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Abstract. Design secure Authenticated Key Exchange (AKE) protocol
without NAXOS approach is remaining as an open problem. NAXOS ap-
proach [4] is used to hide the secret ephemeral key from an adversary even
if the adversary in somehow may obtain the ephemeral secret key. Using
NAXOS approach will cause two main drawbacks, (i) leaking of the static
secret key which will be used in computing the exponent of the ephemeral
public key. (ii) maximize of using random oracle when applying to the
exponent of the ephemeral public key and session key derivation. In this
paper, we present another AKE-secure without NAXOS approach based
on decision linear assumption in the random oracle model. We fasten
our security using games sequences tool which gives tight security for
our protocol.

Keywords: AKE, eCK model, NAXOS’ approach, Decision Linear as-
sumption

1 Introduction

An Authenticated Key Exchange protocol (AKE) allows two parties to end up
with a shared secret key in secure and authenticated manner. The authentication
problem deals with restraining adversary that actively controls the communica-
tion links used by legitimated parties. They may modify and delete messages in
transit, and even inject false one or may control the delays of messages.

In 1993, Bellare and Rogaway [1] provided the first formal treatment of entity
authentication and authenticated key distribution appropriate to the distributed
environment. In 1998, Bellare,Canetti, Mihir and Krawczyk [2] provided a model
for studying session-oriented security protocols. They also introduce the ”authen-
ticator” techniques that allow for greatly simplifying the analysis of protocols.
In addition, they proposed a definition of security of KE protocols rooted in the
simulatability approach used to define the security of multiparty computation.
In 2002 Canetti and Krawczyk [3] presented their security model which had
extended by LaMacchia, Lauter, and Mityagin [4] model and proposed NAXOS



protocol which is secure under their model. That model capture attacks resulting
from leakage of ephemeral and long-term secret keys, defined by an experiment
in which the adversary is given many corruption power for various key exchange
sessions and most solve a challenge on a test session. This model doesn’t give an
adversary capability to trivially break an AKE protocol.

To acquire eCK security, NAXOS needs that the ephemeral public key X be com-
puted from an exponent result from hashing an ephemeral private key « and the
static private key a, more precisely X = ¢gH(*:) instead of X = ¢®. In this paper
generating ephemeral public key as X = ¢/ (*%) is called NAXOS’s approach. In
NAXOS’s approach no one is capable of querying the discrete logarithm of an
ephemeral public key X without the pair ( x,a ); thus, the discrete logarithm
of X is hidden via an additional random oracle. Using NAXOS’ approach many
protocols [5-8] were claimed secure in the eCK model under the random oracle
assumption. In the standard model, eCK-secure protocols were claimed secure
in the eCK model as Okamoto [9] ; they use pseudo-random functions instead
of hash functions.

Motivating Problem. (1) Design AKE-secure protocol without NAXOS trick
to achieve two goals: (i) To reduce the risk of leaking the static private key,
since the derivation of the ephemeral public key is independent of the static
private key. This is in contrast to protocols that use the NAXOS’ approach. (ii)
Minimize the use of the random oracle, by applying it only to the session key
derivation. Kim, Minkyu, Atsushi Fujioka, and Berkant Ustaolu [10] proposed
two strongly secure authenticated key exchange protocols without NAXOSap-
proach, one of their protocol supposed to be secure under the GDH assumption
and the other under the CDH assumption in random oracle model. Mohamed et
al. [19] designed a protocol without NAXOS approach but secure in RO model,
they rely the security of their protocol upon security reduction and we use in
this paper the game sequences tools to fasten the security and give tightly secure
security proof. (2) Design AKE-secure protocol secure under Decision Linear As-
sumption. Boneh, Boyen, and Shacham [11] introduced a decisional assumption,
called Linear, intended to take the place of DDH in groups - in particular, bi-
linear groups [12] - where DDH is easy. For this setting, the Linear problem has
desirable properties, as Boneh, Boyen and Shacham show: it is hard if DDH is
hard, but, at least in generic groups [13], remains hard even if DDH is easy.

Contributions. We present a concrete and practical AKE protocol that is eCK
secure under Decisional linear assumption in the random oracle model. Our pro-
tocol does not rely on any NAXOS trick that yields a more efficient solution
when it is implemented with secure device. We give tight proofs reducing eCK
security of our protocol to break the used cryptographic primitives under ran-
dom oracle.

In our protocol, the ephemeral public key is containing each peers generator,
which results in two different discrete logarithm problem with two different gen-
erators, which increase hardness for DL’s solver.



In the derivation of the session key, each party will compete shared secret from
ephemeral keys and static keys. We fasten the security of this protocol using
games sequences tool which gives tight security.

Organization. Section 2 reviews security definitions and state the hard prob-
lem. Section 3 gives brief for the eCK model. Section 4 proposes AKE-secure
protocol with its security results. Section 5 compares our protocol with other re-
lated AKE protocols and shows its efficiency. And finally, we draw the conclusion
in section 6.

2 Preliminaries

In this section, we review security definitions we will use to construct our pro-
tocol.

2.1 The Decision Linear Diffie-Hellman Assumption

Let G be a cyclic group of prime order p and along with arbitrary generators
u,v and h where

g,u,0,h € G:< g>=Gu=g*v=g"g"=haB N (1)

consider the following problem:

Decision Linear Problem in G [11] Given u,v,h,u% v* h® € G as input,
output yes if a + b = ¢ and no otherwise.

One can easily show that an algorithm for solving Decision Linear in G gives
an algorithm for solving DDH in G. The converse is believed to be false. That
is, it is believed that Decision Linear is a hard problem even in bilinear groups
where DDH is easy. More precisely, we define the advantage of an algorithm A
in deciding the Decision Linear problem in G as

AdvLinear 4 def |Pr [A(u, v, h,u, v, hT) = yes : u,v, h +sG;a,b s Zp]

—Pr [.A(u,v, hyu®, v, y) = yes : u, v,y +sG;a,b <—$Zp” (2)

The probability is over the uniform random choice of the parameters to 4, and
over the coin tosses of A. We say that an algorithm .A(, €)-decides Decision
Linear in G if A runs in time at most ¢, and AdvLinear 4 is at least e.

Definition 2.1. We say that the (t,e)-Decision Linear Assumption (DLIN)
holds in G if no t-time algorithm has advantage at least € in solving the De-
cision Linear problem in G.



2.2 Linear Diffie-Hellman

Let dl,,dl, : G — Z, be the discrete logarithm (DL) functions which takes
an input X,Y € G and returns z,y — Z, such that X = v* and ¥ = u¥.
Define the Linear Diffie-Hellman functions Idh : G* — G as ldh(A,B) =
Ade(X) Bdlu(Y) 1dp(X,Y) = X#(Aydu(B) and Decisional Linear predicate
DLINy 5 : G* — {0,1} as a function which takes an input (4, B,Z) € G
and returns 1 if

7 — Adl,U(X)Bdlu(Y) _ hdl,U(X)-‘rdlu(Y) (3)

or in input (X,Y,Z) € G3 and returns 1 if
Z — Xdlv(A)Ydlu(B) — hdlv(X)erlu(Y) (4)

3 Security Model

In this section, eCK model is outlined [18]. An n different parties P = Py, --- , P,
running the KE protocol IT in eCK model. Each party possesses long-term static
(private/public) keys including the corresponding certificate issued by the cer-
tifying authority. The protocol IT is executed between two parties A and B
whose static public key are A and B respectively. A and B will interchange their
ephemeral public keys X and Y to obtain the same session key.

Sessions A party is activated by an outside call or an incoming message to
execute the protocol II. Each program of executing I7 is modeled as an inter-
active probabilistic polynomial-time machine. We call a session an invocation
of an instance of II within a party. We assume that A is the session initiator
and B is the session responder. Then A is activated by the outside call (A, B)
or the incoming message (A, B,Y). When activated by (A, B), A prepares an
ephemeral public key X and stores a separate session state which includes all
session-specific ephemeral information. The session identifier (denoted by sid)
in A is initialized with (A, B, X, —, 7). After A is activated by (A, B,Y) (receiv-
ing an appropriate message from responder), the session identifier is updated
to (A, B, X,Y,T). Similarly, the responder B is activated by the incoming mes-
sage (B, A, X). When activated, B also prepares an ephemeral public key Y
and stores a separate session state, and the corresponding session identifier is
(B,AY, X, R). A (B,AY,X,R) (if it exists) is said to be matching to the ses-
sion (A,B,X,Y,Z) or (A,B,X,—,Z). For a session (A, B, %, *,role), A is called
the owner of the session while B is called the peer of the session. We say sid is
complete if there is no symbol ”” in sid.

Adversaries The adversary M is also modeled as a probabilistic polynomial-
time machine. M controls the whole communications between parties by sending
arbitrary messages to the intended party on behalf of another party and receiving
the outgoing message from the communicating parties. In order to capture the
possible attacks, M is allowed to make the following queries as well as H queries
of (hash) random oracles.



EstablishParty(U): M Registers an arbitrary party U not in P, whose static
public key is on Ms own choice. We call this kind of newly registered parties
dishonest (M totally controls the dishonest parties) while the parties in P are
honest. We require that when M makes such query, the certifying authority
should verify that the submitted static public key is in the appropriate group
(to avoid small subgroup attack) and the proof that M knows the corresponding
static private key.

Send(A,m): M sends the message m to party A. Upon invocation A by m, the
adversary obtains the outgoing message of A.

EphemeralKeyReveal(sid): M obtains the ephemeral private key stored in the
session state of session sid.

StaticKeyReveal(P;): M learns the long-term static private key of an honest
party P;. In this case, P; no longer seems honest.

SessionKeyReveal(sid): M obtains the session key for the session sid if the
session has accepted, otherwise M obtains nothing.

Experiment M is given the set P of honest parties and makes whichever
queries he wants. The final aim of the adversary is to distinguish a session key
from a random string of the same length. Thus M selects a complete and fresh
session sid, and makes a special query Test(sid). This query can be queried only
once, and the session sid is called test session. On this query, a coin b is flipped, if
b =1 M is given the real session key held by sid, otherwise M is given a random
key drawn from the key space at random. M wins the experiment if he guesses
the correct value of b. Of course, M can continue to make the above queries
after the Test query; however the test session should remain fresh throughout
the whole experiment.

Definition 3.1 (Fresh session). Let sid be a complete session, owned by hon-
est A with honest peer B. If the matching session of sid exists, we let sid denote
the session identifier of its matching session. sid is said to be fresh if none of
the following events occurs:

1. M makes a SessionKeyReveal(sid) query or a SessionKeyReveal(sid)
query if sid exists.
2. If sid exists, M makes either of the following queries:
(a) Both StaticKeyReveal(A) and EphemeralKeyReveal(sid), or
(b) Both StaticKeyReveal(B) and EphemeralKeyReveal(sid).
3. If sid does not exist, M makes either of the following queries:
(a) Both StaticKeyReveal(A) and EphemeralKeyReveal(sid), or
(b) StaticKeyReveal(BB).

The eCK security notion can be described now.



Definition 3.2 (eCK security). The advantage of the adversary M in the
above experiment with respect to the protocol II is defined as (b is the guessed

value of coin by M ):
AdvEE(M) = [2Pr [t =b] — 1] (5)
The protocol II is said to be secure if the following conditions hold:

1. If two honest parties complete matching sessions, then they will both compute
the same session key, except with a negligible probability.
2. The advantage of the adversary M is negligible.

4 Protocol

Parameters. Let k& be the security parameter and G be a cyclic group with
generator g and order a k-bit prime p. Let users public key is a triple of generators
u,v,h € G. Parties A's,B's static private key is a1, as,b1,b2 € Z respectvly.
Where A’s public key is 4] = u®, Ay = u® B's public key is B; = v%, By = vb2.
Let H : {0,1}* — {0,1}* to be a cryptographic hash function modeled as a
random oracle.

4.1 Protocol description

A B
ai, a2 <—$Z;EG bl,bz (—$Z;
Al_ual,AQZ’UGZEG Blz’l)bl,BQZszeG
T1, T2 5 Lp; X1 =071 Xo = u™? Y1,Y2 <5 Zp; Y1 = u¥t, Yo = v¥2
sid = (A7B7X17X27_7_7I) sid = (B7A7)/17Y27X17X27R)
(B, A, X1, X2)
(A, B,Y1,Y2)
P
Y1, Y2 E?G X1, X2 G?G
/\(AanXlzX%*v*) /\(BvAaYhYQ:*?*)
7 = (Blyz)az-kxl (Bng)aH'm 7 = (A1X2)b2+y1 (A2X1)b1+y2
sk=H(Z,X1,X2,Y1,Y2, A, B) sk=H(Z,X1,X2,Y1,Y2,A,B)

Fig. 1. Our Protocol

As follow description, A will be the session initiator and B the session re-
sponder.



1. A chooses randomly an ephemeral private key z1, 72 €r Z,, computing the
ephemeral public key X7 = v™; X5 = v and sends (B,4,X1,X>) to B.

2. Upon receiving (B,4,X1,X5), B verifies that X;, Xs € G. if so, B chooses
randomly an ephemeral private key y1,y2 €r Z;,, computing the ephemeral
public key Y7 = u¥,Ys = v¥2 and sends (A,B,Y1,Y2) to A. Then B com-
puting the shared secret Z = (A;X2)?21¥1(A3X1)"+¥2, the session SK =
H(Z,X1,X2,Y1,Y2, A, B) and competes the session.

3. Upon receiving (A,58,Y1,Y3), A checks if he owns a session with sid (A,8,X1,X2,X).
if so, A verifies that Y7,Ys € G. if so, A computing the shared secret
Z = (B1Y3)% %1 (ByYq)"1 %2 the session SK = H(Z, X1, X2,Y1,Ys, A, B)
and competes the session.

Both parties compute the shared secret

B:7 = (Ang)b2+y1 (A2X1)b1+y2 = ylerte)(batur), (az+w1)(br+y2) (6)
A7 = (Bly2)a2+961 (B2Y1)a1+962 = yb2Fy)(artz2), (bi+y2)(az+z1) (7)

4.2 Protocol Security

Theorem 4.1. If the DLIN assumption holds in G and H is a random oracle,
then the Protocol II is eCK-secure.

Let M be a polynomial bounded adversary against protocol II, sid* is the
target session chosen by adversary M, A is the owner of the session sid* and B is
the peer. Let sid* be (A, B, X7, X5, Y{*, Y5, T) where (41, As), (B1, Bs) is public
keys for (A, B) respectively,(a%,ab, b, b < Z* A} < u®, A2 « u%, B
v, By + v%2). Assume also that Advy ; (k) is adversary advantage which we
want to evaluate in this proof. We will have this two events:

— casel: Existence of a matching session sid* for the target session sid*.
— case2: No existence of a matching session for the target session sid*.

casel. To analyze this event, Adversary Mwill play next games, Game;_g, Game; _1, Game;_»
and Game;_3 as follows:

— Gamej_g: This is eCK original game where adversary M try to distinguish
the real session key from random string. For game state, see Appendix A.1.

Claim. let Gg be the event that b = b’ in Game;_g. we claim that
AV () + 1
2

Proof. it’s easy to derive the proof from definition 3.2

Pr[Go] = (8)

— Gamej_q: This is reduced game from Game;_g, In this game the adversary
will choose only two parties A, B and only two sessions, the target session
and its matching session(sid*, sid*) with identifiers (A, B, X7, X3, Y*, V5", 7)
and (B, A, Y;*, 5", X7, X5, R) respectively. For game state, see Appendix A.2.




Claim. let Gy be the event that Asuccess in guessing sid*, sid* in Game;_;.

we claim that 5

Pr[G0] — Pr[Gl] < STSER(AY (9)

Proof. In this game, it obvious that this game is similar to game Game;_;
except it required adversary to guess target session and its matching session
correctly to win this game. To select correct parties Anad B, adversary should
choose between n(k) parties the couple(A, B), Let Pr[AN B)] denotes that
event, thus:

1 1 2 2
Pr[ANB] = = = <
® = = almEm —1) = w0

In another hand, the adversary should success in guessing target session and
its matching session. Let Pr[sida g U sidg 4] denote the probability that
adversary successfully guess the target session and its matching session thus:

PI‘[Sid_A’B @] Sidgy_A] =Pr [sid_A,B] + Pr [Sid&A] - Pl"[sid_Aﬁ N SidB’A]

1 1 1
Pr(sidapNsidg sl = —= = =
B S B0 D
thus
1 1 1 k)—2 1
Pr(sidap U sidg 4] = + - = ) <

s(k)  s(k)  s(B)(s(k) = 1) s(s(k) = 1) = s(k)

From these two probabilities, we can derive the whole probability that adver-
sary success in guessing parties Aand Bwith target session and its matching
session with the form:

Pr(Go] — Pr[Gi] < Pr[ANB]|Pr(sid4 U sidg 4]
2
= n(k)2s(k)

Game;_,: We transform Game;_; into Game;_5, computing values Z* =
(BiYy)eatoi (B Y ) ites = (01 +72)(batw) gy (a2 +21) (01 +42) to random value
7Z* < G where DLIN(B;Y*,B5Yy*) = 1. For game state, see Appendix A.3.

Claim. let G, be the event that Dsuccess in solving DLIN problem in Game;_s.
we claim that .
Pr[G;] — Pr[Gy] < Advy™ (k) (10)

Proof. We transform game Game(;_1) into Game(;_3) computing values
Z* = (ByYy)®te (ByYF)aites = ylortea)batyi)y(as+21)(01+42) to random
value Z* <—s G where DLIN(B{Y}*,B5Y}*) = 1. If adversary success in dis-
tinguishing between Game(;_1) and Game(;_3) with non-negligible proba-
bility, then he can solve the DLIN problem, thus we construct adversary
Dthat solves DLIN problem. In this game, Dwill choose same parameters in



Game(;_1) except values (Zx*) which will be chosen randomly. There for we
obtain:

Pr[G;] — Pr[Gy] < Advii™ (k)

— Gamej_3: We transform Game;_, into Game;_3, computing h by choosing it
at random, rather than as a hash function. For game state, see Appendix A.4.

Claim. let Gs be the event that H success in distinguishing value H from
random string in Game;_,. we claim that

Pr[Ga] — Pr[Gs] < ees(k) (11)

which €. is ES-advantage of some efficient algorithm( which is negligible
assuming H is entropy smoothing).

Proof. We will prove here using the same idea in the previous game. In
this game we transformed from Game;_o by changing the hash value with
a random value. The difference between Pr[G,] and Pr[Gs] can be parlayed
into a corresponding ES-advantage.
Moreover, as h act as a one-time pad in game Game;_3, it’s evident that

1

Pr(Gs] = (12)

Combining (8),(9),(10),(11) and (12), we obtain

; 1
Adviai® (k) > 3 Advis (k) — — 2e.4(k) (13)

n(k)?s(k)

case2. To analyze this event, Adversary Mwill play next games, Gamey_g, Games_1, Games_»
and Game,_3 as follows:

— Gamey_g: This is an eCK original game where adversary M try to distin-
guish the real session key from a random string. For the game state, see
Appendix A.5.

Claim. let Gy be the event that b =o' in Game;_q. we claim that
Adv (k) + 1
2

Proof. That proof can be derived from Game;_g.

Pr[Go] = (14>

— Game;_1: This is reduced game from Games_g, In this game the adversary
will choose only two parties A, B and only target session (sid*, sid*) with
identifier (A, B, X7, X5, Y, Y5", T). For game state, see Appendix A.6.

Claim. let Gy be the event that Asuccess in guessing sid* in Gamey_;. we
claim that

Pr[Go] — Pr[G;] < (15)



Proof. In this game, it is obvious that this game is similar to game Games_1
except it’s required the adversary to guess target session correctly to win this
game. To select correct parties Anad B, adversary should choose between
n(k) parties the couple(A, B), Let Pr[.A N B)] denotes that event, thus:

1 1 2 )
PrlANB| = = = <
ANl G i k) (k) = 1) T (k)

In another hand, the adversary should success in guessing target session and
its matching session. Let Pr[sid 4 5] denote the probability that adversary
successfully guess the target session from s(k) sessions, thus:

1
s(k)
From these two probabilities, we can derive the whole probability that adver-

sary success in guessing parties Aand Bwith target session and its matching
session with the form:

Pr{GO] — Pr[G1] < Pr[ANB|Pr[sida U sidp, 4]
B 2
-~ n(k)?s(k)
Gamey_5: We transform Games_; into Games_», computing values X7, X5, Y*, Y5
randomly as X7, X5, Y)", Y, < G which lead to computing value Z* from

random values which make it random value. For the game state, see Ap-
pendix A.7.

Pr[sidAyg] =

Claim. let G, be the event that Dsuccess in solving DLIN problem in Games — 2.
we claim that )
Q%)LIN'AdVdDhn(k)
2

Proof. We transform game Game(s_1) into Game(z_3) computing values
X7, X5, Y7, Yy randomly as X7, X3, Yy, Y5 < G* which lead to compute
value Z* from random values which make it random value. If adversary suc-
cess in distinguishing between Game(2_1) and Game(2_2) with non-negligible
probability, then he can solve the DLIN problem, thus we construct adver-
sary Dthat solve DLIN problem. In this game, Dwill choose same parameters
in Game(2-_1) except values X7, X3, Y7", Y5" which will be chosen randomly.
Then he will query oracle machine for tuple (X7 ,;, X5, Y7";, Y5, A, B), if a
tuple exists oracle will return corresponding Z’ to the adversary, else oracle
will return random value to an adversary. So we can make gqpr;ny queries or-
acle without repeating the same query to oracle. In case repeating the same
query we will get halt with probability of:

Pr[G;] — Pr[G2] <

(16)

|

4dDLIN

PI' L :CQDLIN . il S
[ ] 2 (QDLIN - 2)!2!

_ gprin(¢gprin — 1) < 9bLIN
2 - 2




There for, we obtain:

2 Advii™ (k)
2
— Game;,_3: We transform Gamey_o into Games_3, based on transform hash

function H(.) with random oracle function O. For game state, see Ap-
pendix A.8.

Claim. let Gs be the event that H success in distinguishing value H(.) from
random oracle O(.) in Gamey_3. we claim that

PF[GQ] — PI‘[G3} § %.665(16) (17)

which e.¢ is ES-advantage of some efficient algorithm( which is negligible
assuming H is entropy smoothing).

Proof. We will prove here using the same idea in the previous game. In this
game we transformed from Games_o by changing the hash value with a ran-
dom value generated by oracle. Without losing of generality, The adversary
will make qpy queries to oracle without a repeat of the same query. Same
idea in previous game we can get the probability of halt as:

qu!
Pril]=cd" = 2 ___
=G = om
ZQH(QH—1)<@
2 =2

The difference between Pr[G2] and Pr[G3] can be parlayed into a corre-
sponding ES-advantage.
Moreover, as h act as a one-time pad in game Games_3, it’s evident that

1
Pr(G3] = 5 (18)
Combining (14),(15),(16),(17) and (18), we obtain
. 1 4
Advilin (k) > AdVEEe (k) — ———— — ¢%€es(k) (19)
(k)2 | A (b = Sy ke

From the sequence of preceding claims, we can conclude that since the
Adviy™ (k) > Adv%ﬁn(k), and since Advp™ (k) is negligible in k - from DLIN
assumption - thus our protocol is secure based on decision linear assumption
in random oracle model.

5 Efficiency

In this section, we compare our protocols with other related AKE protocols in
terms of based assumption, computational efficiency and security model. In Ta-
ble 1 number of exponentiation in G (E), a number of static public keys (SPK)



Table 1. Protocols Comparison

Protocol Computation Security Model Assumption  NAXOS Approch SPK/EPK
Okamoto [9] S8E eCK Standard Yes 2/3
HMQV [15] 2.5E CK, wPFS,KCI, LEP KEA1, GDH, RO No 1/1
CMQV [16] 3E eCK GDH, RO Yes 1/1
NAXOS [15] 41E eCK GDH, RO Yes 1/1
NETS [§] 3E eCK GDH, RO Yes 1/1
SMEN [17] 6E eCK GDH, RO No 2/2
KFU [10] 3E eCK GDH, RO No 2/1
Our 3E eCK DLIN, RO No 2/2

and the number of ephemeral public key (EPK). Table 5 presents the naive group
exponentiations count; Okamoto’s protocol is secure in the standard model, but
the proof relies on an existence of TPRF family. In the security proof of HMQV
and CMQV, the reduction argument is less tight since the Forking Lemma [14]
is essential for the arguments. Our protocol in Table 1, have tighter security
reductions and do not use the Forking Lemma and just use one static public key
in computation.

It clear that our protocol has same security model with NETS, CMQV, and
KFU-P1, but it differs from them in base assumption and computation.

We showed that it is possible to construct eCK-secure AKE protocols without
using NAXOS’ approach, so our protocol is secure even when the discrete log-
arithm of the ephemeral public key is revealed and decrease the risk of leaking
the static private key which makes our protocol more practical.

Moreover, One of the advantages of our protocols is the use of single random
oracle as opposed to two for HMQV and CMQV. The random oracle is merely
needed for the session key derivation, which is typical way to attain indistin-
guishability in random oracle model.

In addition, our protocol uses decision linear assumption with a tight security
proof.

6 Conclusions

In this paper, we present AKE protocol secure in the eCK model under Decision
Linear assumption(DLIN) without using NAXOS trick with a fastened reduction,
which reduces the risk of leaking the static private key, that because of the
derivation of the ephemeral public key is independent of the static private key.
This is in contrast to protocols that use the NAXOS’ approach. And minimize
the use of the random oracle, by applying it only to the session key derivation.
Moreover, each ephemeral and static key has its particular generator which gives
tight security for the protocol. We gave tightly security proof for our protocol
based on games. In this paper still remaining as open problem how to preserve
the security of to this protocol without using random oracle.
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A Adversary Games

A.1 Game;_g

Game;_og

n

P:OPi,SID: U sidi;

=1 1=1,j=i+1
Ko «s{0,1}"
K= H(Z*, X5, X3, Y7, Yy, A B)
b+s{0,1}
sk* =K,

Y «s A(P,SID, sk*) € {0,1}

return b=

A.2 Game1_1

Gamej_1

P=|JP,SID=|J sid;r<sR
i=1 i=1,j=i+1
sida,B, sidp,a <s A(P,SID,r)
if sida,s N stds,a € SID
1
else
Ko +s{0,1}"
K, =H(Z", X{,X3,Y7,Ys, A B)
b<+s{0,1}
sk* = Ky
fi
b s A(P,SID, sk*) € {0,1}

return b =10



A.3 Game1_2

Gamej_o

P=|JP,SID= ] sidi;,r+sR
i=1 i=1,j=i+1
sida,B, sidp,a s A(P,SID,r)
if sida,g A sidg,a € SID
1
else
Z* +sG?
Ko +s {0, 1}k
Ki=H(Z" X{, X3, Y5, A, B)
b+s{0,1}
sk* = Ky
fi
v s A(P,SID, Z, sk*) € {0,1}

return b=

A.4 Game;_3

Gamej_3

P=JP,SID= ] sidi;,r<sR
i=1 i=1,j=i+1
sid B, sidp,a <s A(P,SID,r)
if sidap A sidsa € SID
1
else
7" sG>
Ko +s{0,1}"
Ky =H(Z", X;,X3,Y],Ys, A B)
b+s{0,1}
sk* = «s{0,1}*
i
v s A(P,SID,Z,6,sk*) € {0,1}

return b =10



A5 Game2_0

Gameg,o

P= OPi,SID: O sid;,;

i=1 i=1,j=i+1
Ko +s{0,1}*
Ki=H(Z", X7, X3, Yy, A B)
b+«+s{0,1}
sk* =Ky
b s A(P,SID, sk*) € {0,1}

return b = b

A.6 Game,_;

Gameg_;

P=|JP,SID= ] sidi;,r+sR
i=1 i=1,j=i+1
sida,B, sidp, A <3 .A(P7 SID, T)
if sida,p A sidg,a € SID
1
else
Ko s {0, 1}k
Ki=H(Z", X7, X3, Y5, A, B)
b<+s{0,1}
sk* =K,
fi
b s A(P,SID, sk™) € {0,1}

return b=



A.7T Game2_2

Gameg,g

P=JP,SID= ] sidi;,r<sR
i=1 i=1,j=i+1
sida,B, sidp,a <s A(P,SID,r)
if sida,s A sidp,.a € SID
1
else
) 2 = (W, W, Wy WY, P, Py, Z) € (G, {0,1},{0, 1}, G?)
for i..qprin doX7 ;, X5, Y7, Y5, +sG
0; = (Xr,in;,hYlTiaY;i:A, B)
i+ A(P,SID, Z:, .., Zi_1)
if (6 € 2"

Z; = SK
else
Zi +s{0,1}G
fi
endfor

p< AP,SID,Z1,.., Zgp, ,n) € G*
Ko +s{0,1}"
Ki=H(p, X1, X3,Y7,Ys, A B)
b+s{0,1}
sk* = Ky

fi

Y «s A(P,SID,Z, sk*) € 0,1

return b = b’



A8 Game2_3

Game2,3

P=JP,SID= ] sidi;,r<sR
i=1 i=1,j=i+1
sida,B, sidp,a <s A(P,SID,r)
if sida,s A sidp,.a € SID
1
else
) 2 = (W, W, Wy WY, P, Py, Z) € (G, {0,1},{0, 1}, G?)
for i..qprin doX7 ;, X5, Y7, Y5, +sG
0; = (Xr,in;,hYlTiaY;i:A, B)
i+ A(P,SID, Z:, .., Zi_1)
if (6 € 2"

Zi=SK
else

Zi +s{0,1}G
fi

endfor | H'"' = (Z', Wy, Wa, W)/, Wy, P;, P;, SK) € (G°,{0,1}*,{0,1}*,{0,1}%)
for i..qu doX7 ;, X3, Y7, Ys; +sG

8 = (21, X34, X5,0, Y14, Ya'i, A, B)

i+ A(P,SID,Z,SK1,..,SK|_)

if (5 € H'™")

SK; =SK
else
SK; +s{0,1}{0,1}"
fi
endfor

p<+ A(P,SID,Z, SK1,..,SK|_,) € G*
Ko s {0,1}*
Ky =H(p, X7, X3,Y{, Y5, A B)
b+s{0,1}
sk* = K

fi

v s A(P,SID,Z,sk*) € 0,1

return b=



