the-middle attack against E = E3 ◦ (E2 ◦ E1): let Y
be the output state of E2 ◦ E1, we pick bo bits of Y and denote by OP (resp.
OC) the bits required to compute their di�erence in Y from the di�erence in the
plaintexts (resp. ciphertexts).

To explain further the GDS attack we introduce the de�nition of a b-δ-set:

De�nition 1 (b-δ-set). A b-δ-set is a set of 2b states such that b bits are active
and take all the possible value while the others bits are constant. We also assume
that the states of a b-δ-set are sorted according to di�erences (i.e. if {x0, x1, . . .}
is a valid order then the valid orders are {xi, xi+1, . . .} for 0 ≤ i < 2b).

The structure of the Generalized Demirci-Selçuk attack is the following:

� O�ine phase:

1. Consider the encryption of a bi-δ-set {x0, x1, . . .} corresponding to the
truncated di�erence ∆X through E2.

2. Guess the value of IC ∩OP for x0.
3. Deduce the di�erences in the bo chosen bits of Y for the bi-δ-set.
4. Store them as a sequence of 2bi − 1 bo-bit values in a hash table.

� Online phase:

1. Pick a plaintext P .
2. Guess the value of IP for P and identify a set {P, P 1, P 2, . . .} leading to

a bi-δ-set associated to ∆X .
3. Ask for the corresponding ciphertexts.
4. Guess the value of OC and partially decrypt the ciphertexts to compute

the di�erences in the bo chosen bits of Y .
5. Check whether the sequence belongs to the hash table. If not, discard

the guess.

The complexity of this procedure depends directly on how many values the sets
IP and IC ∩OP can assume, S(IC ∩OP ), and on how fast all the possible values
of sets IP ∪OC and IC ∩OP can be enumerated, T (IP ∪OC):
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� Data: (2bi − 1) · S(IP ) adaptively chosen plaintexts,
� Time (online): 2bi · T (IP ∪OC) partial encryptions,
� Memory: bo · (2bi − 1) · S(IC ∩OP ) bits,
� Time (o�ine): 2bi · T (IC ∩OP ) partial encryptions.

At the end of this attack we expect min(1,S(IC ∩OP ) · 2−bo(2
bi−1)) · S(IP ∪OC)

candidates to remain for IP ∪ OC . Thus bi and bo have to be chosen such that
they provide enough �ltration, but expanding them also increases the size of the
sets IP , IC , OP and OC which then may rise the complexity of the resulting
attack.

Remarks:

� In the case where the truncated di�erence ∆X does not fully active ∆P , i.e.
di�erences in some plaintext bits are null, the attack can be turned into a
chosen-plaintext attack by starting by asking for a structure of plaintexts.
Actually this is (almost) always better to do so since, in general, (2bi − 1) ·
S(IP ) is higher than 2|∆P |.

� Some extra memory can be used to map each sequence to its corresponding
value of IC ∩OP .

� Given two invertible matrices M1 and M2, we can rewrite the encryption
function E = (E3 ◦M−12 )◦ (M2 ◦E2 ◦M−11 )◦ (M1 ◦E1). Hence the sentences
"with bi active bits" or "pick bo bits of Y " should be understood as "with bi
active linear combinations of bits" or "pick bo linear combinations of bits
of Y ".

2.2 Systems of AES-like Equations

In the sequel we recall some de�nitions of Bouillaguet et al. we will use in our
algorithms. In particular, we detail the notion of linear variables that allows us
to reduce variables. Indeed, in our system of equations that are linear in the
variables x and S(x), when all the equations only depend on ax + bS(x) for
speci�c value a and b, then we can replace the variable x by a new one in X
that represents ax + bS(x), so that if we recover X, we will be able to �nd x.
Then, the second important notion is that for a system of equations describing
the computation of the block cipher, the system is triangular from the plaintext
and key variables to the ciphertext variables and so, from the ciphertext and key
variables to the plaintext variables.

Given a �nite �eld Fq, where q is a power of a prime number, and a non-linear
function S : Fq −→ Fq, an AES-like equation is de�ned as follows.

De�nition 2 (AES-like equation). An AES-like equation in variables X =
{x1, . . . , xn} is an equation of the form:

n∑
i=1

aixi +

n∑
i=1

biS(xi) + c = 0,

where a1, . . . , an, b1, . . . , bn, c ∈ Fq.
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AES-like equations enjoy some very interesting properties. First the set of all
the AES-like equations in variables X = {x1, . . . , xn} is a vector space over Fq.
Indeed, this set is stable by the multiplication by a scalar and the sum of two
AES-like equations is still an AES-like equation.

De�nition 3 (AES-like system).We denote by V (X) the vector space spanned
by all the AES-like equations in variable X. A system of AES-like equations in
variables X is a subspace of V (X).

De�nition 4 (subsystem). Let E be a system of AES-like equations in vari-
ables X and let Y be a subset of X. We denote by E(Y) the subspace E∩V (Y).
This subspace is the biggest subsystem of E composed of AES-like equations in
variables Y.

De�nition 5 (linear variable). Let E be a system of AES-like equations in
variables X and let be x ∈ X. The variable x is a linear variable if and only if
dimE − dimE(X − {x}) ≤ 1. The set of all the linear variables is denoted by
Lin (E).

This de�nition may seem abstract and the following proposition clari�es it:

Property 1. Let E be a system of AES-like equations in variables X and let
x ∈ Lin (E). Then it exists (a, b) ∈ F2

q such that each equation of E involving the
variable x involves in fact a multiple of ax+ bS(x). In other words, if we replace
ax+ bS(x) by X in the system of equations then x and S(x) do not appear any
more. In particular, Lin (E) ∩Y ⊆ Lin (E(Y)) for any subset Y of X.

Linear variables are very important in the work of Bouillaguet et al., in par-
ticular when the following assumption about the number of solutions of system
of AES-like equations holds, we can estimate the complexity of our algorithms:

|Sol (E(Y)) | ≈ q|Y|−dimE(Y), for any subset Y of X.

Let us introduce a last de�nition related to linear variables:

De�nition 6. Let E be a system of AES-like equations in variables X and let
Y be a subset of X. Consider the following sequences:

E0 := E, Ei+1 := Ei(X−Li), L0 := Lin (E)−Y, Li+1 := Li∪(Lin (Ei+1)−Y).

The sequence (Ei) is decreasing and thus at some rank r it becomes constant.
We denote by Lin (E,Y) the set of all variables occurring in the system Er.

3 New Set of Tools

In this section, we will �rst describe our generic GDS attack. Therefore, we need
to explain how we can automatically �nd the useful relations (minimal equations)
and how we automatically split the variables involved in these relations in order
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to perform an e�cient meet-in-the-middle for instance in sets OP and OC . Then,
we have to explain how we automatically �nd the truncated di�erential path and
the sets IP and IC . Splitting variables in some sets appears to be quite obvious by
hand when we consider the cipher round by round. However, using the system
of equations, this task appears to be not easy. Moreover, we need to perform
this split e�ciently and without any redundancy since the number of splitting
an equation involving n variables in two sets of k and n − k variables becomes
quickly very large. Finally, the intersections of the set of variables in some sets
(IP , IC , OP , OC) de�ne our attack and we use Bouillaguet et al. algorithm in
order to �nd the best attack taking into account the key schedule equations.

It turns out that our tool is modular in the following sense. The algorithm
used to �nd the sets OP , OC from the minimal equation is very similar to the one
used to �nd the set IP , IC in the truncated di�erential path. Moreover, the algo-
rithm used to �nd the impossible di�erential path used in fact two executations
for the truncated di�erential path algorithms and by computing the intersection
of both sets, we can automatically discover impossible di�erentials.

3.1 Generic Attack on Simple Block Cipher

Our idea is to build a tool �nding the best GDS attacks on a block cipher, but
where the block cipher is given as a system E of AES-like equations over Fq. The
only information assumed in our possession is the type of involved variables:
plaintext (P), ciphertext (C), key (K) or state (X). To be a valid block cipher
we impose three conditions on the system of equations:

|P| = |C|, Lin (E,P ∪K) ∪ Lin (E,C ∪K) ⊆ K and Lin (E(K), ∅) = ∅.

These conditions are natural as they translate the fact that all variables can be
computed step by step from P and K and also from C and K, that all the key
variables can be computed step by step from a master key and that the plaintext
has the same size than the ciphertext (i.e. the blocksize).

For each non-key variable y we de�ne 4 particular sets:

� OP (y) := Lin (E,P ∪K ∪ {y})−K
� OC(y) := Lin (E,C ∪K ∪ {y})−K
� IP (y) := {x ∈ X ∪P ∪C | y ∈ OC(x)}
� IC(y) := {x ∈ X ∪P ∪C | y ∈ OP (x)}

The set OP (y) (resp. OC(y)) contains the state variables required to propagate
the di�erences from the plaintexts (resp. ciphertexts) to both y and S(y), i.e.
the state variables required to compute y that go through an Sbox. In another
hand, the set IP (y) (resp. IC(y)) contains the state variables that are required to
propagate a non-zero di�erence from y to the plaintext (resp. ciphertext). Those
sets give us all the information we need about a block cipher. Interestingly, we
distinguish two kinds of block ciphers: the SPNs for which OP (y) = IP (y) and
OC(y) = IC(y) for all non-key variables y, and the other ones.

9



P

S S

K K

S S

K K

S S

K K

?

P

S S

K K

S S

K K

S S

K K

?

Fig. 2: Toy example. Variables of IP (?) are in blue while variables of OP (?) are
in red.

We can now give our algorithm �nding the best GDS attacks which relies
on four sub-algorithms. The aim of the �rst algorithm is to �nd a minimal
equation involving a given variable. The two next ones are based on the guess-
and-determine technique and are designed to exhaust the best building blocks of
GDS attacks. Finally, the last sub-algorithm is just a merging procedure which
also computes the complexities of the GDS attacks and sorts them.

Finding a minimal equation. In next algorithms we need to be able to �nd
a minimal equation involving a particular variable y. Here minimal means that
there is no equation involving y and a smaller subset (for the inclusion) of vari-
ables. For a system of AES-like equations it is rather simple as showed by Algo-
rithm 1.

Algorithm 1: MinimalEquation

Data: A variable y and a system of equations E in variables X ⊇ {y}
Result: A minimal equation involving y if any.

if y does not appear in E(X) then return {0};
forall the x ∈ X− {y} do

F ← E(X− {x});
if y appears in F then E← F ;

end
return an equation of E involving y

Truncated di�erential search. Given a value b, our goal is to exhaust all the
minimal truncated di�erential characteristics that come from a truncated di�er-
ential ∆X of dimension b (at least), propagated in both way with probability 1.
More precisely, we are interested by the corresponding couples (IP , IC) (de�ned
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Algorithm 2: TruncatedDi�Search

Data: A system of equations E representing a block cipher
Result: A list L containing all possible couples (IP , IC)

L← ∅;
S ← search state initialized such that each of the non-key variable can assume
the 3 possible states;
forall the x that may belong to IP sorted according to |OC(x)| do
S ′ ← S;
Update S ′ with x ∈ IGP ;
if S ′ is consistent then TruncatedDi�Searchtmp(E,S ′, x, L);
Update S with x /∈ IP ;

end

forall the x that may belong to IC sorted according to |OP (x)| do
S ′ ← S;
Update S ′ with x ∈ IGC ;
if S ′ is consistent then TruncatedDi�Searchtmp(E,S ′, x, L);
Set x to constant in S;

end

return L

in Section 2.1) that are minimal for the following partial order relation:

(IP , IC) � (I ′P , I
′
C) if and only if IP ⊆ I ′P and IC ⊆ I ′C .

In other words, we would like to exhaust truncated di�erential characteristics
for which the set of active bits is minimal for the inclusion.

To solve this problem we decided to use a guess-and-determine procedure.
At the beginning each non-key variable has 3 possible states: it can belong to
IP , to IC or be constant. Those states are exclusive, i.e. a variable can only be
in one of them at the same time. Then the state search is easy to update thanks
to the following rules:

� x ∈ IP ⇒ IP (x) ⊆ IP and OP (x) ∩ IC = ∅.
� x ∈ IC ⇒ IC(x) ⊆ IC and OC(x) ∩ IP = ∅.
� x constant ⇒ OP (x) ∩ IC = ∅ and OC(x) ∩ IP = ∅.

One could perform an exhaustive search using only those rules but this is not
optimal. Instead we de�ne two new subsets:

� IGP := {x ∈ IP | ∀y ∈ IP − {x}, x /∈ IP (y)}.
� IGC := {x ∈ IC | ∀y ∈ IC − {x}, x /∈ IC(y)}.

Those sets are somehow the generators of IP and IC respectively. Our idea is to
begin by guessing one variable of IGP and then by �agging just enough variables
to a non-constant state to ensure that the guessed one is truly non-constant. This
is done by looking for minimal equations involving the guessed variable and only
unset variables. Finally if the dimension of the zero di�erences is small enough
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then the couple (IP , IC) is stored. Otherwise, another variable of IGP or IGC is
guessed and the procedure is repeated. Furthermore, the variables can be sorted
such that at each step only two cases are possible: either the variable belongs
to IGP or it does not belong to IP . While being more generic, this is actually
quite close than picking a round r, saying that variables of IP belong to the �rst
r rounds and then �rst guessing the state of variables of the r-th round. The
whole procedure is described in an algorithmic manner in Algorithms 2 and 3.

Algorithm 3: TruncatedDi�Searchtmp

Data: A system of equations E, a search state S, a variable y and a list L
Result: Fill the list L with all possible couples (IP , IC).

s← set of variables that may be or are constant;
e← MinimalEquation(y,E(s ∪ {y}));
if e 6= {0} then

forall the x involved in e that may be constant do

S ′ ← S;
Update S ′ with x ∈ IP ;
if S ′ is consistent then TruncatedDi�Searchtmp(E,S ′, y, L);
S ′′ ← S;
Update S ′′ with x ∈ IC ;
if S ′′ is consistent then TruncatedDi�Searchtmp(E,S ′′, y, L);
Set x to constant in S;

end

else

d← dimension of variables that may be or are constant;
if d > blocksize− b then

forall the x that may belong to IP sorted according to |OC(x)| do
S ′ ← S;
Update S ′ with x ∈ IGP ;
if S ′ is consistent then TruncatedDi�Searchtmp(E,S ′, x, L);
Update S with x /∈ IP ;

end

forall the x that may belong to IC sorted according to |OP (x)| do
S ′ ← S;
Update S ′ with x ∈ IGC ;
if S ′ is consistent then TruncatedDi�Searchtmp(E,S ′, x, L);
Set x to constant in S;

end

else

L← L ∪ {(IP , IC)};
end

end
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Basic meet-in-the-middle attack search. Our algorithm to �nd the best
couples (OP , OC) is quite similar to the previous one. Each non-key variable
also has 3 possible states: it can belong to OP , to OC or be unused. The upgrade
rules become:

� x ∈ OP ⇒ OP (x) ⊆ OP and IP (x) ∩OC = ∅.
� x ∈ OC ⇒ OC(x) ⊆ OC and IC(x) ∩OP = ∅.
� x unused ⇒ IP (x) ∩OC = ∅ and IC(x) ∩OP = ∅.

We also de�ne two generators sets:

� OGP := {x ∈ OP | ∀y ∈ OP − {x}, x /∈ OP (y)}.
� OGC := {x ∈ OC | ∀y ∈ OC − {x}, x /∈ OC(y)}.

The search procedure begins by guessing a variable of OGP . Then we look for
a minimal equation involving it, at least one unset variable and no variables
�agged as unused. Next, two cases are possible: either we set to unused one of
the involved variables and go back to the previous step, or we set to OP or OC
all the involved variables. In the last case if (OP , OC) leads to enough equations
we store it, otherwise we guess another variable of OGP or OGC and restart the
procedure in order to increase the number of equations.

Merging procedure. The merging procedure is quite simple and similar to the
one used by Derbez et al. in [DF13]. In order to perform it we need to compute
the number of values that the sets IP ∪ OC ∪ P ∪ C and IC ∩ OP can assume
and the time required to enumerate them. Under the heuristic assumption of
the number of solutions given in the previous section, the procedure described
in Algorithm 4 can be used. This procedure takes as input a system of equations
E and a set Y and gives as output a set Z containing Y such that the number of
solutions of E(Z) is minimal. Furthermore, as we only consider systems E such
that Lin (E, ∅) = ∅ (i.e. systems that are triangular) then the time required to
enumerate the solutions of a subsystem is equal to its number of solutions.

Algorithm 4: MinimalSolutions

Data: A system of equations E in variables X and Y a subset of X
Result: A set Z such that Y ⊆ Z ⊆ X and |Sol (E(Z)) | is minimal

if Lin (E,Y)−Y = ∅ then return Y;
Pick x ∈ Lin (E,Y)−Y;
Z1 ← MinimalSolution(E,X,Y ∪ {x});
Z2 ← MinimalSolution(E(X− {x}),X− {x},Y);
if |Sol (E(Z1)) | < |Sol (E(Z2)) | then

return Z1

else
return Z2

end
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3.2 Extension to a Larger Class of Block Ciphers

While interesting the previous algorithm can only handle a limited amount of
block ciphers as many of them cannot be represented by a system of AES-like
equations. So our idea is to make it work on systems of the following kind of
equations: ∑

αiSi,j(xσ(0), . . . , xσ(j)) +
∑

βjxj + c = 0.

Indeed a very large variety of block ciphers can be written as systems of such
equations and actually it is rather simple to extend our previous algorithms to
handle them. The main di�erence is that instead of considering single variables
we now have to consider set of variables. The notion of linear variable can be
easily extended to set of variable as follows:

De�nition 7 (linear set of variables). Let E be a system of equations in
variables X and let be x1, . . . , xn ∈ X. The set {x1, . . . , xn} is a linear set of
variables if and only if dimE− dimE(X− {x1, . . . , xn}) ≤ n.

Obviously we do not consider all set of variables but only the ones which go
through an Sbox. Also, two sets of variables can share some variables which may
be a problem. To solve it we introduce new variables and equations as shown in
the following example:

{
S(x, y) + S(y, z) = 1 ⇒

{
S(x, y) + S(t, z) = 1

y − t = 0

Finally, handling multi-variables S-boxes naturally leads to the particular
case of AND and OR. While until now S-boxes were considered as black boxes,
both those functions have a special property that we want to be properly han-
dled. Indeed, the following equation holds for any variables x and y:

AND(x, y)⊕AND(x⊕∆x, y⊕∆y) = AND(x,∆y)⊕AND(∆x, y)⊕AND(∆x,∆y).

In particular, if ∆y = 0 then AND(x, y) ⊕ AND(x ⊕ ∆x, y) = AND(∆x, y),
meaning that computing the di�erence after the AND requires ∆x and y but
not the actual value of x. This is also true for the OR operator since OR(x, y) =
AND(x, y) ⊕ x ⊕ y. As a consequence, in the previous algorithms, we have to
de�ne new sets I ′P , I

′
C , O

′
P and O′C containing the variables required to compute

the di�erences in each variable of IP , IC , OP and OC respectively, and use them
instead for the complexity computations.

3.3 Two Other Modes

The building blocks of the GDS search algorithm allow to make automatic search
for two others kind of attacks.

Basic Meet-in-the-Middle Attack. It is actually one of the building block
used in the GDS-attack search procedure and thus it can be used on itself to �nd
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very low data complexity attacks. Its application is quite marginal but it was suc-
cessfully used during the PRINCE Challenge [Sem14] to win some of the contests
and it automatically rediscovered the best attack on full KTANTAN [CDK09].

Impossible Di�erential Attack. Recently, Boura et al. [BNS14] proposed
a generic vision of impossible di�erential attacks with the aim of simplifying
and helping the construction and veri�cation of this type of cryptanalysis. In
particular, they provided a formula to compute the complexity of such an attack
according to its parameters. To understand the formula we �rst brie�y remain
how an impossible di�erential attack is constructed. It starts by splitting the
cipher in three parts: E = E3 ◦E2 ◦E1 and by �nding an impossible di�erential
(∆X 9 ∆Y ) through E2. Then ∆X (resp. ∆Y ) is propagated through E−11

(resp. E3) with probability 1 to obtain ∆in (resp. ∆out). We denote by cin and
cout the log2 of the probability of the transitions ∆in → ∆X and ∆out → ∆Y

respectively. Finally we denote by kin and kout the key materials involved in
those transitions. All in all the attack consists in discarding the keys k for which
at least one pair follows the characteristic through E1 and E3 and in exhausting
the remaining ones. The complexity of doing so is the following:

� data: CNα
� memory: Nα
� time: CNα +

(
1 + 2|kin∪kout|−cin−cout

)
NαCE′ + 2|k|−α

where Nα is such that (1 − 2−cin−cout)Nα < 2−α, CNα is the number of chosen
plaintexts required to generate Nα pairs satisfying (∆in, ∆out), |k| is the key size
and CE′ is the ratio of the cost of partial encryption to the full encryption.

As we already have an algorithm to �nd the kind of truncated di�erential
characteristics used in impossible di�erential attack, making an automatic search
for this kind of attacks is straightforward. The tool gives as output all the pa-
rameters used in the above formula.

3.4 Limitations and Usage

In this section we discuss the limitations of our tools and give some recommen-
dations.

Generic VS Ad-Hoc. As our algorithms are very generic they are probably
slower than an ad-hoc algorithm designed for a speci�c block cipher. In partic-
ular, we do not take into account the symmetries found in almost all modern
ciphers. This could be a nice improvement of our algorithms and we are already
thinking about such a feature.

ARX Ciphers. While in theory ARX ciphers are handled, in practice they are
not. More precisely, fully describing all the modular additions to �t the expected
representation leads to a lot of nested Sboxes and/or new variables which may
make the search too slow. In such case, we recommend to describe them only for
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the 3-4 lower bits and to use black boxes for other ones as follows:

{
z = x+ y

[
232
]
⇒



z0 = x0 ⊕ y0
r1 = AND(x0, y0)
z1 = x1 ⊕ y1 ⊕ r1
r2 = AND(x1, y1)⊕AND(x1, r1)⊕AND(y1, r1)
z2 = x2 ⊕ y2 ⊕ r2
r3 = AND(x2, y2)⊕AND(x2, r2)⊕AND(y2, r2)
z3 = x3 ⊕ y3 ⊕ r3
z4 = S4(x3, . . . , x31, y3, . . . , y31, r3)
. . .

z31 = S31(x3, . . . , x31, y3, . . . , y31, r3)

In our opinion the issue comes more from our implementation than from our
algorithms and we are currently working on it.

Complex Key Schedule. Too complex key schedules may also make the search
too slow. For instance, if it is very hard to retrieve a part of the master key
without almost all the subkeys like for CLEFIA [SSA+07] or Camellia [AIK+00]
then we recommend to remove the subkeys generation process from the system
of equations. Our tools should see a key size larger than expected but the user
can give bounds for data, time and memory complexities of attacks.

Exhaustive Search. Unfortunately, it is not always possible to fully perform
the algorithms described in Section 3.1 in a reasonable time (say less than a
month). In order to decrease the running time, one thing we considered was to
slightly modify the partial order relation into the following one:

(IP , IC) � (I ′P , I
′
C) if and only if |IP | ≤ |I ′P | and |IC | ≤ |I ′C |.

While in theory we may miss some of the best attacks, we never encounter a
block cipher for which the building blocks of best attacks were not minimal for
this order relation because the complexity of attacks is highly (but not fully)
related to the number of variables to enumerate.

Di�erential Enumeration Technique. In [DKS10], Dunkelman et al. intro-
duced a sophisticated trade-o� for GDS attacks which reduces the memory with-
out increasing the time complexity. The main idea is to add restrictions on the
parameters used to build the table such that those restrictions can be checked
(at least partially) during the online phase. More precisely, they impose that
sequences stored come from a δ-set containing a message m which belongs to
a pair (m,m′) that follows a well-chosen di�erential path. Then the attacker
�rst focus on �nding such pair before identifying a δ-set and �nally building the
sequence. This technique is very powerful and was used to reach the best attacks
against the AES [DFJ13,DF13,LJW13]. We did not make an algorithm �nding
the best GDS attacks under this trade-o� mainly because it may be complicated
to compute the exact complexity of the resulting attack. However, we distinguish
two cases:
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� SPN : for an SPN block cipher the sets IP (y) and OP (y) (resp. IC(y) and
OC(y)) are equal for all non-key variable y. Thus any GDS attack de�ned
by the four sets IP , IC , OP and OC leads to only one truncated di�erential
characteristic (say ∆) such that active variables are exactly the variables of
IP ∪ (IC ∩ OP ) ∪ OC . This is the natural candidate to use the di�erential
enumeration technique. Then both the data and memory complexities are
modi�ed according to the probability of ∆ and are easy to compute. However
the time complexities of the online and the o�ine phases are more compli-
cated to compute since in both cases we have to �nd the best algorithm
to enumerate the solutions of a set of variables under the constraint of ∆
(see [LJW13] for instance).

� non-SPN : for non-SPN block ciphers there is no natural truncated di�er-
ential characteristic to use, making the search of best attacks much more
complicated. Furthermore, the technique is less powerful than against SPN
but can still provide e�cient attacks as shown by Li and Jia in [LJ14].

4 Applications

Our tools handle a very large class of block ciphers and we applied them on
AES [NIS01], ARIA [KKP+03], CLEFIA [SSA+07], KLEIN [GNL11], KTAN-
TAN [CDK09], LBlock [WZ11], PICCOLO [SIH+11], PRINCE [BCG+12], SI-
MON [BSS+13], TWINE [SMMK12], ZORRO [GGNS13] and more. In this sec-
tion we present many applications highlighting some of the possibilities o�ered
by our set of tools.

4.1 mCrypton

mCrypton is a 64-bit lightweight block cipher introduced in 2006 by Lim et al.,
which is a reduced version of Crypton. It is speci�cally designed for resource-
constrained devices like RFID tags and sensors in wireless sensor networks. Like
AES, mCrypton is also a SPN block cipher. According to key length, mCrypton
has three versions namely mCrypton-64/96/128, which is in high accordance
with AES-128/192/256. All the three versions have 12 rounds and each round
consists of 4 transformations as follows:

� Non-linear Substitution γ. This transformation consists of nibble-wise
substitutions using four 4-bit S-boxes S0, S1, S2 and S3.

� Bit Permutation π. The bit permutation transformation π has the same
function than MixColumns transformation of AES: mixing each column of
the state matrix. Operation π restricted to the i-th column is de�ned as
follows:

b = πi(a)⇐⇒ b[j] =

3⊕
k=0

(a[k] & mi+j+k mod 4),

where m0 = 1110, m1 = 1101, m2 = 1011, m3 = 0111 and where & is the
bitwise operation AND.
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� Column-To-Row Transposition τ . This is simply the ordinary matrix
transposition.

� Key Addition σ. It is a simple bit-wise XOR operation and resembles the
AddRoundKey operation of AES.

mCrypton also adds a linear operation φ = τ ◦ π ◦ τ after the last round so that
the whole encryption process is:

c = φ ◦ σk12 ◦ τ ◦ π ◦ γ ◦ . . . ◦ σk1 ◦ τ ◦ π ◦ γ ◦ σk0(p).

All best known attacks against mCrypton are GDS attacks combined to the
di�erential enumeration technique. Hence it was a good target to check whether
our tool could �nd better attacks. As a result, we found attacks on more rounds
for the three standardized key lengths. We also found an attack against 11 rounds
of Crypton-256 while the full version is composed of 12 rounds. Complexities of
attacks are reported in Table 1.

Table 1: Complexities of GDS attacks against mCrypton and Crypton.

Version Rounds Data Time Memory Reference

64 7 257 257 244 [HBL14]

96
7 257 257 244 [HBL14]

8 248 265 281.6 [KJS+13]

9 257 283 283 ours

128

7 257 257 244 [HBL14]

8 248 265 281.6 [KJS+13]

8 257 296 244 [HBL14]

9 253 2116 2120 [HBL14]

10 255 2117 2103 ours

Attack against 10-round mCrypton-128. Let us describe our GDS attack
against 10 rounds of the 128-bit version of mCrypton, depicted on Figure 3.

First we introduce some notations: xi for the state just before the i − 1-th
γ operation, yi for the state just after i − 1-th γ operation and zi for the state
just after the i− 1-th π operation. Given a state a, a[i] denotes the i-th nibble
of a and a[i]b the b-th bit of nibble a[i].

For this attack we consider δ-sets of 26 messages such that nibbles y1[2, 3..7, 10, 12..15]
and z1[2, 3..7, 10, 12..15] are constant, exploiting the fact that the branch num-
ber of the π operation is 4. Then, the meet-in-the-middle is performed on the
4 bit-equations between ∆y6[1, 3, 9, 11] and ∆z6[1, 3, 9, 11], exploiting again the
same property of the π operation.

Given a δ-set {p0, p1, . . . , p63}, the ordered sequence[
y16 [1, 3, 9, 11]⊕ y06 [1, 3, 9, 11], . . . , y636 [1, 3, 9, 11]⊕ y06 [1, 3, 9, 11]

]
,
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P

x0 z0 x1 z1 x2 z2

x3 z3 x4 z4 x5 z5

x6 z6 x7 z7 x8 z8

x9 z9

C

Fig. 3: Attack on 10-rounds mCrypton. Bytes of o�ine phase are in black. Bytes
of online phase are in gray. Hatched bytes play no role. The di�erences are null
in white squares

is fully determined by 42 nibbles, which can assume only 2159 thanks to the key
schedule relations. Furthermore, if we restrict ourself to the case where the pair
(p0, p1) follows the di�erential characteristic depicted on Figure 3, the number
of possible ordered sequences is reduced by a factor 256. Computing all these
ordered sequences can be done using the same approach Derbez et al. used
in [DFJ13]. On the other hand, the online phase requires to guess 42 state nibbles
which can assume only 2117 values thanks to 51 key schedule equations.

Given a pair which may follow the di�erential characteristic, the 42 nibbles
of the online phase can assume only 2117−32+6−64+4 = 231 values. Enumerating
those 231 values in roughly 231 is complicated but possible using a meet-in-the-
middle procedure: the main idea is to compute all the possible values for involved
nibbles of states x0 and x1 in one hand and all the possible values for involved
nibbles of states x7, x8 and x9 in an other hand, and then to match those sets
according to key schedule equations.

All in all, we need 223 structures of 232 messages to get one pair following
the di�erential characteristic. The probability for a wrong pair to pass the test
is 2103−63∗4 = 2−149 so we expect that only the right pair will pass it. Finally,
the remaining key bits can be exhausted.

4.2 IDEA

IDEA was introduced by Lai and Massey in 1991 and became widely deployed
due to its inclusion in the PGP package. It is a 64-bit, 8.5-round block cipher
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with 128-bit keys and it uses a composition of XOR operations, additions modulo
216, and multiplications over GF (216 + 1).

In order to apply our set of tools to IDEA, we chose to represent the mul-
tiplication by a black-box and to describe the modular addition only for the 4
least signi�cant bits, other ones being handle by a black-box.

As a result, we automatically recovered the 6-round meet-in-the-middle at-
tack described by Biham et al. in [BDKS15]. In particular, we retrieved the
keyless Biryukov-Demirci relation, a linear equation involving the plaintext, the
ciphertext, and several intermediate values computed during the IDEA encryp-
tion process. This equation is central in best known attacks against IDEA and
was discovered only 15 years after IDEA was introduced.

4.3 XTEA

XTEA is an evolutionary improvement of TEA. XTEA makes essentially use
of arithmetic and logic operations like TEA. New features of XTEA are to use
two bits of δi and the shift of 11 . This adjustments cause the indexes of round
keys to be irregular. We can describe the output (Yi+1, Zi+1) of the i-th cycle of
XTEA with the 64-bit input (Yi, Zi) as follows:

Yi+1 = Yi � F (Zi,K2i−1, δi−1)
Zi+1 = Zi � F (Yi,K2i, δi)

where δi's are constants, Ki's round keys and where round function F is de�ned
by:

F (X,K, δ) = (((X � 4)⊕ (X � 5))�X)⊕ (K � δ).

Partially described modular addition. In that case our tools can handle
a large number of rounds. Unfortunately, resulting attacks were far from best
known ones, in term of complexity and broken rounds, due to the information
lost in the representation of the modular addition.

Fully described modular addition. In that case our tools were not able to
search for attacks on more than 10 rounds, in the sense that the search takes
too much time. The main issue comes from the huge number of sets of variables
for which the tools have to compute the number of possible values in order to
compute complexities of resulting attacks. However this does not make our set
of tools useless. Indeed, our idea was to run the tool searching for impossible
di�erential attacks but with a bound equals to 0 on the time complexity of
searched attacks. In that case, it becomes a simpler tool which only looks for
truncated impossible di�erentials. As a result, we were able to recover the longest
ones on XTEA in few minutes.

4.4 ZORRO

At CHES 2013, Gerard et al. presented the block cipher ZORRO [GGNS13].
It is an AES-like block cipher but with a partial non-linear layer. The 128-bit
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plaintext initializes the internal state viewed as a 4× 4 matrix of bytes as values
in the �nite �eld F28 . It has 24 rounds and the 128-bit master key is XORed with
the internal state every four rounds. A round of ZORRO consists of 4 simple
operations applied successively on the state matrix:

� SubBytes (SB∗) applies the same 8-bit to 8-bit invertible S-Box on each
byte of the �rst row in parallel,

� ShiftRows (SR) shifts the i-th row left by i positions,
� MixColumns (MC) replaces each of the four column C of the state by
M × C where M is a constant 4 × 4 maximum distance separable matrix
over F28 ,

� AddConstant (AC) adds a constant on the �rst row.

Both the MixColumns and ShiftRows operations are the same than those
used in the AES. The S-box however is di�erent and was chosen in order to
be easier to mask but in return has worse di�erential properties which were
exploited by the di�erential attacks. In particular, ZORRO has been fully broken
([GNPW13,BDD+14,RASA14]) because of the existence of a high probability 4-
round iterated di�erential.

xi

SB
∗

AC

S

yi

SR

X
X
X
X

X
X
X
X

C ←M × C

zi

MC

wi

Fig. 4: A ZORRO-round applies MC ◦ SR ◦ SB ◦AC to the state.

While ZORRO has been already broken, we will study it as a toy example
to show how useful our tool can be to designers. Generalized Demirci-Selçuk
attacks combined to the di�erential enumeration technique led to the best attacks
on the three versions of the AES in the single-key setting and thus our idea
was to study the resistance of ZORRO and its variants against such attacks.
If the Sbox is applied on the same four bytes each round then there are 1820
variants of ZORRO. In order to not decrease the (already very low) resistance
against di�erential cryptanalysis we considered only variants such that the S-box
is applied on one byte per column and on one byte per diagonal, leading to 24
variants including the original one. Finally, and because of the symmetry in the
structure of Zorro we focused on the 11 variants depicted on Figure 5.

For each of those variants we wrote the corresponding system of equations
and gave it to our tool. Interestingly, we found that the complexity and the
number of rounds broken only depend on the number of rows having an S-box.
More precisely, for all the variants with only one Sbox-free row we found that
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Fig. 5: Studied variants of Zorro.

16 rounds are secure against GDS attacks and 20 are fully secure against GDS
attacks combined with the di�erential enumeration technique while 20 and 25
rounds are required to provide the same security for the variants with two or
three Sbox-free rows. As a consequence, the designers of ZORRO did not choose
the most secure variant and the number of rounds chosen was too low. Actually,
this enforces the results of Bar-On et al. [BDD+15], stating that the design
behind Zorro may lead to both secure and easy to mask block ciphers as long as
we take care of its speci�cities.

Note that here fully secure against GDS attacks combined with the di�er-
ential enumeration technique means that there is no GDS attack with a time
complexity strictly smaller than 2k and a memory complexity strictly smaller
than 2k+n, where k is the keysize and n the blocksize, since, combined to the
di�erential enumeration technique, such attack may (but not always) be turned
into one with an overall complexity smaller than 2k.

4.5 SIMON

SIMON [BSS+13] is family of lightweight block ciphers designed by the Ameri-
can National Security Agency (NSA) in 2013. It performs exceptionally well in
both hardware and software, although SIMON is supposed to be more hardware-
oriented. The SIMON family is based on a classical Feistel construction operat-
ing on two branches. The round function is composed of three simple operations:
AND, XOR and rotations. More precisely, at each round the left branch is trans-
formed using the following non-linear function:

F (L) := ((L≪ 8)&(L≪ 1))⊕ (L≪ 2).

Then, the output of F is XORed with the round key and the right branch to form
the left branch of the next round. The SIMON family contains 10 ciphers and,
in the sequel, we refer to them by SIMONn/k where n and k are respectively
the blocksize and the keysize.

In [BNS14], Boura et al. described the best (in term of broken rounds) im-
possible di�erential attacks against all the versions of SIMON. However, after
running our tool against SIMON we found that actually more rounds can be
broken by using the exact same technique, highlighting how useful an automatic
approach is.
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20-round attack on SIMON32/64. To mount an impossible di�erential at-
tack on 19-round SIMON32/64, Boura et al. used an impossible di�erential char-
acteristic covering 11 rounds extended by 4 rounds in both directions such that
4 + 11 + 4 = 19 rounds of the cipher were attacked. In our case we also use an
11-round impossible di�erential but our tool found one (see Table 2) that can
be extended by 3 + 6 rounds while still resulting in an attack faster than the
exhaustive search according to the formula given Section 3.3.

Round Left branch Lr Right branch Rr

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 ∗ 0 0 0 0 0 1 ∗ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 ∗ 0 0 0 0 0 ∗ ∗ 0 0 0 0 1 ∗ ∗ 0 0 0 0 0 0 0 0 0 ∗ 0 0 0 0 0 1 ∗
7 0 0 0 0 ∗ ∗ ∗ 0 ∗ 0 1 ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 ∗ ∗ 0 0 0 0 1 ∗ ∗ 0
8 ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 ∗ ∗ ∗ 0 ∗ 0 1 ∗ ∗ ∗ ∗ ∗
9 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗ ∗ ∗ 0
9 0 ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 ∗ 0 ∗ ∗ ∗ ∗ ∗
10 ∗ 0 0 0 0 ∗ ∗ ∗ 0 ∗ 0 0 0 0 0 ∗ 0 ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 ∗ ∗ ∗
11 0 ∗ 0 0 0 0 0 ∗ ∗ 0 0 0 0 0 0 0 ∗ 0 0 0 0 ∗ ∗ ∗ 0 ∗ 0 0 0 0 0 ∗
12 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 ∗ 0 0 0 0 0 ∗ ∗ 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2: Impossible di�erential characteristic over 11 rounds of SIMON32/64. 0
denotes a bit with no di�erence, 1 a bit with a di�erence and ∗ a bit which may
have a di�erence.

The attack is depicted in Figure 6. It can be seen that the di�erence in the
plaintexts has to be zero in 16 bits and equals to 1 in 2 bits. Hence cin + cout =
13 + 31 = 44 and thus Nα ≈ α · 243.5. Given a structure of 214 plaintexts
such that bits L0[1..5, 8..11, 15] and R0[0..3, 7, 9] are constant and such that
L0[12] = R0[10], one can form 214+13−1 = 226 pairs lying in the right space
and thus CNα = α · 231.5. Finally, 70 subkey bits are involved in the attack
(blue colored in Figure 6) but they can assume only 262 values thanks to the key
schedule (see Appendix A). All in all, the complexity of our attack isD = α·231.5,
M = α ·243.5 and T = α ·231.5+(1+262−44) ·α ·243.5CE′ +264−α. As we estimate
the ratio CE′ to 70/(16 · 20), the value of α minimizing the overall complexity
is 4.17. However α has to be smaller than 20.5 because of the data complexity
and, for this particular value the complexity of our attack is:

D = 232, M = 243.5 and T = 262.8,

which is similar to the complexity Boura et al. reached on 19 rounds (D =
232, M = 244 and T = 262.5).
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Fig. 6: Impossible di�erential attack against 20-round SIMON32/64. Di�erence
equals to 0 in white bits, to 1 in black bits and unknown in red bits. Subkey
material involved is in blue.

Others versions of SIMON. Running our tool against SIMON takes time
(up to many days for the largest versions) so we did not exhaust all the best
attacks yet. However, we found that SIMON32/64 is not the only version for
which results of Boura et al. are suboptimal as, for instance, one more round
can be broken for both SIMON48/64 and SIMON48/96.

5 Conclusion

In this paper we described powerful and versatile cryptanalysis tools handling
a very large class of block ciphers. They are designed to �nd the best gener-
alized Demirci-Selçk attacks, basic meet-in-the-middle attacks and impossible
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truncated di�erential attacks for a given target. They are publicly released, easy
to use and their running time is reasonable (from few seconds for AES to many
days for SIMON). Thus we believe they will be of great help for both designers
and cryptanalysts. Furthermore, our approach is very generic and requires no a
priori information about the targeted block cipher.

Future work will be to think about better algorithms/implementations, mainly
in order to handle ARX ciphers faster. Including the last results concerning the
di�erential enumeration technique would also be nice as well as handling sys-
tems from authenticated encryptions. Finally, currently we have to write code in
order to generate the system of equations. It would be nice if we would be able
to generate it from a C implementation.
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A Key Schedule Equations Used in the 20-round Attack
Against SIMON32/64

Actually, all the 70 key bits are not required to perform the impossible di�erential
attack described Section 4.5 since bits K1[7] ⊕K0[9], K1[9] ⊕K0[11], K15[0] ⊕
K16[2] and K15[2]⊕K16[4] can be used instead of the 8 bits K0[9], K0[11], K1[7],
K1[9], K15[0], K15[2], K16[2], K16[4]. This already saves 4 bits.

Then, in SIMON32/64, the subkeys are related by the following equations:

Kr+4 = Kr ⊕Kr+1 ⊕ (Kr+1≪ 1)⊕ (Kr+3≪ 3)⊕ (Kr+3≪ 4).

Switching Kr and Kr+4 we can use this equation to express K0 as a linear
combination of K16, K17, K18 and K19, and interestingly it has the following
shape:

K0 = K16 ⊕ f(K17,K18,K19),

where f is a linear function. Finally, thanks to this equation, we deduce bits 1,
8, 10 and 15 of K0 from the same bits of K16 and the full subkeys K17, K18 and
K19.
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