
Homomorphic Encryption
for Arithmetic of Approximate Numbers

Jung Hee Cheon1, Andrey Kim1, Miran Kim2, and Yongsoo Song1

1 Seoul National University, Republic of Korea
{jhcheon, kimandrik, lucius05}@snu.ac.kr

2 University of California, San Diego
mrkim@ucsd.edu

Abstract. We suggest a method to construct a homomorphic encryption scheme for approxi-
mate arithmetic. It supports an approximate addition and multiplication of encrypted messages,
together with a new rescaling procedure for managing the magnitude of plaintext. This proce-
dure truncates a ciphertext into a smaller modulus, which leads to rounding of plaintext. The
main idea is to add a noise following significant figures which contain a main message. This noise
is originally added to the plaintext for security, but considered to be a part of error occurring
during approximate computations that is reduced along with plaintext by rescaling. As a re-
sult, our decryption structure outputs an approximate value of plaintext with a predetermined
precision.
We also propose a new batching technique for a RLWE-based construction. A plaintext poly-
nomial is an element of a cyclotomic ring of characteristic zero and it is mapped to a message
vector of complex numbers via complex canonical embedding map, which is an isometric ring
homomorphism. This transformation does not blow up the size of errors, therefore enables us
to preserve the precision of plaintext after encoding.
In our construction, the bit size of ciphertext modulus grows linearly with the depth of the
circuit being evaluated due to rescaling procedure, while all the previous works either require
an exponentially large size of modulus or expensive computations such as bootstrapping or bit
extraction. One important feature of our method is that the precision loss during evaluation is
bounded by the depth of a circuit and it exceeds at most one more bit compared to unencrypted
approximate arithmetic such as floating-point operations. In addition to the basic approximate
circuits, we show that our scheme can be applied to the efficient evaluation of transcendental
functions such as multiplicative inverse, exponential function, logistic function and discrete
Fourier transform.

Keywords. Homomorphic encryption, approximate arithmetic

1 Introduction

Homomorphic encryption (HE) is a cryptographic scheme that enables homomorphic oper-
ations on encrypted data without decryption. Many of HE schemes (e.g. [18, 6, 7, 4, 5, 25,
33, 2, 26, 13, 12, 21, 19]) have been suggested following Gentry’s blueprint [23]. HE can be
applied to the evaluation of various algorithms on encrypted financial, medical, or genomic
data [36, 31, 11, 41, 29].

Most of real-world data contain some errors from their true values. For instance, a mea-
sured value of quantity has an observational error from its true value and sampling error
can be made as only a sample of the whole population is being observed in statistics. In
practice, data should be discretized (quantized) to an approximate value such as floating-
point number, in order to be represented by a finite number of bits in computer systems.
In this case, an approximate value may substitute the original data and a small rounding
error does not have too much effect on computation result. For the efficiency of approximate
arithmetic, we store a few numbers of significant digits (e.g. most significant bits, MSBs)
and carry out arithmetic operations between them. The resulting value should be rounded
again by removing some inaccurate least significant bits (LSBs) to maintain the bit size of
significand (mantissa).

m1e1

×

m2e2

[m1m2]te∗

m1m2

q

I1 e1m1

×

I2 e2m2

I∗ e∗[m1m2]t

m1m2

q

Fig. 1. Homomorphic multiplications of BGV-type HE schemes (left) and FV-type HE schemes (right)

e1

m1

q

e2

m2

q×

e∗

m1m2

q

MSB LSB

RS

e′

p−1 ·m1m2

p−1 · q

Fig. 2. Homomorphic multiplication and rescaling for approximate arithmetic

Unfortunately this rounding operation has been considered difficult to perform on HE
since it is not simply represented as a small-degree polynomial. Previous approaches to
approximate arithmetic require similar multiplicative depth and complexity to the case of
bootstrapping for extraction of MSBs [1, 27]. Other methods based on exact integer opera-
tions [20, 16] require an exponentially large bit size of ciphertext modulus with the depth of
the circuit to ensure correctness.

We point out that the decryption structures of existing HE schemes are not appropriate
for arithmetic of indiscrete spaces. For a plaintext modulus t and a ciphertext modulus q,
BGV-type HE schemes [5, 25, 33, 19] have a decryption structure of the form 〈ci, sk〉 = mi+tei
(mod q). Therefore, the MSBs of m1 + m2 and m1m2 are destroyed by inserted errors ei
during homomorphic operations. On the other hand, the decryption structure of FV-type
HE schemes [4, 22, 2] is 〈ci, sk〉 = qIi + (q/t)mi + ei for some Ii and ei. Multiplication of
two ciphertexts satisfies 〈c∗, sk〉 = qI∗ + (q/t)m1m2 + e∗ for I∗ = tI1I2 + I1m2 + I2m1 and
e∗ ≈ t(I1e2 + I2e1), so the MSBs of resulting message are also destroyed (see Fig.1 for an
illustration). HE schemes with matrix ciphertexts [26, 21] support homomorphic operations
over the integers (or integral polynomials) but the error growth depends on the size of
plaintexts.As a result, previous HE schemes are required to have an exponentially large
ciphertext modulus with the depth of a circuit for approximate arithmetic.

Homomorphic Encryption for Approximate Arithmetic. The purpose of this paper
is to present a method for efficient approximate computation on HE. The main idea is to
treat an encryption noise as part of error occurring during approximate computations. That

2

is, an encryption c of message m by the secret key sk will have a decryption structure of
the form 〈c, sk〉 = m+ e (mod q) where e is a small error inserted to guarantee the security
of hardness assumptions such as the learning with errors (LWE), the ring- LWE (RLWE) and
the NTRU problems. If e is small enough compared to the message, this noise is not likely to
destroy the significant figures of m and the whole value m′ = m+ e can replace the original
message in approximate arithmetic. One may multiply a scale factor to the message before
encryption to reduce the precision loss from encryption noise.

For homomorphic operations, we always maintain our decryption structure small enough
compared to the ciphertext modulus so that computation result is still smaller than q. How-
ever, we still have a problem that the bit size of message increases exponentially with the
depth of a circuit without rounding. To address this problem, we suggest a new technique
- called rescaling - that manipulates the message of ciphertext. Technically it seems simi-
lar to the modulus-switching method suggested by Brakerski and Vaikuntanatan [6], but it
plays a completely different role in our construction. For an encryption c of m such that
〈c, sk〉 = m+ e (mod q), the rescaling procedure outputs a ciphertext

⌊
p−1 · c

⌉
(mod q/p),

which is a valid encryption of m/p with noise about e/p. It reduces the size of ciphertext
modulus and consequently removes the error located in the LSBs of messages, similar to
the rounding step of fixed/floating-point arithmetic, while almost preserving the precision of
plaintexts.

The composition of homomorphic operation and rescaling mimics the ordinary approxi-
mate arithmetic (see Fig.2). As a result, the bit size of a required ciphertext modulus grows
linearly with the depth of a circuit rather than exponentially. We also prove that this scheme
is almost optimal in the sense of precision: precision loss of a resulting message is at most
one bit more compared to unencrypted floating-point arithmetic.

Encoding Technique for Packing Messages. It is inevitable to encrypt a vector of mul-
tiple plaintexts in a single ciphertext for efficient homomorphic computation. The plaintext
space of previous RLWE-based HE schemes is a cyclotomic polynomial ring Zt[X]/(ΦM (X))
of a finite characteristic. A plaintext polynomial could be decoded as a vector of plaintext
values into a product of finite fields by a ring isomorphism [38, 39]. An inserted error is placed
separately from the plaintext space so it may be removed by using plaintext characteristic
after carrying out homomorphic operations.

On the other hand, a plaintext of our scheme is an element of a cyclotomic ring of
characteristic zero and it embraces a small error which is inserted from encryption to ensure
the security or occurs during approximate arithmetic. Hence we adapt an isometric ring
homomorphism - the complex canonical embedding map. It preserves the size of polynomials
so that a small error in a plaintext polynomial is not blow up during encoding/decoding
procedures.

Let H = {(zj)j∈Z∗M : z−j = zj , ∀j ∈ Z∗M} ⊆ CΦ(M) and let T be a subgroup of the multi-
plicative group Z∗M satisfying Z∗M/T = {±1}. The native plaintext space of our scheme is the
set of polynomials in the cyclotomic ringR = Z[X]/(ΦM (X)) with magnitude bounded by ci-
phertext modulus. The decoding procedure first transforms a plaintext polynomialm(X) ∈ R
into a complex vector (zj)j∈Z∗M ∈ H by the canonical embedding map σ and then sends it

to a vector (zj)j∈T using the natural projection π : H → Cφ(M)/2. The encoding method
is almost the inverse of the decoding procedure, but a round-off algorithm is required for
discretization so that the output becomes an integral polynomial. In short, our encoding
function is given by

Cφ(M)/2 π−1

−−−→ H
b·eσ(R)−−−−→ σ(R)

σ−1

−−−−→ R
z = (zi)i∈T 7−→ π−1(z) 7−→

⌊
π−1(z)

⌉
σ(R)

7−→ σ−1
(⌊
π−1(z)

⌉
σ(R)

)
3

where b·eσ(R) denotes the rounding to a close element in σ(R).

Homomorphic Evaluation of Approximate Arithmetic. One important feature of our
method is that the precision loss during homomorphic evaluation is bounded by depth of
a circuit and it is at most one more bit compared to unencrypted approximate arithmetic.
Given encryptions of d messages with η bits of precision, our HE scheme of depth dlog de
computes their product with (η − log d − 1) bits of precision in d multiplications while
unencrypted approximate arithmetic such as floating-point multiplication can compute a
significand with (η− log d) bits of precision. On the other hand, the previous methods require
Ω(η2d) homomorphic computations by using bitwise encryption or need a large plaintext
space of bit size Ω(ηd) unless relying on expensive computations such as bootstrapping or
bit extraction.

In our scheme, the required bit size of the largest ciphertext modulus can be reduced down
to O(η log d) by performing the rescaling procedure after multiplication of ciphertexts. The
parameters are smaller than for the previous works and this advantage enables us to efficiently
perform the approximate evaluation of transcendental functions such as the exponential,
logarithm and trigonometric functions by the evaluation of their Taylor series expansion.
In particular, we suggest a specific algorithm for computing the multiplicative inverse with
reduced complexity, which enables the efficient evaluation of rational functions.

We verify our algorithms by implementation on a machine with an Intel Core i5 running at
2.9 GHz processor using a parameter set with 80-bit security level. It takes about 0.45 seconds
for multiplicative inverse of ciphertext with 14 bits of precision, yielding an amortized rate
of 0.11 milliseconds per slot. We can also evaluate the exponential function using its Taylor
expansion and it results in an amortized time per slots of 0.16 milliseconds.

In a cloud-computing environment, a large amount of data is being generated and one
needs to handle these huge data collections. Our scheme could be a practical solution for
data analysis as it allows the encryption of much information in a single ciphertext so we can
parallelize both space and computation together. For example, we improved the homomorphic
evaluation of logistic function using a batching technique, which can be used in a disease
prediction analysis. Our implementation homomorphically evaluated the degree seven Taylor
polynomial of logistic function in about 0.13 milliseconds per slot (and less than 0.54 seconds
total) compared to 30 seconds and 1.8 seconds of evaluation time of [3] and [9] without
parallelization, respectively.

Another example is evaluating discrete Fourier transform homomorphically using a fast
Fourier transform (FFT) algorithm. We follow the encoding method of [15] for roots of unity
in polynomial ring so that it does not consume ciphertext level during evaluation. We also
apply our rescaling procedure for operations to Hadamard space and a batching technique,
which results in a much smaller parameter and amortized evaluation time, respectively. We
could process the standard processing (FFT-Hadamard product of two vectors-inverse FFT)
of dimension 213 in 22 minutues (0.34 seconds per slot) on a machine with four cores compared
to 17 minutes of previous work [16] with six processors with no batching technique. Based on
evaluation of discrete Fourier transform, we can securely compute the exact multiplication
of integral polynomials by removing the fractional part of an approximate result. Likewise,
our HE for approximate arithmetic can be applied to exact computation when the result has
a specific format or property.

Follow-up. We provide an open-source implementation of our HE library (HEAAN) and al-
gorithms in the C++ language. The source code is available at github [10]. We introduced
HEAAN at a workshop for the standardization of HE hosted by Microsoft Research.3

3 https://www.microsoft.com/en-us/research/event/homomorphic-encryption-standardization-workshop/

4

There are some follow-up works on application of this paper to a secure control of cyber-
physical system [28] and a gradient descent algorithm for privacy-preserving logistic regres-
sion of biomedical data [30].

Related Works. A substantial number of studies have concerned about the processing of
real numbers over encryption. Jäschke and Armknecht [27] observed that a rational number
can be approximated to an integer by multiplying with a power of two and rounding. An
integer is encoded in a binary fashion, so that each bit is encrypted separately. The one
performing homomorphic multiplication can bring the product to the required precision by
simply discarding the ciphertexts which corresponds to the last LSBs. However, bitwise en-
cryption causes a huge number of computation of ciphertexts for a single rounding operation.
The other method is to scale them to integers, but a plaintext modulus is exponential in
the length of message. For example, Arita and Nakasato [1] scale the fixed point numbers
by a power of two and then represent them as scalars in a polynomial ring with an enlarged
plaintext modulus. In order to realize homomorphic multiplication of encrypted fixed point
numbers, it needs a right shift by a number equal to the precision. However, it requires a
considerable amount of computations including a bit extraction operation.

On the other hand, Dowlin et al. [20] present an efficient method to represent fixed-point
numbers, which are encoded as integral polynomials with coefficients in the range (−1

2B,
1
2B)

using its base-B representation for an odd integer B ≥ 3. Costache et al. [16] analyze the
representations of [20] and compute the lower bound of plaintext modulus. However, exact
arithmetic of fixed point numbers causes required the size of plaintext modulus to grow
exponentially with the depth of a circuit.

Road-map. Section 2 briefly introduces notations and some preliminaries about algebras and
the RLWE problem. Section 3 presents a homomorphic encryption scheme for approximate
arithmetic and analyzes the noise growth during basic homomorphic operations. In Section
4, we suggest some algorithms to homomorphically evaluate typical approximate circuits,
multiplicative inverse, exponential function, logistic function and discrete Fourier transform.
We also compute the theoretical precision of the outputs. In Section 5, we perform the
implementation of our scheme for the evaluations of circuits described in Section 4.

2 Preliminaries

2.1 Basic Notation

All logarithms are base 2 unless otherwise indicated. We denote vectors in bold, e.g. a, and
every vector in this paper will be a column vector. We denote by 〈·, ·〉 the usual dot product
of two vectors. For a real number r, bre denotes the nearest integer to r, rounding upwards
in case of a tie. For an integer q, we identify Z ∩ (−q/2, q/2] as a representative of Zq and
use [z]q to denote the reduction of the integer z modulo q into that interval. We use x← D
to denote the sampling x according to a distribution D. It denotes the sampling from the
uniform distribution over D when D is a finite set. We let λ denote the security parameter
throughout the paper: all known valid attacks against the cryptographic scheme under scope
should take Ω(2λ) bit operations.

2.2 The Cyclotomic Ring and Canonical Embedding

For a positive integer M , let ΦM (X) be the M -th cyclotomic polynomial of degree N =
φ(M). Let R = Z[X]/(ΦM (X)) be the ring of integers of a number field Q[X]/(ΦM (X)).
We write Rq = R/qR for the residue ring of R modulo an integer q. An arbitrary element
of the cyclotomic ring S = R[X]/(ΦM (X)) of real polynomials will be represented as a

5

polynomial a(X) =
∑N−1

j=0 ajX
j of degree less than N and identified with its coefficient

vector (a0, . . . , aN−1) ∈ RN . We define the relevant norms on the coefficient vector of a such
as ‖a‖∞ and ‖a‖1

We write Z∗M = {x ∈ ZM : gcd(x,M) = 1} for the multiplicative group of units in ZM .
Recall that the canonical embedding of a ∈ Q[X]/(ΦM (X)) into CN is the vector of evaluation
values of a at the roots of ΦM (X). We naturally extend it to the set of real polynomials S so
σ(a) will be defined as (a(ζjM))j∈Z∗M ∈ CN for any a ∈ S where ζM = exp(−2πi/M) denotes
a primitive M -th roots of unity. The `∞-norm of σ(a) is called the canonical embedding
norm of a, denoted by ‖a‖can∞ = ‖σ(a)‖∞. This measurement will be used to analyze the
size of polynomials throughout this paper. The canonical embedding norm ‖·‖can∞ satisfies
the following properties:

• For all a, b ∈ S, we have ‖a · b‖can∞ ≤ ‖a‖can∞ · ‖b‖can∞
• For all a ∈ S, we have ‖a‖can∞ ≤ ‖a‖1.
• There is a ring constant cM depending only on M such that ‖a‖∞ ≤ cM · ‖a‖can∞ for all
a ∈ S.

The ring constant is obtained by cM = ‖CRT−1M ‖∞ where CRTM is the CRT matrix for M ,
i.e., the Vandermonde matrix over the complex primitive M -th roots of unity, and the norm

for a matrix U = (uij)0≤i,j<N is defined by ‖U‖∞ = max0≤i<N

{∑N−1
j=0 |uij |

}
. Refer [17] for

a discussion of cM .

2.3 Gaussian Distributions and RLWE Problem

We first define the space

H = {z = (zj)j∈Z∗M ∈ CN : zj = z−j ,∀j ∈ Z∗M},

which is isomorphic to RN as an inner product space via the unitary basis matrix

U =

(
1√
2
I i√

2
J

1√
2
J −i√

2
I

)
where I is the identity matrix of size N/2 and J is its reversal matrix.

For r > 0, we define the Gaussian function ρr : H → (0, 1] as ρr(z) = exp(−π‖z‖22/r2).
Denote by Γr the continuous Gaussian probability distribution whose density is given by
r−N · ρr(z). Now one can extend this to an elliptical Gaussian distribution Γr on H as
follows: let r = (r1, . . . , rN) ∈ (R+)N be a vector of positive real numbers, then a sam-
ple from Γr is given by U · z where each entry of z = (zi) is chosen independently from
the (one-dimensional) Gaussian distribution Γri on R. This also gives a distribution Ψr on
Q[X]/(ΦM (X)) ⊗ R. That is, CRT−1M · U · z gives us the coordinates with respect to the
polynomial basis 1, X,X2, . . . , XN−1.

In practice, one can discritize the continuous Gaussian distribution Ψr by taking a valid
rounding bΨreR∨ . Refer [34, 35] for explaining the methods in more details. We use this
discrete distribution as the RLWE error distribution.

Here we define the RLWE distribution and decisional problem associated with it. Let R∨
be the dual fractional ideal of R and write R∨q = R∨/qR∨. For a positive integer modulus

q ≥ 2, s ∈ R∨q , r ∈ (R+)N and an error distribution χ := bΨreR∨ , we define AN,q,χ(s) as the
RLWE distribution obtained by sampling a← Rq uniformly at random, e← χ and returning
(a, a · s+ e) ∈ Rq ×R∨q .

The (decision) ring learning with errors, denoted by RLWEN,q,χ(D), is a problem to
distinguish arbitrarily many independent samples chosen according to AN,q,χ(s) for a random
choice of s sampled from the distribution D over R∨ from the same number of uniformly
random and independent samples from Rq ×R∨q .

6

3 Homomorphic Encryption for Approximate Arithmetic

In this section, we describe a method to construct a HE scheme for approximate arithmetic on
encrypted data. Given encryptions of m1 and m2, this scheme allows us to securely compute
encryptions of approximate values of m1 + m2 and m1m2 with a predetermined precision.
The main idea of our construction is to treat an inserted noise of RLWE problem as part of am
error occurring during approximate computation. The most important feature of our scheme
is the rounding operation of plaintexts. Just like the ordinary approximate computations
using floating-point numbers, the rounding operation removes some LSBs of message and
makes a trade-off between size of numbers and precision loss.

Our concrete construction is based on the BGV scheme [5] with a multiplication method by
raising the ciphertext modulus [25], but our methodology can be applied to most of existing
HE schemes. Appendix A shows a description of LWE-based HE scheme for approximate
arithmetic.

3.1 Decryption Structure of Homomorphic Encryption for Approximate
Arithmetic

Most of existing HE schemes perform operations on a modulo space such as Zt and Zt[X]/(ΦM (X)).
In other words, they aim to compute a ciphertext which encrypts some LSBs of a re-
sulting message after homomorphic computation. For example, in the case of BGV-type
schemes [5, 25, 33], plaintexts are placed in the lowest bits of ciphertext modulus, that is,
an encryption c of a message m with respect to a secret sk has a decryption structure of
the form 〈c, sk〉 = m+ te (mod q). A multiplication of encryptions of m1,m2 preserves some
LSBs of m1m2 (i.e., [m1m2]t), while its MSBs (i.e., bm1m2/te) are destroyed by errors. On
the other hand, FV-type schemes [4, 22, 2] put messages in the left-most bits of ciphertext
modulus, so that their decryption structures satisfy 〈c, sk〉 = bq/te·m+e (mod q). However,
the MSBs of the resulting message are also destroyed during homomorphic multiplication
between 〈ci, sk〉 = q · Ii + bq/te ·mi + ei, each of which contains an additional error Ii in the
left position of message.

Our goal is to carry out approximate arithmetic over encrypted data, or equivalently,
compute the MSBs of a resulting message after homomorphic operations. The main idea is
to add an encryption noise following significant figures of an input message. More precisely,
our scheme has a decryption structure of the form 〈c, sk〉 = m + e (mod q) for some small
error e. We insert this encryption error to guarantee the security of scheme, but it will be
considered as an error that arises during approximate computations. That is, the output of
decryption algorithm will be treated as an approximate value of the original message with
a high precision. The size of a plaintext will be small enough compared to the ciphertext
modulus for homomorphic operations so that the result of an arithmetic computation is still
smaller than the ciphertext modulus.

There are some issues that we need to consider more carefully. In unencrypted approxi-
mate computations, small errors may blow up when applying operations in succession, so it is
valuable to consider the proximity of a calculated result to the exact value of an algorithm.
Similarly, encrypted plaintexts in our scheme will contain some errors and they might be
increased during homomorphic evaluations. Thus we compute an upper bound of errors and
predict the precision of resulting values.

The management of the size of messages is another issue. If we compute a circuit of
multiplicative depth L without rounding of messages, then the bit size of an output value will
exponentially grow with L. This naive method is inappropriate for practical usage because
it causes a huge ciphertext modulus. To resolve this problem, we suggest a new technique
which divides intermediate values by a base. It allows us to discard some inaccurate LSBs of

7

a message while an error is still kept relatively small compared to the message. This method
leads to maintain the size of messages almost same and make the required ciphertext modulus
linear in the depth L.

3.2 Plaintext Encoding for Packing

The batching technique in HE system allows us to encrypt multiple messages in a single
ciphertext and enables a parallel processing in SIMD manner. In practice, we take its ad-
vantage to parallelize computations and reduce the memory and complexity. A ring of finite
characteristic has been used as a plaintext space in the previous RLWE-based HE schemes.
A small error, which is located in a separated place in a ciphertext modulus, is inserted to
ensure security and it may be removed after carrying out homomorphic operations. Then an
output polynomial is decoded into a message vector with respect to the CRT-based encoding
technique [38, 39]. Meanwhile, a plaintext of our scheme is a polynomial contained in a ring
of characteristic zero and it embraces am error for security, so an inserted error cannot be
removed after decryption.

Intuition. A native plaintext space of our RLWE-based construction can be understood as the
set of polynomials m(X) ∈ S such that ‖m‖can∞ � q. The roots of a cyclotomic polynomial
ΦM (X) are the complex primitive roots of unity in the extension field C. We evaluate a
plaintext polynomial at these roots in order to transform it into a vector of complex numbers,
so the (extended) canonical embedding map σ : S → CN plays a role of decoding algorithm.

For technical details, we first point out that the image of canonical embedding map is
the subring H = {(zj)j∈Z∗M : zj = z−j} of CN . Let T be a multiplicative subgroup of Z∗M
satisfying Z∗M/T = {±1}. Then H can be identified with CN/2 via the natural projection π,
defined by (zj)j∈Z∗M 7→ (zj)j∈T . Then our decoding algorithm is to transform an arbitrary

polynomial m(X) ∈ R into a complex vector z such that z = π ◦ σ(m) ∈ CN/2.
The encoding algorithm is defined as the inverse of decoding procedure. Specifically, it

encodes an input vector z = (zi)i∈T in a polynomial m(X) = σ−1 ◦ π−1(z) where π−1(z)[j]
is zj if j ∈ T , and z−j otherwise. Note that the encoding/decoding algorithms are isometric
ring isomorphisms between (S, ‖·‖can∞) and (CN/2, ‖·‖∞), so the size of plaintexts and errors
are preserved via these transformations.

Since π−1(z) might not be contained in the image of canonical embedding map, we need
to discritize π−1(z) to an element of σ(R). Recall that R has a Z-basis {1, X, . . . ,XN−1}
and it yields a rank-N ideal lattice σ(R) having basis {σ(1), σ(X), . . . , σ(XN−1)}. The goal
of rounding process is to find a vector, denoted by

⌊
π−1(z)

⌉
σ(R)

, with a rounding error

‖π−1(z)−
⌊
π−1(z)

⌉
σ(R)
‖∞. There are several round-off algorithms including the coordinate-

wise randomized rounding. See [35] for details.
A rounding error may destroy the significant figures of a message during encoding proce-

dure. Hence we recommend to multiply a scaling factor ∆ ≥ 1 to a plaintext before rounding
in order to preserve its precision. Our encoding/decoding algorithms are explicitly given as
follows:

• Ecd(z;∆). For a (N/2)-dimensional vector z = (zi)i∈T of complex numbers, the encoding
procedure first expands it into the vector π−1(z) ∈ H and computes its discretization to
σ(R) after multiplying a scaling factor ∆. Return the corresponding integral polynomial
m(X) = σ−1(

⌊
∆ · π−1(z)

⌉
σ(R)

) ∈ R.

• Dcd(m;∆). For an input polynomial m ∈ R, output the vector z = π ◦ σ(∆−1 · m),
i.e., the entry of z of index j ∈ T is zj = ∆−1 ·m(ζjM).

8

As a toy example, let M = 8 (i.e., Φ8(X) = X4 + 1) and ∆ = 64. Let T = {ζ8, ζ38} for the
root of unity ζ8 = exp(−2πi/8). For a given vector z = (3 + 4i, 2− i), the corresponding real
polynomial 1

4(10+4
√

2X+10X2+2
√

2X3) has evaluation values 3+4i and 2−i at ζ8 and ζ38 ,
respectively. Then the output of encoding algorithm is m(X) = 160+91X+160X2+45X3 ←
Ecd(z;∆), which is the closest integral polynomial to 64 · 14(10 + 4

√
2X + 10X2 + 2

√
2X3).

Note that 64−1 · (m(ζ8),m(ζ38)) ≈ (3.0082 + 4.0026i, 1.9918− 0.9974i) is approximate to the
input vector z with a high precision.

3.3 Leveled Homomorphic Encryption Scheme for Approximate Arithmetic

The purpose of this subsection is to construct a leveled HE scheme for approximate arith-
metic. For convenience, we fix a base p > 0 and a modulus q0, and let q` = p` ·q0 for 0 < ` ≤ L.
The integer p will be used as a base for scaling in approximate computation. For a security
parameter λ, we also choose a parameter M = M(λ, qL) for cyclotomic polynomial. For a
level 0 ≤ ` ≤ L, a ciphertext of level ` is a vector in Rkq` for a fixed integer k. Our scheme
consists of five algorithm (KeyGen,Enc,Dec,Add,Mult) with constants Bclean and Bmult(`) for
noise estimation. For convenience, we will describe a HE scheme over the polynomial ring
R = Z[X]/(ΦM (X)).

• KeyGen(1λ). Generate a secret value sk, a public information pk for encryption, and a
evaluation key evk.
• Encpk(m). For a given polynomial m ∈ R, output a ciphertext c ∈ RkqL . An encryption c

of m will satisfy 〈c, sk〉 = m+ e (mod qL) for some small e. The constant Bclean denotes
an encryption bound, i.e., error polynomial of a fresh ciphertext satisfies ‖e‖can∞ ≤ Bclean

with an overwhelming probability.
• Decsk(c). For a ciphertext c at level `, output a polynomial m′ ← 〈c, sk〉 (mod q`) for

the secret key sk.

Unlike the most of existing schemes, our scheme does not have a separate plaintext
space from an inserted error. An output m′ = m + e of decryption algorithm is slightly
different from the original message m, but it can be considered to be an approximate value for
approximate computations when ‖e‖can∞ is small enough compared to ‖m‖can∞ . The intuition of
approximate encryption has been partially used previously, for example, a switching key for
homomorphic multiplication in [6, 4, 5, 12] or an evaluation key for the squashed decryption
circuit in [18, 13] are encrypted in a similar way.

The algorithms for homomorphic operations are required to satisfy the following proper-
ties.

• Add(c1, c2). For given encrypts of m1 and m2, output an encryption of m1+m2. An error
of output ciphertext is bounded by sum of two errors in input ciphertexts.
• Multevk(c1, c2). For a pair of ciphertexts (c1, c2), output a ciphertext cmult ∈ Rkq` which

satisfies 〈cmult, sk〉 = 〈c1, sk〉 · 〈c2, sk〉 + emult (mod q`) for some polynomial emult ∈ R
with ‖emult‖can∞ ≤ Bmult(`).

We may adapt the techniques of existing HE schemes over the ring R to construct a HE
scheme for approximate arithmetic. For example, the ring-based BGV scheme [5], its variant
with multiplication by raising ciphertext modulus [25] (k = 2), or the NTRU scheme [33] (k =
1) can be used as a base scheme. Our scheme has its own distinct and unique characteristic
represented by the following rescaling procedure.

• RS`→`′(c). For a ciphertext c ∈ Rkq` at level ` and a lower level `′ < `, output the

ciphertext c′ ←
⌊
q`′
q`
c
⌉

in Rkq`′ , i.e., c′ is obtained by scaling
q`′
q`

to the entries of c and

9

rounding the coefficients to the closest integers. We will omit the subscript `→ `′ when
`′ = `− 1.

For an input ciphertext c of a message m such that 〈c, sk〉 = m+ e (mod q`), the output
ciphertext c′ of rescaling procedure satisfies 〈c′, sk〉 =

q`′
q`
m + (

q`′
q`
e + escale) (mod q`′). Let

τ =
q`′
q`
c − c′ and assume that an error polynomial escale = 〈τ , sk〉 is bounded by some

constant Bscale. Then the output ciphertext becomes an encryption of
q`′
q`
m with a noise

bounded by
q`′
q`
‖e‖can∞ +Bscale.

Technically this procedure is similar to the modulus-switching algorithm [5], but it has
a completely different role in our construction. The rescaling algorithm divides a plaintext
by an integer to remove some inaccurate LSBs as a rounding step in usual approximate
computations using floating-point numbers or scientific notation. The magnitude of messages
can be maintained almost the same during homomorphic evaluation, and thus the required
size of the largest ciphertext modulus grows linearly with the depth of the circuit being
evaluated.

Tagged Informations. A homomorphic operation has an effect on the size of plaintext and
the growth of message and noise. Each ciphertext will be tagged with bounds of a message
and an error in order to dynamically manage their magnitudes. Hence, a full ciphertext will
be of the form (c, `, ν, B) for a ciphertext vector c ∈ Rkq` , a level 0 ≤ ` ≤ L, an upper bound
ν ∈ R of message and an upper bound B ∈ R of noise. Table 1 shows the full description of
our scheme and homomorphic operations for ciphertexts with tagged information.

Encpk : m 7→ (c, L, ν,Bclean) for some ν ≥ ‖m‖can∞
Decsk : (c, `, ν, B) 7→ (〈c, sk〉 (mod q`), B)

RS`→`′ : (c′, `, ν, B) 7→ (c, `′, p`
′−` · ν, p`′−` ·B +Bscale)

Add : ((c1, `, ν1, B1), (c2, `, ν2, B2)) 7→ (cadd, `, ν1 + ν2, B1 +B2)

Multevk : ((c1, `, ν1, B1), (c2, `, ν2, B2))

7→ (cmult, `, ν1ν2, ν1B2 + ν2B1 +B1B2 +Bmult)

Table 1. Description of our scheme

Homomorphic Operations of Ciphertexts at Different Levels. When given encryp-
tions c, c′ of m,m′ belong to the different levels ` and `′ < `, we should bring a ciphertext c
at a larger level ` to the smaller level `′ before homomorphic operation. There are two can-
didates: simple modular reduction and the RS procedure. It should be chosen very carefully
by considering the scale of messages because the simple modular reduction c 7→ c (mod q`′)
preserves the plaintext while RS procedure changes the plaintext from m to

q`′
q`
m as in Fig.3.

Throughout this paper, we perform simple modulus reduction to the smaller modulus before
computation on ciphertexts at different levels unless stated otherwise.

3.4 Concrete Construction of RLWE-based HE scheme

The performance of our construction and the noise growth depend on the base HE scheme.
Moreover, a more accurate noise estimation can be done if we choose a specific one. We
take the BGV scheme [5] with multiplication method by raising ciphertext modulus [25] as
the underlying scheme of our concrete construction and implementation. From Costache and

10

e

m

q`

p`
′−` ·m

q`′

e

m

q`

RS Modular reduction m

q`′

Fig. 3. Rescaling and simple modular reduction

Smart’s comparison [14], it seems to be the most efficient among the existing RLWE-based
schemes.

For security and simplicity, we will use power-of-two degree cyclotomic rings. In this case,
the dual ideal R∨ = N−1 · R of R = Z[X]/(XN + 1) is simply a scaling of the ring. The
RLWE problem is informally described by transforming samples (a, b = a · s′+ e′) ∈ Rq×R∨q
into (a, b = a · s + e) ∈ Rq × Rq where s = s′ · N ∈ R and e = e′ · N ∈ R, so that the
coefficients of e can be sampled independently from the discrete Gaussian distribution.

We will also choose the ring of Gaussian integers Z[i] as a discrete subspace of C for
implementation. Another advantage of power-of-two degree cyclotomic rings is the efficient
rounding operation b·eR∨ in dual fractional ideal R∨. Since the columns of matrix CRTM
defined in Section 2.2 are mutually orthogonal, the encoding of plaintext can be efficiently
done by rounding coefficients to the nearest integers after multiplication with the matrix
CRT−1M .

We adopt the notation of some distributions on from [25]. For a real σ > 0, DG(σ2)
samples a vector in ZN by drawing its coefficient independently from the discrete Gaussian
distribution of variance σ2. For an positive integer h, HWT (h) is the set of signed binary
vectors in {0,±1}N whose Hamming weight is exactly h. For a real 0 ≤ ρ ≤ 1, the distribution
ZO(ρ) draws each entry in the vector from {0,±1}N , with probability ρ/2 for each of −1
and +1, and probability being zero 1− ρ.

• KeyGen(1λ).
- Given the security parameter λ, choose a power-of-two M = M(λ, qL), an integer
h = h(λ, qL), an integer P = P (λ, qL) and a real value σ = σ(λ, qL).

- Sample s ← HWT (h), a ← RqL and e ← DG(σ2). Set the secret key as sk ← (1, s)
and the public key as pk ← (b, a) ∈ R2

qL
where b← −as+ e (mod qL).

- Sample a′ ← RP ·qL and e′ ← DG(σ2). Set the evaluation key as evk ← (b′, a′) ∈ R2
P ·qL

where b′ ← −a′s+ e′ + Ps2 (mod P · qL).
• Ecd(z;∆). For a (N/2)-dimensional vector z = (zj)j∈T ∈ Z[i]N/2 of Gaussian integers,

compute the vector
⌊
∆ · π−1(z)

⌉
σ(R)

. Return its inverse with respect to canonical em-

bedding map.
• Dcd(m;∆). For an input polynomial m(X) ∈ R, compute the corresponding vector π ◦
σ(m). Return the closest vector of Gaussian integers z = (zj)j∈T ∈ Z[i]N/2 after scaling,

i.e., zj =
⌊
∆−1 ·m(ζjM)

⌉
for j ∈ T .

• Encpk(m). Sample v ← ZO(0.5) and e0, e1 ← DG(σ2). Output v · pk + (m + e0, e1)
(mod qL).
• Decsk(c). For c = (b, a), output b+ a · s (mod q`).
• Add(c1, c2). For c1, c2 ∈ R2

q`
, output cadd ← c1 + c2 (mod q`).

• Multevk(c1, c2). For c1 = (b1, a1), c2 = (b2, a2) ∈ R2
q`

, let (d0, d1, d2) = (b1b2, a1b2 +
a2b1, a1a2) (mod q`). Output cmult ← (d0, d1) +

⌊
P−1 · d2 · evk

⌉
(mod q`).

11

• RS`→`′(c). For c ∈ R2
q`

, output c′ ←
⌊
q`′
q`
c
⌉
∈ (mod q′`).

Throughout this paper, we use non-integral polynomial as plaintext for convenience of
analysis, so that a ciphertext (c ∈ R2

q`
, `, ν, B) will be called a valid encryption of m ∈ S

if ‖m‖can∞ ≤ ν and 〈c, sk〉 = m + e (mod q`) for some polynomial e ∈ S with ‖e‖can∞ ≤ B.
The following lemmas give upper bounds on noise growth after encryption, rescaling and
homomorphic operations. See Appendix B for proofs.

Lemma 1 (Encoding and Encryption). Encryption noise is bounded by Bclean = 8
√

2σN+
6σ
√
N + 16σ

√
hN . If c ← Encpk(m) and m ← Ecd(z;∆) for some z ∈ Z[i]N/2 and ∆ >

N + 2Bclean, then Dcd(Decsk(c)) = z.

Lemma 2 (Rescaling). Let (c, `, ν, B) be an encryption of m ∈ S. Then (c′, `′, p`
′−` ·

ν, p`
′−` · B + Bscale) is a valid encryption of p`

′−` · m for c′ ← RS`→`′(c) and Bscale =√
N/3 · (3 + 8

√
h).

Lemma 3 (Addition/Multiplication). Let (ci, `, νi, Bi) be encryptions of mi ∈ S for i =
1, 2, and let cadd ← Add(c1, c2) and cmult ← Multevk(c1, c2). Then (cadd, `, ν1 + ν2, B1 +B2)
and (cmult, `, ν1ν2, ν1B2 + ν2B1 + B1B2 + Bmult(`)) are valid encryptions of m1 + m2 and
m1m2, respectively, where Bks = 8σN/

√
3 and Bmult(`) = P−1 · q` ·Bks +Bscale.

Permutations over the Plaintext Slots. It is known that the Galois group Gal =
Gal(Q(ζM)/Q) consists of the mappings κk : m(X) 7→ m(Xk) (mod ΦM (X)) for a poly-
nomial m(X) ∈ R and all k co-prime with M , and that it is isomorphic to Z∗M . As describe
in [24], applying the transformation κk to the polynomials is very useful for the permutation
on a vector of plaintext values.

For example, a plaintext polynomial m(X) is decoded into a vector of evaluations at the
specific points, i.e., (m(ζjM))j∈T for a subgroup T of Z∗M satisfying Z∗M/T = {±1}. For any
i, j ∈ T , there is an element κk ∈ Gal which sends an element in the slot of index i to an
element in the slot of index j. That is, for a vector of plaintext values z = (zj)j∈T ∈ CN/2 with
the corresponding polynomial m(X) = σ−1◦π−1(z), if k = j−1 ·i (mod M) and m′ = κk(m),

then we have z′j = m′(ζjM) = m(ζjkM) = m(ζiM) = zi. Hence the element in the slot of index
j of m′ is the same as that in the slot of index i of m.

Given an encryption c of a message m ∈ R with a secret key sk = (1, s), we denote
κk(c) the vector obtained by applying κk to the entries of ciphertext c. It follows from [24]
that κk(c) is a valid encryption of κk(m) with respect to the secret κk(s). In addition, the
key-switching technique can be applied to the ciphertext κk(c) in order to get an encryption
of the same message with respect to the original secret s.

Relative Error. The decryption result of a ciphertext is an approximate value of plaintext,
so the noise growth from homomorphic operations may cause some negative effect such as loss
of significance. Hence it needs to dynamically manage the bound of noise of ciphertexts for
a correct understanding of the outputs. A full ciphertext (c, `, ν, B) contains upper bounds
of plaintext and noise, but sometimes it is convenient to consider the relative error defined
by β = B/ν.

For example, it is easy to see that the addition of ciphertexts with relative errors βi =
Bi/νi produces a ciphertext with a relative error bounded by maxi{βi}. In other case, if we
multiply two ciphertexts (c1, `, ν1, B1), (c2, `, ν2, B2) and scale down to a lower level `′ (as
floating-point multiplication does), it produces a ciphertext at level `′ with a relative error

β′ = β1 + β2 + β1β2 +
Bmult(`) + p`−`

′ ·Bscale

ν1ν2

from Lemmas 2 and 3. This relative error is very close to β1 + β2 similar to the case of
unencrypted floating-point multiplication under an appropriate choice of parameter and level.

12

4 Homomorphic Evaluation of Approximate Arithmetic

In this section, we describe some algorithms for evaluating some circuits commonly used
in practical applications and analyze error growth of an output ciphertext based on our
concrete construction. We start with the homomorphic evaluations of typical circuits such as
addition and multiplication by constants, monomial, and polynomial. These can be extended
to approximate series for analytic functions such as multiplicative inverse and exponential
function. The required parameters and precision of results will be also analyzed together.

For the convenience of analysis, we will assume that the term β1β2 + (Bmult(`) + p`−`
′ ·

Bscale)/(ν1ν2) is always bounded by a fixed constant β∗, so the relative error of ciphertext
c′ ← RS`→`′(Mult(c1, c2)) satisfies the inequality β′ ≤ β1 + β2 + β∗. We will discuss about
the choice of β∗ and check the validity of this assumption at the end of Section 4.1.

4.1 Polynomial Functions

The goal of this subsection is to suggest an algorithm for evaluating an arbitrary polynomial,
and analyze its complexity and precision of output ciphertext. We start with the constant
addition and multiplication functions f(x) = x+ a and f(x) = ax for a constant a ∈ R.

Lemma 4 (Addition/Multiplication by Constant). Let (c, `, ν, B) be an encryption of
m ∈ S. For a constant a ∈ R, let ca ← c + (a, 0) (mod q`) and cm ← a · c (mod q`). Then
(ca, `, ν + ‖a‖can∞ , B) and (cm, `, ‖a‖can∞ · ν, ‖a‖can∞ ·B) are valid encryptions of m+ a and am,
respectively.

Proof. There is a polynomial e ∈ R such that 〈c, sk〉 = m + e (mod q`) and ‖e‖can∞ ≤ B.
It is obvious that 〈ca, sk〉 = a + 〈c, sk〉 = (a + m) + e (mod q`). We also have 〈cm, sk〉 =
a · (m+ e) = am+ ae (mod q`) and ‖a · e‖can∞ ≤ ‖a‖can∞ ·B. ut

Now we describe an algorithm to evaluate the power polynomial xd for a power of two
integer d. For simplicity, we assume that the bound ν of message m is equal to the base p.

Algorithm 1 Power polynomial f(x) = xd of power-of-two degree

1: procedure Power(c ∈ R2
q`
, d = 2r)

2: c0 ← c
3: for j = 1 to r do
4: cj ← RS(Mult(cj−1, cj−1))
5: end for
6: return cr
7: end procedure

For an input polynomial m ∈ R of size ‖m‖can∞ ≤ p, Algorithm 1 repeatedly performs
the rescaling procedure after each of squaring step to maintain the size of message, thus
the output of Algorithm 1 is an encryption of the scaled value p · f(m/p) = md/pd−1. The
following lemma explains the correctness of Algorithm 1 and gives the relative error of the
output ciphertext.

Lemma 5. Let (c, `, p, β0 · p) be an encryption of m ∈ S and d be a power-of-two integer.
Then Algorithm 1 outputs a valid encryption (cr, ` − r, p, βd · p) of md/pd−1 for some real
number βd ≤ d · β0 + (d− 1) · β∗.

13

Proof. We argue by induction on j. It is easy to see that (cj , `− j, p, β2j · p) is an encryption

of m2j/p2
j−1 for some real number β2j ≤ 2 · β2j−1 + β∗. After r iterations, it produces an

encryption (cr, `−r, p, β2r ·p) of m2r/p2
r−1 for some β2r such that β2r ≤ 2r ·β0 +(2r−1) ·β∗.

ut

Algorithm 1 can be extended to an algorithm which evaluates an arbitrary polynomial.
Similar to the previous case, this extended algorithm outputs an encryption of the scaled
value p · f(m/p) = md/pd−1.

Lemma 6. Let (c, `, p, B) be an encryption of m ∈ S and let d be a positive integer. Then
one can compute a valid encryption (c′, `−dlog de, p, βd ·p) of md/pd−1 for some real number
βd ≤ d · β0 + (d− 1) · β∗.

Lemma 7 (Polynomial). Let f(x) =
∑d

j=0 ajx
j be a nonzero polynomial of coefficients aj

in R and of degree d. Let (c, `, p, β0 · p) be an encryption of mS. Then one can compute a
valid encryption (c′, `−dlog de,Mf , βd ·Mf) of p · f(m/p) for Mf = p ·

∑d
j=0 ‖aj‖can∞ and for

some real number βd ≤ d · β0 + (d− 1) · β∗.

If the relative error of input ciphertext satisfies β0 ≤ β∗, the relative error of the resulting
ciphertext is bounded by βd ≤ d · β0 + (d − 1) · β∗ ≤ 2d · β0. Hence, the precision loss is
bounded by (log d + 1) bits, which is comparable to loss of significance occurring in unen-
crypted numerical computations. The evaluation of polynomial of degree d can be done in d
homomorphic multiplications between ciphertext of depth r = dlog de by computing the en-
cryptions of m,m2/p, . . . ,md/pd−1 simultaneously. We may apply the Paterson-Stockmeyer
algorithm [37] to the evaluation procedure. Then a degree d polynomial can be evaluated
using O(

√
d) multiplications, which gives a similar upper bound on relative error as the naive

approach.
Let us return to the assumption β1β2 + (Bmult(`) + p`−`

′ · Bscale)/(ν1ν2) ≤ β∗. We will
choose β∗ as an upper bound of relative errors of fresh ciphertexts in our scheme. After
evaluation of circuits of depth less than (L− 1), the resulting ciphertext will have a relative
error less than 2L · β∗. It means that the first term β1β2 will be bounded by 2L+1 · β2∗ after
evaluation. The condition 2L+1 · β2∗ ≤ 1

2β∗, or equivalently β∗ ≤ 2−L−2, seems to be natural;
otherwise the relative error becomes 2L+1 ·β∗ ≥ 2−1 after evaluation, so the decryption result
will have almost no information. Thus we have β1 + β2 ≤ 1

2β∗. The second term is equal to

(p`
′−` · Bmult(`) + Bscale)/ν

′ where ν ′ = p`
′−` · ν1ν2 is the message bound of new ciphertext

obtained by rescaling after multiplication. The numerator is asymptotically bounded by
p`
′−` · Bmult(`) + Bscale = O(N). If the message bound always satisfies ν ′ ≥ p as in our

algorithms, the second term is (Bmult(`) + p`−`
′ ·Bscale)/(ν1ν2) = O(p−1 ·N) which is smaller

than a half of relative error of fresh ciphertext because β∗ ≥ p−1 ·Bclean = Ω(p−1 · σN).

4.2 Approximate Polynomials and Multiplicative Inverse

We now homomorphically evaluate complex analytic functions f(x) using their Taylor de-

composition f(x) = Td(x) + Rd(x) for Td(x) =
∑d

j=0
f (j)(0)
j! xj and Rd(x) = f(x) − Td(x).

Lemma 7 can be utilized to evaluate the rounded polynomial of scaled Taylor expansion
bpu · Tde (x) of f(x) for some non-negative integers u and d, which outputs an approximate
value of pu+1 · f(m/p). The bound of error is obtained by aggregating the error occurring
during evaluation, the rounding error and the error of the remainder term pu+1 ·Rd(m/p). In
the case of RLWE-based constructions, we should consider the corresponding plaintext vector
π ◦ σ(m) = (zj)j∈T and convergence of series in each slot.

As an example, the exponential function f(x) = exp(x) has the Taylor polynomial
Td(x) =

∑d
j=0

1
j!x

j and the remaining term is bounded by |Rd(x)| ≤ e
(d+1)! when |x| ≤ 1.

14

Assume that we are given an encryption (c, `, p, β0 ·p) of m. With the input ciphertext c and
the polynomial bpu · Tde (x), one can compute an encryption of pu+1 · Td(m/p). We see that
an error of the resulting ciphertext is bounded by

dp+ pu+1 ·
d∑
j=1

1

j!
(j · β0 + (j − 1)β∗) ≤ dp+ pu+1 · (eβ0 + β∗).

If we write exp(m/p) := σ−1 ◦π−1((exp(zj/p))j∈T), the output ciphertext can be also viewed
as an encryption of pu+1 · exp(m/p) of the form (c′, ` − dlog de, ν ′, B′) for ν ′ = pu+1 · e and
B′ = dp+pu+1 · (eβ0 +β∗+ e

(d+1)!), and its relative error is bounded by β′ ≤ (β0 +β∗ · e−1) +

(p−u ·d ·e−1+ 1
(d+1)!). If β0 ≥ β∗, then we may take integers d and u satisfying (d+1)! ≥ 4β−10

and pu ≥ 2β−10 · d to make the relative error less than 2β0. In this case, the precision loss
during evaluation of exponential function is less than one bit.

In the case of multiplicative inverse, we adopt an algorithm described in [8] to get a better
complexity. Assuming that a complex number x satisfies |x̂| ≤ 1/2 for x̂ = 1− x, we get

x(1 + x̂)(1 + x̂2)(1 + x̂2
2
) · · · (1 + x̂2

r−1
) = 1− x̂2r . (1)

Note that |x̂2r | ≤ 2−2
r
, and it converges to one as r goes to infinity. Hence,

∏r−1
j=0(1 + x̂2

j
) =

x−1(1− x̂2r) can be considered as an approximate multiplicative inverse of x with 2r bits of
precision.

For homomorphic evaluation, we change a scale and assume that a complex number zj
satisfies |ẑj | ≤ p/2 for ẑj = p − zj . The standard approach starts by normalizing those
numbers to be in the unit interval by setting x = zj/p. Since we cannot multiply fractions
over encrypted data, the precision point should move to the left for each term of (1). That
is, we multiply both sides of the equation (1) by p2

r
and then it yields

zj(p+ ẑj)(p
21 + ẑj

21)(p2
2

+ ẑj
22) · · · (p2r−1

+ ẑj
2r−1

) = p2
r − ẑj2

r
.

Therefore, the product p−2
r ·
∏r−1
i=0 (p2

i
+ẑj

2i) can be seen as the approximate inverse of zj with
2r bits of precision. Let ẑ = (ẑj)j∈T and z−1 = (z−1j)j∈T . Algorithm 2 takes an encryption of

m̂ = σ−1 ◦ π−1(ẑ) as an input and outputs an encryption of its scaled multiplicative inverse
p2 · (σ−1 ◦ π−1(z−1)) by evaluating the polynomial

∏r−1
j=0(p2

j
+ m̂2j). The precision of the

resulting ciphertext and the optimal iterations number r will be analyzed in the following
lemma.

Algorithm 2 Inverse function f(x) = x−1

1: procedure Inverse(c ∈ R2
q`
, r)

2: p← (p, 0)
3: c0 ← c
4: v1 ← p+ c0 (mod q`−1)
5: for j = 1 to r − 1 do
6: cj ← RS(Mult(cj−1, cj−1))
7: vj+1 ← RS(Mult(vj ,p+ cj))
8: end for
9: return vr

10: end procedure

15

Lemma 8 (Multiplicative Inverse). Let (c, `, p/2, B0 = β0 · p/2) be an encryption of
m̂ ∈ S and let m = p− m̂. Then Algorithm 2 outputs a valid encryption (vr, `− r, 2p, β · 2p)
of m′ = p ·

∏r−1
i=0 (1 + (m̂/p)2

i
) for some β ≤ β0 + rβ∗.

Proof. From Lemma 4, (v1, ` − 1, 3p/2, B0) is a valid encryption of p + m̂ and its relative
error is β′1 = β0/3. It also follows from Lemma 5 that (cj , `− j, 2−2

j · p, βj · 2−2
j · p) is a valid

encryption of m̂2j/p2
j−1 for some real number βj ≤ 2j · (β0 + β∗), and so (p+ cj , `− j, (1 +

2−2
j
)p, βj ·2−2

j ·p) is a valid encryption of p+ m̂2j/p2
j−1 = (p2

j
+ m̂2j)/p2

j−1 with a relative

error β′j ≤ βj/(22
j

+ 1) ≤ 2j · (β0 + β∗)/(2
2j + 1), respectively.

Using the induction on j, we can show that(
vj , `− j, p ·

j−1∏
i=0

(1 + 2−2
i
), β′′j · p ·

j−1∏
i=0

(1 + 2−2
i
)

)

is a valid encryption of
∏j−1
i=0 (p2

i
+ m̂2i)/p2

j−2 = p ·
∏j−1
i=0 (1 + (m̂/p)2

i
) with a relative error

β′′j ≤
∑j−1

i=0 β
′
i + (j − 1) · β∗. Note that the message is bounded by p ·

∏j−1
i=0 (1 + 2−2

i
) =

(2p) · (1− 2−2
j
) < 2p and the relative error satisfies

β′′j ≤

(
j−1∑
i=0

2i

22i + 1

)
· (β0 + β∗) + (j − 1) · β∗ ≤ β0 + j · β∗

from the fact that
∑∞

i=0
2i

22i+1
= 1. Therefore, the output vr of Algorithm 2 represents a valid

encryption (vr, `− r, 2p, β · 2p) of m′ = p ·
∏r−1
i=0 (1 + (m̂/p)2

i
) for some β ≤ β0 + r · β∗. ut

Let m−1(X) := σ−1 ◦π−1(z−1) be the polynomial in S corresponding to z−1. The output
ciphertext (vr, ` − r, 2p, β · 2p) of the previous lemma can be also viewed as an encryption
of p2 · m−1. The error bound is increased by the convergence error ‖p2 ·m−1 −m′‖can∞ =
‖p2 ·m−1 · (m̂/p)2r‖can∞ ≤ 2−2

r ·2p. Therefore, the ciphertext (vr, `−r, 2p, (β+2−2
r
) ·2p) is a

valid encryption of m′ and its relative error is β+2−2
r ≤ β0 +rβ∗+2−2

r
, which is minimized

when rβ∗ ≈ 2−2
r
. Namely, r = dlog log β−1∗ e yields the inequality β0+rβ∗+2−2

r ≤ β0+2rβ∗ =
β0 + 2dlog log β−1∗ e · β∗. Thus the precision loss during evaluation of multiplicative inverse is
less than one bit if 2dlog log β−1∗ e · β∗ ≤ β0.

The optimal iterations number r can be changed upon more/less information about the
magnitude of m̂. Assume that we have an encryption of message m̂ whose size is bounded
by ‖m̂‖can∞ ≤ εp for some 0 < ε < 1. By applying Lemma 8, we can compute an encryption
of p ·

∏r−1
i=0 (1 + (m̂/p)2

i
) = (p2 · m−1) · (1 − (m̂/p)2

r
) with a relative error β ≤ β0 + rβ∗,

which is an approximate value of p2 · m−1 with an error bounded by ε2
r · 2p. Then the

optimal iterations number is r ≈ log log β−1∗ − log log ε−1 and the relative error becomes
β ≤ β0 + 2d(log log β−1∗ − log log ε−1)e · β∗ when r = d(log log β−1∗ − log log ε−1)e.

4.3 Fast Fourier Transform

Let d be a power of two integer and consider the complex primitive d-th root of unity
ζd = exp(2πi/d). For a complex vector u = (u0, . . . , ud−1), its discrete Fourier transform

(DFT) is defined by the vector v = (v0, . . . , vd−1)← DFT(u) where vk =
∑d−1

j=0 ζ
jk
d · uj for

k = 0, . . . , d−1. The DFT has a numerous applications in mathematics and engineering such
as signal processing technology. The basic idea is to send the data to Fourier space, carry out
Hadamard operations and bring back the computation result to a original domain via the
inverse DFT. We denote by Wd(z) = (zj·k)0≤j,k<d the Vandermonde matrix generated by
{zk : 0 ≤ k < d}. The DFT of u can be evaluated by the matrix multiplication DFT(u) =

16

Wd(ζd)·u, but the complexity of DFT can be reduced down to O(d log d) using FFT algorithm
by representing the DFT matrix Wd(ζd) as a product of sparse matrices.

Recently, Costache et al. [15] suggested an encoding method which sends the complex d-th
root of unity to the monomial Y = XM/d over cyclotomic ring R = Z[X]/(ΦM (X)) for cryp-
tosystem. Then homomorphic evaluation of DFT is simply represented as a multiplication
of the matrix Wd(Y) to a vector of ciphertexts over polynomial ring.

On the other hand, our RLWE-based HE scheme can take advantage of batch technique
as described in Section 3.2. In the slot of index k ∈ T , the monomial Y = XM/d and
matrix Wd(Y) are converted into ζkd and the DFT matrix Wd(ζ

k
d), respectively, depending

on primitive root of unity ζkd . However, our batching scheme is still meaningful because the
evaluation result of whole pipeline consisting of DFT, Hadamard operations, and inverse
DFT is independent of index k, even though Wd(Y) corresponds to the DFT matrices
generated by different primitive d-th roots of unity.

It follows from the property of ordinary FFT algorithm that if (ci, `, ν, B) is an encryption
of ui for i = 0, . . . , d − 1 and v = (v0, . . . , vd−1) ← Wd(Y) · u, then the output of FFT
algorithm using XM/d instead of ζd forms valid encryptions (c′i, `,

√
d · ν,

√
d ·B). Note that

the precision of input ciphertexts is preserved as B/ν. Our FFT algorithm takes a similar
time with [15] in the same parameter setting, but the amortized time is much smaller thanks
to our own plaintext packing technique. In the evaluation of whole pipeline DFT-Hadamard
multiplication-inverse DFT, one may scale down the transformed ciphertexts by

√
d before

Hadamard operations to maintain the magnitude of messages and reduce the required levels
for whole pipeline.

The fast polynomial multiplication using the FFT algorithm is a typical example that
computes the exact value using approximate arithmetic. In particular for the case of integral
polynomials, the exact multiplication can be recovered from its approximate value since we
know that their multiplication is also an integral polynomial. Likewise, when the output of
a circuit has a specific format or property, it is possible to get the exact computation result
from its sufficiently close approximation.

5 Implementation Results

In this section we describe how to select parameters for evaluating arithmetic circuits de-
scribed in Section 4. We also provide implementation results with concrete parameters. Our
implementation is based on the NTL C++ library running over GMP. Every experimenta-
tion was performed on a machine with an Intel Core i5 running at 2.9 GHz processor using
a parameter set with 80-bit security level.

We need to set the ring dimensionN that satisfies the security conditionN ≥ λ+110
7.2 log(P ·

qL) to get λ-bit security level. [32, 25] We note that P · qL is the largest modulus to generate
evaluation key and it suffices to assume that P is approximately equal to qL. In our imple-
mentation, we used the Gaussian distribution of standard deviation σ = 3.2 to sample error
polynomials, and set h = 64 as the number of nonzero coefficients in a secret key s(X).

Evaluation of Typical Circuits. In Table 2, we present the parameter setting and perfor-
mance results for computing a power of a ciphertext, the multiplicative inverse of a ciphertext
and exponential function. The average running times are only for ciphertext operations, ex-
cluding encryption and decryption procedures. As described in Section 3.4, each ciphertext
can hold N/2 plaintext slots and one can perform the computation in parallel in each slot.
Here the amortized running time means a relative time per slot.

The homomorphic evaluation of the circuit x1024 with an input of 36-bit precision is hard
to be implemented in practice over previous methods. Meanwhile, our scheme can compute

17

this circuit simultaneously over 214 slots in about 7.46 seconds, yielding an amortized rate of
0.43 milliseconds per slot. Computation of the multiplicative inverse is done by evaluating the
polynomial up to degree 8 as described in Algorithm 2. It gives an amortized time per slots
of about 0.11 milliseconds. In the case of exponential function, we used terms in its Taylor
expansion up to degree 8 and it results in an amortized time per slots of 0.16 milliseconds.

Table 2. Implementation results for homomorphic evaluation of typical circuits

Function N log q log p
Consumed Input Total Amortized

levels precision time time

x16

213 155 30 4 14 bits

0.31s 0.07ms

x−1 0.45s 0.11ms

exp(x) 0.65s 0.16ms

x1024 215 620 56 10 36 bits 7.46s 0.43ms

Significance Loss. In Section 4, we analyzed the theoretical upper bounds on the growth of
relative errors during evaluations. We can see from experimental result that initial precision
is about 4 bits greater than theoretic bound of precision since we multiply 16 to the variance
of encryption error to get a high probability bound. In Fig.4, we depict bit precisions of
output ciphertexts during the evaluation of homomorphic multiplications (e.g. x16 for the
left figure and x1024 for the right figure). We can actually check that both theoretic bound
and experimental result of precision loss during homomorphic multiplications is less than 4.1
(or resp. 10.1) when the depth of the circuit is 4 (or resp. 10).

43210
6

8

10

12

14

16

Consumed level

B
it

p
re

ci
si

on
of

ou
tp

u
t

(l
og
β
−
1
)

Theoretical lower bound

Experimental result

0 1 2 3 4 5 6 7 8 9 10
24

26

28

30

32

34

36

38

Consumed level

B
it

pr
ec

is
io

n
of

ou
tp

ut
(l

og
β
−
1
)

Theoretical lower bound

Experimental result

Fig. 4. The variation of bit precision of ciphertexts when (f(x), N, log p, log q) = (x16, 213, 30, 155) and
(x1024, 215, 56, 620)

Logistic Function. Let us consider the logistic function f(x) = (1 + exp(−x))−1, which is
widely used in statistics, neural networks and machine learning as a probability function. For
example, logistic regression is used for a prediction of the likelihood to have a heart attack
in an unspecified period for men, as indicated in [3]. It was also used as a predictive equation
to screen for diabetes, as described in [40]. This function can be approximated by its Taylor
series

f(x) =
1

2
+

1

4
x− 1

48
x3 +

1

480
x5 − 17

80640
x7 +

31

1451520
x9 +O(x11).

18

In [3, 9], every real number is scaled by a predetermined factor to transform it as a binary
polynomial before computation. The plaintext modulus t should be set large enough so that
no reduction modulo t occurs in the plaintext space. The required bit size of plaintext modu-
lus exponentially increases on the depth of the circuit, which strictly limits the performance
of evaluation. On the other hand, the rescaling procedure in our scheme has the advantage
that it significantly reduces the size of parameters (e.g. (log p, log q) = (30, 155)).

The parallelized computation for logistic function is especially important in real world
applications such as statistic analysis using multiple data. In previous approaches, each slot
of plaintext space should represent a larger degree than encoded polynomials so they could
support only a few numbers of slots. On the other hand, we provide a parallelization method
with an amortization amount independent from target circuit and get a better amortized
time of evaluation.

Table 3. Comparison of implementation results for homomorphic evaluation of logistic function

Method N log q
Polynomial Amortization Total Amortized

degree amount time time

[3] 214 512 7 - > 30s -

[9] 17430 370 7 - 1.8s -

Ours
213 155 7 212 0.54s 0.13ms

214 185 9 213 0.78s 0.09ms

Discrete Fourier Transform. With the parameters (N, log p) = (213, 50), we encrypt
coefficients of polynomials and homomorphically evaluate the standard processing (FFT-
Hadamard product of two vectors-inverse FFT) in 73 minutes (amortized 1.06 seconds per
slot) when d = 213. We could reduce down the evaluation time to 22 minutes (amortized
0.34 seconds per slot) by adapting the multi-threading method on a machine with four cores,
compared to 17 minutes of the previous work [15] on six cores. Since the rescaling proce-
dure of transformed ciphertexts enables us to efficiently carry out higher degree Hadamard
operations in Fourier space, the gap of parameter and running time between our scheme
and previous methods grows very quickly as degree N and the depth of Hadamard operation
increase. For instance, we also homomorphically evaluate the product of 8 polynomials, using
pipeline consisting of FFT-Hadamard product of eight vectors-inverse FFT with parameters
(N, log q) = (214, 250) in amortized time of 1.76 seconds.

Table 4. Comparison of implementation results for homomorphic evaluation of a full image processing pipeline

Method d N log q
Degree of Amortization Total Amortized

Hadamard operation amount time time

[15]4
24 213 150 2 - 0.46s -

213 214 192 2 - 17min -

Ours5
24 213 120 2 212 0.88s 0.21ms

213 213 130 2 212 22min 0.34s

213 214 250 8 213 4h 1.76s

19

6 Conclusion

In this work, we presented a homomorphic encryption scheme which supports an approximate
arithmetic over encryption. We also introduced a new batching technique for packing much
information in a single ciphertext, so we could achieve practical performance advantage by
parallelism. Another benefit of our scheme is the rescaling procedure, which enables us to
preserve the precision of the message after approximate computation. Furthermore, it leads
to reduce the size of ciphertext significantly so the scheme can be a reasonable solution for
computation over large integers.

The primary open problem is finding way to convert our scheme to a fully homomorphic
scheme using bootstrapping. The modulus of ciphertext decreases with homomorphic oper-
ations and our scheme can no longer support homomorphic computation at the lowest level.
To overcome this problem, we aim to transform an input ciphertext into an encryption of
almost the same plaintext with a much larger modulus.

Further improvement of our implementations are possible by other optimizations. We
would like to enhance them to take advantage of Number Theoretical Transform (NTT) for
fast polynomial multiplication.

Acknowledgments. This work was partially supported by IT R&D program of MSIP/KEIT (No.
B0717-16-0098) and Samsung Electronics Co., Ltd. (No. 0421-20150074). The fourth author
was supported by National Research Foundation of Korea (NRF) Grant funded by the Ko-
rean Government (No. NRF-2012H1A2A1049334). We would like to thank Kristin Lauter,
Damien Stehlé and an anonymous ASIACRYPT referee for useful comments.

References

1. S. Arita and S. Nakasato. Fully homomorphic encryption for point numbers. In International Conference
on Information Security and Cryptology, pages 253–270. Springer, 2016.

2. J. W. Bos, K. Lauter, J. Loftus, and M. Naehrig. Improved security for a ring-based fully homomorphic
encryption scheme. In Cryptography and Coding, pages 45–64. Springer, 2013.

3. J. W. Bos, K. Lauter, and M. Naehrig. Private predictive analysis on encrypted medical data. Journal
of biomedical informatics, 50:234–243, 2014.

4. Z. Brakerski. Fully homomorphic encryption without modulus switching from classical GapSVP. In
Advances in Cryptology–CRYPTO 2012, pages 868–886. Springer, 2012.

5. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic encryption without boot-
strapping. In Proc. of ITCS, pages 309–325. ACM, 2012.

6. Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from (standard) LWE. In
Proceedings of the 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS’11,
pages 97–106. IEEE Computer Society, 2011.

7. Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from Ring-LWE and security for
key dependent messages. In Advances in Cryptology–CRYPTO 2011, pages 505–524. Springer, 2011.

8. G. S. Çetin, Y. Doröz, B. Sunar, and W. J. Martin. An investigation of complex operations with word-size
homomorphic encryption. Cryptology ePrint Archive, Report 2015/1195, 2015. http://eprint.iacr.

org/2015/1195.
9. J. H. Cheon, J. Jung, J. Lee, and K. Lee. Privacy-preserving computations of predictive medical models

with minimax approximation and non-adjacent form. To appear in WAHC 2017.
10. J. H. Cheon, A. Kim, M. Kim, and Y. Song. Implementation of HEA-AN, 2016. https://github.com/

kimandrik/HEAAN.
11. J. H. Cheon, M. Kim, and K. Lauter. Homomorphic computation of edit distance. In International

Conference on Financial Cryptography and Data Security, pages 194–212. Springer, 2015.
12. J. H. Cheon and D. Stehlé. Fully homomophic encryption over the integers revisited. In Advances in

Cryptology–EUROCRYPT 2015, pages 513–536. Springer, 2015.
13. J.-S. Coron, T. Lepoint, and M. Tibouchi. Scale-invariant fully homomorphic encryption over the integers.

In Public-Key Cryptography–PKC 2014, pages 311–328. Springer, 2014.
14. A. Costache and N. P. Smart. Which ring based somewhat homomorphic encryption scheme is best? In

Cryptographers Track at the RSA Conference, pages 325–340. Springer, 2016.

20

15. A. Costache, N. P. Smart, and S. Vivek. Faster homomorphic evaluation of discrete fourier transforms.
Cryptology ePrint Archive, Report 2016/1019, 2016. http://eprint.iacr.org/2016/1019.

16. A. Costache, N. P. Smart, S. Vivek, and A. Waller. Fixed point arithmetic in SHE schemes. Cryptology
ePrint Archive, Report 2016/250, 2016. http://eprint.iacr.org/2016/250.

17. I. Damg̊ard, V. Pastro, N. Smart, and S. Zakarias. Multiparty computation from somewhat homomorphic
encryption. In Advances in Cryptology–CRYPTO 2012, pages 643–662. Springer, 2012.

18. M. v. Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic encryption over the integers.
In Advances in Cryptology–EUROCRYPT 2010, pages 24–43. Springer, 2010.

19. Y. Doröz, Y. Hu, and B. Sunar. Homomorphic AES evaluation using the modified LTV scheme. Designs,
Codes and Cryptography, 80(2):333–358, 2016.

20. N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig, and J. Wernsing. Manual for using
homomorphic encryption for bioinformatics. Proceedings of the IEEE, 105(3):552–567, 2017.

21. L. Ducas and D. Micciancio. FHEW: Bootstrapping homomorphic encryption in less than a second. In
Advances in Cryptology–EUROCRYPT 2015, pages 617–640. Springer, 2015.

22. J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryption. IACR Cryptology ePrint
Archive, 2012:144, 2012.

23. C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009. http:

//crypto.stanford.edu/craig.

24. C. Gentry, S. Halevi, and N. P. Smart. Fully homomorphic encryption with polylog overhead. In Annual
International Conference on the Theory and Applications of Cryptographic Techniques, pages 465–482.
Springer, 2012.

25. C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of the AES circuit. In Advances in
Cryptology–CRYPTO 2012, pages 850–867. Springer, 2012.

26. C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with errors: Conceptually-
simpler, asymptotically-faster, attribute-based. In Advances in Cryptology–CRYPTO 2013, pages 75–92.
Springer, 2013.

27. A. Jäschke and F. Armknecht. Accelerating homomorphic computations on rational numbers. In Inter-
national Conference on Applied Cryptography and Network Security, pages 405–423. Springer, 2016.

28. J. Kim, C. Lee, H. Shim, J. H. Cheon, A. Kim, M. Kim, and Y. Song. Encrypting controller using fully
homomorphic encryption for security of cyber-physical systems. IFAC-PapersOnLine, 49(22):175–180,
2016.

29. M. Kim, Y. Song, and J. H. Cheon. Secure searching of biomarkers through hybrid homomorphic en-
cryption scheme. BMC medical genomics, 10(2):42, 2017.

30. M. Kim, Y. Song, S. Wang, Y. Xia, and X. Jiang. Privacy-preserving logistic regression based on homo-
morphic encryption. preprint.

31. K. Lauter, A. López-Alt, and M. Naehrig. Private computation on encrypted genomic data. In Inter-
national Conference on Cryptology and Information Security in Latin America, pages 3–27. Springer,
2014.

32. R. Lindner and C. Peikert. Better key sizes (and attacks) for LWE-based encryption. In Topics in
Cryptology–CT-RSA 2011, pages 319–339. Springer, 2011.

33. A. López-Alt, E. Tromer, and V. Vaikuntanathan. On-the-fly multiparty computation on the cloud via
multikey fully homomorphic encryption. In Proceedings of the 44th Symposium on Theory of Computing
Conference, STOC 2012, pages 1219–1234. ACM, 2012.

34. V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors over rings. In
Advances in Cryptology–EUROCRYPT 2010, pages 1–23, 2010.

35. V. Lyubashevsky, C. Peikert, and O. Regev. A toolkit for ring-lwe cryptography. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages 35–54. Springer, 2013.

36. M. Naehrig, K. Lauter, and V. Vaikuntanathan. Can homomorphic encryption be practical? In Proceed-
ings of the 3rd ACM workshop on Cloud computing security workshop, pages 113–124. ACM, 2011.

37. M. S. Paterson and L. J. Stockmeyer. On the number of nonscalar multiplications necessary to evaluate
polynomials. SIAM Journal on Computing, 2(1):60–66, 1973.

38. N. P. Smart and F. Vercauteren. Fully homomorphic encryption with relatively small key and ciphertext
sizes. In Public-Key Cryptography–PKC 2010, pages 420–443. Springer, 2010.

39. N. P. Smart and F. Vercauteren. Fully homomorphic SIMD operations. Designs, codes and cryptography,
71(1):57–81, 2014.

40. B. P. Tabaei and W. H. Herman. A multivariate logistic regression equation to screen for diabetes
development and validation. Diabetes Care, 25(11):1999–2003, 2002.

41. S. Wang, Y. Zhang, W. Dai, K. Lauter, M. Kim, Y. Tang, H. Xiong, and X. Jiang. Healer: Homomorphic
computation of exact logistic regression for secure rare disease variants analysis in GWAS. Bioinformatics,
32(2):211–218, 2016.

21

A LWE-based Construction

We start by adapting some notations from [5] to our context. Let n and q be positive integers.
For a vector x ∈ ZNq , its bit decomposition and power of two are defined by BD(x) =

(u0, . . . ,udlog qe−1) ∈ {0, 1}Ndlog qe with x =
∑dlog qe−1

i=0 2iui, and P2(x) = (x, . . . , 2dlog qe−1x).
Then we can see that 〈BD(x),P2(y)〉 = 〈x,y〉. We also recall the definition of tensor product
u ⊗ v = (u1v1, u1v2, . . . , u1vm, . . . , unv1, . . . , unvm) on the vector space Rn × Rm, and its
relation with the inner product 〈u⊗ v,u′ ⊗ v′〉 = 〈u,u′〉 · 〈v,v′〉.

• KeyGen(1λ)
- Take an integer p and q0. Let q` = p` · q0 for ` = 1, . . . , L. Choose the parameters
N = N(λ, qL) and an error distribution χ = χ(λ, qL) appropriately for LWE problem
of parameter (N, qL, χ). Let τ = 2(N + 1)dlog qLe. Output the parameters params =
(n, qL, χ, τ).

- Sample s ← HWT (h) and set the secret key as sk ← (1, s) ∈ ZN+1
qL

. For 1 ≤ i ≤ τ ,

sample A ← Zτ×NqL
, e ← χτ and let b ← −As + e (mod qL). Set the public key as

pk ← (b, A) ∈ Zτ×(N+1)
qL .

- Let s′ ← P2(s ⊗ s). Sample A′ ← ZN
2dlog qLe×N

qL and e′ ← χN
2dlog qLe, and let b′ ←

−A′s′ + e′. Set the evaluation key as evk ← (b′, A′) ∈ ZN
2dlog qLe×(N+1)

qL .
• Enc(m). For an integer m ∈ Z, sample a vector r ← {0, 1}τ . Output c← (m,0)+pkT ·r ∈
ZN+1
qL

.

• Add(c1, c2). For c1, c2 ∈ ZN+1
q`

, output cadd ← c1 + c2 (mod q`).

• Mult(c1, c2). For c1, c2 ∈ ZN+1
q`

, let c′ ← BD(c1⊗c2). Output cmult ← evkT ·c′ (mod q`).

• RS`→`′(c). For a ciphertext c ∈ ZN+1
q`

at level `, output the ciphertext c′ ←
⌊
q`′
q`
c
⌉
∈

ZN+1
q`′

.

B Noise Estimations

We follow the heuristic approach in [25, 14]. Assume that a polynomial a(X) ∈ R =
Z[X]/(ΦM (X)) is sampled from one of above distributions, so its nonzero entries are inde-
pendently and identically distributed. Since a(ζM) is the inner product of coefficient vector of
a and the fixed vector (1, ζM , . . . , ζ

N−1
M) of Euclidean norm

√
N , the random variable a(ζM)

has variance V = σ2N , where σ2 is the variance of each coefficient of a. Hence a(ζM) has the
variances VU = q2N/12, VG = σ2N and VZ = ρN , when a is sampled from U(Rq), DG(σ2)
and ZO(ρ), respectively. In particular, a(ζM) has the variance VH = h when a(X) is chosen
from HWT (h). Moreover, we can assume that a(ζM) is distributed similarly to a Gaussian
random variable over complex plane since it is a sum of many independent and identically
distributed random variables. Every evaluations at root of unity ζjM share the same variance.
Hence, we will use 6σ as a high-probability bound on the canonical embedding norm of a
when each coefficient has a variance σ2. For a multiplication of two independent random vari-
ables close to Gaussian distributions with variances σ21 and σ22, we will use a high-probability
bound 16σ1σ2.

Proof of Lemma 1.

Proof. We choose v ← ZO(0.5)2 and e0, e1 ← DG(σ2), then set c ← v · pk + (m + e0, e1).
The bound Bclean of encryption noise is computed by the following inequality:

‖〈c, sk〉 −m (mod qL)‖can∞ = ‖v · e+ e0 + e1 · s‖can∞
≤ ‖v · e‖can∞ + ‖e0‖can∞ + ‖e1 · s‖can∞
≤ 8
√

2 · σN + 6σ
√
N + 16σ

√
hN.

22

For a vector z ∈ Z[i]N/2, an encryption of m = Ecd(z;∆) is also a valid encryption of
∆ · σ−1 ◦ π−1(z) with an increased error bound B′ = Bclean + N/2. If ∆−1 · B′ < 1/2, then
this error polynomial is removed by the rounding operation in decoding algorithm. ut

Proof of Lemma 2.

Proof. It is satisfied that 〈c, sk〉 = m + e (mod q`) for some polynomial e ∈ S such that

‖e‖can∞ ≤ B. The output ciphertext c′ ←
⌊
q`′
q`
c
⌉

satisfies 〈c′, sk〉 =
q`′
q`

(m+e)+escale (mod q`′)

for the rounding error vector τ = (τ0, τ1) = c′ − q`′
q`
c and the error polynomial escale =

〈τ , sk〉 = τ0 + τ1 · s.
We may assume that each coefficient of τ0 and τ1 in the rounding error vector is com-

putationally indistinguishable from the random variable in the interval
q`′
q`
Zq`/q`′ with vari-

ance ≈ 1/12. Hence, the magnitude of scale error polynomial is bounded by ‖escale‖can∞ ≤
‖τ0‖can∞ + ‖τ1 · s‖can∞ ≤ 6

√
N/12 + 16

√
hN/12, as desired. ut

Proof of Lemma 3.

Proof. Let ci = (bi, ai) for i = 1, 2. Then 〈ci, sk〉 = mi + ei (mod q`) for some polynomials
ei ∈ S such that ‖ei‖can∞ ≤ Bi. Let (d0, d1, d2) = (b1b2, a1b2 + a2b1, a1a2). This vector can be
viewed as a level-` encryption of m1m2 with an error m1e2 + m2e1 + e1e2 with respect to
the secret vector (1, s, s2). It follows from Lemma 2 that the ciphertext cmult ← (d0, d1) +⌊
P−1 · (d2 · evk (mod Pq`))

⌉
contains an additional error e′′ = P−1 · d2e′ and a rounding

error bounded by Bscale. We may assume that d2 behaves as a uniform random variable on

Rq` , so P‖e′′‖can∞ is bounded by 16
√
Nq2` /12

√
Nσ2 = 8Nσq`/

√
3 = Bks · q`. Therefore, cmult

is an encryption of m1m2 with an error bounded by

‖m1e2 +m2e1 + e1e2 + e′′‖can∞ +Bscale ≤ ν1B2 + ν2B1 +B1B2 + P−1 · q` ·Bks +Bscale,

as desired. ut

23

