
Linear-Time Non-Malleable Codes in the
Bit-Wise Independent Tampering Model

Ronald Cramer1, Ivan Damg̊ard2, Nico Döttling3, Irene Giacomelli4, and
Chaoping Xing5

1 CWI Amsterdam & Leiden University, The Netherlands
2 Aarhus University, Denmark

3 Friedrich-Alexander-University Erlangen-Nürnberg, Germany
4 University of Wisconsin-Madison, USA

5 Nanyang Technological University, Singapore

Abstract. Non-malleable codes were introduced by Dziembowski et al.
(ICS 2010) as coding schemes that protect a message against tamper-
ing attacks. Roughly speaking, a code is non-malleable if decoding an
adversarially tampered encoding of a message m produces the original
message m or a value m′ (possibly ⊥) completely unrelated to m. It is
known that non-malleability is possible only for restricted classes of tam-
pering functions. Since their introduction, a long line of works has estab-
lished feasibility results of non-malleable codes against different families
of tampering functions. However, for many interesting families the chal-
lenge of finding “good” non-malleable codes remains open. In particular,
we would like to have explicit constructions of non-malleable codes with
high-rate and efficient encoding/decoding algorithms (i.e. low computa-
tional complexity). In this work we present two explicit constructions: the
first one is a natural generalization of the work of Dziembowski et al. and
gives rise to the first constant-rate non-malleable code with linear-time
complexity (in a model including bit-wise independent tampering). The
second construction is inspired by the recent works about non-malleable
codes of Agrawal et al. (TCC 2015) and of Cheraghchi and Guruswami
(TCC 2014) and improves our previous result in the bit-wise independent
tampering model: it builds the first non-malleable codes with linear-time
complexity and optimal-rate (i.e. rate 1− o(1)).

Keywords: non-malleable codes, linear-time, bit-wise independent tam-
pering, secret-sharing.

1 Introduction

Non-malleable codes [32] are a relaxation of error-correcting and error-detecting
codes that have useful applications in cryptography. For example, they can be
used to protect keys that are stored in non-robust devices against tampering
attacks. Recently, they also found application to computational cryptography
(e.g. construction of non-malleable commitments [7,38] and domain extension
for public-key encryption schemes [23,22]). Roughly speaking, a coding scheme

2 R. Cramer, I. Damg̊ard, N. Döttling, I. Giacomelli, C. Xing

(Enc,Dec) is non-malleable with respect to the tampering function f if decod-
ing f(Enc(m)) produces the original message m or a value m′ (possibly ⊥)
completely unrelated to m. Moreover, the probability of which one of these two
events happens is also independent of m. As an illustration of the notion, con-
sider a key that is stored in a device. The adversary is able to tamper with the
key and gets to see the effect of using the device with the tampered key in-
side. If the key was coded with a non-malleable code and is decoded before use,
this attack becomes useless, as the key actually used after tampering is either
unchanged or is unrelated to the original key.

Since a tampering function can always try to decode, modify the message,
and encode again, it is clear that non-malleable codes are impossible without
restrictions on the tampering function. We therefore restrict the adversary to
using functions from a specific class F . In this case, we say that we have a
non-malleable code with respect to the family F . For example, if the encoding is
made by n symbols from a finite field F, then we can restrict the tampering func-
tion to be a function with n independent components (f1, . . . , fn) (symbol-wise
independent tampering, or bit-wise independent tampering if F = {0, 1}). Other
important features of the coding scheme are the rate and the computational
complexity6. Since 2010, a line of works has established increasingly stronger re-
sults concerning the feasibility of non-malleable codes against different families
of tampering functions. However, for many interesting families the challenge of
finding “good” non-malleable codes remains open. In particular, we would like
to have explicit constructions of non-malleable codes with high rate and efficient
encoding/decoding algorithm (i.e. low computational complexity).

This paper follows this research direction studying the following natural ques-
tion: can we achieve the optimal properties of linear-time complexity and rate
approaching 1 simultaneously (via an explicit constriction)? This is not known,
even for the restricted case of bit-wise independent tampering, and even if we
only ask for linear-time complexity7.

Many of the known constructions of non-malleable codes (see for example
[32], [16,18], [8],[7]) use linear secret-sharing schemes (LSSS) as one of the main
building blocks. This holds also for the constructions presented in this paper.
Roughly speaking, a secret-sharing scheme is a randomised algorithm that en-
codes a message m as a longer vector s such that m can be computed from
large enough sets of entries in s, while smaller set give no information about
m. LSSS with extra properties (uniformity and distance) are used already by
Dziembowski et al. in [32] where they introduce and motivate the formal notion
of non-malleable codes and also construct the first family of non-malleable codes
in the bit-wise independent tampering model. The computational complexity of

6 The rate of the coding scheme (Enc,Dec) is the quotient of the length of the message
m over the length of its encoding Enc(m). The computational complexity of the
scheme is maximum of the computational complexities of the two algorithm Enc and
Dec in function of the length of m.

7 Determining which cryptographic primitives can be instantiated in linear-time is an
interesting and challenging program started by Ishai et al. in [39].

Linear-Time NM Codes respect to Bit-Wise Independent Tampering 3

the code is quadratic in the size of the input length. Secondly, via the probabilis-
tic method they show that for any family F of tampering functions such that
|F| ≤ 22

αn

for some constant α < 1 (n is the length of the encoding) there exist
constant-rate non-malleable codes with respect to F . In this case, the description
of the code is of exponential size, thus the encoding and decoding algorithms
are inefficient. More recently, Cheraghchi and Guruswami [15,17] prove that for
this kind of families the optimal rate is 1 − α; they construct non-malleable
codes approaching this rate. Again, the construction is non-explicit and gives
rise to inefficient codes. For families of single exponential size, i.e. |F| ≤ 2p(n)

for some polynomial p, efficient (i.e. polynomial time) non-malleable codes were
constructed in [35]. This construction is also randomized, i.e. the construction
succeeds with overwhelming probability in providing non-malleable codes achiev-
ing optimal rate 1− o(1). On the other hand, in [16] an explicit (deterministic)
construction of non-malleable codes with rate arbitrarily close to 1 in the bit-wise
independent tampering model is given. The construction is based on the concate-
nation of a linear error-correcting secret-sharing scheme of rate close to 1 and a
constant-size non-malleable code. This construction is instantiated using Reed-
Solomon codes and has thus computational complexity at least O(npolylog(n))
(super-linear).

In [40], Jafargholi and Wichs introduce tamper-detection codes (TD) and
use them together with leakage-resilient codes [29] to construct non-malleable
codes that achieve optimal rate when |F| ≤ 22

αn

and efficient encoding and
decoding when |F| ≤ 2p(n). TD codes for the simple family of additive tampering
functions are called algebraic manipulation detection codes (AMD) and were
already introduced by Cramer et al. in 2008 [26].

Our Contribution. In this paper, we study the above question and achieve pos-
itive results. In the first part of our work, we push forward the idea of using
linear secret sharing, and show that when the family of tampering functions has
a clear structure (as in the symbol-wise independent tampering model), then
simple constructions based on LSSS can achieve good results: we get constant-
rate non-malleable codes with optimal computational complexity O(k), where
k is the length of the input message. To obtain this, we also use known results
about linear-time encodable error-correcting codes and linear-time computable
universal hash functions [39,30].

Building on the first result, we then achieve both linear-time complexity
and optimal rate, that is rate 1 − o(1), for non-malleable codes in the bit-wise
independent tampering model. It is instructive to observe that optimal-rate non-
malleable codes with superlinear time complexity were constructed in [16,8],
and that these codes are based on secret sharing schemes with (relatively) large
privacy and reconstruction thresholds. The problem we face is that there are
no constructions of linear secret sharing schemes with linear-time complexity

4 R. Cramer, I. Damg̊ard, N. Döttling, I. Giacomelli, C. Xing

for the required parameter range8. We therefore propose a novel construction
which is based on slightly weaker primitives which can be instantiated for the
rate 1− o(1) and linear-time complexity regime.

Overview of our Constructions. As mentioned, we present two deterministic
constructions for linear-time non-malleable codes: Construction 1 (Section 3)
can be seen as a generalization of the original construction of [32] and gives rise
to the first linear-time non-malleable codes with constant rate in the symbol-wise
independent tampering model. More generally, we prove that given a family of
TD codes with any computational complexity and rate, it is possible to explicitly
construct a family of non-malleable codes with constant rate and linear-time
complexity. The other ingredients of this first construction are constant-rate
AMD codes and constant-rate LSSS with good privacy (but where one needs
almost all shares to reconstruct). We present linear-time instantiations of both
these primitives using the results of [30]. Construction 1 encodes a message m
with three sequential steps: first m is encoded with an AMD code, then the
result is shared by a LSSS with privacy and finally each share is encoded by a
tamper-detection code (see Figure 1).

Fk AMD−−−−−→ FΘ(k) LSSS−−−−−→ (F`)m componet-wise TD−−−−−−−−−−−−→ (F`
′
)m

m 7−−−−−→ m′ 7−−−−−→ s

q
(s1, . . . , sm) 7−−−−−−−→ (c1, . . . , cm)

Fig. 1. The encoding algorithm of Construction 1 (m = Θ(k) and ` constant).

In particular, in Construction 1 if the tamper-detection code is secure against the
family of tampering functions F with constant error, then the resulting code is
non-malleable with respect to the family F+ of functions of the form (f1, . . . , fm)
where each fi is a function from F , a constant function or the identity and it
has error negligible in the length of the input. Hence, depending on how one
instantiates the components of the construction, one can handle more general
tampering models than bit-wise9. A key point for the efficiency is that the shares
produced by the LSSS used are of constant size. This implies that applying the
tamper-detection code to all the shares results only in a constant overhead for
the computational complexity.

With Construction 2 (Section 4), we achieve linear-time non-malleable codes
with optimal rate approaching 1, still with an explicit (deterministic) construc-

8 A Monte-Carlo construction by Cramer et al. [24] can be instantiated for a parameter
range where the rate of the secret sharing scheme is bounded away from 1 by a
constant, but not for rate approaching 1.

9 The concrete instantiation we give in Corollary 3 leads to bit-wise independent
tampering.

Linear-Time NM Codes respect to Bit-Wise Independent Tampering 5

tion. The most efficient constructions of optimal rate non-malleable codes in the
bit-wise independent tampering model are from [16,8]. Both these constructions
require a secret sharing scheme with good privacy and non-trivial reconstruction
threshold. Together with the rate close to 1 constraint, these are challenging fea-
tures to achieve in linear-time. In our construction, we also use a secret-sharing
scheme with rate close to 1, but we do not require any reconstruction property
for this scheme. Instead, we combine the sharing scheme with two other tai-
lored primitives, each implementable in linear-time, and a short constant-rate
non-malleable code. The modular design of our construction makes the secu-
rity proof much simpler and more intuitive than previous constructions: each
primitive takes care of a specific property needed to prove non-malleability. The
encoding is done in the following way: first the input message is shared with
a sharing scheme that has rate 1 − o(1) and t-uniformity (that is, if s is the
share vector of m, then each set of t components of s are distributed uniformly
on Ft). Then we use the two tailored primitives: first, a keyed almost universal
function is used to compute the first hash of s, hk(s). Second, we compute short
deterministic hash Comp(s), using a new primitive that we call a compressor.
This compressed value Comp(s) comes with the guaranty of having high entropy.
The two hash values and the key for the almost universal hash function can be
thought of as an “authentication tag” of m. The final encoding is given by the
share vector s and a non-malleable encoding of this tag, this encoding does not
have to be high-rate nor linear-time (see Figure 2).

Fk sharing−−−−−→ Fk+o(k) hashing−−−−−−→ Fk+o(k) × Fo(k) × Fo(k) short NM−−−−−−−→ Fk+o(k) × Fo(k)

m 7−−−−−→ s 7−−−−−→ (s, hk(s),Comp(s))

q
(s,h, c) 7−−−−−→ (s,NM(k,h, c))

Fig. 2. The encoding algorithm of Construction 2.

More related work. Bit-wise independent tampering functions act on each bit
of the encoding independently. In the more general, C-split state model the
encoding is partitioned into C blocks (C is a constant) and each block can
be tampered arbitrarily but independently of the others blocks (e.g. [19]). For
C = 10, an efficient and explicit construction of constant rate non-malleable
codes was given in [14]. Several results can be found in the literature when C = 2
(split-state model) [43,31,34,16,4,3,5,42]. In [43] the non-malleability property is
guaranteed only against computationally bounded adversaries, while the scheme
proposed by [31] is secure in the information-theoretic setting, but it can encode
only 1-bit messages. The first explicit construction of non-malleable codes with
information-theoretic security and message space larger than {0, 1} in the split-
state model was proposed in [4] and have rate polynomially small (k-bit strings

6 R. Cramer, I. Damg̊ard, N. Döttling, I. Giacomelli, C. Xing

are encoded into codewords of length ≈ k7). This result was recently improved
in [2], where the codeword length is decreased to O(k5). In 2015, Aggarwal
et al. [3] constructed the first explicit non-malleable codes in the split state
model achieving constant-rate. Rate approaching to 1 is achieved in [1,41] in the
computational setting.

In [8,7], Agrawal et al. construct explicit and non-malleable codes which
are simultaneously resilient against bit-wise independent tampering and per-
mutations. [7] gets optimal rate, but has super-linear computational complex-
ity. In [9] constant-rate and explicit non-malleable codes with respect to the
family of functions f : {0, 1}n → {0, 1}n such that any output bit depends
only on nδ input bits (0 ≤ δ < 1 constant). Finally, notice that many variants
of non-malleable codes have been introduced in the literature: e.g. continuous
non-malleable codes [34,40,6,13], leakage-resilient non-malleable codes [43,5,33],
block-wise non-malleable codes [11,37] and local non-malleable codes [28,12,27].

Structure of the paper: In Section 2, we fix the notation and give the basic defini-
tions we need further on in the paper. In Section 3 first we give linear-time con-
struction for AMD codes and LSSS with privacy, then we present Construction 1
in general and finally, we instantiate it for the binary case (bit-wise independent
tampering model). Section 4 is also divided in two parts: in the first one we define
and instantiate the primitives that are necessary for Construction 2; the latter
is described in the second part of the section together with its instantiation in
the bit-wise independent tampering model.

2 Preliminaries

For an integer n, we write [n] = {1, 2, . . . , n} and, given A ⊆ [n], |A| denotes
the cardinality of A, while Ac indicates the complement set of A, i.e. Ac =
[n] \ A. With the notation (z1, . . . ,zn) we indicate an element of the n-times
cartesian product of F`, where F is a finite field of cardinality q and ` is a positive
integer. Given z = (z1, . . . ,zn) ∈ (F`)n and a subset A ⊆ [n], we will use zA
to denote the vector (zi)i∈A ∈ (F`)|A|. Given two vectors z = (z1, . . . ,zn),v =
(v1, . . . ,vn) ∈ (F`)n, the generalized Hamming Distance between z and v is
defined by d`Ham(z,v) = |{i ∈ [n] | zi 6= vi}|. If Alg is an algorithm (randomized
or not) that takes as input a value from Fn, then the computational complexity
of Alg is the number of field elementary operations that Alg executes to compute
the output. We indicate with id the identity function. We say that a function ε is
negligible in n (ε(n) = negl(n)) if for every polynomial p there exists a constant
c such that ε(n) < 1

p(n) when n > c. For a random variable X, the notation

v ← X denotes that v is sampled randomly according to X. For a set S, v ← S
denotes that v is sampled uniformly at random from S. Given two random
variables X and Y with finite range S, the statistical distance between X and Y
is defined as SD(X,Y) = 1

2

∑
i∈S |Pr[X = i]−Pr[Y = i]|. Let X = (X1, . . . , Xn)

be a random variable with range Sn and t be a positive integer less or equal
to n. We say that X is t-wise independent if for any A = {i1, . . . , it} subset

Linear-Time NM Codes respect to Bit-Wise Independent Tampering 7

of [n] of cardinality t and for any vector b = (b1, . . . , bt) ∈ St, it holds that
Pr[XA = b] =

∏t
j=1 Pr[Xij = bj]. We say that X is t-wise uniform on Sn if for

any A ⊆ [n] of cardinality t, XA has the uniform distribution on St. If t = n we
simply say that X is an uniform random variable on Sn.

2.1 Tamper-Detection and Non-Malleability

Let F be a finite field and n, `, k be positive integers. An `-folded n-code over
F is a non-empty subset C of (F`)n; we will refer to n as the length of the code.
Given a set A ⊆ [n], with the notation CA we indicate the set {cA | c ∈ C}. If
ψ : C → Fk is a regular function, the pair (C, ψ) is called `-folded (n, k)-coding
scheme. The rate of a scheme is the ratio k/`n. If F = {0, 1}, the scheme is
called binary. When ` = 1, we simply call it (n, k)-coding scheme. If C is a vector
space over F, then the code is called linear. The dimension of a linear code is its
dimension as vector space over F. Moreover, if the map ψ is an F-linear map,
also the scheme (C, ψ) is called linear.

Remark 1. Given an `-folded (n, k)-coding scheme (C, ψ), any randomized al-
gorithm Enc : Fk → C that on input m ∈ Fk outputs c ∈ ψ−1({m}) selected
uniformly at random is called encoding algorithm. On the other side, decoding al-
gorithm is the name used for the deterministic algorithm Dec : (F`)n → Fk∪{⊥}
that maps c to m = ψ(c) ∈ Fk if c ∈ C and to ⊥ otherwise. For convenience10,
in the following we will always identify a coding scheme (C, ψ) with the pair
(Enc,Dec).

While keeping F fixed, we will assume throughout that n = n(k). The com-
putational complexity (as a function of k) of a coding scheme is the maximum
taken over the computational complexities of Enc and Dec, respectively. We say
that a coding scheme is linear-time if both Enc and Dec have complexity O(k).

Let (Enc,Dec) be an `-folded (n, k)-coding scheme over F. Given an encoding
c ← Enc(m) for the message m ∈ Fk, tampering with c can be represented
by considering a function f : (F`)n → (F`)n that modifies the encoding c in
c̃ = f(c). The output of Dec(c̃) now depends on the original message m and
also on the tampering function f . To represent this, we consider the following
random variable Realmf .

Realmf =


sample c← Enc(m);

compute c̃ = f(c);

output m̃ = Dec(c̃);

A simple but strong property that we can ask for is that the coding scheme is
able to detect with overwhelming probability the tampering caused by all the
functions f from a specific family F .

10 The two definitions are equivalent. Given the pair (Enc,Dec) such that for any m
it holds Pr[Dec(Enc(m)) = m] = 1, define C as the image of Enc in (F`)n and ψ as
the map Dec restricted to C.

8 R. Cramer, I. Damg̊ard, N. Döttling, I. Giacomelli, C. Xing

Definition 1 (TD Code, [40]). Given a family F of functions over (F`)n,
an `-folded (n, k)-tamper detection code with respect to F and with error ε is
an (n, k)-coding scheme such that Pr[Realmf 6=⊥] ≤ ε for any m ∈ Fk and any
f ∈ F .

For example, any error-correcting code from coding theory with minimal distance
d is a TD code with respect to the family Fdist of functions that modify less
than d components in the input vector (i.e. d`Ham(f(x),x) < d). The name
algebraic manipulation detection (AMD) code, introduced by [26], is used for
TD codes with respect to the family Famd of additive tampering functions. That
is, functions of the form fe(x) = x+e where the vector e is a non-zero constant
vector independent of x.

Unfortunately, tampering detection can not be achieved for many natural
families. For example, consider the family Fconst of all constant functions fc(x) =
c for c ∈ (F`)n; if c is a valid encoding, then Pr[Realmfc 6=⊥] = 1 for all m ∈ Fk. In
order to be able to consider larger families of tampering functions, the definition
of tampering detection needs to be relaxed. Instead of asking that the tampering
is detected, we can ask that the result of the tampering action is independent
of the original message. This property, called non-malleability is weaker than
tampering-detection, nevertheless it offers enough protection against tampering
attacks: an adversary that actively modifies encoded data can not control the
practical effect of his action on the encoded message.

Definition 2 (NM Code, [32]). An `-folded (n, k)-coding scheme (Enc,Dec)
is said to be non-malleable with respect to a family F with error ε if the following
holds for any f ∈ F . There exists a random variable Df on Fk∪{⊥, same} such
that, given

Idealmf =


sample m∗ ← Df ;

if m∗ = same then m′ = m;

otherwise m′ = m∗;

output m′;

then SD(Realmf , Idealmf) ≤ ε for any m ∈ Fk.

In the rest of the paper we will mainly consider the family of symbol-wise
independent tampering functions. That is, if the encoding has the form c =
(c1, . . . , cn) ∈ (F`)n, then each component ci can be modified arbitrarily but in-
dependently of the values of the others components. We will use the following no-
tation: F q

`,n = {f = (f1, . . . , fn) | fi : F` → F`} and f(c) = (f1(c1), . . . , fn(cn)).

Let q be the cardinality of the field F, note that if q = 2 and ` = 1, F 2
1,n is the

family considered in the bit-wise independent tampering model.

2.2 Secret-Sharing

Suppose that (Enc,Dec) is an `-folded (n, k)-coding scheme over F. Let t, r be
positive integers.

Linear-Time NM Codes respect to Bit-Wise Independent Tampering 9

Definition 3. (Enc,Dec) has t-privacy if the following holds for each set A ⊂ [n]
of F`-coordinates with |A| = t. For each m,m′ ∈ Fk, the distributions of
(Enc(m))A and (Enc(m′))A on (F`)t are identical. The scheme has t-uniformity
if these distributions are the uniform ones on (F`)t. (Enc,Dec) has r-reconstruction
if the following holds for each set A ⊂ [n] of F`-coordinates with |A| = r. If
c, c′ ∈ C satisfy cA = c′A, then Dec(c) = Dec(c′).

Note that any scheme has n-reconstruction. Moreover, if the coding scheme has
r-reconstruction and t-privacy, then t < r.

Remark 2. Given an `-folded linear (n, k)-coding scheme, it is easy to prove
that t-privacy and t-uniformity are equivalent to the following conditions, re-
spectively.

– (t-privacy) for each set A ⊆ [n] of F`-coordinates with |A| = t, the map that
maps c in C to the pair (Dec(c), cA) is surjective;

– (t-uniformity) the same condition as before holds and moreover CA = (F`)t.

Definition 4 (LSSS). An `-folded (n, t, r, k)-secret-sharing scheme over F (with
uniformity) is an `-folded (n, k)-coding scheme over F with t-privacy (t-uniformity)
and r-reconstruction. If the coding scheme is linear then we call it linear secret-
sharing scheme (LSSS).

Notice that in the existing literature, the algorithms Enc and Dec of a secret-
sharing scheme are often indicated with the notation Sh (sharing algorithm) and
Rec (reconstruction algorithm), respectively. Moreover, if c ← Sh(m), then c is
called share vector. Later on in the paper we will use this notation.

In this work, we will use secret-sharing schemes with different parameters and
properties as building blocks for constructing efficient NM codes. In particular,
for Construction 1 we are interested in the following aspect: what happens if the
reconstruction algorithm of a t-private LSSS is applied to a share vector where
at most t components have been tampered arbitrarily but independently from
the others. The answer is stated in the next lemma.

Lemma 1. Let (Sh,Rec) be a t-private `-folded (n, k)-LSSS. Fix a set A ⊆ [n] of
F`-coordinates with |A| ≤ t and an (eventually randomized) function g : (F`)n →
(F`)n with the following properties. For any s ∈ (F`)n, (g(s))Ac = sAc and
(g(s))A depends only on the entries of sA. Then, there exists a random variable
∆g on (F`)n ∪ {⊥} such that for any m ∈ Fk, Rec(g(Sh(m))) has the same
distribution of m +∆g (with the convention that m+ ⊥=⊥).

Proof. Clearly, g(Sh(m)) = Sh(m)+[g(Sh(m))−Sh(m)] and it follows from the
properties of g that g(Sh(m))− Sh(m) depends only on the value of (Sh(m))A.
Thus, since |A| ≤ t, the t-privacy implies that g(Sh(m))− Sh(m) has the same
distribution of g(Sh(0))− Sh(0). If we define ∆g = Rec(g(Sh(0))− Sh(0)), then
the lemma follows from the linearity of the map Rec. ut

10 R. Cramer, I. Damg̊ard, N. Döttling, I. Giacomelli, C. Xing

3 Constant-Rate and Linear-Time NM Codes

In this section, we describe our first main result: Construction 1 (Figure 4)
combines an AMD code, a LSSS and a TD code with constant error in order to
construct a constant-rate NM code (with negligible error) whose computational
complexity is controlled by the complexity of the two first schemes used (the
AMD code and the LSSS).

3.1 Building Blocks for Construction 1

Before describing Construction 1, we build linear-time and constant-rate AMD
codes and LSSSs.

We recall that a coding scheme (Enc,Dec) (with alphabet F) is an (n, k)-
AMD code11 with error ε if ∀m ∈ Fk and any non-zero e ∈ Fn, it holds that
Pr[Dec(Enc(m) + e) 6=⊥] ≤ ε. This special family of TD codes are of particular
interest because, despite their simple definition, they can be used as basic tools of
generic constructions for coding scheme that achieve security against tampering
family larger than Famd (see for example [32] and our Construction 1). Clearly,
the parameters (i.e. the rate) and the efficiency of the final schemes depend
on the ones of the AMD codes used. In particular, in order to prove our result
about constant-rate and linear-time NM codes (Theorem 2), we need to build
constant-rate and linear-time AMD codes. Our construction, presented in the
following Corollary 1, is based on the family of linear uniform functions from
[30].

Lemma 2 (Linear Uniform Family, Theorem 4 in [30]). For any positive
integer c there exists a positive constant b (b ≥ c) such that for any large enough
k there is family of functions {gk : Fk → Fck}k with k ∈ Fbk, such that the
following holds:

1. gk has computational complexity O(k);
2. gk is F-linear and gk1+k2

= gk1
+ gk2

;
3. for any y ∈ Fck and x ∈ Fk with x 6= 0, if k is chosen uniformly at random

from Fbk then Pr[gk(x) = y] = 1
qck

.

Corollary 1 (Linear-Time and Constant-Rate AMD code). For any large
enough integer k, there exists a linear-time (k′, k)-AMD code with error q−k and
k′ = Θ(k).

Proof. (Sketch) Given k, let G be the family from Lemma 2 with c = 1. For the
sake of simplicity we assume that b = 1 and we define:
Encamd(m) = (m,k, r, gk(m), gk(r), gr(k)), where k, r ∈ Fk are chosen uni-
formly at random and

11 For Construction 1 we need a “strong” AMD code (as in [32]), while AMD codes
were introduced in [26] by a slightly different (weaker) notion (∀m and ∀ e,
Pr[Dec(Enc(m) + e) /∈ {⊥,m}] ≤ ε).

Linear-Time NM Codes respect to Bit-Wise Independent Tampering 11

Decamd(v1,v2,v3,v4,v5,v6) =

{
v1 if gv2

(v1) = v4, gv2
(v3) = v5, gv3

(v2) = v6

⊥ otherwise

It is easy to verify that (Encamd,Decamd) is a (6k, k)-AMD code with error 1
qk

and computational complexity O(k). The details of this proof together with its
generalization to the case b > 1 can be found in [25]. ut

For Construction 1, we are interested in linear-time (m, t,m, k)-LSSS with
large privacy (i.e. t > m/2) and constant-rate. Recently [24], the first linear-time
constant-rate LSSS was shown, using a construction based on a combination of
suitable linear codes and universal hash functions. More concretely, while being
linear over a fixed finite field and supporting an unbounded number of players
(or shares) m, there are constants εs, εt, εr with 0 < εs, εt, εr < 1 and an integer
` (the share size) such that the length k of the secret satisfies k ≥ es`m, the
privacy parameter t satisfies t ≥ εtm and the reconstruction parameter r satis-
fies r ≤ εrm. Moreover, both the sharing and the reconstruction algorithm have
complexity linear in m. Although here we also need constant-rate linear-time
sharing scheme, we do not use the result from for Construction 1 and instead
we construct our constant-rate linear-time sharing scheme for two reasons. First,
the construction in [24] is a Monte-Carlo construction, while in this work we are
interested only in explicit (deterministic) constructions. Second, later on (Sec-
tion 4) we will require constant-rate sharing scheme with t-uniformity (instead
of only t-privacy). Our schemes from Corollary 2 have this extra property that
is not satisfied by the schemes presented in [24].

We construct the required LSSS using linear codes. Let D be an `-folded
linear m-code of dimension k over the finite field F. The minimum distance of D
is defined as d = min{d`Ham(c, c′) | c, c′ ∈ D, c 6= c′}. If G is a k×m matrix over
F`, we say that G is a generator matrix for the code D if D = {m ·G |m ∈ Fk}.
We say the D is a linear-time encodable code if the map m → m · G can be
computed by an algorithm that has computational complexity O(k).

The following Lemma generalizes and rephrases Theorem 2 in [20] asserting
that LSSS with t-uniformity can be obtained from linear codes with distance
t+ 1.

Lemma 3. Let G be the generator matrix of an `-folded linear code of length
m, dimension k and minimum distance d. Assume that G = (Ik,M) where Ik
is the k × k identity matrix (systematic form of the code)12. Then the scheme
define in Figure 3 is an `-folded (m, d − 1,m, k)-LSSS with uniformity. If the
code is linear-time encodable, then the LSSS obtained has linear-time complexity.

Proof. According to Remark 2, showing that the map ψA : c → (c ·G>, cA) is
surjective over Fk× (F`)d−1 for any A ⊆ [m] of size d−1 is enough to prove that
(Sh1,Rec1) (see Figure 3) has d − 1 uniformity. Clearly G (and then G>) has
rank k (over F) and the map c→ c·G> is surjective. Moreover since G generates

12 With (Ik,M) we indicate that we append the columns of M to the ones of the
identity matrix Ik.

12 R. Cramer, I. Damg̊ard, N. Döttling, I. Giacomelli, C. Xing

a code of distance d, we can remove any d−1 columns of G (i.e. d−1 rows from
G>) and the punctured matrix still has rank k (as any two distinct codewords
differ in at least d coordinates). This means that for any m we can solve in x
the linear system x ·G> = m even when d− 1 components of x are fixed. This
trivially implies that also the map ψA is surjective and concludes the proof of
the uniformity property. Finally, it follows directly from Tellegen’s principle (see
Appendix A.3) that if the underlying code is linear-time encodable, then both
the algorithms Sh1 and Rec1 are linear-time. ut

Input: m ∈ Fk

Sh1(m):

Sample x′ ← (F`)m−k

Compute x′′ = m− x′ ·M>

Output x = (x′′,x′)

Input: c ∈ (F`)m

Rec1(c):

Compute m = c ·G>
Output m

Fig. 3. Linear-time and constant-rate LSSS

Instantiating Lemma 3 with ad-hoc linear-time encodable codes (derived by the
linear-time encodable codes of [30]) provides us with LSSS with the required
properties.

Lemma 4 (Linear-Time Codes, Theorem 2 in [30]). For any real number
δ ∈ (0, 1) and large enough integer k, there exist a real number ρ ∈ (0, 1), a
positive integer ` and a linear code over F such that the following hold. The code
is `-folded; if m is the length of the code and d is its minimum distance, then
k
` < m ≤ k

`ρ and d ≥ δm. Furthermore, the code is linear-time encodable.

Corollary 2 (Linear-Time and Constant-Rate LSSS). For any real num-
ber δ ∈ (0, 1) there exists a positive integer ` such that for any large enough k
there exists an (m, k)-coding scheme over F with the following properties. The
scheme is an `-folded linear-time LSSS with δm-uniformity and m = Θ(k).

Proof. Given δ and k, let M be the generator matrix of the code of Lemma 4,
then the matrix G = (Ik,M) defines a `-folded linear code of dimension k, length
m+ k and distance at least δm+ 1. The Corollary follows from Lemma 3. ut

3.2 Construction 1

Finally, we are ready to give the details of Construction 1 and its security proof.
All the schemes in the following are defined over the finite field F and are 1-folded
if it is not explicitly stated otherwise. Consider the following building blocks:

Linear-Time NM Codes respect to Bit-Wise Independent Tampering 13

– Let (Encamd,Decamd) be a (k′, k)-AMD code with error ε;
– Let (Sh1,Rec1) be an `-folded (m, t,m, k′)-LSSS with privacy;
– Finally let (Enctd,Dectd) be an (`′, `)-TD codes with respect to the family F

and with error α.

Input: m ∈ Fk

ENC1(m)

Sample s← Sh1(Encamd(m))
Parse s = (s1, . . . sm)
For i = 1, . . .m:

ci ← Enctd(si)
Output c = (c1, . . . , cm)

Input: c ∈ (F`
′
)m

DEC1(c)

Parse c = (c1, . . . cm)
For i = 1, . . . ,m

si = Dectd(ci)
If si =⊥ output ⊥

Define s = (s1, . . . , sm)
Compute m = Decamd(Rec1(s))
Output m

Fig. 4. Construction 1

The new coding scheme (ENC1,DEC1) is defined in Figure 4. We indicate with
F+ the set of tampering functions f : (F`′)m → (F`′)m in F q

`′,m such each fi
is a function from F ∪ Fconst ∪ {id}. That is, each block ci of the encoding is
modified by the adversary using a function fi : F`′ → F`′ , which can be any
function from F ∪ Fconst ∪ {id} provided that it doesn’t depend on the others
blocks of the encoding.

Theorem 1. If t > m
2 , then (ENC1,DEC1) defined in Figure 4 is an `′-folded

(m, k)-NM code with respect to the family F+ with error less than or equal to
max{ε, α2t−m}. Moreover, if ρ is the rate of (Encamd,Decamd) and ρ′ is the rate
of the sharing scheme, then the rate k/m`′ of the new scheme is ρρ′ ``′ .

Proof. The correctness of the scheme (ENC1,DEC1) (i.e. Pr[DEC1(ENC1(m)) =
m] = 1 for any m ∈ Fk) and the statement about the rate are easy to verify and
follow directly from the construction (Figure 4). Fix f = (f1, f2, . . . , fm) ∈ F+,
to prove the non-malleability property, we have to define Df as in Definition 2
and bound the error SD(Realmf , Idealmf) for any m ∈ Fk. Let c = (c1, . . . , cm) =
ENC1(m) and s = (s1, . . . , sm) = Sh1(Encamd(m)). Notice that a valid encod-
ing in the new scheme is a vector c = (c1, . . . , cm) of m blocks each of which
is an encoding done by the constant-size tamper-detection code (Enctd,Dectd).
Each block is independently tampered by the function fi : F`′ → F`′ and since
(Enctd,Dectd) is an TD code, for any block such that fi ∈ F we know that the
outputs of Dectd(fi(ci)) is ⊥ with probability greater or equal to 1 − α. Using

14 R. Cramer, I. Damg̊ard, N. Döttling, I. Giacomelli, C. Xing

this and the t-privacy property, in the following we will show that we can have
enough information on the output of DEC1(f(ENC1(m))) only looking at how
many blocks have been tampered by functions not in F . More precisely, define
the following sets: I ⊆ [m] is the set of indices i such that fi is the identity
function, C ⊆ [m] is the set of indices i such that fi is a constant function on
F`′ and J = [m] \ (I ∪ C) = (I ∪ C)c. Consider now the following cases:

1) Suppose that many blocks are tampered using constant functions (i.e. |C| ≥
m − t). Then, the t-privacy implies that the distribution of the blocks not
touched by a constant function is the same for any input message m, while
all the other blocks are fixed to known constants. Hence, we define Df as

- sample d accordingly to the distribution of ENC1(0) and output the
result of DEC1(f(d)).

Because of the t-privacy, DEC1(f(d)) has the same distribution of DEC1(f(c))
and thus we have that SD(Realmf , Idealmf) = 0.

2) Otherwise we can assume that few blocks are tampered by constant functions
(i.e. |J |+ |I| > t) and we consider two sub-cases.

2.a) Suppose that few blocks are tampered (i.e. |I| ≥ m − t) and look at
what happens during the execution of DEC1 on input f(c). If there ex-
ists i ∈ Ic such that Dectd(fi(ci)) =⊥, then the entire decoding out-
puts ⊥. Otherwise, we have the situation described by Lemma 1 with13

g = Dectd ◦ f ◦ Enctd. Indeed, in the decoding phase the algorithm Rec1
is applied to a share vector s̃ where at most t components have been
modified respect to the original share vector s. It follows by Lemma 1
that Rec1(s̃) has the same distribution as Encamd(m)+∆g. Moreover, by
definition of AMD code, if ∆g = 0, then DEC1(f(c)) outputs the original
message m, else it outputs ⊥ with probability grater than or equal to
1− ε. Thus, in this case we define Df by the following steps:

- sample r = (r1, . . . , rm) accordingly to the distribution of Sh1(0). If
there exists i ∈ Ic such that Dectd(fi(Enctd(ri))) =⊥, then output
⊥. Otherwise continue with the next step;

- sample e accordingly to the distribution of ∆g. If e = 0, Df outputs
same; otherwise it outputs ⊥.

Because of the t-privacy, the probability that there exists i ∈ Ic such
that Dectd(fi(ci)) =⊥ is equal to the probability that there exists i ∈
Ic such that Dectd(fi(Enctd(ri))) =⊥. Moreover, Lemma 1 implies that
SD(Realmf , Idealmf) = Pr[Decamd(Encamd(m) + ∆g)) 6=⊥] and we know
the latter to be less than or equal to ε.

2.b) Else we can use the assumption on t and m and say that more than
2t−m blocks are tampered by functions in F . That is, |J | > t−m+ t =
2t−m > 0. Independently for all these blocks, the tamper-detection code
outputs a message different from ⊥ with probability less than or equal to
α. Thus, DEC1(f(c)) =⊥ with probability less than or equal to α2t−m.

13 Abuse of notation, with g = Dectd ◦ f ◦ Enctd we mean the randomized function
g : (F`)m → (F`)m such that (g(v))i = Dectd(fi(Enctd(vi))) for all i ∈ [m].

Linear-Time NM Codes respect to Bit-Wise Independent Tampering 15

Therefore, in this last case we define Df to output ⊥ and we have that
SD(Realmf , Idealmf) = Pr[Realmf 6=⊥] ≤ Pr[Dectd(fi(ci)) 6=⊥ ∀ i ∈ J] ≤
α2t−m. ut

We are now ready to state the first of the results about linear-time NM codes
that we present in this paper:

Theorem 2 (Linear-Time and Constant-Rate NM codes). If for infinitely
many integers b, there exists an (b′, b)-TD code with respect of a family F and
with constant error α, then there exist a positive integer `′ such that the following
holds. For any large enough integer k there exists an `′-folded (m, k)-NM code
(ENC1,DEC1) with respect of the family F+ and m = Θ(k). Furthermore, the
NM code has error negligible in k and linear-time computational complexity.

Proof. Given k, instantiate Construction 1 (Figure 4) with the (k, k′)-AMD code
given by Corollary 1 and with the `-folded (m, δm,m, k′)-LSSS given by Corol-
lary 2 (with δ > 1/2). Notice that k′ = Θ(k) and m = Θ(k′) = Θ(k) and `
is constant respect to k. Finally, use the first TD code from the family stated
in the thesis such that the input length is at least ` to complete the instanti-
ation. Let `′ be the output length of the TD code used. Notice that also `′ is
constant respect to k. It follows from Theorem 1 that the obtained scheme is
non-malleable with respect to F+ and has constant rate. Moreover, the error
ε+ α2δm−m = q−Θ(k) + α(2δ−1)Θ(k) is negligible in k. Finally, since `, `′ are con-
stant and the AMD code and the LSSS are both linear-time, the computational
complexity of the algorithms ENC1,DEC1 is O(k). ut

In [16] an infinite family of TD code with respect the family F of bit-wise
independent tampering functions that are neither the identity nor constant func-
tions is given. Each code in the family has an error less than or equal to 2/3.

Lemma 5 (Lemma 3.5 in [16]). 14 For any β ∈ (0, 1) and any large enough `′

(i.e. `′ ≥ `′(β) = O(log2(1/β)/β)), there exists a binary (`, `′)-TD code respect
to the family F = F 2

1,n \ (Fconst ∪ {id}) with error 2/3 and with ` ≥ (1− β)`′.

The previous lemma together with Theorem 2 implies the following result in
bit-wise independent tampering model.

Corollary 3 (Binary Case for Construction 1). For any large enough inte-
ger k, there exists a linear-time binary (N, k)-NM code with respect of the family
F 2

1,N and with error negligible in k. Furthermore N = Θ(k).

4 Optimal-Rate and Linear-Time NM Codes

In this section, we will construct a linear-time non-malleable code with rate
approaching 1 (Construction 2).

14 The construction presented in [16] is randomised, but since in our Construction 1
the parameter ` is constant (respect to k) we can exhaustively search for the proper
TD code.

16 R. Cramer, I. Damg̊ard, N. Döttling, I. Giacomelli, C. Xing

4.1 Building Blocks for Construction 2

Before showing our second main result (Construction 2), we present the required
building blocks.

In order to achieve linear-time and optimal-rate NM codes, we will em-
ploy linear-time (n, t, n, k)-secret-sharing schemes again, however we will need
stronger assumptions regarding the rate and the privacy property of the used
scheme. Namely, besides linear-time complexity, we require that the rate is not
merely constant but that it approaching 1, i.e., length of a full share-vector
divided by the length of the secret tends to 1 when the n tends to infinity.
By general bounds on secret sharing, this implies that the privacy parameter
t is sublinear in the number of players n and that reconstruction is essentially
by the full player set only. But that is still fine for our purposes here (as long
as privacy is nonconstant). Moreover, we note that we do not require linearity
of the scheme either. Besides, we require that any t shares are uniformly and
independently distributed over the share-space (t-uniformity). Below we show
how to construct the schemes required here by combining results on t-wise in-
dependence generators and constant-rate secret sharing. A t-wise independence
generator is a deterministic algorithm that expands a short random seed in a
longer t-uniform vector. More precisely:

Definition 5 (t-wise Independence Generator, [36]). Let k, k′ and t be
positive integers. A function Gen : Fk′ → Fk is a t-wise independence generator
if the following holds. For each uniform random variable X over Fk′ (called the
seed), Gen(X) is t-wise uniform over Fk.

In [25] (Lemma 12) we provide an independence generator with seed-length
and independence sub-linear in the output length. Moreover the proposed in-
dependence generator has computational complexity linear in the seed-length.
Lemma 6 shows how to use the t-wise independence generator to build a linear-
time secret-sharing scheme with t′-uniformity, t′ = Θ(t) and rate 1 − o(1). The
high-level idea (Figure 5) is simple, to share a secret m ∈ Fk we do the follow-
ing. First, we mask m using Gen(s) where s is a uniformly random seed for Gen.
Then, we share the seed s with a constant-rate sharing scheme (for example, the
scheme from Corollary 2). The final share vector is defined by the concatenation
of m + Gen(s) and the share vector of s.

Lemma 6 (Linear-Time and Optimal-Rate LSSS). For any real number
ε ∈ (0, 1) and any large enough k, there exists a linear-time (n, t, n, k)-LSSS with
uniformity such that t = Ω(k1−ε) and n = k + o(k).

Proof. Given ε ∈ (0, 1) and k large enough, there exists a t-wise independence
generator Gen : Fk′ → Fk with t = Ω(k1−ε) and k′ = Θ(k1−δ) (δ ≤ ε, see
Lemma 12 in [25]). Let (Sh1,Rec1) be the (m, t′,m, k′)-LSSS from Corollary 2.
Notice15 that m = Θ(k′) and that the scheme is t′-uniform with t′ = Θ(k′).

15 The family of LSSSs from Corollary 2 is ` folded, where ` is a constant respect to k′.
Thus, the scheme (Sh1,Rec1) can be “unfolded” and still it remains a constant-rate
scheme.

Linear-Time NM Codes respect to Bit-Wise Independent Tampering 17

Sh2(m):

Sample s← Fk
′

Compute c1 = m + Gen(s)
Compute c2 ← Sh1(s)
Output c = (c1, c2)

Rec2(c):
Parse c = (c1, c2)
Compute s = Rec1(c2)
If s = ⊥, then output ⊥
Otherwise output c1 − Gen(s)

Fig. 5. Linear-time and optimal-rate LSSS

Consider the scheme in Figure 5 and define s = min{t, t′}. It is easy to verify
that (Sh2,Rec2) is a linear-time (n, s, n, k)-LSSS with uniformity. Moreover, s =
Ω(k1−ε) and n = k +m = n+O(k1−δ). ut

We introduce a novel primitive, a compressor. Suppose we are given a vector
whose coordinates are t-wise independent random variables. A compressor is
a deterministic function that, when applying it to the given vector, results in
a shorter vector with nontrivial entropy16, assuming that the original vector
contains at least t coordinates with nontrivial entropy17.

Definition 6 (Compressor). Let t, n, n′ be positive integers and r a positive
real number. A function Comp : Fn → Fn′ is a (t, r)-compressor if the following
holds. Suppose that X = (X1, . . . , Xn) is a t-wise independent random variable
on Fn such that there is a set A ⊆ [n] of cardinality t and a real number c > 0
for which H∞(Xi) ≥ c for all i ∈ A. Then H∞(Comp(X)) ≥ rc.

This primitive is used in the security proof of Construction 2 to handle the case of
a component-wise tampering function that has many non-constant components.
More precisely, we will use the following fact:

Lemma 7. Let f = (f1, . . . , fn) ∈ F q
1,n be a function such that least t of the

of the functions fi : F → F are non-constant. If Comp : Fn → Fn′ is a (t, r)-
compressor and X is a t-wise uniform random variable on Fn, then for any

vector b ∈ Fn′ , Pr[Comp(f(X)) = b] ≤
(
q−1
q

)r
.

Proof. By the conditions on f , there is a set A ⊆ [n] of cardinality t such that,
for each i ∈ A it holds that H∞(fi(Xi)) ≥ log2(q/(q − 1)). Since X is t-wise
independent, it follows by definition of compressor that H∞(Comp(f(X))) ≥
r log2(q/(q − 1)). ut

We show a simple construction of Comp suitable for our purposes later on.

16 The min-entropy of a random variable X is H∞(X) = − log2(maxb Pr[X = b])
17 Since we require compressors to be deterministic, generic methods for privacy am-

plification do not apply here.

18 R. Cramer, I. Damg̊ard, N. Döttling, I. Giacomelli, C. Xing

Lemma 8 (Linear-Time Compressor). For any real number ε ∈ (0, 1) and
for any large enough positive integer n there exists an (r2, r)-compressor Comp :
Fn → Fn′ with r2 = Ω(n1−ε) and n′ = o(n). Moreover Comp has computational
complexity O(n).

Proof. Given ε, for any n ≥ 1 define r = dn(1−ε)/2e and n′ = bn/rc. Notice that
n′r ≤ n and, if n large enough, r2 ≤ n. Consider the function Comp : Fn → Fn′ ,
(x1, . . . ,xn) 7→ (y1, . . . ,yn′) defined by yi =

∑r
j=1 x(i−1)r+j for i = 1, . . . , n′.

Thus, a vector in the domain is viewed as comprising n′ consecutive blocks of
r coordinates and, for i = 1, . . . , n′, the sum taken over the coordinates in the
i-th block gives the i-th coordinate in the image of the vector under Comp. We
now verify that Comp is a (r2, r)-compressor. Suppose X = (X1, . . . , Xn) be a
r2-wise independent random variable on Fn and suppose A ⊂ [n] with |A| = r2

satisfies H∞(Xi) ≥ c > 0 for each i ∈ A. Define (Y1, . . . , Yn′) = Comp(X). By the
pigeonhole principle, there exists a B ⊆ [n′] with |B| = r such that each Yi with
i ∈ B is sum of at least one Xi with i ∈ A. This, together with r2-independence
of X, implies that the corresponding random variable YB = (Yi)i∈B has the
properties that H∞(Yi) ≥ c for each i ∈ B and that the Yi’s are independent. In
conclusion, H∞(Comp(X)) ≥ H∞(YB) ≥ rc. By inspection, the computational
complexity of Comp is O(n). ut

Our Construction 2 that we present later on in Section 4.2 depends in par-
ticular on universal hash functions.

Definition 7 (Almost Universal Family). Let µ ∈ (0, 1) be a real number
and let n,m be positive integers. Suppose H is a family of functions hk : Fn →
Fm, one for each k ∈ Fa. Then H is µ-almost universal if the following holds.
For any pair of distinct x,x′ ∈ Fn, if k is chosen uniformly at random from Fa
then Pr[hk(x) = hk(x′)}] ≤ µ.

For our purposes, we require that these functions are linear-time computable
and have vanishingly small key- and output-lengths. Hence, the linear uniform
family of [30] (see Lemma 2) does not apply directly due to its linear key-length.
Note that, besides linear-time, the uniform output property of this particular
family enables arbitrary output-length. In [25] we show an easy adaptation of
the family from [30] suitable for our purposes. It is a µ-almost universal family.
But since µ is very small, it is good enough for our purposes.

Lemma 9. For any real number β ∈ (0, 1) and any positive integer n, there
exists a µ-universal family H = {hk : Fn → Fm}k∈Fa with a = o(n), m = o(n)

and µ = Θ(q−n
(1−β)

). Moreover, each function hk has complexity O(n).

4.2 Construction 2

Finally, we are ready to give the details of Construction 2 and its security proof.
Consider the following ingredients (all the scheme are over the finite field F):

– Let (Sh2,Rec2) an (n, t, n, k)-SSS with uniformity;

Linear-Time NM Codes respect to Bit-Wise Independent Tampering 19

– Let Comp : Fn → Fn′ be a (t, r)-compressor;
– Let H = {hk : Fn → Fm} be a µ-almost universal family with key-space Fa;
– Let (Enc,Dec) be a (b′, b)-NM code with respect to a family F with error ε.

We require that b = a+m+ n′.

Let N = n + b′, the new (N, k)-coding scheme (ENC2,DEC2) is defined in Fig-
ure 6.

Input: m ∈ Fk

ENC2(m):

Compute c(1) ← Sh2(m)
Sample k← Fa

Compute h = hk(c(1))

Compute c = Comp(c(1))

Compute c(2) = Enc(k,h, c)

Output (c(1), c(2))

Input: c ∈ FN

DEC2(c):

Parse c = (c(1), c(2)) ∈ Fn × Fb
′

Compute z = Dec(c(2))
If z =⊥ output ⊥
Otherwise

Parse z = (k,h, c)

If h 6= hk(c(1)) output ⊥
If c 6= Comp(c(1)) output ⊥

Output m = Rec2(c
(1))

Fig. 6. Construction 2

Theorem 3. The coding scheme (ENC2,DEC2) is an (N, k)-non-malleable code
with respect to the family F q

1,n ×F with error less than or equal to

max

{(
q − 1

q

)t
+ µ,

(
q − 1

q

)r}
+ ε

Proof. It is trivial to verify that the scheme (DEC2,ENC2) is correct, that is
Pr[DEC2(ENC2(m)) = m] = 1 for all m ∈ Fk. In order to prove non-malleability,
for each tampering function F we have to show a simulator which only de-
pends on F and whose output distribution is statistically close to the one of
DEC2(F (ENC2(m))) for any given m ∈ Fk. More precisely, according to Defi-
nition 2 for any F = (f, g) ∈ F q

1,n × F , we have to define a random variable

DF and bound the error ε′ = SD(RealmF , IdealmF) for any m ∈ Fk. Given F
and m ∈ Fk, we write ENC2(m) = (c(1), c(2)). Notice that the left part of the
encoding, c(1), is tampered by the function f ∈ F q

1,n, while the right part, c(2),
by the function g from F . Since (Enc,Dec) is a NM-code, there exists the ran-
dom variable Dg such that SD(Realzg , Idealzg) ≤ ε for all z ∈ Fb. That is, we can

simulate the output of decoding the right part, Dec(g(c(2))), using the random

20 R. Cramer, I. Damg̊ard, N. Döttling, I. Giacomelli, C. Xing

variable Idealzg . Specifically, we define the random variable Hybm
F as detailed

in Figure 7. Notice that by construction the output of Hybm
F depends on c(1)

(the output of Sh2(m)) and on the output of Idealzg , and the output of RealmF
depends on c(1) and the output of Realzg in the same way. Thus, we have that
SD(RealmF ,Hybm

F) ≤ SD(Realzg , Idealzg). Given this, defining the random vari-
able DF in such a way that we can bound ε′′ = SD(Hybm

F , IdealmF) will conclude
the proof. Indeed, we have ε′ ≤ ε+ ε′′. To define DF , first sample z∗ randomly
according to Dg. The results of the sampling can be classified in three cases: ⊥,
same or some vector (k∗,h∗, c∗). Then, we proceed in the definition of DF in
a different way for each one of the three aforementioned cases. In each case, we
will bound the error ε′′. In the following, we will write f = (f1, . . . , fn) ∈ F q

1,n.
Remember that the value of z∗ determines the output z′ of Idealzg .

1) Assume that z∗ =⊥, then z′ =⊥. We know that Pr[Hybm
F =⊥| Dg =⊥] = 1,

thus we define DF to output ⊥ and we get that ε′′ = 0.

2) If z∗ = same, then z′ = (k, hk(c(1)),Comp(c(1))). Define I ⊆ [n] the set of
indices i such that fi is the identity function on F. Consider the following
two situations.

• First, assume that many fi are the identity function (i.e. |I| ≥ n − t).
Then the difference f(c(1)) − c(1) depends only on the vector (c(1))Ic

whose entries are independent of m (because of the t-uniformity prop-
erty). In particular, both the event f(c(1)) = c(1) and its complement
occur with the same probability for any message m. If f(c(1)) = c(1),
then Hybm

F obviously outputs the original message m. Otherwise, we
have f(c(1)) 6= c(1) and the check done via the hash function hk fails
with probability at least 1 − µ. If the check fails, Hybm

F outputs ⊥.
Given this, we define DF in the following way:

- sample ri ← F for all i ∈ Ic; if fi(ri) = ri for all i ∈ Ic then outputs
same, otherwise output ⊥.

As we have already argued before, the t-uniformity property implies that
the event fi(ri) = ri for all i ∈ Ic has the same probability as the event
f(c(1)) = c(1) and therefore, as a consequence of the check involving the
hash function, we can bound the error in the following way:

ε′′ ≤ Pr[Hybm
F 6=⊥| Dg = same and f(c(1)) 6= c(1)]

≤ Pr[hk(f(c(1))) = hk(c(1)) | f(c(1)) 6= c(1)] ≤ µ

• In the second case, assume that many fi are not the identity function
(i.e. |I| < n− t). Then, there exists a set A ⊆ Ic of size t, and it follows

again from the uniformity property that the events fi(c
(1)
i) 6= c

(1)
i with

i ∈ A are independent and each of them occurs with probability at least
1/q. Therefore, very likely and independently of m, f(c(1)) 6= c(1) and
Hybm

F outputs ⊥ because of the check done using the hash function hk.
For this reason, in this case we define DF to always output ⊥ and we

Linear-Time NM Codes respect to Bit-Wise Independent Tampering 21

can bound the error as follows.

ε′′ ≤ Pr[Hybm
F 6=⊥| Dg = same] ≤ Pr[hk(f(c(1))) = hk(c(1))]

≤ Pr[f(c(1)) = c(1)] + µ ≤
(
q − 1

q

)t
+ µ

3) If z∗ = (k∗,h∗, c∗), then we have that z′ = z∗. Let C ⊆ [n] be the set of
all indices i such that fi is a constant function on F. Consider the following
two situations.

• If many fi are constant functions (i.e. |C| ≥ n − t), then the value of
vector f(c(1)) is independent of m. Indeed, the t-uniformity makes the
value of (f(c(1)))Cc independent of m, while (f(c(1)))C is fixed equal to
a constant defined only by f . It follows that, if we define DF in this way:

- sample r ← Fn, if h∗ 6= hk∗(f(r)) or c∗ 6= Comp(f(r)) output ⊥;
otherwise output Rec2(f(r)).

then we have that ε′′ = 0.
• Otherwise more than t components fi are not constant functions (i.e.
|C| < n − t) and it follows from Lemma 7 that Comp(f(Sh2(m))) is a
random variable with min-entropy at least r log2(q/(q − 1)). Moreover,
Comp(f(Sh2(m))) is independent of the random variable Dg. Therefore,
in this case the probability that the check done using the compressor is

satisfied is less than or equal to
(
q−1
q

)r
. Remember that if the check

is not satisfied then, Hybm
F outputs abort. Thus, we can define DF to

output always ⊥ and we get an error bounded by:

ε′′ ≤ Pr[Hybm
F 6=⊥| Dg = (k∗,h∗, c∗)] ≤ Pr[Comp(f(c(1)) = c∗]

≤
(
q − 1

q

)r
ut

We are now ready to state the main result about linear-time NM codes that we
present in this paper:

Theorem 4 (Linear-Time and Optimal-Rate NM codes). Suppose that
there exists real number α ∈ (0, 2) such that for any positive integer b there
exists a (b′, b)-NM-code (Enc,Dec) with respect of a family F , with error ε(b) =
negl(b) (the error is a negligible function of the message length) and b′ = O(bα),
then the following holds. For any positive integer k large enough, there exists an
(N, k)-NM code (ENC2,DEC2) with respect of the family F q

1,n×F and with error
negligible in k. Furthermore N = k + o(k) and, if the computational complexity
of (Enc,Dec) is sub-quadratic in b, then (ENC2,DEC2) is linear-time.

Proof. Instantiate Construction 2 (Figure 6) with the t-uniform sharing scheme
from Lemma 6, the compressor from Lemma 8 (with ε ≤ 2

α−1) and the universal
family from Lemma 9 (with β ≥ 2 − 2

α). It easy to check that b = (a + m) +

n′ = O(n1−β/2) + O(n(1+ε)/2) and n = k + o(k). Thus, b′ = O(n1−β/2)α +

22 R. Cramer, I. Damg̊ard, N. Döttling, I. Giacomelli, C. Xing

RealmF :

Compute c(1) ← Sh2(m)
Sample k← Fa

Compute z = (k, hk(c(1))),Comp(c(1))
Compute z′ ← Realzg
If z′ =⊥ output ⊥
Otherwise

Parse z′ = (k′,h′, c′)

If h′ 6= hk′(f(c(1))) output ⊥
If c′ 6= Comp(f(c(1))) output ⊥

Output m = Rec2(f(c(1)))

Hybm
F :

Compute c(1) ← Sh2(m)
Sample k← Fa

Compute z = (k, hk(c(1))),Comp(c(1))
Compute z′ ← Idealzg
If z′ =⊥ output ⊥
Otherwise

Parse z′ = (k′,h′, c′)

If h′ 6= hk′(f(c(1))) output ⊥
If c′ 6= Comp(f(c(1))) output ⊥

Output m = Rec2(f(c(1)))

Fig. 7. On the right, the definition of the random variable Hybm
F for an input message

m ∈ Fk and a tampering function F = (f, g) ∈ F q
1,n×F . On the left, for a quick refer-

ence, the random variable RealmF (defined in Section 2) for the scheme (ENC2,DEC2).

O(n(1+ε)/2)α = O(n). It follows from Theorem 3 that (ENC2,DEC2) is (N, k)-
NM with respect of the family F q

1,n × F and that N = n + b′ = k + o(k).

Moreover, since t, r2 = Ω(k1−ε) and b tends to infinity as k tends to infinity,
the error written in Theorem 3 is negligible in k. Finally, since all the building
blocks mentioned before are linear-time, then the computational complexity of
the new scheme is O(k) +O(bα) = O(k). ut

Corollary 4 (Binary Case for Construction 2). For any large enough k,
there exists linear-time binary (N, k)-NM code with respect of the family F 2

1,N

and with error negligible in k. Furthermore, N = k + o(k).

Acknowledgements. Ivan Damg̊ard and Irene Giacomelli acknowledge sup-
port from the Danish National Research Foundation and The National Science
Foundation of China (under the grant 61361136003) for the Sino-Danish Center
for the Theory of Interactive Computation and from the Center for Research in
Foundations of Electronic Markets (CFEM), supported by the Danish Strategic
Research Council. Ivan Damg̊ard acknowledges support from the Advanced ERC
grant MPCPRO.

References

1. Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.:
Optimal computational split-state non-malleable codes. In: Theory of Cryptogra-
phy - 13th International Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13,
2016, Proceedings, Part II, pp. 393–417 (2016)

Linear-Time NM Codes respect to Bit-Wise Independent Tampering 23

2. Aggarwal, D., Briët, J.: Revisiting the sanders-bogolyubov-ruzsa theorem in fpn

and its application to non-malleable codes. In: IEEE International Symposium on
Information Theory, ISIT 2016, Barcelona, Spain, July 10-15, 2016, pp. 1322–1326
(2016)

3. Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions and
applications. In: Proceedings of the Forty-Seventh Annual ACM on Symposium
on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pp.
459–468 (2015)

4. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combi-
natorics. In: Proceedings of the 46th Annual ACM Symposium on Theory of
Computing, STOC ’14, pp. 774–783. ACM, New York, NY, USA (2014)

5. Aggarwal, D., Dziembowski, S., Kazana, T., Obremski, M.: Leakage-resilient non-
malleable codes. In: Theory of Cryptography - 12th Theory of Cryptography
Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part I,
pp. 398–426 (2015)

6. Aggarwal, D., Kazana, T., Obremski, M.: Inception makes non-malleable codes
stronger. IACR Cryptology ePrint Archive 2015, 1013 (2015)

7. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Explicit non-
malleable codes against bit-wise tampering and permutations. In: Advances in
Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara,
CA, USA, August 16-20, 2015, Proceedings, Part I, pp. 538–557 (2015)

8. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: A rate-
optimizing compiler for non-malleable codes against bit-wise tampering and per-
mutations. In: Theory of Cryptography - 12th Theory of Cryptography Conference,
TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part I, pp. 375–397
(2015)

9. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes for
bounded depth, bounded fan-in circuits. In: Advances in Cryptology - EURO-
CRYPT 2016 - 35th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings,
Part II, pp. 881–908 (2016)

10. Capalbo, M.R., Reingold, O., Vadhan, S.P., Wigderson, A.: Randomness conduc-
tors and constant-degree lossless expanders. In: Proceedings of the 17th Annual
IEEE Conference on Computational Complexity, Montréal, Québec, Canada, May
21-24, 2002, p. 15 (2002)

11. Chandran, N., Goyal, V., Mukherjee, P., Pandey, O., Upadhyay, J.: Block-wise non-
malleable codes. In: 43rd International Colloquium on Automata, Languages, and
Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, pp. 31:1–31:14 (2016)

12. Chandran, N., Kanukurthi, B., Raghuraman, S.: Information-theoretic local non-
malleable codes and their applications. In: Theory of Cryptography - 13th Interna-
tional Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings,
Part II, pp. 367–392 (2016)

13. Chattopadhyay, E., Goyal, V., Li, X.: Non-malleable extractors and codes, with
their many tampered extensions. In: Proceedings of the 48th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA,
June 18-21, 2016, pp. 285–298 (2016)

14. Chattopadhyay, E., Zuckerman, D.: Non-malleable codes against constant split-
state tampering. In: 55th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pp. 306–315
(2014)

24 R. Cramer, I. Damg̊ard, N. Döttling, I. Giacomelli, C. Xing

15. Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. In: Proceedings
of the 5th Conference on Innovations in Theoretical Computer Science, ITCS ’14,
pp. 155–168. ACM, New York, NY, USA (2014)

16. Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and split-
state tampering. In: Theory of Cryptography, pp. 440–464. Springer (2014)

17. Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. IEEE Trans.
Information Theory 62(3), 1097–1118 (2016)

18. Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and split-
state tampering. J. Cryptology 30(1), 191–241 (2017)

19. Choi, S.G., Kiayias, A., Malkin, T.: Bitr: Built-in tamper resilience. In: D. Lee,
X. Wang (eds.) Advances in Cryptology – ASIACRYPT 2011, Lecture Notes in
Computer Science, vol. 7073, pp. 740–758. Springer Berlin Heidelberg (2011)

20. Chor, B., Goldreich, O., Hasted, J., Freidmann, J., Rudich, S., Smolensky, R.:
The bit extraction problem or t-resilient functions. In: Foundations of Computer
Science, 1985., 26th Annual Symposium on, pp. 396–407. IEEE (1985)

21. Christiani, T., Pagh, R.: Generating k-independent variables in constant time. In:
55th IEEE Annual Symposium on Foundations of Computer Science, FOCS2014,
Philadelphia, PA, USA, October 18-21, 2014, pp. 196–205 (2014)

22. Coretti, S., Dodis, Y., Tackmann, B., Venturi, D.: Non-malleable encryption: Sim-
pler, shorter, stronger. In: Theory of Cryptography - 13th International Confer-
ence, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part I, pp.
306–335 (2016)

23. Coretti, S., Maurer, U., Tackmann, B., Venturi, D.: From single-bit to multi-bit
public-key encryption via non-malleable codes. In: Theory of Cryptography - 12th
Theory of Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25,
2015, Proceedings, Part I, pp. 532–560 (2015)

24. Cramer, R., Damg̊ard, I., Dottling, N., Fehr, S., Spini, G.: Linear secret sharing
scheme from error correcting codes and universal hash function. In: Advances in
Cryptology–EUROCRYPT 2015. Springer (2015)

25. Cramer, R., Damg̊ard, I., Döttling, N., Giacomelli, I., Xing, C.: Linear-time non-
malleable codes in the bit-wise independent tampering model. IACR Cryptology
ePrint Archive 2016/397

26. Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of algebraic ma-
nipulation with applications to robust secret sharing and fuzzy extractors. In:
Advances in Cryptology–EUROCRYPT 2008, pp. 471–488. Springer (2008)

27. Dachman-Soled, D., Kulkarni, M., Shahverdi, A.: Tight upper and lower bounds for
leakage-resilient, locally decodable and updatable non-malleable codes. In: Public-
Key Cryptography - PKC 2017 - 20th IACR International Conference on Practice
and Theory in Public-Key Cryptography, Amsterdam, The Netherlands, March
28-31, 2017, Proceedings, Part I, pp. 310–332 (2017)

28. Dachman-Soled, D., Liu, F., Shi, E., Zhou, H.: Locally decodable and updatable
non-malleable codes and their applications. In: Theory of Cryptography - 12th
Theory of Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25,
2015, Proceedings, Part I, pp. 427–450 (2015)

29. Dav̀ı, F., Dziembowski, S., Venturi, D.: Leakage-resilient storage. In: J.A. Garay,
R. De Prisco (eds.) Security and Cryptography for Networks, Lecture Notes in
Computer Science, vol. 6280, pp. 121–137. Springer Berlin Heidelberg (2010)

30. Druk, E., Ishai, Y.: Linear-time encodable codes meeting the gilbert-varshamov
bound and their cryptographic applications. In: Innovations in Theoretical Com-
puter Science, ITCS’14, Princeton, NJ, USA, January 12-14, 2014, pp. 169–182
(2014)

Linear-Time NM Codes respect to Bit-Wise Independent Tampering 25

31. Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source
extractors. In: R. Canetti, J.A. Garay (eds.) Advances in Cryptology – CRYPTO
2013, Lecture Notes in Computer Science, vol. 8043, pp. 239–257. Springer Berlin
Heidelberg (2013)

32. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Innovations in
Computer Science - ICS 2010, Tsinghua University, Beijing, China, January 5-7,
2010. Proceedings, pp. 434–452 (2010)

33. Faonio, A., Nielsen, J.B.: Non-malleable codes with split-state refresh. In: Public-
Key Cryptography - PKC 2017 - 20th IACR International Conference on Practice
and Theory in Public-Key Cryptography, Amsterdam, The Netherlands, March
28-31, 2017, Proceedings, Part I, pp. 279–309 (2017)

34. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable
codes. In: Y. Lindell (ed.) Theory of Cryptography, Lecture Notes in Computer
Science, vol. 8349, pp. 465–488. Springer Berlin Heidelberg (2014)

35. Faust, S., Mukherjee, P., Venturi, D., Wichs, D.: Efficient non-malleable codes and
key-derivation for poly-size tampering circuits. In: P. Nguyen, E. Oswald (eds.)
Advances in Cryptology – EUROCRYPT 2014, Lecture Notes in Computer Science,
vol. 8441, pp. 111–128. Springer Berlin Heidelberg (2014)

36. Goldreich, O.: Modern Cryptography, Probabilistic Proofs and Pseudorandomness,
Algorithms and Combinatorics, vol. 17. Springer (1998)

37. Goyal, V., Khurana, D., Sahai, A.: Breaking the three round barrier for non-
malleable commitments. In: IEEE 57th Annual Symposium on Foundations
of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New
Brunswick, New Jersey,USA, pp. 21–30 (2016)

38. Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. In:
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Comput-
ing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pp. 1128–1141 (2016)

39. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with constant
computational overhead. In: STOC, pp. 433–442 (2008)

40. Jafargholi, Z., Wichs, D.: Tamper detection and continuous non-malleable codes.
In: Theory of Cryptography - 12th Theory of Cryptography Conference, TCC 2015,
Warsaw, Poland, March 23-25, 2015, Proceedings, Part I, pp. 451–480 (2015)

41. Kiayias, A., Liu, F., Tselekounis, Y.: Practical non-malleable codes from l-more
extractable hash functions. In: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, Vienna, Austria, October 24-28, 2016,
pp. 1317–1328 (2016)

42. Li, X.: Improved non-malleable extractors, non-malleable codes and independent
source extractors. In: Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017,
pp. 1144–1156 (2017)

43. Liu, F.H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model.
In: R. Safavi-Naini, R. Canetti (eds.) Advances in Cryptology – CRYPTO 2012,
Lecture Notes in Computer Science, vol. 7417, pp. 517–532. Springer Berlin Hei-
delberg (2012)

44. Siegel, A.: On universal classes of extremely random constant-time hash functions.
SIAM J. Comput. 33(3), 505–543 (2004)

45. Tellegen, B.D.H.: A general network theorem, with applications. Philips Research
Reports 7, 259–269 (1952)

26 R. Cramer, I. Damg̊ard, N. Döttling, I. Giacomelli, C. Xing

A Appendix

A.1 Proofs for Section 3

In Section 3.1 we build linear-time and constant-rate AMD codes using the
family of linear uniform functions from [30] (Lemma2). The full proof of this
construction can be found here.

Corollary 1 (Linear-Time and Constant-Rate AMD code) For any large
enough integer k, there exists a linear-time (k′, k)-AMD code with error q−k and
k′ = Θ(k).

Proof. Given k, let G be the family from Lemma 2 with c = 1. For the sake of
simplicity we consider separately the cases b = 1 and b > 1.
First, assume that b = 1 and define

Encamd(m) = (m,k, r, gk(m), gk(r), gr(k)), where k, r ∈ Fk are chosen uni-
formly at random.

Decamd(v1,v2,v3,v4,v5,v6) =

{
v1 if gv2

(v1) = v4, gv2
(v3) = v5, gv3

(v2) = v6

⊥ otherwise

We will show that (Encamd,Decamd) is a (6k, k)-AMD code with error 1
qk

. That

is, given a non-zero error vector e = (e1, e2, e3, e4, e5, e6) ∈ F6k, we will prove
that Pr[Decamd(Encamd(m) + e) 6=⊥] ≤ 1

qk
. For this purpose notice that

Decamd(Encamd(m)+e) = Dec(m+e1,k+e2, r+e3, gk(m)+e4, gk(r)+e5, gr(k)+e6)

and that Pr[Decamd(Encamd(m) + e) 6=⊥] is equal to the probability that the
following equations are all satisfied:

gk+e2
(m + e1) = gk(m) + e4

gk+e2
(r + e3) = gk(r) + e5

gr+e3
(k + e2) = gr(k) + e6

The above system is equivalent to
gk(e1) = e4 − ge2(m + e1)

gk(e3) = e5 − ge2(r + e3)

gr(e2) = e6 − ge3
(k + e2)

(1)

If at least one among the vectors e1, e2 and e3 is different from zero (w.l.o.g.
assume that e1 6= 0) then

Pr[Decamd(Encamd(m) + e) 6=⊥] ≤ Pr[gk(e1) = e4 − ge2
(m + e1)] = 1/qk

where that the last inequality holds as G is a linear uniform family (property
3 in Lemma 2). On the other hand, if e1 = e2 = e3 = 0, then system (1) is

Linear-Time NM Codes respect to Bit-Wise Independent Tampering 27

satisfied if and only if also e4 = e5 = e6 = 0. But this situation is not possible
since e 6= 0. Thus, the proof in this first case is concluded.
If b > 1, the previous construction is still possible, but with worse rate. To see
this, split both the vectors r and k in b pieces of length k and, in the encoding
algorithm Encamd, substitute the vector gk(r) with the vectors gk(r1), . . . , gk(rb)
and the vector gr(k) with the vectors gr(k1), . . . , gr(kb), respectively. It is easy
to verify that in this case we obtain an (k′, k)-AMD code with k′ = (3+2b)k and
error 1

qk
. By inspection, the computational complexity of the scheme is O(k). ut

Notice that for Construction 1 we need a “strong” AMD code (that is for
any m and any non-zero e, it holds that Pr[Dec(Enc(m) + e) 6=⊥] ≤ ε). In the
literature, there exists also another (weaker) notion of AMD codes: for any m
and any e, it holds that Pr[Dec(Enc(m) + e) /∈ {⊥,m}] ≤ ε. If the latter is the
intended definition, then our construction from Corollary 1 could be simplified
as follows.

Encamd(m) = (m,k, gk(m)), where k← Fk

Decamd(v1,v2,v3) =

{
v1 if gv2(v1) = v3

⊥ otherwise

A.2 Proofs for Section 4

We provide here a t-wise independence generator with seed-length and inde-
pendence sub-linear in the output length. The construction combines results of
Christiani and Pagh [21] and Siegel [44]. Note that the parameter regime we are
interested in here differs from that in [21].

Definition 8 (Unique Neighbour Expander Graph). Let Γ = (L,R,E) be
a finite undirected bipartite graph, with left-vertex set L, right-vertex set R and
edge set E. Let n,m, d, e be positive integers. Then Γ is an (n,m, d, e)-unique
neighbour expander if the following holds. First, |L| = n and |R| = m and each
vertex v ∈ L has degree d. Second, for each set S ⊆ L of size at most e, there
exists a vertex v ∈ R that has a unique neighbour in S.

Siegel [44] showed how such an expander can be used to extend the output
length of an independence generator at a constant factor loss in the indepen-
dence. Precisely:

Lemma 10 (Lemma 2.6, Corollary 2.11 in [44]). Let Γ = (L,R,E) be
a (n,m, d, e)-unique neighbour expander. Then there exists a F-linear function
ExpandΓ : Fm → Fn such that the following holds: if X is a (de)-wise uni-
form random variable over Fm, then ExpandΓ (X) is an e-wise uniform random
variable on Fn. Moreover, ExpandΓ has computational complexity O(n).

Proof. Given Γ as in the lemma, the function ExpandΓ : Fm → Fn, (x1, . . . ,xm) 7→
(y1, . . . ,yn) is defined by

yi =
∑
j∈Γ (i)

xi

28 R. Cramer, I. Damg̊ard, N. Döttling, I. Giacomelli, C. Xing

where Γ (i) ⊆ R indicates the neighbours of i ∈ L.
Assume that A = {a1, . . . , ae} is a subset of [n] of size e. Since Γ be a

(n,m, d, e)-unique neighbour expander, there is v1 ∈ R that has a unique neigh-
bour in A, wlog we can assume that this neighbour is a1. Now we consider
A \ {a1} and applying the definition again we obtain v1 ∈ R that has a unique
neighbour a2 in A\{a1}. Continuing in this way we can prove that for any i ∈ [e]
there is vi ∈ R such that vi ∈ Γ (ai) and vi /∈ Γ (aj) for all j ≥ i+ 1.

Now let X = (X1, . . . , Xm) be a (de)-wise uniform random variable over
Fm and Y = (Y1, . . . , Yn) = ExpandΓ (X). Consider YA, because of the previous
observation, we have that Yai is independent of (Yai+1

, . . . , Yae) for any i =
1, . . . , e − 1. Indeed, Yai = Xvi + Zi for some uniform random variable Zi and
(Yai+1 , . . . , Yae) is trivially independent ofXvi because vi /∈ Γ (aj) for all j ≥ i+1.
It follows by induction that Ya1 , . . . , Yae are independent. Therefore, YA has the
uniform distribution on Fe. ut

In order to be able to use this lemma iteratively, as we will do shortly, an
explicit finite family {Γi}i is required such that ni = mi+1 and ei = dei+1 for
all indices i. Christiani and Pagh [21] observed that a construction of Capalbo
et al. (Theorem 7.1 in [10]) in fact has this property.

Lemma 11 (Lemma 3 in [21]). For each positive integer c, there are positive
integers d and m′ and a real number α such that the following holds. For any
integer m ≥ m′ there exists a (cm,m, d, e)-unique neighbour expander Γ with
e ≥ αm/d. The construction of Γ is explicit, i.e. Γ can be constructed in time
poly(m).

These results give immediate rise to the t-wise independence generator, which
will be used in Lemma 6 to construct the secret-sharing scheme we require to
implement our Construction 2. Note that the generator we construct here is
F-linear.

Lemma 12. For each real number ε ∈ (0, 1), there exists a real number δ ∈ (0, ε)
such that the following holds. For any sufficiently large integer k there exists an
explicit t-wise independence generator Gen : Fk′ → Fk, where t = Ω(k1−ε)
and k′ = Θ(k1−δ). Moreover, Gen is a F-linear function and has computational
complexity O(k).

Proof. For concreteness, set c = 2 in Lemma 11 and let d, m′ and α be as given
in that lemma. Let ` and t be positive integers with ` ≥ 1 and t ≥ max{1/α,m′}
and define mi := 2id`t for any integer i ≥ 0; notice that mi = 2mi+1. Since
mi ≥ t ≥ m′ for any i ≥ 0, Lemma 11 implies that there exists an explicit
family {Γi}i≥0 where each Γi is a (2mi,mi, d, ei)-unique neighbour expander with
ei ≥ αmi/d = α2id`−1t. For any 0 ≤ i ≤ `−1 define e′i := d`−1−ibαtc and notice
that e′i ≥ 1 and e′i = de′i+1; moreover, since e′i ≤ αd`−1−it ≤ α2id`−1t ≤ ei,
the graph Γi is also a (2mi,mi, d, e

′
i)-unique neighbour expander. Therefore the

family {Γi}i=0,...,`−1 has the required parameters.

Now start with a de′0-wise uniform random variable on Fm0 = Fd`t (e.g. taking
the uniform random variable on Fm0) and apply the map ExpandΓi from Lemma

Linear-Time NM Codes respect to Bit-Wise Independent Tampering 29

10 for all 0 ≤ i ≤ `−1. In this way we obtain a bαtc-wise independence generator

Gen : Fd`t → F(2d)`t with computational complexity
∑`−1
i=0 O(2mi) = O((2d)`t).

Finally, given ε and k as in the statement of the lemma, we choose t = dk1−εe
and ` = dε log2d ke. Notice that for k large enough t ≥ max{1/α,m′}, ` ≥ 1 and
moreover, the output length of the generator satisfies (2d)`t ≥ (2d)ε log2d kk1−ε =
k and (2d)` < (2d)(2d)ε log2d k(k1−ε+1) = 2d(k+kε). Therefore, after truncating
if necessary the original output of Gen we obtain a t-wise independence generator
of output of length k and computational complexity O(k). Write z = log2d d.
The seed length k′ satisfies k′ = d`t = (2d)z`t < (2d)z(1+ε log2d k)(1 + k1−ε) =
(2d)zkzε(1 + k1−ε), which is of the order k1−(1−z)ε. Moreover, k′ = d`t =
(2d)z`t ≥ (2d)zε log2d kk1−ε = kzεk1−ε. Thus, choosing δ = (1 − z)ε concludes
the proof. ut

Lemma 9 (Linear-Time Universal Family) For any real number β ∈ (0, 1)
and any positive integer n, there exists a µ-universal family H = {hk : Fn →
Fm}k∈Fa with a = o(n), m = o(n) and µ = Θ(q−n

(1−β)
). Moreover, each function

hk has computational complexity O(n).

Proof. Given β ∈ (0, 1) and n ≥ 1, define k = bn1−β/2c and k′ = bn1−βc.
It is immediate to verify that in Lemma 2 the range dimension ck of the linear
uniform family G may be replaced by k′ ≤ k and the result still holds. Therefore,
we can assume that there exist a positive integer b and µ-almost universal family
G = {gk : Fk → Fk′}k∈Fbk with µ = 1/qk

′
. Moreover, gk has computational

complexity O(k). Now define n′ = dn/ke and hk : Fn → Fk′n′ as follows:

hk(x1, . . . ,xn) = (gk(y1), . . . , gk(yn′))

where18 yi = (x(i−1)k+1,x(i−1)k+2, . . . ,xik) for any i = 1, 2, . . . , n′.

Define m = k′n′ and a = bk. Then 0 < m < n1−β(n/k + 1), which has order
n1−β/2, and 0 < a ≤ bn1−β/2. The computational complexity of hk is n′O(k) =
O(n). Finally, for any distinct x,x′ ∈ Fn there is i ∈ [n′] such that yi 6= y′i.
Then, if k is chosen uniformly at random from Fa

Pr[hk(x) = hk(x′)] ≤ Pr[gk(yi) = gk(y′i)] ≤ 1/qk
′

ut

A.3 Tellegen’s Principle

We will briefly discuss a technique know as Tellegen’s principle. Assume that we
are given a linear algorithm T computing the function f(x) = x ·A, where A is a
m×n matrix over some ring R and x is a vector from Rn. Then we can transform
T into an algorithm T′ computing the function f ′(y) = y ·A>, where y ∈ Rm
and A> is the transpose of the matrix A, which has the same computational

18 Notice that n′k ≥ n. If n′k > n, the vector yn′ is obtained from the last components
of x padded with zeros.

30 R. Cramer, I. Damg̊ard, N. Döttling, I. Giacomelli, C. Xing

complexity as T. We will discuss this transformation for arithmetic circuits. We
can decompose a circuit into a sequence of elementary instructions φi, where
each φi is a linear transformation on all the wires. We can thus write the matrix
A as

A = φn · φn−1 · · ·φ2 · φ1.

Transposing A immediately yields

A> = φ>1 · φ>2 · · ·φ>n−1 · φ>n .

Thus, we only have to consider the effect of transposition to the elementary
instructions φi.

– Instruction φi multiplies a wire x with a constant α ∈ R and writes the
output in the same register. In this case φ>i = φi, as the transformation
matrix φi is diagonal and thus symmetric.

– Instruction φi adds wire y to wire x. In this case φ>i adds wire x to wire y.

These two instructions are sufficient to implement any linear transformation. For
instance, to clear an (auxiliary) register, simply multiply it by 0. We summarize
this in the following Lemma.

Lemma 13 (Tellegen’s Principle [45]). Let T(x) be a linear arithmetic cir-
cuit or linear RAM algorithm computing the function x ·A. Then there exists
a linear arithmetic circuit T′(y) that computes the function y ·A> and has the
same computational complexity as T.

