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Abstract

Security of a key exchange protocol is formally established through an abstract game between a chal-
lenger and an adversary. In this game the adversary can get various information which are modeled
by giving the adversary access to appropriate oracle queries. Empowered with all these information,
the adversary will try to break the protocol. This is modeled by a test query which asks the adver-
sary to distinguish between a session key of a fresh session from a random session key; properly
guessing which correctly leads the adversary to win the game. In this traditional model of security
the adversary sees nothing apart from the input/ output relationship of the algorithms. However, in
recent past an adversary could obtain several additional information beyond what he gets to learn in
these black box models of computation, thanks to the availability of powerful malwares. This data
exfiltration due to the attacks of Memory Scraper/Ram-Scraper-type malwares is an emerging threat.
In order to realistically capture these advanced classes of threats posed by such malwares we propose
a new security model for identity-based authenticated key exchange (ID-AKE) which we call the
Identity based Strong Extended Canetti Krawzyck (ID-seCK) model. Our security model captures
leakages of intermediate values by appropriate oracle queries given to the adversary. Following this,
we propose a round optimal (i.e., single round) ID-AKE protocol for two-party settings. Our design
assumes a hybrid system equipped with a bare minimal Trusted Platform Module (TPM) that can
only perform group exponentiations. One of the major advantages of our construction is that it does
not involve any pairing operations, works in prime order group and have a tight security reduction
to the Gap Diffie Hellman (GDH) problem under our new ID-seCK model. Our scheme also has the
capability to handle active adversaries while most of the previous ID-AKE protocols are secure only
against passive adversaries. The security of our protocol is proved in the Random Oracle (RO) model.

Keywords: Authenticated Key Exchange, Identity-based Authenticated Key Exchange (ID-AKE),
Intermediate values, ID-seCK model, Ram Scraper

1 Introduction

Key exchange is a fundamental problem in cryptography. Key exchange protocols allow two or more
parties to securely communicate over an adversarially controlled network by establishing shared keys
between them. Authenticated key exchange (AKE) protocols allow both the parties not only to establish
a common shared secret key between them, but also allows them to mutually authenticate each other
with the assurance that the key is known only to them.

Diffie and Hellman in [1] proposed the first Key Agreement Protocol. This was a public key based
system where every party has a pair of keys, the public key and the private key. However the basic
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Diffie Hellman protocol is susceptible to an active adversary who can tamper with the messages sent
across by the parties and can launch man-in-the-middle attacks. This marked the advent of AKE where
certificates signed by a trusted party would be used to authenticate a party. The parties involved are
mandated to obtain and verify certificates whenever the parties require to establish a shared key among
themselves. This brings in the issue of public key certificate management with regards to revocation and
updation resulting in excess overhead for certificate management. These drawbacks were addressed in
identity-based cryptography.

The concept of Identity based Cryptography was put forward by Shamir [2] in 1984. In an identity
based key agreement (IDKA) protocol, each user is registered under a Private Key Generator (PKG)
which is assumed to be a trusted authority. Each user in the system has an identity (which is nothing
but a bit string) that uniquely identifies it among other users in the system. This can be for instance his
email address, social security number or other attributes which uniquely identifies him/her. An user in
the system submits its own identity to the PKG and obtains his/her private key from the PKG. It then
communicates with other users in the system and runs a key agreement protocol, which is essentially an
interactive protocol and generates a shared secret key as outcome of the protocol. A major advantage of
identity based paradigm over public key settings is that any user can communicate with another user in
the system only using his/her identity. So this reduces the overhead of certificate management as in public
key based systems. Besides it also provides significant advantage in terms of bandwidth savings as there
is no need to transfer public key certificates signed by trusted certification authorities while executing the
protocol. Hence key agreement protocols in identity based paradigm are more preferred rather than their
corresponding public key based counterparts, which motivates further design and analysis of ID-AKE
protocols.

The existing security models of key exchange protocols can be broadly classified into two categories:
1. Black-box models, which assumes all computations and storage are in trusted servers and no part of it
is accessible to the adversary, and 2. Hybrid models, which assumes that only the top level secret infor-
mation would be stored in a trusted server and only computations related to it/them would be done in the
trusted server; rest of the intermediate values may be accessible to the adversary. Naturally this hybrid
model of computation considers more powerful classes of adversarial attack models and captures the
fact that the adversary can get intermediate values generated and stored as the computation progresses.
Typically the Long Term Key (LTK) of a party is its long term secret. So it makes sense to keep it more
protected by implementing adequate access control mechanisms typically by storing it in trusted mod-
ules; while the other session specific secret keys/values may not be given that level of access protection,
so they may not be stored in trusted modules. Canetti-Krawzyck (CK) [3] or extended Canetti-Krawczyk
(eCK) [4] (both for PKI based systems) are examples of the black-box models while the seCK model [5]
is an example of hybrid model (again for PKI based systems). However the security models under which
all the previous IDKA protocols were analyzed are not sufficient to safeguard against more sophisticated
threats which involves leakage of intermediate computation values to an adversary. The security of many
of these protocols breaks down completely when some of the intermediate values that are computed or
stored in the untrusted host machine are available to the attacker. This have turned out to be a serious
practical threat due to Ram-Scraper or Memory-Scraper-like malwares. It is a piece of data-harvesting
malware [6] that collects data from volatile memory. Rather than taking a whole memory snapshot, these
often use stealthy techniques, such as, hooking into a payment processing application and selectively
dumping data that matches certain patterns, e.g. the regular expression of a credit card format from a
specific memory region. The point-of-sales (PoS) terminals have become a juicy attack vector to these
malwares. It becomes even severe when the intermediate values are leaked in the course of an execution
of a cryptographic algorithm/ protocol enabling the attacker to successfully trespass the internal state of
an algorithm and gain valuable information making the protocol vulnerable. In the white-paper made
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available by VISA at [7], VISA brings to attention the serious threats posed by memory parsers. For
more elaborate discussion on this malware see [6]. Motivated by these threats posed by such malwares,
we re-examine the problem of identity based key agreement protocols under these stronger threat models.

2 Related Works

Following the notion of identity based cryptography put forward by Shamir, a number of IDKA protocols
were proposed in this paradigm. However most of them involved expensive pairing operations which
makes the practical implementation of those protocol(s) somewhat inefficient. In general it is always
desirable to have a protocol that involves simple group theoretic operations rather than pairing as it
is slightly inefficient to find many pairing-friendly curves. The documentation of MIRACL [8], the
cryptographic library, discusses the costs associated with various cryptographic primitives. The values
show that the cost associated with point multiplication in the group G1 of a bilinear map e : G1×G1→
GT is roughly faster than the pairing operation by a factor of 3:8.

Gunther [9] and Saeednia [10] proposed pairing-free IDKA protocols. However both of them lacked
formal proof of security. Fiore [11] then proposed a IDKA protocol without pairing which was formally
proved in the Canetti-Krawczyk [3] model. Besides it was also much more efficient compared to the
protocols of [9] and Saeednia [10] in terms of computational complexity. However the protocol in [11]
was analyzed and vulnerabilities were pointed out in [12] and in [13]. Another pairing-free IDKA pro-
tocol was proposed by Cao [14]. However Islam et al [15] identified the vulnerabilities of the protocol
to key-offset attack and known session specific secret information attack. An improvement on this was
done by [16]. The previous works on identity based protocols (except [16]) considered security against
passive adversaries. An active adversary is much strong; in particular it can tamper with the components
exchanged between them and modify them arbitrarily during transit. [16] was formally proven secure in
the CK [3] model and the authors claim their protocol is resistant to ephemeral key compromise attacks
which is captured by eCK model [4]. In the CK and eCK models, an adversary can obtain session state
information via appropriate reveal queries on session state and ephemeral keys respectively. This cap-
tures the fact that the adversary can obtain leakages on the session specific values or session state. CK
model allows the adversary to access session state information; however it does not explicitly specify
the contents of a session state and leave it to the protocol designers to explicitly state it according to the
implementation of the protocol. Cremers took advantage of the vagueness in the Session State Reveal
query of the CK model to reveal the intermediate values and showed that the NAXOS protocol which is
shown to be secure in eCK model is in fact insecure in the CK model. Fujioka et al. [17] proposed an
IDAKE in id-CK+ model which is the ID based analogue of CK+ model using a CCA secure ID based
key Encapsulation Mechanism (ID-KEM), a CPA-secure ID-KEM and a secure Key derivation Function
(KDF). The security proof is given in standard model. However, RAM-scrapers and all memory-scraper-
like malware can obtain leakages on intermediate results produced while computing session keys. Since
these kind of leakages are not covered by black box security models like the (e)CK model, a protocol
shown to be secure in eCK model can easily be shown vulnerable in the face of such leakage and they
will fail in authentication. [5] considers a hybrid security model similar to our model called the strength-
ened eCK (seCK) model. This model for key exchange was a hybrid security model which considered
leakages on intermediate results in computing session keys and hence easily encompasses the black box
models. However like the CK and the eCK models, the seCK model is also tailor made for public key
systems. A concept similar to this was introduced in [18] for public key encryption which they referred
to as the Glass Box model.

Another line of research that has emerged in the recent years is called leakage-resilient cryptography
which aims to resist side channel attacks [19], [20], [21], [22] by allowing the adversary to obtain sig-
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nificant fraction of the secret key related information either in Bounded Leakage or Continuous Leakage
models [23],[24], [25]. This motivated the development of leakage-resilient key exchange. Moriyama
and Okamoto [26] first provided a formalism of leakage resilient key exchange and proposed a two-
pass protocol in bounded leakage model. Alawatugoda et. al [27] proposed a generic construction for
leakage-resilient key exchange. It can be instantiated either in bounded leakage or continuous leakage
model. However their generic construction cannot be instantiated in continuous leakage model due to
absence of suitable cryptographic primitives. In an attempt to solve this problem they later introduced
Continuous After The Fact Leakage (CAFL) model [28] which is a weaker variant of the ASB model
[27]. Although these schemes talk of providing security guarantees even in the presence of side channel
attacks, it is to be noted that they do not consider security against exposure of values generated as a
result of intermediate computations. So even for a key exchange protocol that is leakage resilient, RAM
Scrapers and in general Memory Scraper classes of malwares pose a devastating threat. It is to be noted
that in our model, secret keys are stored in the TPM and no part of the secret key is available to the
adversary. Thus, ours is very different from the leakage models and we will not compare them with our
protocol or model.

2.1 Our Contribution

Through this paper, we aim to make contributions along the following lines:

1. New Security Model. We propose a new security model for ID-AKE which we call ID-seCK
model. Our new security model gives a platform to analyze much stronger and wider classes of
attacks where the attacker can obtain intermediate values generated as a result of computation
which were not considered in the traditional black box security models for ID-AKE protocols.
Our new model is particularly suited for hybrid implementations where only some part of the
computation is done in TPM and the rest of it is done in untrusted host. Our security model can be
viewed as an identity based analogue of the security model proposed in [5] for public key settings.

2. New Construction. We propose a new ID-AKE protocol that is secure in our new ID-seCK
security model. Our protocol is the first identity based key exchange protocol that withstands
leakages on intermediate computations and satisfies our ID-seCK security definitions. A major
advantage of our protocol is that it is pairing-free. Beside our protocol is also round-optimal in
the sense that is a single round protocol consisting of one single pass (or message flow) per party.
Our ID-AKE protocol is proven secure under the Gap-Diffie Hellman (GDH) assumption in the
Random Oracle (RO) model. Our security proof is also tight since it does not involve the use of
forking lemma. This makes the practical implementation of our protocol to be efficient since we
can work with smaller group sizes.

3. Resilience to Active Adversaries. Another attribute of our protocol is that it is also resilient to
active attacks. Resisting active attacks in a single round is significantly challenging. Most of the
previous IDKA protocols were secure against passive attackers. Our proposed protocol overcome
this limitation by incorporating appropriate verification mechanisms that would abort the protocol
in case of any change in values to be agreed upon. We ensure this by including a term which is a
signature of the ephemeral keys. This provides enhanced security for minimal extra overhead.
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Protocols Rounds Security
Reduction

Exponentiations Communication
Cost (Elliptic Curve
Group)

Communication
Cost (Multiplicative
Group)

Gunther
[9]

2 Not tight 4 2 · (8 ·GB) = 2 · (8 ·
224) = 3584

2 · (8 ·GB) = 2 · (8 ·
2048) = 32768

Saeednia
[10]

1 Not tight 3 1 · (8 ·GB) = 1 · (8 ·
224) = 1792

1 · (8 ·GB) = 1 · (8 ·
2048) = 16384

Fiore
[11]

1 Not tight 2 1 · (8 ·GB) = 1 · (8 ·
224) = 1792

1 · (8 ·GB) = 1 · (8 ·
2048) = 16384

Proposed
protocol

1 Tight 4 2 · (GB)+1 · (224) =
2 ·224+1 ·224= 672

2 · (GB)+1 · (224) =
2 · 2048 + 1 · 224 =
4320

Table 1 : Comparing Efficiency

Scheme Reflection
Attacks

KCI Active Adversary IR leakage Re-
silience

Gunther
[9]

7 3 7 7

Saeednia
[10]

3 3 7 7

Fiore [11] 3 3 7 7

Vivek [16] 3 3 3 7

Proposed
protocol

3 3 3 3

Table 2 : Comparing Security Properties

Tables 1 and 2 shows the comparison of our scheme with the existing schemes in terms of efficiency and
security attributes respectively. The terms KCI stands for Key Compromise Impersonation attacks, and IR stands
for Intermediate results. Here GB denotes the number of bits needed to represent a group element. According to the
recommendations in [29] and also specified in [16], we set GB = 224 bits for operations over elliptic curve groups
and GB = 1024 for operations over multiplicative groups. As shown in [30] the security parameter increases by a
factor of 2 if the security reduction uses forking lemma. In any discrete log based system of a prime field Zq, a
factor α increase in the security parameter implies a factor α3 increase in the size of the modulus q. Thus the size
of the modulus increases by a factor of 8.

3 Preliminaries and Assumptions

3.1 Notations.
We denote the security parameter by κ . The set of integers is denoted by Z and N denotes the set of natural
numbers. [n] denotes the set {1, . . . ,n−1} for n ≥ 2. We denote by x ∈R X the fact that x is chosen uniformly at
random from the set of values X . G denotes a group of order q where 2κ−1 < q < 2κ and let g denote the generator
of the group G. Z∗p denotes the multiplicative group of integers modulo p, where p is a prime and (p−1)|q. We
use GB to denote the size of a group element in terms of the number of bits.

3.2 Preliminaries for our construction.
Here we give a brief overview of two signature schemes namely FXCR-1 and FDCR-1 signatures since these will
be required for our construction as in [5].

Definition 3.1. (FXCR-1 Signatures). Let B ∈ Z∗p be the public key of a party B and let A be a verifier. Let
H : Z∗p×Z∗p×{0,1}∗ → Z∗p be a collision-resistant hash function. Let Y = gy, where y ∈R [p] is chosen by B,
and sB = ye+ b, where e = H(Y,X ,m). Party A also chooses x ∈R Z∗p and computes X = gx. It then gives X to
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B as challenge and keeps x as secret. B then takes a message m and the challenge X and signs on m and X as
SigB(m,X) = (Y,X sB). A accepts the pair (Y,σB) as a valid signature if (Y eB)x = σB.

Proposition 3.1. (FXCR-1 Security). Suppose there is an adaptive probabilistic polynomial time (PPT) adversary
A that can forge an FXCR-1 signature; then using that adversary we can solve CDH problem. More precisely,
given a public key B∗, a challenge X∗, and access to signing and hashing oracles, the probability that the adversary
comes up with a triple (m∗,Y ∗,σ∗) as forgery such that the following conditions are satisfied is negligible under
the CDH assumption in the RO model:

1. The signature (Y ∗,σ∗) passes the verification algorithm with respect to the public key B∗, and the message-
challenge pair (m∗,X∗); and

2. The adversary A did not explicitly query the signing oracle with the pair (m∗,X∗) to get (Y ∗,σ∗)

Definition 3.2. (FDCR-1 Signatures). Let A= ga and B= gb be the public keys of two parties A and B respectively
and let m1 and m2 denote two messages. Let H : Z∗p×Z∗p×{0,1}∗×{0,1}∗→ Z∗p be a collision-resistant hash
function. Let X = gx,Y = gy, where x,y ∈R [p] are chosen by A and B respectively, and let d = H(X ,Y,m1,m2),
and e = H(Y,X ,m1,m2). The dual signatures of A and B on the messages m1 and m2 are DSigA,B(m1,m2,X ,Y ) =
(XdA)ye+b = (Y eB)xd+a.

Proposition 3.2. (FDCR-1 Security). Suppose there is an adaptive probabilistic polynomial time (PPT) adversary
A that can forge an FDCR-1 signature; then using that adversary we can solve CDH problem. More precisely,
given given a∗,A∗,B∗,X∗, a message m∗1 and access to hashing and signing oracles, the probability that the ad-
versary comes up with a triple (m∗2,Y

∗,σ∗) as forgery such that the following conditions are satisfied is negligible
under the CDH assumption in the RO model:

1. The signature (m∗2,Y
∗,σ∗) passes the verification algorithm with respect to the public key B∗, and the

message-challenge pairs (m∗1,X
∗) and

2. The adversary A did not explicitly query the signing oracle with the pair (m′1,X
′) to obtain (Y ∗,σ∗) such

that X∗ = X ′ and m′1||m′2 = m∗1||m∗2, where m′2 is obtained by querying the signing oracle on (m′1,X
′) (here

m∗1||m∗2 denotes the concatenation of m∗1 and m∗2).

3.3 Complexity Assumption.
In this section we present the complexity assumptions required for our construction as in [16].

Definition 3.3. Computation Diffie-Hellman Problem (CDH) - Given (g,ga,gb)∈R G3 for unknown a,b ∈R Z∗q,
where G is a cyclic prime order multiplicative group with g as a generator and q the order of the group, the CDH
problem in G is to compute gab.
The advantage of any probabilistic polynomial time algorithm A in solving the CDH problem in G is defined as

AdvCDH
A = Pr

[
A (g,ga,gb) = gab | a,b ∈R Z∗q

]
The CDH Assumption is that, for any probabilistic polynomial time algorithm A , the advantage AdvCDH

A is negli-
gibly small.

Definition 3.4. Decisional Diffie-Hellman Problem (DDH) - Given (g,ga, gb,h) ∈ G4 for unknown a,b ∈R Z∗q,
where G is a cyclic prime order multiplicative group with g as a generator and q the order of the group, the DDH
problem in G is to check whether h ?

= gab.
The advantage of any probabilistic polynomial time algorithm A in solving the DDH problem in G is defined as

AdvDDH
A = |Pr

[
A (g,ga,gb,gab) = 1

]
−Pr

[
A (g,ga,gb,gc) = 1

]
| | a,b,c ∈R Z∗q

The DDH Assumption is that, for any probabilistic polynomial time algorithm A , the advantage AdvDDH
A is negli-

gibly small.
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Definition 3.5. Gap Diffie Hellman Problem (GDH). Given (g,ga,gb) ∈R G3 and access to a Decision Diffie
Hellman (DDH) oracle DDH(·, ·, ·) which on input ga, gb and gc outputs True if and only if c = ab, the Gap Diffie
Hellman problem is to compute gab ∈G.
The advantage of an adversary A in solving the Gap Diffie Hellman problem is defined as

AdvGDH
A = Pr

[
A DDH(·,·,·)(g,ga,gb) = gab

]
The Gap Diffie Hellman Assumption holds in G if for all polynomial time adversaries A , AdvGDH

A is negligible.

4 Security model
In this section we describe our new security model for Identity based key agreement protocols. Each entity partic-
ipating in an IDKA protocol is uniquely identified by a identity (bit) string IDi corresponding to the ith party. The
PKG generates the master public key or public parameters and a master secret key. It then makes the master public
key as system wide public parameters and keeps master secret key only to itself. The PKG uses its master secret
key to generate the private key Si for each user i. An IDKA protocol comprises of the following algorithms:

1. Setup: This algorithm is run by the PKG. It takes a security parameter as input and generates public param-
eters/ master public key of the system and a master secret key. The public parameters are available publicly
to all users in the system and the master secret key is kept secret by the PKG.

2. Key Generation: This algorithm is an interactive protocol between the user and the PKG. Each user in
the system submits its identity string to the PKG. The PKG verifies the identity of each user via some
verification mechanism and uses its master secret key and the public parameters of the system to generate a
secret key or private key Si corresponding to user with identity IDi. The private key is then transmitted to
the user via a secure channel.

3. Key Agreement: This is also an interactive protocol running between two parties with identities IDA and
IDB having secret keys SA and SB respectively. They exchange messages between them and at the end of
this protocol both the parties establish a shared secret key. Here any one of the two users could initiate the
protocol.

An instance of the protocol when run at a party is called a session.A party can run multiple instances of
a protocol simultaneously with different parties in the system. Associated with each session is the owner
who initiates the session and the other party is called the peer. Both the parties exchange some messages or
components between them. Each party uses its secret key, local randomness and the components received
from the other party to establish a shared key corresponding to that session at the end. All the components
exchanged between the parties and their local randomness constitute the session state for that particular
session. The fundamental requirement of a key exchange protocol is that at the end both the parties involved
should compute the same session key. If the session is successfully completed, each party outputs its shared
session key and also erases its session state. Otherwise, both the parties aborts at some point of execution
of the protocol and in this case no session key is established between them. A session is uniquely identified
by an identifier. For e.g. if IDA communicates with another party IDB, it sets the session identifier of that
session to be (IDA, IDB,out, in), where out and in denotes the messages sent to IDB and received from IDB
respectively.

Adversary. The adversary A is also modeled as a Probabilistic Polynomial Turing Machine (PPTM) which has
full control on the communication network over which protocol messages can be altered, deleted, injected, resched-
uled or eavesdropped at any time. Here we assume each party is working in a hybrid environment which consists of
a standard computing device (that are untrusted) called the untrusted host and a Trusted Computing/Platform Mod-
ule (TPM). In the untrusted host all the normal world computations are done and in the trusted computing module
or tamper-proof device only the top level secrets like the secret keys of users, .i.e, Long term secret keys (LTK)
and session specific secret key (or the ephemeral secret keys) of users may be stored. All the computations that
directly involve the secret keys are done in the TPM. For example, while executing the algorithm for generating
the session key at a party some steps may not involve direct involvement of the secret key values and some steps
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that may involve secret key values. The computation of the first kind will be done in the untrusted host machine or
CPU and the resulting values will be available in the untrusted host. The computations of the second kind will be
carried out in the TPM. We assume that all the values that are computed or available in the untrusted host machine
(UHM) is available to the adversary. Note that what values must be stored in the TPM will depend on the imple-
mentation. For example in traditional black-box security model i.e. CK or eCK model, all the computations are
done in the TPM and hence no intermediate information is available to the adversary as no computation is done on
untrusted host. Whereas in our security model only the top level secret informations of a party are kept in the TPM
and only those computations that directly involve the secret keys are done in the TPM. After the computations are
done in the TPM, the computed values are returned back to the untrusted host. So summarizing, we consider the
implementation of our protocol at a party follows one of the two approaches detailed below as in [5].

Approach 1. This approach is similar to the black box models like the CK or eCK security models. Here the LTK
of a party is stored in the TPM and the session specific secret values are stored in untrusted host machine. The
session key is computed in the TPM and then passed on to the host machine or application for use. This approach
is in line with the CK or eCK model since in these models the adversary can obtain leakages on the session state
or ephemeral secret keys of a session. Also an adversary can obtain session keys of some sessions and it gains no
useful information about the other session keys. This models known session key attacks.

Approach 2. In this approach the top level secret keys and intermediate results are stored in the tamper proof
device (TPM) and the intermediate results (IR) are passed on to the host machine with which it computes the
session keys. This approach is motivated by real life constraints and attacks. In practice often the computation
of intermediate results are more costly than the ephemeral public key computations. Hence, the implementation
efficiency of this approach is very high. Also, an attacker can learn all the intermediate information stored in the
unturusted host or passed to the host machine from the TPM by means of implanting malwares in the host machine.
Our protocol should guarantee that even in such a scenario the attacker does not get to compromise any fresh or
unexposed sessions.

We now specify the queries that are allowed to the adversary in our security model in both the implementation
approaches mentioned above. These queries model all the leakages that may occur in both these scenarios.
In Set 1, the adversary is given access to the following oracle queries as mentioned. These queries capture all the
information that an adversary may access in a black box model of security for key exchange like the CK or eCK
model.

1. EphemeralKeyReveal(sid): This query gives the adversary access to the ephemeral secret keys of parties.
In real world the random number generators may be leaky in the sense that their output may not be purely
random which gives some idea on the ephemeral key of parties to an adversary. This query models this
leakage on ephemeral secret keys of session sid.

2. Corrupt(IDi): This query allows an adversary to gain read access to the device’s private memory and hence
the static secret keys of the party with identity IDi, thus bypassing the protection of the TPM.

3. SessionKeyReveal(sid): This query allows an adversary to learn the session key of a completed session with
identifier sid. This model known session key attacks.

4. EstablishParty(IDi): This query allows an adversary to register static public key on behalf of a party with
identity IDi. A party against which this query is not issued is said to be honest, otherwise it is at the complete
control of the adversary. Note that unlike Corrupt query, this query gives the adversary the ability to register
arbitrary public keys in the system.

5. Test(sid) : The Test query is made on a completed and fresh session sid as defined in Definition 4.2. On a
test query a bit b ∈ {0,1} is randomly chosen. If b = 0 the true session key of that session sid is returned to
the adversary A , otherwise a uniformly chosen random value from the distribution of valid session keys is
returned to A . Only one query of this form is allowed. After the Test query has been issued, the adversary
can adaptively query the oracles like before provided the test session remains fresh.

In Set 2 the following queries are allowed to the adversary. These queries corresponds to hybrid model of compu-
tation and considers leakages corresponding to the second approach mentioned above. The definitions of all the
queries mentioned below apart from the first query remains unchanged from Set 1.
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1. IntermediateResult(sid): This query allows the adversary to obtain all the session specific values available
and computed locally in the untrusted host. Let AUX denotes the output of IntermediateValues(sid) oracle
while computing the session keys i.e. AUX ← IntermediateValues(sid), where sid denotes the session
identifier of the session run between two parties say IDA and IDB. It includes all the intermediate results
or auxiliary information generated in computing session keys for the session sid. Particularly it includes all
the values that are available in the untrusted host and also computed locally in the untrusted host. So the
set AUX includes (i) the values computed using the secret keys stored in the TPM and passed on to the host
machine and (ii) all other local computations done in the untrusted host machine. So when the adversary
makes the IntermediateValues(sid) oracle query he gets AUX . Note that when all computations are done in
TPM, AUX is empty and then this model is same as the black-box model, where the adversary has no access
to the values present in the untrusted host.

2. Corrupt(IDi).

3. SessionKeyReveal(sid).

4. EstablishParty(IDi).

5. Test(sid)

We now give the definition for a matching session and what it means for a session to be fresh.

Definition 4.1 (Matching Sessions). Let Π be a protocol and sid =(IDi, ID j,out, in,ζ ) and sid′=(IDr, IDs,out ′, in′,ζ ′)
be the identifier of two sessions. Then sid and sid′ are called matching sessions if:

• s = i and r = j

• in′ = out and out ′ = in and

• ζ ′ 6= ζ

Definition 4.2. (Session Freshness). Let Π be a protocol, and sid = (IDi, ID j,out, in,ζ ) be the identifier of a
completed session. The session sid is said to be locally-exposed if any of the following conditions holds:

• A issued a SessionKeyReveal(sid) on the target session sid.

• The party with identifier IDi follows the first approach and A issued an EphemeralKeyReveal(sid) and
Corrupt(IDi) query.

• The party with identifier IDi follows the second approach and A issued an IntermediateResult(sid) query.

The session sid is said to be exposed if (a) the session sid is locally exposed or its matching session sid′ exists and
is locally exposed, or (b) its matching session sid′ does not exist and A issued Corrupt(ID j) query.
A session sid is said to be fresh, if it is not exposed.

Definition 4.3. (ID-seCK security). A protocol Π is said to be ID-seCK-secure, if no polynomially bounded
adversary can distinguish a fresh session key from a random value, chosen from the distribution of session keys,
with probability significantly greater than 1/2. A outputs his guess b′ in the test session. An adversary wins the
game if he guesses the challenge b correctly, i.e., b′ = b. The advantage of A in the ID-seCK game is defined as:

AdvID-seCK
Π (A ) = Pr[b′ = b]− 1

2

We define the ID-seCK-security of Π as follows:

1. If two honest parties complete matching sessions, then, except with negligible probability, they both compute
the same session key. (Correctness)

2. For any probabilistic polynomial-time adversary A , AdvID-seCK
Π (A ) is negligible.

9
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5 Our Construction
We now present the details of our ID-AKE protocol.

Setup: The PKG picks s1,s2 ∈R Z∗p and sets y1 = gs1 and y2 = gs2 . The master secret key is 〈s1,s2〉 and the
master public key is 〈y1,y2〉. It also defines the following hash functions: H1 : {0,1}∗ → Z∗p, H2 : G→ Z∗p and
H3 : {0,1}∗→ Z∗p. The PKG sets params = 〈G∗,g,q, p,y1,y2,H1,H2,H3〉 and msk = 〈s1,s2〉.
Key Extract: To compute the private key of a user with identity IDi, it proceeds as follows:

• Choose xi ∈R Z∗p, compute ui1 = gxi , set hi = H1 (IDi) and compute vi1 = hi
xi .

• Choose ri ∈R Z∗p and compute ui2 = gri and vi2 = hi
ri .

• Compute ci = H1 (IDi,ui1), bi = H1(IDi,ui1 ,vi1 , ui2 ,vi2) and ei = H1(IDi,ui1 ,vi1 ,ui2 ,vi2).

• Compute di1 = xi + s1 · ci and di2 = xi + ri ·bi + s2 · ei.

Finally it sends 〈ui1 ,vi1 ,ui2 ,vi2 ,di1 ,di2 ,hi
s2〉 to the user with identity IDi.

After receiving the private key from the PKG the user performs a Key Sanity Check as described below. This check
ensures that the private key components are computed correctly by the PKG.

Key Sanity Check: The user computes the values ci = H1 (IDi,ui1), bi = H1 (IDi,ui1 ,vi1 ,ui2 ,vi2) and
ei = H1 (IDi,ui1 ,vi1 ,ui2 ,vi2), and checks the following:

1.
gdi1

y
H1(IDi,ui1)
1

?
= ui1

2.
gdi2

ui2
H1(IDi,ui1 ,vi1 ,ui2 ,vi2)y2

H1(IDi,ui1 ,vi1 ,ui2 ,vi2)
?
= ui1

3.
h

di2
i

vi2
H1(IDi,ui1 ,vi1 ,ui2 ,vi2)(hi

s2)H1(IDi,ui1,vi1 ,ui2 ,vi2)
?
= vi1

Test 1 ensures the correctness of di1 and ui1 . Test 2 ensures the correctness of di2 ,ui2 ,vi1 ,vi2 and Test 3 ensures the
correctness of hi

s2 . Test 2 and Test 3 ensures the integrity of the exponent xi in ui1 and vi1 respectively. All these
tests can be verified in the honest case trivially.

Key Agreement: Let us assume two users with identifiers IDi and ID j with their private keys Si and S j respectively
engage in the ID-AKE protocol. User IDi chooses wi ∈R Z∗p as ephemeral secret and computes Wi = gwi . Similarly
user ID j chooses w j ∈R Z∗p as ephemeral secret and computes Wj = gw j . They now proceed with the protocol as
described in Table 3. Finally, at the end both the parties establish a shared secret key denoted by Z.

Remark 1. The values of Vi and Vj are session specific. So each user can precompute it earlier and use those values
later when they are required by using a look up table. The signature wi +di1 ·H2 (gwi) on Wi(= gwi) is computed
securely so that wi and di1 are not leaked to the adversary although at the end the signature is made available to the
adversary.

Remark 2. Note that the components Fi,Vi and Fj,Vj are required to be sent only once for the first key establish-
ment between users IDi and ID j since these components remains invariant across all sessions. For all subsequent
sessions between these two users, it is enough to transfer the components that are freshly generated per session
namely the Vi and Vj values.
We note the following.

• Check 1 is done to ensure correctness of the component Fi and Fj. This in turn checks whether both g and
hi are raised to the same exponent xi.

• Check 2 is done to ensure correctness of the component Vi and Vj. This check essentially verifies the
signature wi +di1 ·H2 (gwi) to ensure that an adversary has not tampered with the message in transit.
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Party IDi Party ID j

Step 1: Step 1:
Send Fi = 〈ui1 ,vi1 ,di2 ,bi,ei,hi

s2 , IDi〉,
Vi = 〈wi + di1 ·H2 (gwi) , gwi〉,Xi = gdi1

to ID j.

Send Fj = 〈u j1 ,v j1 ,d j2 ,b j,e j,h j
s2 , ID j〉,

Vj = 〈w j + d j1 ·H2 (gw j) , gw j〉,X j = gd j1

to IDi.
Step 2: (Correctness Checks) Step 2: (Correctness Checks )

(a) Check 1:

Compute u j2 =

(
gd j2

u j1 · y2
e j

)b j
−1

Compute v j2 =

(
h j

d j2

v j1 · (h j
s2)e j

)b j
−1

Check if

b j
?
= H1(ID j,u j1 ,v j1 ,u j2 ,v j2)

e j
?
= H1(ID j,u j1 ,v j1 ,u j2,v j2)

Proceed if (Check 1 == True).

(b) Check 2:
Compute c j = H1 (ID j,u j1).

Check if[
g(w j+d j1 ·H2(gw j))

(gx j)H2(gw j)(y1)
c j·H2(gw j)

]
?
= gw j

Proceed if (Check 2 == True).

(c) Check 3:

u j1 · (y1)
c j ?
= X j.

Proceed if (Check 3 == True).

(a) Check 1:

Compute ui2 =

(
gdi2

ui1 .y2ei

)bi
−1

Compute vi2 =

(
hi

di2

vi1 .(hi
s2)ei

)bi
−1

Check if

bi
?
= H1 (IDi,ui1 ,vi1 ,ui2 ,vi2)

ei
?
= H1 (IDi,ui1 ,vi1 ,ui2 ,vi2)

Proceed if (Check 1 == True).

(b) Check 2:
Compute ci = H1 (IDi,ui1).

Check if[
g(wi+di1 ·H2(gwi ))

(gxi)H2(gwi )(y1)
ci·H2(gwi )

]
?
= gwi

Proceed if (Check 2 == True).

(c) Check 3:

ui1 · (y1)
ci ?
= Xi.

Proceed if (Check 3 == True).
Step 3: (Shared secret key generation)

Compute:

d = H1(Wi,Wj, IDi, ID j)

e = H1(Wj,Wi, IDi, ID j)

si = wi ·d +di1 mod p

σi =
(

W e
j ·X j

)si

Z = H3 (σi, IDi, ID j,Wi,Wj).

Step 3: (Shared secret key generation)

Compute:

d = H1(Wi,Wj, IDi, ID j)

e = H1(Wj,Wi, IDi, ID j)

s j = w j · e+d j1 mod p

σ j =
(
W d

i ·Xi
)s j

Z = H3 (σ j, IDi, ID j,Wi,Wj).

Table 3 : Proposed ID-AKE protocol

• Check 3 is done to ensure correctness of the component Xi and X j. Note that the computation of Xi and
X j involves the LTK of user IDi and ID j respectively. An adversary can modify the components Xi and X j
while simply relaying the rest of the message as it is namely the values Fi, Vi and Fj, Vj. Check 3 prevents
this kind of illegal modification thus guaranteeing the integrity of Xi and X j.

It is trivial to verify that for valid components, these checks hold good. The lemma below shows the correctness
of our protocol.
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Lemma 5.1. The shared secret key computed by both the parties are identical.

Proof. User i computes
σi =

(
W e

j ·Y
)si = g(w j ·e+d j1)·(wi·d+di1)

User j computes

σ j =
(

W d
i ·X

)s j
= g(wi·d+di1)·(w j ·e+d j1)

So we have σi = σ j, i.e., the values computed by both the parties are identical. This proves the lemma.

6 Security Proof
Theorem 6.1. Under the GDH assumption in G and the RO model, our ID-AKE protocol is secure in our ID-seCK
model.

Proof. The adversary A can make session activation queries of the form (IDi, ID j) which makes user IDi per-
form Step 1 of our protocol, and create a session with identifier (IDi, ID j,〈Fi,Vi,Wi,Xi〉,?,I ) in accordance
with the protocol. On a session activation query of the form (IDi, ID j,〈Fi,Vi,Wi,Xi〉), user D j performs Step
2 of our protocol and creates a session with identifier (ID j, IDi,〈Fj,Vj,Wj,X j〉,〈Fi,Vi,Wi,Xi〉,R). The query
(IDi, ID j,〈Fi,Vi,Wi,Xi〉,〈Fj,Vj,Wj,X j〉,R) makes user IDi update the session identifier (IDi, ID j,〈Fi,Vi,Wi,Xi〉,?,I )
(if any) to (IDi, ID j,〈Fi,Vi,Wi,Xi〉,〈Fj,Vj,Wj,X j〉,I ) and perform Step 3 of our protocol. The allowed queries
in Set 1 are the following: EphemeralKeyReveal, Corrupt, SessionKeyReveal, and EstablishParty. In Set 2, in
addition to the queries of Set 1, the adversary is allowed the following queries: SecretExponentReveal, to obtain
the secret exponent si or s j, and SessionSignatureReveal to obtain the session signature σi or σ j.
Suppose there is an adversary A who can win the game i.e., it can distinguish between a fresh session key and a
random session key for the test query with probability significantly bounded away than 1

2 . The only possible ways
by which A can accomplish are by the following attacks:

• Guess: A manages to guess the session key corresponding to the test session correctly.

• Key Replication: In this attack A succeeds in making one more non-matching session different from the test
session to compute the same session key as the test session. Then A can simply issue a session key reveal query
on the non-matching session and since both the session keys are identical it can use that session key as a valid
forgery for the test session.

• Forgery: In this attack A issues the H3 digest query on a tuple that evaluates to the same session key as the test
session. This represents a successful forgery of the session signature σ by the adversary.

Since we are working in the RO model the first two attacks cannot succeed except with negligible probability.
This is because the session specific values are chosen independently and randomly of each session and due to the
collision resistance property of the hash function H3. Thus it suffices the third attack namely the forging probability
of the attacker. Let us define an event E as “A succeeds in forging the signature of a fresh session denoted by
sid0 =

(
IDi, ID j,〈Fi0 ,Vi0 ,Wi0 ,Xi0〉,〈Fj0 ,Vj0 ,Wj0 ,X j0〉,ς

)
”. The event E is again divided in two sub-cases – E.1:

“A succeeds in forging the signature of a fresh and matching session” and E.2: “A succeeds in forging the
signature of a fresh without matching session”. So if suffices to show that neither E.1 nor E.2 can happen with
non-negligible probability. E.1 is further analyzed case by case as follows:

• E.1.1: E.1 and both i and j follow the first implementation approach.

• E.1.2: E.1 and both i and j follow the second implementation approach.

• E.1.3: E.1 and i and j follow different implementation approaches.

Suppose that E.1 occurs with non-negligible probability, then at least one of these events happens with non-
negligible probability. E.1.1 can be further analyzed by cases as follows:

• E.1.1.1: E.1.1 ∧ A issues Corrupt(IDi) and Corrupt(ID j).

• E.1.1.2: E.1.1: ∧ A issues an E phemeralKeyReveal(sid0) and an E phemeralKeyReveal(sid′0) query.
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• E.1.1.3: E.1.1: ∧ A issues Corrupt(IDi) and an E phemeralKeyReveal(sid′0) query.

• E.1.1.4: E.1.1: ∧ A issues Corrupt(ID j) and an E phemeralKeyReveal(sid0) query.

Case E.2 can also be further subdivided into cases E.2.1, E.2.2 and E.2.3 in a similar fashion.
Analysis of E.1.1.1. If event E.1.1.1 occurs with non-negligible probability, we can build a polynomial time CDH
solver S using A with advantage related to the probability with which the event occurs. In particular we will get
a CDH solver that succeeds with non-negligible probability. The solver interacts with A as follows:
Suppose there are n parties P̂1, · · · , P̂n each following a particular implementation approach. S simulates A ’s
environment. We only suppose that the number of parties following the first implementation approach is n1 ≥ 2.
Since A is polynomial (in |q|), we suppose that each party is activated at most m times (m,n ≤ L(|q|)) for some
polynomial L) S chooses i, j ∈R {k | P̂k follows the first implementation approach}, and t ∈R [m+1] (with these
choices, S is guessing the test session). The challenger receives as input the GDH problem instance 〈G,g,q, p,C =
ga,D = gb〉 and also access to the Diffie Hellman Oracle DDH (y1, ·, ·). We refer to P̂i as IDi and P̂j as ID j. The
challenger simulates the hash oracles in the following way:
H1 Oracle : If the adversary queries the H1 oracle with IDi or (IDi,ui1) or (IDi,ui1 ,vi1 ,ui2 ,vi2) as input, the
challenger checks whether the hash value of the requested tuple already exists in the hash list Lh1. Otherwise
chooses ki ∈R Z∗p, computes hi = gki , adds the tuple 〈hi, IDi,ki〉 to the Lh1 list.
Similarly, the H2 and H3 oracles are also answered in the same fashion. The challenger looks up its corresponding
list Lh2 to Lh3 to see if the hash value corresponding to the query is already in the list; else it will choose a value
randomly from the domain of the function and answer with a hash value that has an identical distribution to the
actual value in the protocol.

Simulation of Corrupt query: When the adversary queries for a private key corresponding to party with identity
IDi, the challenger computes the private key corresponding to that user as shown below. Note that the challenger
does not have the master secret key s1 to generate the private keys of users. So it has to simulate the key extraction
as follows:
The challenger first looks up the hash list Lh1 to check if IDi was queried before. If it is available in the list, it
extracts ki, hi from the list and proceeds to the next step. If this is the first query, the challenger chooses ki ∈R Z∗p,
computes hi = gki , adds the tuple 〈hi, IDi,ki〉 to the Lh1 list. Then it does the following:

• Choose ci,bi,ei,xi
′,ri
′ ∈R Zp

∗ and sets ui1 = gx′i .y1
−ci .

• Set H1 (IDi,ui1) = ci and add 〈ci,ui1, IDi〉 to Lh1.

• Set di1 = x′i, di2 = x′i + r′i · bi + s2 · ei and ui2 = gr′i · y1
ci·bi

−1
, and compute vi1 = gki·x′i · y1

−ki·ci and vi2 =

gki·r′i · y1
ki·ci·bi

−1
.

• Set H1 (IDi,ui1 ,vi1 ,ui2 ,vi2)= bi, H1 (IDi,ui1 ,vi1 ,ui2,vi2)= ei and add 〈bi, IDi,ui1 ,vi1 ,ui2 ,vi2〉, 〈ei, IDi,ui1 ,vi1 ,ui2 ,vi2〉
to Lh1, and compute hi

s2 .

It then makes an entry in the list LE = 〈ui1 ,vi1 ,ui2 ,vi2 , di1 ,di2 , IDi〉 and returns 〈ui1 ,vi1 ,ui2 ,vi2 ,di1 ,di2 ,hi
s2〉 as

private key of IDi.
Note that the private key computed in this way is consistent with the actual private key in the system. It is trivial
to check that the private key returned by S passes the Key Sanity Check.

The interaction between the challenger or solver S and the adversary A proceeds as follows:

– S takes as input C = Wi0 and D = Wj0 ∈ G. Note that the values of wi0 and w j0 are implicitly set to a and b
respectively and they are unknown to the challenger.

– On a session activation query of the form (P̂l , P̂m), S chooses a wi and create session identifier
sid′ =

(
P̂l , P̂m,〈Fi,Vi,Wi,Xi〉,?,I

)
and provide A with

(
P̂l , P̂m,〈Fi,Vi,Wi,Xi〉

)
.

– On a session activation query of the form
(
P̂m, P̂l ,〈Fj,Vj,Wj,X j〉

)
, S chooses a wi and create session identifier

sid′ =
(
P̂l , P̂m,〈Fi,Vi,Wi,Xi〉,〈Fj,Vj,Wj,X j〉,R

)
and provide A with

(
P̂l , P̂m,〈Fi,Vi,Wi,Xi〉

)
and completes the

session
(
P̂l , P̂m,〈Fi,Vi,Wi,Xi〉,〈Fj,Vj,Wj,X j〉R

)
.
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– On the session activation query
(
P̂l , P̂m,〈Fi,Vi,Wi.Xi〉,〈Fj,Vj,Wj,X j〉

)
, S updates the session identifier(

P̂l , P̂m,〈Fi,Vi,Wi,Xi〉,?,I
)

(if any) to sid =
(
P̂l , P̂m,〈Fi,Vi,Wi,Xi〉,〈Fj,Vj,Wj,X j〉,I

)
. If the sid′ session exists

and is already completed, S sets the sid session key to that of sid′. Else, if a digest query was previously issued
on some ψ =

(
σ , P̂l , P̂m,Wi,Wj

)
(in this case d and e are already defined) and if σ is the sid session signature (S

can compute the session signature), S sets the session key to H3(ψ). Else S chooses Z ∈R {0,1}κ and set the
sid session key to Z and updates Lh3.

– If A issues a Corrupt, an EphemeralKeyReveal, a SessionKeyReveal, or an EstablishParty query at a party
following the first implementation approach, S answers faithfully.

• If A issues a Corrupt, a SessionKeyReveal, a SecretExponentReveal, a SessionSignatureReveal, or an Establish-
Party query at a party following the second implementation approach, S answers faithfully.

– At the activation of the tth session at IDi, S aborts if the peer of IDi is not ID j; otherwise, it gives (IDi, ID j,Fi,Vi,Wi0 ,Xi)
as input to A (recall that the solver takes as input Wi0 and Wj0 ).

– When A activates the session matching the tth session at IDi, S provides A with (ID j, IDi,Fj,Vj,Wj0 ,X j).

• S aborts if any of the following happens:

– A halts with a test session different from the tth session at IDi.
– A issues a SessionKeyReveal(sid) or SessionKeyReveal(sid′) query, where sid′ is the matching session of

sid.
– A issues a EphemeralKeyReveal(sid) or E phemeralKeyReveal(sid′).
– A issues an EstablishParty(IDi) or EstablishParty(ID j) query.

• If A halts with a guess σ0, S outputs the solution to the CDH problem as follows:(
σ0

(
W d0

i0 ·Xi

)−d j1W
−di1 ·e0
j0

)(d0·e0)
−1

as CDH(C,D). Otherwise S aborts.

The simulation remains perfect, except with negligible probability. The probability that the solver S guesses the
test session correctly is

(
n2m

)−1. If A succeeds under this simulation, and S guesses correctly the test session,
S outputs CDH(Wi0 ,Wj0). Hence if A succeeds with non–negligible probability in E.1.1.1, S outputs with
non–negligible probability CDH(Wi0 ,Wj0), contradicting the GDH assumption.

Analysis of E.1.1.2. If event E.1.1.2 occurs with non-negligible probability, we can build a polynomial time CDH
solver S using A with advantage related to the probability with which the event occurs. In particular we will get
a CDH solver that succeeds with non-negligible probability. We modify the interaction of event E.1.1.1 as follows:

• S takes as input C = Xi and D = X j ∈G. So it doesn’t know the values of di1 and d j1 .

• On a session activation query of the form (P̂m, P̂l ,〈Fj,Vj,Wj,X j〉), with P̂l = IDi or ID j, S chooses a wi ∈R Z∗p
and create session identifier sid′=(P̂l , P̂m,〈Fi,Vi,Wi,Xi〉,〈Fj,Vj,Wj,X j〉,R) and provide A with (P̂l , P̂m,〈Fi,Vi,Wi,Xi〉)

• On the session activation query (P̂l , P̂m,〈Fi,Vi,Wi,Xi〉,〈Fj,Vj,Wj,X j〉), with P̂l = IDi or ID j, S updates the
session identifier (P̂l , P̂m,〈Fi,Vi,Wi,Xi〉,?,I ) (if any) to sid = (P̂l , P̂m,〈Fi,Vi,Wi,Xi〉,〈Fj,Vj,Wj,X j〉,I ). If the
sid′ session exists and is already completed, S sets the sid session key to that of sid′. Else, if a digest query
was previously issued on some ψ = (σ , P̂l , P̂m,Wi,Wj) (in this case d and e are already defined) and if σ =
CDH(W d

i ·Xi,W e
j ·X j) (using the DDH oracle), set the sid session key to H3(ψ). Else, a random element from

the session key space is chosen and assigned to Z ,i.e., Z ∈R {0,1}κ where Z is the session key of the session
sid. If no value was previously assigned to h1 = H1(Wi,Wj, P̂l , P̂m) (respectively h′1 = H1(Wj,Wi =, P̂l , P̂m), choose
d ∈R Z∗p and set h1 = d (respectively h′1 = d).

• When A makes a hash query on some ψ = (σ , P̂l , P̂m,Wi,Wj) with with P̂l = IDi or ID j or with P̂m = IDi or ID j,
S checks whether a value Z already exists for the queried ψ , then it returns Z as the completed session key, else
(i) if there is an already completed session with identifier sid = (P̂l , P̂m,〈Fi,Vi,Wi,Xi〉,〈Fj,Vj,Wj,X j〉,I ) or sid′,
and σ =CDH(W d

i ·Xi,W e
j ·X j), then S returns the completed session key, else (ii) Choose Z ∈R {0,1}κ and set

Z as the session key of sid and provides A with Z; if no value was previously assigned to h1 = H1(Wi,Wj, P̂l , P̂m)
(respectively h′1 = H1(Wj,Wi, P̂l , P̂m), choose d ∈R Z∗p and set h1 = d (respectively h′1 = d).
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• At the activation of the tth session at IDi, S aborts if the peer of IDi is not ID j; otherwise, it chooses wi ∈R Z∗p
and provides A with (IDi, ID j,Fi,Vi,Wi0 ,Xi).

• When A activates the session matching the tth session at IDi, S chooses wB ∈R Z∗p provides A with (ID j, IDi,Fj,Vj,Wj0 ,X j).

• When A issues an EphemeralKeyReveal query on the tth session at IDi or its matching session S answers
faithfully.

• S aborts if any of the following happens:

– A halts with a test session different from the tth session at IDi.

– A issues a SessionKeyReveal(sid) or SessionKeyReveal(sid′) query, where sid′ is the matching session of
sid.

– A issues a Corrupt(IDi) or Corrupt(ID j) query.

– A issues an EstablishParty(IDi) or EstablishParty(ID j) query.

• When A comes up with a guess σ0 for the test session, S outputs the solution to the CDH problem CDH(C,D)
from σ0,wi0 ,w j0 ,d0 and e0.

The simulation remains perfect, except with negligible probability. The probability that A guesses the test session
correctly is

(
n2m

)−1. The probability that A succeeds in the test session is
(
n2m

)−1· Pr(E.1.1.2). If the event
E.1.1.2 happens with non-negligible probability, then the probability that A succeeds in the test session is also
non-negligible and hence the probability that the solver S outputs CDH(C,D) is also non-negligible. However
this cannot happen since it directly contradicts the GDH assumption.

Analysis of E.1.1.3 and E.1.1.4: Events E.1.1.3 and E.1.1.4 are symmetrical to each other. So it suffices to analyze
only event E.1.1.3. If event E.1.1.2 occurs with non-negligible probability, we can build a polynomial time CDH
solver S using A with advantage related to the probability with which the event occurs. In particular we will get
a CDH solver that succeeds with non-negligible probability. The solver interacts with A as follows:

• S takes as input C = Wi0 and D = X j ∈ G. Note that the value of di10
is implicitly set to xi0

′. So S sets

Xi0 = gxi0
′
.

• On a session activation query of the form (IDi, ID j,〈Fi,Vi,Wi,Xi〉), S does the following:

– Choose d j10
∈R Z∗p and compute X j = g

d j10 .

– Create a session with identifier sid′ = (ID j, IDi,〈Fj,Vj,Wj,X j〉,〈Fi,Vi,Wi,Xi〉,R) and provide A with
(ID j, IDi,〈Fj,Vj,X j〉).

– Choose Z ∈R {0,1}κ ,d,e ∈R Z∗p and set the session key to Z.

• On the query (ID j, IDi,〈Fj,Vj,Wj,X j〉,〈Fi,Vi,Wi,Xi〉), S does the following:

– Update the session identifier (ID j, IDi,〈Fj,Vj,Wj,X j〉,?,I ) (if any) to (ID j, IDi,〈Fj,Vj,Wj,X j〉,〈Fi,Vi,Wi,Xi〉,I ).

– If the session key of the session sid′ is already assigned a value, set the sid session key to that of sid′.
Else, if a digest query was previously issued on some ψ = (σ , ID j, IDi,Wj,Wi) (in this case d and e are
already defined) and if σ =CDH(W d

i Xi,W e
j X j) (using the DDH oracle), set the sid session key to H3 (ψ).

Else, choose Z ∈R {0,1}κ and set the sid session key to Z; if no value was previously assigned to h1 =
H1(Wj,Wi, IDi, ID j) (respectively h′1 = H1(Wi,Wj, IDi, ID j)), choose d ∈R Z∗p and set h1 = d (respectively
h′1 = d).

• When A makes a hash query on some ψ = (σ ,Pi,Pj,Wi,Wj) with Pi = ID j or Pj = IDi, S checks whether this
has been queried before, then it returns the same value. Else it follows the steps as mentioned ahead.

• At the activation of the tth session at IDi, S aborts if the peer of IDi is not ID j; otherwise, it provides A with
(IDi, ID j,Fi,Vi,Wi0,X j) (recall that the solver takes as input Wi0 and X j).

15



An ID-AKE Protocol Secure Against Memory-Scrapers Suvradip, Srinivasan, Pandu Rangan

• When A activates the session matching the t-th session at IDi, S chooses d j10
∈R Z∗p, and provides A with(

ID j, IDi,〈Fj,Vj,Wj0 ,X j〉
)
.

• If A issues an E phemeralKeyReveal query on the session matching the t-th session at IDi, S answers faithfully.

• S aborts if any of the following happens:

– A halts with a test session different from the tth session at IDi.

– A issues a SessionKeyReveal(sid) or SessionKeyReveal(sid′) query, where sid′ is the matching session of
sid.

– A issues a Corrupt(ID j) query.

– A issues an EstablishParty(IDi) or EstablishParty(ID j) query.

– A issues an E phemeralKeyReveal(sid)

• If A halts with a guess σ0, S produces
(

σ0

(
W d0

i0 ·Xi

)−d j10
·e0

X
−di1
j

)e0
−1

as CDH(C,D).

The simulation remains perfect, except with negligible probability. The probability that A guesses the test session
correctly is

(
n2m

)−1. The probability that A succeeds in the test session is
(
n2m

)−1· Pr(E.1.1.2). If the event
E.1.1.2 happens with non-negligible probability, then the probability that A succeeds in the test session is also
non-negligible and hence the probability that the solver S outputs CDH(Wi0,X j) is also non-negligible. However
this cannot happen since it directly contradicts the GDH assumption.
So based on the analysis of the events E.1.1.1, E.1.1.2, E.1.1.3,E.1.1.4 we conclude that event E.1.1 cannot occur
(except with negligible probability) since all the sub events also cannot happen except with negligible probability.

Analysis of E.1.2. Here both IDi and ID j follows the second implementation approach. If event E.1.2 occurs
with non-negligible probability, we can build a polynomial time CDH solver S using A that succeeds with non-
negligible probability. The strongest queries that can be issued on IDi and ID j, the test session and its matching
session are Corrupt queries on both IDi and ID j. The simulation is almost similar to case E.1.1.1, with the
following modifications:

• S takes as input C =Wi0 and D =Wj0 ∈G as before.

• A ’s environment is simulated in exactly the same way but S chooses i, j ∈R {k | P̂k follows the second imple-
mentation approach} (we assume n−n1 ≥ 2 and refer to P̂i as IDi and P̂j as ID j.

• S aborts if any of the following happens:

– A halts with a test session different from the tth session at IDi.

– A issues a SessionKeyReveal(sid) or SessionKeyReveal(sid′) query, where sid′ is the matching session of
sid.

– A issues an EstablishParty(IDi) or EstablishParty(ID j) query.

– A issues a SessionSignatureReveal(sid) or SessionSignatureReveal(sid′) query.

– A issues a SecretExponentReveal(sid) or SecretExponentReveal(sid′) query.

The simulation remains perfect, except with negligible probability. If A succeeds in the test session and S guesses
correctly the test session which happens with probability

(
(n−n1)

2m
)−1· Pr(E.1.2), S outputs CDH(C,D).

Analysis of E.1.3. Here IDi and ID j follows different implementation approaches. Without loss of generality
we assume, IDi follows the first implementation approach. The strongest queries that can be issued by A are (i)
Corrupt(IDi) and Corrupt(ID j), and (ii) An E phemeralKeyReveal(sid) query where sid is the test session and a
Corrupt(ID j) query. So it suffices to consider the following events:

• E.1.3.1: E.1.3 ∧ A issues Corrupt(IDi) and Corrupt(ID j) query.

• E.1.3.2: E.1.3 ∧ A issues E phemeralKeyReveal(sid) where sid is the test session and a Corrupt(ID j) query.
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For the simulation of event E.1.3, we modify the analysis of E.1.1.1 as follows:

• A ’s environment is simulated in exactly the same as E.1.1.1, but S chooses i, j ∈R {k | P̂k follows the second
implementation approach}

• S aborts if any of the following happens:

– A halts with a test session different from the tth session at IDi.

– A issues a SessionKeyReveal(sid) or SessionKeyReveal(sid′) query, where sid′ is the matching session of
sid.

– A issues an EstablishParty(IDi) or EstablishParty(ID j) query.

– A issues a SessionSignatureReveal(sid′) or SecretExponentReveal(sid′) query.

Under the same arguments as in analysis of E.1.1.1, S is a polynomial time CDH solver with probability(
(n−n1)

2m
)−1· Pr(E.1.3.1). However this contradicts the GDH assumption. Similar arguments hold for the

analysis of E.1.3.2.
Analysis of E.2. Event E.2 is the event that A succeeds in forging the signature of a session that is fresh and does
not have a matching session. This can be further analyzed case by case as follows:

• E.2.1: E.2 ∧ and both IDi and ID j follows the first implementation approach.

• E.2.2: E.2 ∧ and both IDi and ID j follows the second implementation approach.

• E.2.3: E.2 ∧ and both IDi and ID j follows different implementation approach.

If event E.2 occurs with non-negligible probability, then at least one of these events occurs with non-negligible
probability.
Analysis of E.2.1. Event E.2.1 can be further analyzed as follows:

• E.2.1.1: E.2.1 ∧ A issues a Corrupt(IDi) and

• E.2.1.2: E.2.1 ∧ A issues a E phemeralKeyReveal(sid) where sid is the test session.

These are the strongest query that A can issue in event E.2.1.
Event E.2.1.1: Here we modify the simulation in the analysis of E.1.1.3 to take as input Wi0 and X j0 ∈R G (for
IDi, S chooses di1 ∈R Z∗p and sets Xi0 = gdi1 ). The simulation environment remains perfect except with negligible
probability. If the challenger or solver S guesses the test session correctly and A succeeds with a proper forgery
σ0, then S outputs σ0 as the FDCR-1 forgery on messages IDi and ID j with respect to their public keys. S

succeeds with probability
(
(n−n1)

2m
)−1· Pr(E.2.1.1), which contradicts Proposition 3, unless Pr(E.2.1.1) is

negligible.
Event E.2.1.2: We modify the analysis of event E.1.1.2 slightly. Here the challenger aborts when A activates a
session matching the tth session at IDi. If A succeeds and S guesses correctly the test session then S outputs

X
w j0 ·e0+d j2
i (from σ0,wi0 ,d0,e0). S is polynomial, and if E.2.1.2 occurs with non-negligibe probability, then

Wj0 and X
w j0 ·e0+d j2
i with non-negligible probability. Hence, using the “oracle replay technique” [31], S yields a

polynomial time CDH solver, which succeeds with non-negligible probability; contradicting the GDH assumption.
Event E.2.2: There are two cases to distinguish in the analysis of E.2.2. The reason is the difficulties that arise
without matching when simulating a session initiated at B̂ without matching session. Suppose an attacker, which
does the following at some point of its execution as shown in Algorithm 1:
Let B be a class of polynomial time adversaries which at some point at time execute Sequence 1.
If event E.2.2 occurs with non-negligible probability, and if the adversary A /∈B, we can build a polynomial time
CDH solver S using A that succeeds with non-negligible probability.

Suppose that E.2.2 occurs with non-negligible probability. If A /∈B be a polynomial time attacker, using
A we can build a polynomial time FXCR-1 signature forger, which succeds with non-negligible probability. We
modify the analysis of event E.1.1.1 as follows:

• S takes as input Wi0,X j ∈R G.
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Algorithm 1: Sequence 1.

1 A issues the activation message (ID j,Pi) to obtain (Fj,Vj,Wj,X j)
2 Issue an arbitrary number of digest queries on

(
Fj,Vj,Wj,X jZi = 〈Fi,Vi,Wi,Xi〉, ID j, P̂i

)
where

Zi ∈R G4.
3 Choose Z′i ∈R {Zi} and send the activation query

(
P̂i, ID j,Fj,Vj,Wj,Z′i = 〈F ′i ,V ′i ,W ′i ,X ′i 〉

)
4 Issue a SecretExponentReveal or a SessionSignatureReveal query on the session(

ID j, P̂i,Fj,Vj,Wj,X jZ′i ,I
)

• S chooses i, j ∈R {k | P̂k follows the second implementation approach}; choose di1 ∈R Z∗p and sets Xi = gdi1 .

• At the activation query
(
P̂l , B̂,Wi

)
query, S does the following:

– S chooses sB ∈R Z∗p, d ∈R Z∗p and sets Wj =
(

gsB ·X−1
j

)d−1

. If there is some d′ such that
(
Wi,Wj, P̂l , ID j,d′

)
already belongs to Lh1, S aborts, else S appends

(
Wi,Wj, P̂l , ID j,d′

)
to Lh1. S creates a session with

identifier sid′ =
(
B̂, P̂l ,Fj,Vj,Wj,X j,Fi,Vi,Wi,XiR

)
and completes the session sid′ and provides A with(

ID j, P̂l ,Fj,Vj,Wj,X j
)
.

• At A ’s activation query
(
ID j, P̂l

)
, S does the following:

– S chooses sB ∈R Zp∗,d ∈R Zp∗ and sets Wj =
(

gsB ·X−1
j

)e−1

. If there is some Wi and e′ such that(
Wj,Wi, ID j, P̂l ,e′

)
already belongs to Lh1, S aborts. S creates a session with identifier

sid′ =
(
ID j, P̂l ,Fj,Vj,Wj,X j?,R

)
, and provides A with

(
ID j, P̂l ,Fj,Vj,Wj,X j

)
. Later, when A issues

activation query of the form
(
ID j, P̂l ,Wj,Wi

)
, S sets e =

(
Wj,Wi, ID j, P̂l

)
and completes the session(

ID j, P̂l ,Fj,Vj,Wj,X j,Fi,Vi,Wi,XiI
)

• When A activates the tth session at IDi, if the peer is not ID j, S aborts, else S provides A with (IDi, ID j,Fi,Vi,Wi0,Xi).

• S aborts if any of the following happens:

– A activates at ID j a session matching the tth session at IDi.

– A halts with a test session different from the tth session at IDi.

– A issues a SessionKeyReveal(sid) query.

– A issues an EstablishParty(IDi) or EstablishParty(ID j) query.

– A issues a Corrupt(ID j) query.

– A issues a SessionSignatureReveal(sid) or SecretExponentReveal(sid) query.

• If A comes up with a guess σ0, S outputs :(
σ0

(
W e0

j0 ·X j

)−di1
)d0

−1

=(Wi0)
w j0·e0+d j1 as a guess for FXCR-1 forgery on challenge Wi0 and message (IDi, ID j),

with respect to X j.

The above simulation of A ’s environment remains perfect except with negligible probability. The problem happens
when the same ephemeral component Wj is chosen twice in sessions involving ID j with the same peer P̂l . However
this happens with probability less than m

q (which is negligible). Hence the simulation of E.2.2 almost remains
perfect. When A comes up with the proper forgery, and S properly guesses the test session, S outputs a valid
FXCR-1 forgery on challenge Wi0 and message (IDi, ID j). S succeeds with probability

(
(n−n1)

2m
)−1· Pr(E.2.2)

which contradicts Theorem 1, unless Pr(E.2.2) is negligible. Except with negligible probability E.2.2 cannot occur
for attackers not in B.
For attackers in B instead of doing a simulation we will bound their success probability by another class of
attackers which can be efficiently simulated. Let B ∈B and let d(|q|) be an upper bound on the number of Zi’s A
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chooses at step 2 of the algorithm Sequence 1. For all B ∈B, let BR be an attacker, which in addition to B’s input
receives the vector v =

(
(i0i , · · · , imi ),(Z11, · · · ,Z1d), · · · ,(Zm1, · · · ,Zmd)

)
where Zi j’s ∈R G∗and i0i ∈ [d + 1] (recall

there are n parties and each party can activated at most m times), and performs exactly the same way as B, except
that whenever B executes the sequence of queries Sequence 1 for the l-th time, BR executes the modified sequence
Sequence 2. And, when B uses, for any other computation, a Zi chosen during the l-th execution Sequence 1, BR
uses Zli.

Algorithm 2: Sequence 2.

1 A issues the activation message (B,Pi) to obtain (FB,VB,WB)
2 Issue an arbitrary number of digest queries on

(
FB,VB,WB,Zli = 〈Fli,Vli,Wli〉, B̂, P̂i

)
where

Zli ∈R {Zl1 · · · ,Zld}.
3 Sends the activation message

(
B̂, P̂i,Fj,Vj,Wj,X j,Zi0l

)
4 Issue a SecretExponentReveal or a SessionSignatureReveal query on the session(

ID j, P̂i,Fj,Vj,Wj,X j,Zi0l
,I
)

Let V be the set of resource vectors and t the number of times B executes Sequence 1 (t ≤ m). For v ∈ V, we say
that BR(v) matches B, if for all l ∈ [t + 1], the l-th time B executes Sequence 1, it chooses {Zl1 · · · ,Zld} in step
2, and poses

(
ID j, P̂i,Fj,Vj,Wj,X j,Zi0l

)
at step 3. If BR(v) matches B, Pr(E.2.2B) = Pr(E.2.2BR (v)). For B ∈B,

we say v ∈ V possible if there is nonzero probability that BR(v) matches B. Let Poss(V) denote the set of possible
resource vectors. For every run of B, there is some v ∈ Poss(V) such that BR(v) matches B. Hence:

Pr(E.2.2B) ≤ maxv∈Poss(V) Pr(E.2.2BR (v))

To show that the success probability in E.2.2 of an attacker B∈B is negligible, it suffices to show that Pr(E.2.2BR(v))
is negligi ble for all v ∈ Poss(V).For this purpose, the simulator is provided with v. Note here that the simulator
and the attacker BR are jointly used to create a FXCR-1 forgery. We modify the activation of the sessions initiated
at ID j as follows:

• When the attacker issues the activation message (ID j,Pi) for the l-th time, the simulator S does the following

– Choose sB ∈R [q], e ∈R Zp∗ and set Wj =
(

gsB X−1
j

)e−1

and

e = H1

(
Fj,Vj,Wj,X j,Zi0l

, ID j, P̂l

)
.

– Creates a session with identifier
(
B̂, P̂i,Fj,Vj,Wj,X j?,I

)
and provide A with

(
ID j, P̂i,Fj,Vj,Wj,X j

)
.

• When the attacker issues a SecretExponentReveal
(
I , ID j, P̂i,Fj,Vj,Wj,Zi0l

)
, the simulator provides the attacker

with sB.

The simulation is consistent for all v ∈ Poss(V) and BR. As S knows, from the resource vector, what will
be the incoming ephemeral public key, SecretExponentReveal and SessionSignatureReveal queries are consis-
tently simulated. If BR(v) succeeds in E.2.2 with non-negligible probability, S succeeds in FXCR-1 forgery with
non-negligible probability. Hence Pr(E.2.2BR (v)) is negligible, for all v ∈ Poss(V) and BR. Hence we conclude
Pr(E.2.2B) is negligible.
Analysis of E.2.3. Here the matching session to the test session does not exist and both the parties follow different
implementation approach. Event E.2.3 can be analyzed as follows:

• E.2.3.1: E.2.3 ∧ IDi follows the first implemetation approach.

• E.2.3.2: E.2.3 ∧ IDi follows the second implemetation approach.

E.2.3.1 can be further analysed as follows:

• E.2.3.1.1: E.2.3.1 ∧ A issues Corrupt(IDi) query.
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• E.2.3.1.2: E.2.3.1 ∧ A issues E phemeralKeyReveal(sid) where sid is the test session.

Event E.2.3.1.1: Let E.2.3.1.1 occur with non-negligible probability. We modify the analysis of E.1.1.1 to take
as input wi0,X j ∈R G and simulate ID j’s role as in E.2.2 (IDi’s role is simulated as in E.1.1.1). The arguments
for the class of attackers B for which we bound the success probability by a different efficiently simulatable class
of attackers remains valid. So the success probability of A is related to the success probability of the FXCR-1
forger in the sense that if A succeeds with non-negligible probability, then the FXCR-1 forger can forge FXCR-1
signature forger which succeeds with non-negligible probability in probabilistic polynomial time; contradicting
Proposition 1.
Event E.2.3.1.2: Let E.2.3.1.2 occur with non-negligible probability. We modify the analysis of E.1.1.1 to take as
input Xi,X j ∈R G . Also if A activates a session matching the tth session at A, the challenger aborts. We simulate
IDi’s role as in E.1.1.2 and ID j’s role as in E.2.2, and the arguments against the class of attackers B also holds

good here. From any valid forgery σ0, S outputs σ0

(
W e0

j0 ·X j

)−wi0·d0
= (Xi)

w j0·e0+d j1 .

Event E.2.3.2: If A follows the second implementation approach, we make S take as input Xi,X j ∈R G , simulate
IDi’s role as that of B̂ in E.2.2, and ID j’s role as in E.1.1.2. If A activates the tth session at A, the solver S
chooses wi0 ∈R Z∗p as gives (IDi, ID j,Wi0) as input to A . Also if A activates a session matching the tth session at
IDi, the challenger aborts. If A succeeds with non-negligible probability, S outputs (Xi)

w j0·e0+d j1 as solution to
the CDH problem and using the oracle replay technique, S yields an efficient CDH solver. This contradicts the
GDH assumption. Hence E.2.3 cannot occur except with negligible probability.

7 Conclusion
In this paper we proposed a new security model for ID-AKE protocols that is resilient to leakage of intermediate
values that may be possible if RAM-Scraper-like malware are planted on the host machine. These malwares once
implanted in the host machine gets all the sensitive data that is stored in the insecure memory and leak it to the
adversary via remote logins. The main advantage of our proposed protocol is is that it is single round, pairing-free
and completely asynchronous. To the best of our knowledge our ID-AKE protocol is the first to withstand these
stronger class of attacks apart from the regular attacks that are handled by the black box models like the eCK
model. Our protocol also admits a tight security proof under the GDH assumption in the random oracle model.
The next advantage is that forking lemma is not used in the security reduction contributing to the tight security
reduction. It would be interesting to achieve the same security guarantees in the standard model. In particular we
leave open the construction of ID-AKE in standard model in our new ID-seCK model resilient to these advanced
classes of threats.
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