Probabilistic Termination and Composability
of Cryptographic Protocols*

Ran Cohen' Sandro Corettit Juan Garay®¥ Vassilis Zikas!¥

February 19, 2018

Abstract

When analyzing the round complexity of multi-party protocols, one often overlooks the
fact that underlying resources, such as a broadcast channel, can by themselves be expensive to
implement. For example, it is well known that it is impossible to implement a broadcast channel
by a (deterministic) protocol in a sub-linear (in the number of corrupted parties) number of
rounds.

The seminal works of Rabin and Ben-Or from the early 80’s demonstrated that limitations
as the above can be overcome by using randomization and allowing parties to terminate at
different rounds, igniting the study of protocols over point-to-point channels with probabilistic
termination and expected constant round complexity. However, absent a rigorous simulation-
based definition, the suggested protocols are proven secure in a property-based manner or via
ad hoc simulation-based frameworks, therefore guaranteeing limited, if any, composability.

In this work, we put forth the first simulation-based treatment of multi-party cryptographic
protocols with probabilistic termination. We define secure multi-party computation (MPC)
with probabilistic termination in the UC framework and prove a universal composition theo-
rem for probabilistic-termination protocols. Our theorem allows to compile a protocol using
deterministic-termination hybrids into a protocol that uses expected-constant-round protocols
for emulating these hybrids, preserving the expected round complexity of the calling protocol.

We showcase our definitions and compiler by providing the first composable protocols (with
simulation-based security proofs) for the following primitives, relying on point-to-point channels:
(1) expected-constant-round perfect Byzantine agreement, (2) expected-constant-round perfect
parallel broadcast, and (3) perfectly secure MPC with round complexity independent of the
number of parties.

*An extended abstract of this work appeared at CRYPTO 2016 [17].

TDepartment of Computer Science, Bar-Tlan University. E-mail: cohenrb@cs.biu.ac.il. Work supported by a
grant from the Israel Ministry of Science, Technology and Space (grant 3-10883) and by the National Cyber Bureau
of Israel.

iDepartment of Computer Science, ETH Zurich. E-mail: corettis@inf.ethz.ch. This author was supported in
part by the Swiss NSF project no. 200020-132794.

$Yahoo Research. E-mail: garay@yahoo-inc.com.

TWork done in part while the author was visiting the Simons Institute for the Theory of Computing, supported
by the Simons Foundation and by the DIMACS/Simons Collaboration in Cryptography through NSF grant #CNS-
1523467.

IDepartment of Computer Science, RPI. E-mail: vzikas@cs .rpi.edu. This author was supported in part by the
Swiss NSF Ambizione grant PZ00P2_.142549.

Contents

Introduction
The Model

Secure Computation with Probabilistic Termination

3.1 Canonical Synchronous Functionalities
3.2 Probabilistic Termination in UC

(Fast) Composition of Probabilistic-Termination Protocols

4.1 Composition with Deterministic Termination
4.2 Composition with Probabilistic Termination
4.3 Wrapping Secure Channels

Applications of Our Fast Composition Theorem

5.1 Fast and Perfectly Secure Byzantine Agreement
5.2 Fast and Perfectly Secure Parallel Broadcast
5.3 Fast and Perfectly Secure SFE oo oL

On Parallel (In)Composability of Protocols with Probabilistic Termination

B The Model (Cont’d)

Composition of Probabilistic-Termination Protocols (Cont’d)

C.1 Composition with Deterministic Termination (Cont’d)
C.2 Composition with Probabilistic Termination (Cont’d)

Applications of Our Fast Composition Theorem (Cont’d)

D.1 Fast and Perfectly Secure Byzantine Agreement (Cont’d)
D.2 Fast and Perfectly Secure Parallel Broadcast (Cont’d)

13
14
16
19

21
21
24
26

30

30

32
33
35

1 Introduction

In secure multi-party computation (MPC) [56, 33] n parties Py, ..., P, wish to jointly perform a
computation on their private inputs in a secure way, so that no coalition of cheating parties can
learn more information than their outputs (privacy) or affect the outputs of the computation any
more than by choosing their own inputs (correctness).

While the original security definitions had the above property-based flavor (i.e., the protocols
were required to satisfy correctness and privacy, potentially along with other security properties,
such as fairness and input independence), it is by now widely accepted that security of multi-party
protocols should be argued in a simulation-based manner. Informally, in the simulation paradigm
for security, the protocol execution is compared to an ideal world where the parties have access to
a trusted party (aka the “ideal functionality”) that captures the security properties the protocol
is required to achieve. The trusted party takes the parties’ inputs and performs the computation
on their behalf. A protocol is regarded as secure if for any adversary attacking it, there exists an
ideal adversary (the simulator) attacking the execution in the ideal world, such that no external
distinguisher (environment) can tell the real and the ideal executions apart.

There are several advantages in proving a protocol secure in this way. For starters, the definition
of the functionality captures all security properties the protocol is supposed to have, and therefore
its design process along with the security proof often exposes potential design flaws or issues that
have been overlooked in the protocol design. A very important feature of many simulation-based
security definitions is composability, which ensures that a protocol can be composed with other
protocols without compromising its security. Intuitively, composability ensures that if a protocol
79 which uses a “hybrid” G (a broadcast channel, for example) securely realizes functionality F, and
protocol p securely realizes the functionality G, then the protocol /9, which results by replacing
in 7 calls to G by invocations of p, securely realizes F. In fact, simulation-based security is the
one and only way we know to ensure that a protocol can be generically used to implement its
specification within an arbitrary environment.

Round complexity. The prevalent model for the design of MPC protocols is the synchronous
model, where the protocol proceeds in rounds and all messages sent in any given round are received
by the beginning of the next round. In fact, most if not all implemented and highly optimized MPC
protocols (e.g., [22, 24, 44, 16, 50]) are in this model. When executing such synchronous protocols
over large networks, one needs to impose a long round duration in order to account for potential
delay at the network level, since if the duration of the rounds is too short, then it is likely that
some of the messages that arrive late will be ignored or, worse, assigned to a later round. Thus,
the round complexity, i.e., the number of rounds it takes for a protocol to deliver outputs, is an
important efficiency metric for such protocols and, depending on the network parameters, can play
a dominant role in the protocol’s running time.

An issue often overlooked in the analysis of the round complexity of protocols is that the relation
between a protocol’s round complexity and its actual running time is sensitive to the “hybrids”
(e.g., network primitives) that the protocol is assumed to have access to. For example, starting with
the seminal MPC works [56, 33, 6, 15, 54|, a common assumption is that the parties have access to a
broadcast channel, which they invoke possibly in every round. In reality, however, such a broadcast
channel might not be available and would have to be implemented by a broadcast protocol designed
for a point-to-point network. Using a standard (deterministic) broadcast protocol for this purpose
incurs a linear blowup (in 7, the number of parties') on the round complexity of the MPC protocol,

"More precisely, in the number of corruptions a protocol can tolerate, which is a constant fraction of n.

as no deterministic broadcast protocol can tolerate a linear number of corruptions and terminate in
a sublinear number of rounds [29, 26]. Thus, even though the round complexity of these protocols is
usually considered to be linear in the multiplicative depth d of the computed circuit, in reality their
running time could become linear in nd (which can be improved to O(n + d) [41]) when executed
over point-to-point channels.?

In fact, all the so-called constant-round multi-party protocols (e.g., [45, 3, 21, 39, 1, 31, 36, 51])
rely on broadcast rounds (rounds in which parties make calls to a broadcast channel) and therefore
their running time when broadcast is implemented by a standard protocol would explode to be
linear in n instead of constant.> As the results from [29, 26] imply, this is not a consequence of
the specific choice of protocol but a limitation of any protocol in which there is a round such that
all parties are guaranteed to have received their outputs; consistently with the literature on fault-
tolerant distributed computing, we shall refer to protocols satisfying this property as deterministic-
termination protocols. In fact, to the best of our knowledge, even if we allow a negligible chance for
the broadcast to fail, the fastest known solutions tolerating a constant fraction of corruptions follow
the paradigm from [28] (see below), which requires a poly-logarithmic (in n) number of rounds.*

Protocols with probabilistic termination. A major breakthrough in fault-tolerant dis-
tributed algorithms (recently honored with the 2015 Dijkstra Prize in Distributed Computing),
was the introduction of randomization to the field by Ben-Or [4] and Rabin [53], which, effectively,
showed how to circumvent the above limitation by using randomization. Most relevant to this
submission, Rabin [53] showed that linearly resilient Byzantine agreement protocols [52, 47] (BA,
related to broadcast, possibility- and impossibility-wise) in expected constant rounds were possible,
provided that all parties have access to a “common coin” (i.e., a common source of randomness).’
This line of research culminated with the work of Feldman and Micali [28], who showed how to
obtain a shared random coin with constant probability from “scratch,” yielding a probabilistic BA
protocol tolerating the maximum number of misbehaving parties (¢t < n/3) that runs in expected
constant number of rounds. The randomized BA protocol in [28] works in the information-theoretic
setting; these results were later extended to the computational setting by Fitzi and Garay [30] and
by Katz and Koo [40], who showed that assuming digital signatures there exists an (expected-)
constant-round protocol for BA tolerating ¢ < n/2 corruptions. The speedup on the running time
in all these protocols, however, comes at the cost of uncertainty, as now they need to give up
on guaranteed (eventual) termination (no fixed upper bound on their running time®) as well as
on simultaneous termination (a party that terminates cannot be sure that other parties have also
terminated”) [25]. These issues make the simulation-based proof of these protocols a very delicate
task, which is the motivation for the current work.

2Throughout this work we will consider protocols in which all parties receive their output. If one relaxes this
requirement (i.e., allows that some parties may not receive their outputs and give up on fairness) then the techniques
of Goldwasser and Lindell [35] allow for replacing broadcast with a constant-round multi-cast primitive. In fact, we
note that even security with identifiable abort [38] cannot be achieved in general without the ability to compute
broadcast [20, 19].

3We remark that even though those protocols are for the computational setting, the lower bound on broadcast
round complexity also applies.

4Note that this includes even FHE-based protocols, as they also assume a broadcast channel and their security
fails if multi-cast over point-to-point channels is used instead.

5Essentially, the value of the coin can be adopted by the honest parties in case disagreement at any given round
is detected, a process that is repeated multiple times.

SThroughout this paper we use running time and round complexity interchangeably.

"It should be noted, however, that in many of these protocols there is a known (constant) “slack” of ¢ rounds,
such that if a party terminates in round r, then it can be sure that every honest party will have terminated by round
r+c.

What made the simulation-based approach a more accessible technique in security proofs was
the introduction simulation-based security frameworks. The ones that stand out in this develop-
ment, and most often used in the literature, are Canetti’s modular composition (aka stand-alone
security) [9] and the universal composition (UC) frameworks [10, 11]. The former defines security
of synchronous protocols executed in isolation (i.e., only a single protocol is run at a time, and
whenever a subroutine-protocol is called, it is run until its completion); the latter allows protocols
to be executed alongside arbitrary (other) protocols and be interleaved in an arbitrary manner.
We remark that although the UC framework is inherently asynchronous, several mechanisms have
been proposed to allow for a synchronous execution within it (e.g., [11, 46, 43, 12]).

Despite the widespread use of the simulation-based paradigm to prove security of protocols with
deterministic termination, the situation has been quite different when probabilistic-termination
protocols are considered. Here, despite the existence of round-efficient BA protocols as mentioned
above [28, 40], to our knowledge, no formal treatment of the problem in a simulation-based model
exists, which would allow us to apply the ingenious ideas of Rabin and Ben-Or in order to speed
up cryptographic protocols. We note that Katz and Koo [40] even provided an expected-constant-
round MPC protocol using their fast BA protocol as a subroutine, employing several techniques to
ensure proper use of randomized BA. However, in lack of a formal treatment, existing constructions
are usually proved secure in a property-based manner or rely on ad hoc, less studied security
frameworks [49].8

A simulation-based and composable treatment of such probabilistic-termination (PT for short)
protocols would naturally allow, for example, to replace the commonly used broadcast channel with
a broadcast protocol, so that the expected running time of the resulting protocol is asymptotically
the same as the one of the original (broadcast-hybrid) protocol. A closer look at this replacement,
however, exposes several issues that have to do not only with the lack of simulation-based security
but also with other inherent limitations. Concretely, it is usually the case in an MPC protocol that
the broadcast channel is accessed by several (in many cases by all) parties in the same (broadcast)
round in parallel. Ben-Or and El-Yaniv [5] observed that if one naively replaces each such invocation
by a PT broadcast protocol with expected constant running-time, then the expected number of
rounds until all broadcasts terminate is no longer constant; in fact, it is not hard to see that in
the case of [28], the expected round complexity would be logarithmic in the number of instances
(and therefore also in the player-set size). (We expand on the reason for this blowup in the round
complexity in Appendix A.) Nevertheless, in [5] a mechanism was proposed for implementing such
parallel calls to broadcast so that the total number of rounds remains constant in expectation.

The difficulties arising with generic parallel composition are not the only issue with PT proto-
cols. As observed by Lindell et al. [49], composing such protocols in sequence is also problematic.
The main issue here is that, as already mentioned, PT protocols do not have simultaneous termi-
nation and therefore a party cannot be sure how long after he receives his output from a call to
such a PT protocol he can safely carry on with the execution of the calling protocol. Although PT
protocols usually guarantee a constant “slack” of rounds (say, ¢) in the output of any two honest
parties, the naive approach of using this property to synchronize the parties (i.e., wait ¢ rounds
after the first call, 2¢ rounds after the second call, and so on) imposes an exponential blowup on the
round complexity of the calling protocol. To resolve this, [49] proposed using fixed points in time
at which a re-synchronization subroutine is executed, allowing the parties to ensure that they never
get too far out-of-sync. Alternative approaches for solving this issue were also proposed in [8, 40]
but, again, with a restricted (property-based) proof.

8 As we discuss below, the protocol of Katz and Koo has an additional issue with adaptive security in the rushing-
adversary model, as defined in the UC framework, similar to the issue exploited in [37].

Despite their novel aspects, the aforementioned results on composition of PT protocols do not
use simulation-based security, and therefore, it is unclear how (or if) they could be used to, for
example, instantiate broadcast within a higher-level cryptographic protocol. In addition, they do
not deal with other important features of modern security definitions, such as adaptive security and
strict polynomial time execution. In fact, this lack of a formal cryptographic treatment places some
of their claims at odds with the state-of-the-art cryptographic definitions. Somewhat pointedly, [5]
claimed adaptive security, which, although it can be shown to hold in a property-based definition,
is not achieved by the specified construction when simulation-based security is considered (cf.
Section 5).

Our contributions. In this paper, we provide the first formal simulation-based (and composable)
treatment of MPC with probabilistic termination. Our treatment builds on Canetti’s universal
composition (UC) framework [10, 11]. In order to take advantage of the fast termination of PT
protocols, parties typically proceed at different paces and therefore protocols might need to be
run in an interleaved manner, e.g., in an MPC protocol a party might initiate the protocol for
broadcasting his r-round message before other parties have received output from the broadcasting
of messages for round r — 1. This inherent concurrency along with its support for synchrony makes
the UC framework the natural candidate for our treatment.

Our motivating goal, which we achieve, is to provide a generic compiler that allows us to
transform any UC protocol 7, even one that cannot be realized in the real world, making calls
to deterministic-termination UC protocols p; in a “stand-alone fashion” (similar to [9], i.e., the
protocols p; are invoked sequentially and in each round exactly one protocol is being executed
by all the parties) into a (probabilistic-termination) protocol «’ (where the parties are no longer
synchronized and the hybrids are invoked concurrently) that can be realized in the real world,
and in which each p; is replaced by a PT protocol p,. The compiled protocol 7" achieves the same
security as 7 and has (expected) round complexity proportional to), d;r;, where d; is the expected
number of calls m makes to p; and r; is the expected round complexity of p;.

Toward this goal, the first step is to define what it means for a protocol to UC-securely realize a
functionality with probabilistic termination in a simulation-based manner, by proposing an explicit
formulation of the functionality that captures this important protocol aspect. The high-level idea
is to parameterize the functionality with an efficiently sampleable distribution D that provides an
upper bound on the protocol’s running time (i.e., number of rounds), so that the adversary cannot
delay outputs beyond this point (but is allowed to deliver the output to honest parties earlier, and
even in different rounds).

Next, we prove our universal composability result. Informally, our result provides a generic com-
piler that takes as input a “stand-alone” protocol m, realizing a probabilistic-termination function-
ality FP (for a given distribution D) while making sequential calls to (deterministic-termination)
secure function evaluation (SFE)-like functionalities, and compiles it into a new protocol 7’ in
which the calls to the SFEs are replaced by probabilistic-termination protocols realizing them. The
important feature of our compiler is that in the compiled protocol, the parties do not need to wait
for every party to terminate their emulation of each SFE to proceed to the emulation of the next
SFE. Rather, shortly after a party (locally) receives its output from one emulation, it proceeds to
the next one. This yields an (at most) multiplicative blowup on the expected round complexity
as discussed above. In particular, if the protocols used to emulate the SFEs are expected constant
round, then the expected round complexity of 7’ is the same (asymptotically) as that of .

We then showcase our definition and composition theorem by providing simulation-based (there-
fore composable) probabilistic-termination protocols and security proofs for several primitives re-

lying on point-to-point channels: expected-constant-round perfect Byzantine agreement, expected-
constant-round perfect parallel broadcast, and perfectly secure MPC with round complexity inde-
pendent of the number of parties. Not surprisingly, the simulation-based treatment reveals several
issues, both at the formal and at the intuitive levels, that are not present in a property-based
analysis, and which we discuss along the way. We now elaborate on each application in turn.
Regarding Byzantine agreement, we present a protocol that perfectly securely UC-implements the
probabilistic-termination Byzantine agreement functionality for ¢ < n/3 in an expected-constant
number of rounds. (We will use RBA to denote probabilistic-termination BA, as it is often referred
to as “randomized BA.”?) Our protocol follows the structure of the protocol in [28], with a modifi-
cation inspired by Goldreich and Petrank [34] to make it strict polynomial time (see the discussion
below), and in a sense it can be viewed as the analogue for RBA of the well-known “CLOS” protocol
for MPC [13]. Indeed, similarly to how [13] converted (and proved) the “GMW?” protocol [32] from
statically secure in the stand-alone setting into an adaptively secure UC version, our work trans-
forms the broadcast and BA protocols from [28] into adaptively UC-secure randomized broadcast
and RBA protocols.'”

Our first construction above serves as a good showcase of the power of our composition theo-
rem, demonstrating how UC-secure RBA is built in a modular manner: First, we de-compose the
subroutines that are invoked in [28] and describe simple(r) (SFE-like) functionalities corresponding
to these subroutines; this provides us with a simple “backbone” of the protocol in [28] making calls
to these hybrids, which can be easily proved to implement expected-constant-round RBA. Next,
we feed this simplified protocol to our compiler which outputs a protocol that implements RBA
from point-to-point secure channels; our composition theorem ensures that the resulting protocol
is also expected constant round.

There is a sticky issue here that we need to resolve for the above to work: the protocol in [28]
does not have guaranteed termination and therefore the distribution of the terminating round is
not sampleable by a strict probabilistic polynomial-time (PPT) machine.!! A way around this issue
would be to modify the UC model of execution so that the corresponding I'TMs are expected PPT
machines. Such a modification, however, would impact the UC model of computation, and would
therefore require a new proof of the composition theorem, a trickier task than one might expect,
as the shift to expected polynomial-time simulation is known to introduce additional conceptual
and technical difficulties (cf. [42]), whose resolution is beyond the scope of this work. Instead, here
we take a different approach which preserves full compatibility with the UC framework: We adapt
the protocol from [28] using ideas from [34] so that it implements a functionality which samples
the terminating round with almost the same probability distribution as in [28], but from a finite
(linear-size) domain; as we show, this distribution is sampleable in strict polynomial time and can
therefore be used by a standard UC functionality.

Next, we use our composition theorem to derive the first simulation-based and adaptively (UC)
secure parallel broadcast protocol, which guarantees that all broadcast values are received within
an expected constant number of rounds. This extends the results from [5, 40] in several ways:
first, our protocol is perfectly UC-secure which means that we can now use it within a UC-secure
SFE protocol to implement secure channels, and second, it is adaptively secure against a rushing

9BA is a deterministic output primitive and it should be clear that the term “randomized” can only refer to the
actual number of rounds; however, to avoid confusion we will abstain from using this term for functionalities other
than BA whose output might also be probabilistic.

10 As we show, the protocol in [28] does not satisfy input independence, and therefore is not adaptively secure in
a simulation-based manner (cf. [37]).

ALl entities in UC, and in particular ideal functionalities, are strict interactive PPT Turing machines, and the
UC composition theorem is proved for such PPT ITMs.

adversary.'?

Finally, by applying once again our compiler to replace calls to the broadcast channel in the
SFE protocol by Ben-Or, Goldwasser, and Wigderson [6] (which, recall, is perfectly secure against
t < n/3 corruptions in the broadcast-hybrid model [2]) by invocations to our adaptively secure UC
parallel broadcast protocol, we obtain the first UC-secure PT MPC protocol in the point-to-point
secure-channels model with (expected) round complexity O(d), independently of the number of
parties, where d is the multiplicative depth of the circuit being computed. As with RBA, this
result can be seen as the first analogue of the UC compiler by Canetti et al. [13] for SFE protocols
with probabilistic termination.

We stress that the use of perfect security to showcase our composition theorem is just our
choice and not a restriction of our composition theorem. In fact, our theorem can be also applied
to statistically or computationally secure protocols. Moreover, if one is interested in achieving
better constants in the (expected) round complexity, then one can use SFE protocols that attempt
to minimize the use of the broadcast channel (e.g., [41]). Our composition theorem will give a
direct methodology for this replacement and will, as before, eliminate the dependency of the round
complexity from the number of parties.'?

Follow-up work. In the current work the focus is on round-preserving sequential composition
of arbitrary probabilistic-termination protocols. Parallel composition is only considered for specific
functionalities, in particular for the parallel broadcast functionality. In [18] the round-preserving
parallel composition of arbitrary protocols was considered, showing both positive and negative
results.

2 The Model

We consider n parties Pi,..., P, and an adaptive t-adversary, i.e., the adversary corrupts up to
t parties during the protocol execution.'® We work in the UC model and assume the reader has
some familiarity with its basics. To capture synchronous protocols in UC we use the framework of
Katz et al. [43]. Concretely, the assumption that parties are synchronized is captured by assuming
that the protocol has access to a “clock” functionality Ferock. The functionality Fepock maintains
an indicator bit which is switched once all honest parties request the functionality to do it. At any
given round, a party asks Ferock to turn the bit on only after having finished with all operations
for the current round. Thus, this bit’s value can be used to detect when every party has completed
his round, in which case they can proceed to the next round. As a result, this mechanism ensures
that no party sends his messages for round r + 1 before every party has completed round r. For
clarity, we refrain from writing this clock functionality in our theorem statement; however, all our
results assume access to such a clock functionality.

In the communication network of [43], parties have access to bounded-delay secure channels.
These channels work in a so-called “fetch” mode, i.e., in order to receive his output the receiver
issues a fetch-output command. This allows to capture the property of a channel between a sender
P, and a receiver P,, delaying the delivery of a message by an amount 4: as soon as the sender P;
submits an input y (message to be sent to the receiver) the channel functionality starts counting

2 Although security against a “dynamic” adversary is also claimed in [5], the protocol does not implement the
natural parallel broadcast functionality in the presence of an adaptive adversary (see Section 5).

3Note that even a single round of broadcast is enough to create the issues with parallel composition and non-
simultaneous termination discussed above.

1n contrast, a static adversary chooses the set of corrupted parties at the onset of the computation.

how many times the receiver requests it.!> The first § — 1 such fetch-output requests (plus all such
requests that are sent before the sender submits input) are ignored (and the adversary is notified
about them); the 6’th fetch-output request following a submitted input y from the sender results
in the channel sending (output,y) to P.. In this work we take an alternative approach and model
secure channels as special simple SFE functionalities. These SFEs also work in a fetch mode' and
provide the same guarantee as the bounded-delay channels.

There are two important considerations in proving the security of a synchronous UC protocol:
(1) The simulator needs to keep track of the protocol’s current round, and (2) because parties
proceed at the same pace, they can synchronize their reaction to the environment; most fully
synchronous protocols, for example, deliver output exactly after a given number of rounds. In [43]
this property is captured as follows: The functionality keeps track of which round the protocol
would be in by counting the number of activations it receives from honest parties. Thus, if the
protocol has a regular structure, where every party advances the round after receiving a fixed
number p of activations from its environment (all protocols described herein will be in this form),
the functionality can easily simulate how rounds in the protocol advance by incrementing its round
index whenever it receives p messages from all honest parties; we shall refer to such a functionality
as a synchronous functionality. Without loss of generality, whenever clear from the context we will
describe functionalities for p = 1, i.e., once a functionality receives a message from every party
it proceeds to the simulation of the next protocol round. We stress that this is done to simplify
the description, and in an actual evaluation, as in the synchronous setting of [43], in order to give
the simulator sufficiently many activations to perform its simulation, functionalities typically have
to wait for g > 1 messages from each party where the last u — 1 of these messages are typically
“dummy” activations (usually of the type (fetch-output,-)).

To further simplify the description of our functionalities, we introduce the following terminology.
We say that a synchronous functionality F is in round p if the current value of the above internal
round counter in F is A = p. All synchronous functionalities considered in this work have the
following format: They can receive any message as input from the parties, however, they ignore all
messages until the first message of the special form (input, -); as soon as an honest party sends its
input message, any future message by this party is treated as a (fetch-output, -) message. Refer
to Appendix B for a more detailed overview of [43] and discussion of our model.

3 Secure Computation with Probabilistic Termination

The work of Katz et al. [43] addresses (synchronous) cryptographic protocols that terminate in a
fixed number of rounds for all honest parties. However, as mentioned in Section 1, Ben-Or [4] and
Rabin [53] showed that in some cases, great asymptotic improvements on the ezpected termination
of protocols can be achieved through the use of randomization. Recall, for example, that in the
case of BA, even though a lower bound of £ + 1 rounds of any deterministic BA protocol tolerating
t corruptions exists [29, 26], Rabin’s global-coin technique (fully realized later on in [28]) yields an
expected constant round protocol. This speedup, however, comes at a price, namely, of relinquishing
both fized and simultaneous termination [25]: the round complexity of the corresponding protocols
may depend on random choices made during the execution, and parties may obtain output from
the protocol in different rounds.

In this section, we show how to capture protocols with such probabilistic termination (PT),

5 Following the simplifying approach of [43], we assume that communication channels are single use, thus, each
message transmission uses an independent instance of the channel (cf. Appendix B).
6In fact, for simplicity we assume that they deliver output on the first “fetch”.

i.e., without fixed and without simultaneous termination, within the UC framework. To capture
probabilistic termination, we first introduce a functionality template Fgr called a canonical syn-
chronous functionality (CSF). Fesr is a simple two-round functionality with explicit (one-round) in-
put and (one-round) output phases. Computation with probabilistic termination is then defined by
wrapping Fesr with an appropriate functionality wrapper that enables non-fixed, non-simultaneous
termination.

3.1 Canonical Synchronous Functionalities

At a high level, Fegp corresponds to a generalization of the UC-secure function evaluation (SFE)
functionality to allow for potential leakage on the inputs to the adversary and potential adversarial
influence on the outputs.!” In more detail, Fesr has two parameters: (1) a (possibly) randomized
function f that receives n + 1 inputs (n inputs from the parties and one additional input from the
adversary) and (2) a leakage function [that leaks some information about the input values to the
adversary.

Fesr proceeds in two rounds: in the first round all the parties hand Fegr their input values, and
in the second round each party receives its output. This is very similar to the standard (UC) SFE
functionality; the difference here is that whenever some input is submitted to Fegp, the adversary is
handed some leakage function of this input—similarly, for example, to how UC-secure channels leak
the message length to the adversary. The adversary can use this leakage when deciding the inputs
of corrupted parties. Additionally, he is allowed to input an extra message, which—depending on
the function f—might affect the output(s). The detailed description of F¢gp is given in Figure 1.

Functionality FZ. (P)

Fesr proceeds as follows, parametrized by a function f: ({0,1}* U{L})"*! — ({0,1}*)" and a leakage
function I: ({0,1}*U{L})™ — {0, 1}*, and running with parties P = {Py,..., P,} and an adversary S.

e Initially, set the input values x1,...,x,, the output values y1,...,y,, and the adversary’s value a
to L.

e In round p = 1:

— Upon receiving (adv-input, sid, v) from the adversary, set a < v.
— Upon receiving a message (input,sid,v) from some party P; € P, set z; <+ v and send
(leakage,sid, P;,l(x1,...,x,)) to the adversary.
e In round p = 2:
— Upon receiving (adv-input,sid, v) from the adversary, if y; = ... =y, = L, set a < v. Other-
wise, discard the message.

— Upon receiving (fetch-output,sid) from some party P; € P, if y; = ... = y, = L compute
(Y1,---,Yyn) = f(z1,...,2Zn,a). Next, send (output,sid,y;) to P; and (fetch-output,sid, P;) to
the adversary.

Figure 1: The canonical synchronous functionality

Next, we point out a few technical issues about the description of Fegp. Following the simplifica-
tions from Section 2, Fcgr advances its round as soon as it receives u = 1 message from each honest

"Looking ahead, this adversarial influence will allow us to describe BA-like functionalities as simple and intuitive
CSFs.

party. This ensures that the adversary cannot make the functionality stall indefinitely. Thus,
formally speaking, the functionality Fegr is not well-formed (cf. [13]), as its behavior depends on
the identities of the corrupted parties.'® We emphasize that the non-well-formedness relates only
to advancing the rounds, and is unavoidable if we want to restrict the adversary not to block the
evaluation indefinitely (cf. [43]).

Once an honest party sends its input, the adversary receives a leakage from the functionality,
and based on this information can corrupt the party, replace its input value, and send an additional
input message to the functionality. Note that the functionality will consider the latest input value
received by a party in order to allow the adversary such a behavior.

We point out that as a generalization of the SFE functionality, CSFs are powerful enough to
capture any deterministic well-formed functionality. In fact, all the basic (unwrapped) functional-
ities considered in this work will be CSFs. We now describe how standard functionalities from the
MPC literature can be cast as CSFs:

— SECURE MESSAGE TRANSMISSION (AKA SECURE CHANNEL). In the secure message trans-
mission (SMT) functionality, a sender P; with input x; sends its input to P;. Since Fgr is
an n-party functionality and involves receiving input messages from all n parties, we define

the two-party task using an n-party function. The function to compute is f;&(wl, ceey Ty, Q) =
(Ao &gy .., A) (where z; is the value of the j’th coordinate) and the leakage function is
1% (x1,...,2,) = y, where y = |z;| in case P; is honest and y = x; in case P; is corrupted.

We denote by Feijr the functionality Fogr when parametrized with the above functions fiJ and
14 for sender P; and receiver P;.

— BROADCAST. In the (standard) broadcast functionality, a sender P; with input x; distributes
its input to all the parties, i.e., the function to compute is f (x1,...,2n,a) = (2i,...,T;).
The adversary only learns the length of the message x; before its distribution, i.e., the leakage
function is I’ (21, ...,2,) = |7;|. This means that the adversary does not gain new information
about the input of an honest sender before the output value for all the parties is determined,
and in particular, the adversary cannot corrupt an honest sender and change its input after
learning the input message. We denote by F_. the functionality Fesy when parametrized with
the above functions f, and I’ , for sender P;.

— SECURE FUNCTION EVALUATION. In the secure function evaluation functionality, the
parties compute a randomized function g¢(z1,...,x,), i.e., the function to compute is

9 (x1,...,2n,a) = g(x1,...,2,). The adversary learns the length of the input values via
the leakage function, i.e., the leakage function is ly.(x1,...,2n) = (|z1],...,|zn]). We denote
by Fy the functionality Fesr when parametrized with the above functions f9 and I, for
computing the n-party function g.

— BYZANTINE AGREEMENT (AKA CONSENSUS). In the Byzantine agreement functionality,
defined for the set V', each party P; has input x; € V. The common output is computed such
that if n—t of the input values are the same, this will be the output; otherwise the adversary gets
to decide on the output. The adversary is allowed to learn the content of each input value from
the leakage (and so it can corrupt parties and change their inputs based on this information).

The function to compute is f,,(z1,...,Zn,a) = (y,...,y) such that y = z if there exists a value
x such that x = x; for at least n — ¢ input values z;; otherwise y = a. The leakage function
is l,,(z1,...,2,) = (21,...,2,). We denote by FY, the functionality Fesp when parametrized

with the above functions f,, and [,,, defined for the set V.

This is, in fact, also the case for the standard UC SFE functionality.

3.2 Probabilistic Termination in UC

Having defined CSFs, we turn to the notion of (non-reactive) computation with probabilistic ter-
mination. This is achieved by defining the notion of an output-round randomizing wrapper. Such a
wrapper is parametrized by an efficient probabilistic algorithm D, termed the round sampler, that
may depend on a specific protocol implementing the functionality. The round sampler D samples
a round number perm by which all parties are guaranteed to receive their outputs no matter what
the adversary strategy is. Moreover, since there are protocols in which all parties terminate in
the same round and protocols in which they do not, we consider two wrappers: the first, denoted
Witrict, ensures in a strict manner that all (honest) parties terminate in the same round, whereas
the second, denoted Wy, is more flexible and allows the adversary to deliver outputs to individual
parties at any time before round prerm-

A delicate issue that needs to be addressed is the following: While an ideal functionality can
be used to abstractly describe a protocol’s task, it cannot hide the protocol’s round complexity.
This phenomenon is inherent in the synchronous communication model: any environment can
observe how many rounds the execution of a protocol takes, and, therefore, the execution of the
corresponding ideal functionality must take the same number of rounds.'”

As an illustration of this issue, let F be an arbitrary functionality realized by some protocol 7.
If F is to provide guaranteed termination (whether probabilistic or not), it must enforce an upper
bound on the number of rounds that elapse until all parties receive their outputs. If the termination
round of 7 is not fixed (but may depend on random choices made during its execution), this upper
bound must be chosen according to the distribution induced by .

Thus, in order to simulate correctly, the functionality F and 7’s simulator & must coordinate
the termination round, and therefore, F must pass the upper bound it samples to S. However,
it is not sufficient to simply inform the simulator about the guaranteed-termination upper bound
Prerm- Intuitively, the reason is that protocol m may make probabilistic choices as to the order in
which it calls its hybrids (and, even worse, these hybrids may even have probabilistic termination
themselves). Thus, F needs to sample the upper bound based on 7 and the protocols realizing the
hybrids called by 7. As S needs to emulate the entire protocol execution, it is now left with the
task of trying to sample the protocol’s choices conditioned on the upper bound it receives from
F. In general, however, it is unclear whether such a reverse sampling can be performed in (strict)
polynomial time.

To avoid this issue and allow for an efficient simulation, we have F output all the coins that
were used for sampling round pierm to S. Because S knows the round sampler algorithm, it can
reproduce the entire computation of the sampler and use it in its simulation. In fact, as we discuss
below, it suffices for our proofs to have F output a trace of its choices to the simulator instead of
all the coins that were used to sample this trace. In the remainder of this section, we motivate and
formally describe our formulation of such traces. The formal description of the wrappers, which in
particular sample traces, can then be found at the end of this section.

Execution traces. As mentioned above, in the synchronous communication model, the execution
of the ideal functionality must take the same number of rounds as the protocol. For example,
suppose that the functionality F in our illustration above is used as a hybrid by a higher-level
protocol ©’. The functionality G realized by 7’ must, similarly to F, choose an upper bound on the
number of rounds that elapse before parties obtain their outputs. However, this upper bound now
depends not only on 7’ itself but also on 7 (in particular, when 7 is a probabilistic-termination
protocol).

9Tn particular, this means that most CSFs are not realizable, since they always guarantee output after two rounds.

10

Given the above, the round sampler of a functionality needs to keep track of how the function-
ality was realized. This can be achieved via the notion of trace. A trace basically records which
hybrids were called by a protocol, and in a recursive way, for each hybrid, which hybrids would
have been called by a protocol realizing that hybrid. The recursion ends with the hybrids that are
“assumed” by the model, called atomic functionalities.?"

Building on our running illustration above, suppose protocol 7’ (realizing G) makes ideal hybrid
calls to F and to some atomic functionality H. Assume that in an example execution, 7’ happens
to make (sequential) calls to instances of H and F in the following order: F, then H, and finally
F again. Moreover, assume that F is replaced by protocol 7 (realizing F) and that 7 happens to
make two (sequential) calls to H upon the first invocation by 7/, and three (sequential) calls to H
the second time (we assume that both 7 and 7’ call exactly one hybrid in every round). Then, this
would result in the trace depicted in Figure 2.

g
£
[s]
7 RN
. H F
H H H H H

Figure 2: Example of an execution trace

Assume that 7 is a probabilistic-termination protocol and 7’ a deterministic-termination pro-
tocol. Consequently, this means that F is in fact a flexibly wrapped functionality of some CSF F/,

ie, F= Wi

flex

(F"), where the distribution Dz samples (from a distribution induced by) depth-1
traces with root Wiﬁi (F') and leaves H.2! Similarly, G is a strictly wrapped functionality of some
CSF G, i.e., G = W9 (G'), where the distribution Dg first samples (from a distribution induced

strict
by 7') a depth-1 trace with root Ws?gct(g’) and leaves Wéjei (F') as well as H. Then, each leaf node
Wéii (F) is replaced by a trace (independently) sampled from Dz. Thus, the example trace from
Figure 2 would look as in Figure 3.
Ws?rgict (g/)
pA RN
PP S H]
N
Wik F) o Wi (F')
H H H H H

Figure 3: An execution trace with probabilistic-termination and deterministic-termination protocols

Formally, a trace is defined as follows:

20Tn this work, atomic functionalities are always parallel SMT CSFs Fesur, defined in Section 4.3.

2INote that the root node of the trace sampled from D is merely labeled by Wfii (F'), i.e., this is not a circular
definition.

11

Definition 3.1 (traces). A trace is a rooted tree of depth at least 1, in which all nodes are labeled
by functionalities and where every node’s children are ordered. The root and all internal nodes are
labeled by wrapped CSFs (by either of the two wrappers), and the leaves are labeled by unwrapped
CSFs. The trace complexity of a trace T, denoted ¢y, (T'), is the number of leaves in T. Moreover,
denote by flexy (T') the number of flexibly wrapped CSFs in T.

Remark. The actual protocol trace encodes its round complexity and the access pattern to its
hybrids (i.e., when is each hybrid used). Clearly, this pattern might depend on the inputs of
the parties and/or the adversary. For example, in the Byzantine agreement protocol of Feldman
and Micali [28], if all honest parties start with the same input, then they get their output faster.
For simplicity, in this work, the class of trace-distributions we define, and which our wrappers
sample from, considers traces that are sampled independently of the honest parties’ inputs or
adversary. Nonetheless, our wrappers give the simulator the power to influence the simulated access-
pattern and/or termination round. This allows us to use this simplified trace-distribution class to
devise functionalities which, as we show, are implemented by known protocols with probabilistic
termination.

Strict wrapper functionality. We now proceed to give the formal descriptions of the wrappers.
The strict wrapper functionality, defined in Figure 4, is parametrized by (a sampler that induces)
a distribution D over traces, and internally runs a copy of a CSF functionality F. Initially, a trace
T is sampled from D; this trace is given to the adversary once the first honest party provides
its input. The trace T is used by the wrapper to define the termination round pierm < ctr(T).
In the first round, the wrapper forwards all the messages from the parties and the adversary to
(and from) the functionality F. Next, the wrapper essentially waits until round prerm, with the
exception that the adversary is allowed to send (adv-input,sid,-) messages and change its input
to the function computed by the CSF. Finally, when round pierm arrives, the wrapper provides the
output generated by F to all parties.

Wrapper Functionality W2 . (F)

strict

Wistrict, parametrized by an efficiently sampleable distribution D, internally runs a copy of F and
proceeds as follows:

e Initially, sample a trace T < D and compute the output round preym < ¢ (7). Send (trace,sid, T)
to the adversary.®

o At all times, forward (adv-input,sid,-) messages from the adversary to F.

e In round p = 1: Forward (input,sid, -) messages from each party P; € P to F. In addition, forward
(Leakage, sid, -) messages from F to the adversary.

e In rounds p > 1: Upon receiving a message (fetch-output,sid) from some party P; € P, proceed
as follows:

— If p = perm, forward the message to F, and the response (output,sid,y;) to P;.
— Else, send (fetch-output,sid, P;) to the adversary.

“Technically, the trace is sent to the adversary at the first activation of the functionality along with the
first message.

Figure 4: The strict-wrapper functionality

12

Flexible-wrapper functionality. The flexible-wrapper functionality, defined in Figure 5, follows
in similar lines to the strict wrapper. The difference is that the adversary is allowed to instruct the
wrapper to deliver the output to each party at any round. In order to accomplish this, the wrapper
assigns a termination indicator term;, initially set to 0, to each party. Once the wrapper receives
an early-output request from the adversary for P;, it sets term; <— 1. Now, when a party P; sends
a fetch-output request, the wrapper checks if term; = 1, and lets the party receive its output in
this case (by forwarding the fetch-output request to F). When the guaranteed-termination round
Prerm arrives, the wrapper provides the output to all parties that did not receive it yet.

Wrapper Functionality W[(F)

Whex, parametrized by an efficiently sampleable distribution D, internally runs a copy of F and
proceeds as follows:

e Initially, sample a trace T < D and compute the output round preym < ¢ (7). Send (trace,sid, T)
to the adversary.® In addition, initialize termination indicators termq, ..., term,, + 0.

o At all times, forward (adv-input,sid,-) messages from the adversary to F.

e Inround p = 1: Forward (input, sid, -) messages from each party P; € P to F. In addition, forward
(Leakage, sid, -) messages from F to the adversary.

e In rounds p > 1:

— Upon receiving (fetch-output,sid) from some party P; € P, proceed as follows:

x If term; = 1 or p = prerm (and P; did not receive output yet), forward the message to F, and
the output (output,sid,y;) to P;.
* Else, send (fetch-output,sid, P;) to the adversary.

— Upon receiving (early-output,sid, P;) from the adversary, set term; < 1.

“Technically, the trace is sent to the adversary at the first activation along with the first message.

Figure 5: The flexible-wrapper functionality

4 (Fast) Composition of Probabilistic-Termination Protocols

Canonical synchronous functionalities that are wrapped using the flexible wrapper (cf. Section 3.2),
i.e., functionalities that correspond to protocols with non-simultaneous termination, are cumber-
some to be used as hybrid functionalities for protocols. The reason is that the adversary can
cause parties to finish in different rounds, and, as a result, after the execution of the first such
functionality, the parties might be out of sync.

This “slack” can be reduced, however, only to a difference of one round, unless one is willing to
pay a linear blowup (in the number of parties) in round complexity [29, 26]. Hence, all protocols
must be modified to deal with a non-simultaneous start of (at least) one round, and protocols
that introduce slack must be followed by a slack-reduction procedure. In this section, we provide
general transformations to reduce the desired tasks to the simpler task of designing protocols in a
“stand-alone” setting, where all parties remain synchronized throughout the protocol (and no slack
and round-complexity issues arise), and all the hybrids are (unachievable) CSF's that are called in
a strictly sequential manner.

13

Definition 4.1 (SNF). Let Fi,...,Fn, be canonical synchronous functionalities. A synchronous
protocol 7 in the (F1, ..., Fm)-hybrid model is in synchronous normal form (SNF) if in every round
ezactly one ideal functionality F; is invoked by all honest parties, and in addition, no honest party
hands inputs to other CSF's before this instance halts.

Clearly, designing and proving the security of SNF protocols, which only make calls to simple
two-round CSFs is a much simpler task than dealing with protocols that invoke more complicated
hybrids, potentially with probabilistic termination (see Section 5 for concrete examples).

SNF protocols are designed as an intermediate step, since the hybrid functionalities F; are
two-round CSFs, and, in general, cannot be realized by real-world protocols. To that end, we
define a protocol compiler that transforms SNF protocols into (non-SNF) protocols making calls
to wrapped CSFs that can be realized in the real world, while maintaining their security and
asymptotic (expected) round complexity. At the same time, the compiler takes care of any potential
slack that is introduced by the protocol and ensures that the protocol can be executed even if the
parties do not start the protocol simultaneously.

In Section 4.1, we apply this approach to deterministic-termination protocols that use
deterministic-termination hybrids, and in Section 4.2, generalize it to the probabilistic-termination
setting. Section 4.3 covers the base case of realizing the wrapped parallel secure message transmis-
sion Fpgyr using only (non-parallel) secure message transmission Fgyr. All proofs can be found in
Appendix C.

4.1 Composition with Deterministic Termination

We start by defining a slack-tolerant variant of the strict wrapper (cf. Section 3.2), which can be
used even when parties operate with a (known) slack. Then, we show how to compile an SNF
protocol 7 realizing a strictly wrapped CSF F into a (non-SNF) protocol 7’ realizing a version of
F wrapped with the slack-tolerant strict wrapper and making calls to wrapped hybrids.

Wrapper Functionality W2° . (F)

sl-strict

Wilstrict, parametrized by an efficiently sampleable distribution D and a non-negative integer ¢, in-
ternally runs a copy of F and proceeds as follows:

e Initially, sample a trace T' +— D and compute the output round pierm < Be-cir(T'), where B, = 3¢+1.
Send (trace,sid,T) to the adversary.® Initialize slack counters cy, ..., ¢, < 0.

e At all times, forward (adv-input,sid,-) messages from the adversary to F.

e Inrounds p=1,...,2c+ 1: Upon receiving a message from some party P; € P, proceed as follows:

— If the message is (input,sid, -), forward it to F, forward the (leakage,sid,) message F subse-
quently outputs to the adversary, and set P;’s local slack ¢; < p — 1.
— Else, send (fetch-output,sid, P;) to the adversary.
e In rounds p > 2¢ 4+ 1: Upon receiving a message (fetch-output,sid) from some party P; € P,
proceed as follows:
— If p = prerm + ¢i, send the message to F, and the output (output,sid,y;) to P;.
— Else, send (fetch-output,sid, P;) to the adversary.

“Technically, the trace is sent to the adversary at the first activation along with the first message.

14

Figure 6: The slack-tolerant strict wrapper functionality

Slack-tolerant strict wrapper. The slack-tolerant strict wrapper WS?_ ;Ctrictv formally defined in
Figure 6, is parametrized by an integer ¢ > 0, which denotes the amount of slack tolerance that
is added, and a distribution D over traces. The wrapper Wilstrict 1S similar to Wigrict but allows
parties to provide input within a window of 2c+ 1 rounds and ensures that they obtain output with
the same slack they started with. The wrapper essentially increases the termination round by a
factor of B, = 3c+ 1, which is due to the slack-tolerance technique used to implement the wrapped

version of the atomic parallel SMT functionality (cf. Section 4.3).22

Deterministic-termination compiler. Let F, Fq,...,F,, be canonical synchronous function-
alities, and let m an SNF protocol that UC-realizes the strictly wrapped functionality Ws?rict(}"), for
some depth-1 distribution D, in the (F, ..., F,,)-hybrid model, assuming that all honest parties
receive their inputs at the same round. We define a compiler Compy,,, parametrized with a slack
parameter ¢ > 0, that receives as input the protocol 7w and distributions Dy, ..., D,, over traces
and replaces every call to a CSF F; with a call to the wrapped CSF Wsjlj_ is’tiict(fi). We denote the
output of the compiler by 7/ = CompS. (7, D1, ..., Dp).23

As shown below, 7’ realizes WSIID_ f::nit(}"), for a suitably adapted distribution D' assuming all
parties start within ¢+ 1 consecutive rounds. Consequently, the compiled protocol 7’ can handle a
slack of up to ¢ rounds while using hybrids that are realizable themselves.

Calling the wrapped CSFs instead of the CSFs (Fu,...,Fy,) affects the trace corresponding to

F. The new trace Dfull = full-trace(D, Dy, ..., D,,) is obtained as follows:

1. Sample a trace T < D, which is a depth-1 tree with a root label W2 . (F) and leaves from
the set {F1,...,Fm}.

2. Construct a new trace T’ with a root label WXL (F).

3. For each leaf node F' = F;, for some i € [m], sample a trace T; +— D; and append the trace
T; to the first layer in T” (i.e., replace the node F' with Tj).

4. Output the resulting trace T”.

The following theorem states that the compiled protocol ©’ UC-realizes the wrapped function-
. Dfull c
ality W, . (F).

sl-strict

Theorem 4.2. Let F, Fi,...,Fm be canonical synchronous functionalities, let t < n/3, and let
7 an SNF protocol that UC-realizes WY (F) with perfect security in the (Fi,...,Fm)-hybrid

strict
model, for some depth-1 distribution D, in the presence of adaptive, malicious t-adversary, and
assuming that all honest parties receive their inputs at the same round. Let D+, ..., D,, be arbitrary
distributions over traces, DIl = full-trace(D, D1, ..., Dy,), and ¢ > 0.

Then, the compiled protocol 7' = Comp$ (7, D1, ..., Dy,) UC-realizes WP (F) with perfect

sl-strict

security in the WELC. (F1), ..., WEmC (F..))-hybrid model, in the presence of adaptive, mali-

sl-strict sl-strict
ctous t-adversary, assuming that all honest parties receive their inputs within ¢ + 1 consecutive
rounds.

22We note that the insufficiency of the blowup factor 2¢ + 1 rounds does not correspond to any particular attack,
but it is merely a technicality of the wrapped-CSF definition, see Section 4.3.

% The distributions D; depend on the protocols realizing the strictly wrapped functionalities W21, (F;). Note,
however, that the composition theorems in Sections 4.1 and 4.2 actually work for arbitrary distributions D;.

15

The expected round complezity of the compiled protocol 7' is

B. - Z d; - E[Ctr(Ti)],

1€[m]

where d; is the expected number of calls in w to hybrid F;, T; is a trace sampled from D;, and
B. = 3c+ 1 is the blowup factor.

The proof of Theorem 4.2 can be found in Appendix C.1.

4.2 Composition with Probabilistic Termination

The composition theorem in Section 4.1 does not work if the protocol 7 itself introduces slack
(e.g., the fast broadcast protocol by Feldman and Micali [28]) or if one of the hybrids needs to
be replaced by a slack-introducing protocol (e.g., instantiating the broadcast hybrids with fast
broadcast protocols in BGW [6]).

As in Section 4.1, we start by adjusting the flexible wrapper (cf. Section 3.2) to be slack-tolerant.
In addition, the slack-tolerant flexible wrapper ensures that all parties will obtain their outputs
within two consecutive rounds. Then, we show how to compile an SNF protocol 7 realizing a
CSF F, wrapped with the flexible wrapper, into a (non-SNF) protocol n’ realizing a version of F
wrapped with slack-tolerant flexible wrapper. The case where 7 implements a strictly wrapped
CSF, but some of the hybrids are wrapped with the slack-tolerant flexible wrapper follows along
similar lines.

Slack-tolerant flexible wrapper. The slack-tolerant flexible wrapper Wslﬁ ’;ex, formally defined
in Figure 7, is parametrized by an integer ¢ > 0, which denotes the amount of slack tolerance that is
added, and a distribution D over traces. The wrapper Wsl.fiex iS Similar to Wge, but allows parties
to provide input within a window of 2¢ 4+ 1 rounds and ensures that all honest parties will receive
their output within two consecutive rounds. The wrapper essentially increases the termination
round to

Prerm = B - Ctr(T) + 2 - flexy (T) +c,

where the blowup factor B, is as explained in Section 4.1, and the additional factor of 2 results
from the termination protocol described below for every flexibly wrapped CSF, which increases the
round complexity by at most two additional rounds (recall that flexy (T") denotes the number of such
CSFs), and ¢ is due to the potential slack. Wy fex allows the adversary to deliver output at any
round prior to prerm but ensures that all parties obtain output with a slack of at most one round.
Moreover, it allows the adversary to obtain the output using the (get-output, sid) command, which
is necessary in order to simulate the termination protocol.

Probabilistic-termination compiler. Let F, F,...,F,, be canonical synchronous functional-
ities, and let m be an SNF protocol that UC-realizes the flexibly wrapped functionality Wézx(}")
in the (F1,...,Fn)-hybrid model, for some depth-1 distribution D, assuming all parties start at
the same round. Define the following compiler Comp;.,, parametrized by a slack parameter ¢ > 0.
The compiler receives as input the protocol 7, distributions D1, ..., D,, over traces, and a subset
I C [m] indexing which CSFs F; are to be wrapped with Wy fex and which with Wy strict; every call
in 7 to a CSF F; is replaced with a call to the wrapped CSF Wsjlj_}igx(fi) ifi eI orto Ws?-is’tcrict (Fi)
ifigl.

16

In addition, the compiler adds the following termination procedure, based on an approach
originally suggested by Bracha [7], which ensures all honest parties will terminate within two
consecutive rounds:

e Assoon as a party is ready to output a value y (according to the prescribed protocol) or upon
receiving at least ¢t + 1 messages (end, sid, y) for the same value y (whichever happens first),
it sends (end, sid, y) to all parties.

e Upon receiving n — ¢t messages (end,sid,y) for the same value y, a party outputs y as the
result of the computation and halts.

Observe that this technique only works for public-output functionalities, and, therefore, only CSFs
with public output can be wrapped by Wsigex- We denote the output of the compiler by «’ =
Compgrp(m, D1, ..., D, I).

Wrapper Functionality WS?_ Hox (F)

Wil-fiex, Parametrized by an efficiently sampleable distribution D and a non-negative integer ¢, inter-
nally runs a copy of (the public-output functionality) F and proceeds as follows:

e Initially, sample a trace T < D and compute the output round preym Be - i (T) + 2 - flexy (T) +
¢, where B, = 3c+ 1. Send (trace,sid,T) to the adversary.® Initialize termination indicators
termy, ..., term, < 0.

e At all times, forward (adv-input,sid, -) messages from the adversary to F.
e Inrounds p =1,...,2c+ 1: Upon receiving a message from some party P; € P, proceed as follows:
— If the message is (input,sid,-), send it to F and forward the (leakage,sid,-) message F subse-
quently outputs to the adversary.

— Else, send (fetch-output,sid, P;) to the adversary.
e In rounds p > 2c+ 1:

— Upon receiving a message (fetch-output,sid) from some party P; € P, proceed as follows:

* If term; = 1 or p = prerm, forward the message to F, and the output (output,sid,y) to P;.
Record the output value y.
* Else, output (fetch-output,sid, P;) to the adversary.

— Upon receiving (get-output,sid) from the adversary, if the output value y was not recorded yet,
send (fetch-output,sid) to F on behalf of some party P;. Next, send (output,sid,y) to the
adversary.

— Upon receiving (early-output,sid, P;) from the adversary, set term; < 1 and prerm <
min{ prerm, p + 1}.

“Technically, the trace is sent to the adversary at the first activation of the functionality along with the
first message.

Figure 7: The slack-tolerant flexible wrapper functionality

The following theorem states that the compiled protocol " UC-realizes the wrapped function-
full
ality Wll)_ﬁe;f (F), for the adapted distribution D" = full-trace(D, Dy, ..., D,,). Consequently, the

S
compiled protocol 7’ can handle a slack of up to ¢ rounds, while using hybrids that are realizable

themselves, and ensuring that the output slack is at most one round (as opposed to 7). Calling the

17

wrapped hybrids instead of the CSFs affects the trace corresponding to F in exactly the same way
as in the case with deterministic termination (cf. Section 4.1).24

Theorem 4.3. Let F, F1,...,Fm be canonical synchronous functionalities, let t < n/3, and let
an SNF protocol that UC-realizes Wﬂzx(]:) with perfect security in the (Fu,...,Fm)-hybrid model,
for some depth-1 distribution D, in the presence of adaptive, malicious t-adversary, and assuming
that all honest parties receive their inputs at the same round. Let I C [m] be the subset (of indices)
of functionalities to be wrapped using the flexible wrapper, let D1, ..., Dy, be arbitrary distributions
over traces, denote D™ = full-trace(D, Dy, ... ,Dp,) and let ¢ > 0. Assume that F and F;, for
every © € I, are public-output functionalities.

Then, the compiled protocol @' = Compgygp(m, D1, ..., Dy, I) UC-realizes WS?EZ’XC(]:) with per-
fect security in the (W(F1), ..., W(Fm))-hybrid model, where W(F;) = Wiﬁgx(}"i) ifi €1 and

W(F;) = Wsll)_;’&ict(fi) if i ¢ I, in the presence of adaptive, malicious t-adversary, assuming that
all honest parties receive their inputs within ¢ + 1 consecutive rounds.

The ezpected round complexity of the compiled protocol 7' is

B.- > di- Elew(T)]+2-) di- Efflexe(T})] + 2,

i€[m] i€[m]

where d; is the expected number of calls in w to hybrid F;, T; is a trace sampled from D;, and
B, =3c+1 is the blowup factor.

The proof of Theorem 4.3 can be found in Appendix C.2.

Consider now the scenario where an SNF protocol 7 realizes a strictly wrapped functionality,
yet some of the CSF hybrids are to be wrapped by flexible wrappers. The corresponding compiler
Comp, works as Comp,,, with the exception that the slack-reduction protocol is not performed
at the end. The proof of the following theorem follows that of Theorem 4.3.

Theorem 4.4. Let F,Fi,...,Fm be canonical synchronous functionalities, let t < n/3, and let
7 an SNF protocol that UC-realizes WL . . (F) with perfect security in the (Fu,...,Fm)-hybrid
model, for some depth-1 distribution D, in the presence of an adaptive, malicious t-adversary, and
assuming that all honest parties receive their inputs at the same round. Let I C [m] be the subset
(of indices) of functionalities to be wrapped using the flexible wrapper, let Dy, ..., Dy, be arbitrary
distributions over traces, denote DIl = full-trace(D, D1,...,Dy,) and let ¢ > 0. Assume that F
and F;, for every i € I, are public-output functionalities.

Then, the compiled protocol @' = CompS,(m, Dy,..., Dy, I) UC-realizes WS?EZ’XC(}") with per-
fect security in the (W(F1), ..., W(Fm))-hybrid model, where W(F;) = Wiﬁgx(}}) ifi €1 and

W(F;) = Wi;’;ict(fi) if 1 ¢ I, in the presence of an adaptive, malicious t-adversary, assuming
that all honest parties receive their inputs within ¢ + 1 consecutive rounds.

The expected round complexity of the compiled protocol 7' is

B.- > di- Elew(T)]+2-) di- Efflexe(T3)],

i€[m] i€[m]

where d; is the expected number of calls in w to hybrid F;, T; is a trace sampled from D;, and
B, =3c+1 is the blowup factor.

240f course, the root of the trace T sampled from D is a flexibly wrapped functionality W (F) in the probabilistic-
termination case.

18

4.3 Wrapping Secure Channels

The basis of the top-down, inductive approach taken in this work consists of providing protocols
realizing wrapped atomic functionalities, using merely secure channels, i.e., Fgyr. Due to the
restrictions to SNF protocols, which may only call a single CSF hybrid in any given round, a
parallel variant Fpgyr of Fsyr (defined below) is used as an atomic functionality. This ensures that
in SNF protocols parties can securely send messages to each other simultaneously.

Parallel SMT. The parallel secure message transmission functionality Fpsyr is a CSF for the
following functions fie., and l.q,. Each party P; has a vector of input values (z%,...,2?) such that
:1:3 is sent from P; to Pj. That is, the function to compute is foo((z],...,285), ..., (27, ..., 20),a) =
((z},...,29),...,(xL,...,2")). As we consider rushing adversaries, which can determine the mes-
sages sent by the corrupted parties after receiving the messages sent by the honest parties, the leak-
age function should leak the messages that are to be delivered from honest parties to corrupted par-
ties. Therefore, the leakage function is [, ((z1,...,2L),..., (@,2) = (yi, 93, ...,y 1, 97),
where yj- =]acé] in case P; is honest and y;- = x; in case P; is corrupted.

Realizing wrapped parallel SMT. The remainder of this section deals with securely realizing
WS?_ éctrict (Fpsur) in the Fgyr-hybrid model, for a particular distribution D and an arbitrary nonneg-
ative integer c. Note that the corresponding protocol mpgyr is not an SNF protocol since it makes
n? parallel calls to Fgyr in each round; this is of no concern since it directly realizes a wrapped
functionality and therefore need not be compiled. There is a straightforward (non-SNF) protocol
realizing Fpgyr in the Fgyr-hybrid model, and therefore (due to the UC composition theorem) it
suffices to describe protocol mpgyr in the Fpgyr-hybrid model.

A standard solution to overcome asynchrony by a constant number of rounds ¢ > 0, introduced
by Lindell et al. [48] and used by Katz and Koo [40], is to expand each communication round to
2¢ + 1 rounds. Each party listens for messages throughout all 2¢ + 1 rounds, and sends its own
messages in round ¢ + 1. It is straightforward to verify that if the slack is ¢, i.e., the parties start
within ¢ + 1 rounds from each other, round r-messages (in the original protocol, without round
expansion) are sent, and delivered, before round (7 + 1)-messages and after round (r — 1)-messages.

Protocol gy (realizing wrapped Fpgyr)

Each party P, € P ={P,..., P,} proceeds as follows:

Initially, obtain input (input, (x(li), e ,xg))) from the environment. Set y1,...,y, < L.

e In every round p = 1,...,¢:* Send (input, L) to (a fresh instance of) Fpgyr. Obtain output
(output, (uy,...,uy,)) from Fpsyr with u; € {0,1}* U{L}. For each i with u; # L, set y; <+ u,.
In round p = ¢+ 1: Send the message (input, (x(li), .. ,L(f))) to Fpsur, and obtain the output
(output, (uy,...,u,)) with u; € {0,1}* U{L}. For each ¢ with u; # L, set y; < u;.

e In every round p = ¢+ 2,...,2c+ 1: Send (input,l) to Fpsyr, and obtain the output
(output, (uy,...,u,)) with u; € {0,1}* U{L}. For each ¢ with u; # L, set y; + u;.

e In every round p = 2c+ 2,...,3c: Do nothing.
e In round p = 3¢+ 1: Output (output,sid, (y1,...,yn)).

“Note that p is the local round counter of party P;.

19

Figure 8: The wrapped parallel SMT protocol, in the Fpgyr-hybrid model

The solution described above does not immediately apply to our case, due to the nature of
canonical synchronous functionalities. Recall that in a CSF the adversary can send an adv-input
message (and affect the output) only before any honest party has received an output from the
functionality. If only 2¢ + 1 rounds are used a subtle problem arises: Assume for simplicity that
c = 1 and say that P; is a fast party and P, is a slow party. Initially, P, listens for one round.
In the second round P, listens and P; send its messages to all the parties. In the third round P;
sends its messages and P receives its message, produces output, and completes the round. Now,
P; listens for an additional round, and the adversary can send it messages on behalf of corrupted
parties. In other words, the adversary can choose the value for P»’s output after P; has received its
output — such a phenomena cannot be modeled using CSF's. For this reason we add an additional
round where each party is idle; if P; waits one more round (without listening) before it produces
its output, then P> will receive all the messages that determine its output, and so once P; produces
output and completes, the adversary cannot affect the output of Ps.

As a result, in the protocol presented in Figure 8, each round is expanded to 3c 4+ 1 rounds,
where during the final ¢ rounds, parties are simply idle and ignore any messages they receive.

Denote by Dpgyr the deterministic distribution that outputs a depth-1 trace consisting of a root
W Prsur (Fpsur) and 3¢ + 1 leaves Fpgyr-

strict

Lemma 4.5. Let ¢ > 0 and t < n/3. Protocol mpsyr UC-realizes Ws?_ S (Feswr) with perfect
security in the Fpsyr-hybrid model, in the presence of an adaptive, malicious t-adversary, assuming

that all honest parties receive their inputs within ¢ + 1 consecutive rounds.

Proof. For simplicity, denote by W(Fpsyr) the wrapped functionality Wsllj_ e (Fesur). Let Z be
an environment. We construct the following simulator S running with W(Fpgyr) and Z, simulating
the dummy adversary.?® The main idea is to simulate each of the 3¢ + 1 instances of Fpgur ro Z.
Initially, S receives the message (trace,sid,T’), where T is a depth-1 trace consisting of 3¢ + 1
leaves Fpgyr. Next, S simulates 3c + 1 sequential instances of Fpgyr, by interacting with Z and
W(Fpsur). In the first 2¢ + 1 instances of Fpgyr, the simulator S proceeds as follows for every

instance of Fpgyr:

e In the first (“input”) round of this Fpgyr instance, upon receiving an input message
(input,sid, z;) from Z, where x; # L is a vector of messages to be sent by a corrupted
P;, the simulator S forwards the message to W(Fpgyr)-

e If S receives a leakage message (leakage,sid, P;,[;) from W(Fpsur), where [; is a length-n
vector, consisting of the messages sent by some honest party P; to each corrupted party (and
the length of messages P; sends to honest parties), S forwards the message to Z. If no leakage
message arrived during this round, S sends the message (leakage,sid, P;, L) to Z, on behalf
of every party.

e In the second (“output”) round of this Fpeyr instance, S sends (output, sid, y;) to Z for every
corrupted P;, where y; is a vector consisting of the messages sent to P; in the “input” round
(if some party did not send a message to P; the value A is used).

In the last c¢ instances of Fpgur, the simulator S does not forward the input messages from Z to
W(Fpsur), and outputs (output,sid, A) for every corrupted party.

25Recall that proving security with respect to the dummy adversary is sufficient (cf. [10, Claim 10]).

20

Since the view of every party in the protocol mpgyr is simply the messages sent and received
to fpsmt, and no random coins are used, upon a corruption request of a party P;, the simulator
simply hands the internal state of P; to Z, and resumes the simulation as above.

By inspection, it can be seen that the view of Z is identically distributed when interacting
with § in an ideal computation of W(Fpsyr), or when interacting with the dummy adversary in an
execution of Tpgyr- O

The corollary follows since Fpgyr can be realized in the Fgyr-hybrid model in a straightforward
way, by calling Fgyr in parallel n? times.
Corollary 4.6. Let ¢ > 0 and t < n/3. The functionality WS? ;‘?géi(]:psm) can be UC-realized with
perfect security in the Fsyur-hybrid model, in the presence of an adaptive, malicious t-adversary,
assuming that all honest parties receive their inputs within ¢ + 1 consecutive rounds.

5 Applications of Our Fast Composition Theorem

In this section, we demonstrate the power of our framework by providing some concrete appli-
cations. All of the protocols we present in this section enjoy perfect security facing adaptive
adversaries corrupting less than a third of the parties. We start in Section 5.1 by presenting
expected-constant-round protocols for Byzantine agreement. Next, in Section 5.2 we present an
expected-constant-round protocol for parallel broadcast. Finally, in Section 5.3 we present a secure
function evaluation protocol whose round complexity is O(d) in expectation, where d is the depth
of the circuit representing the function.

5.1 Fast and Perfectly Secure Byzantine Agreement

We start by describing the binary and multi-valued randomized Byzantine agreement protocols (the
definition of Fg, appears in Section 3.1). These protocols are based on techniques due to Feldman
and Micali [28] (which are in turn based on Ben-Or [4] and Rabin [53]) and Turpin and Coan [55],
with modifications to work in the UC framework. We provide simulation-based proofs for these
protocols.

A binary Byzantine agreement protocol. We now describe a UC protocol for randomized
binary Byzantine agreement, which is based on the protocol of Feldman and Micali [28]. For
simplicity, we work in a hybrid model, where parties have access to the oblivious common coin
functionality; we first present this functionality as a canonical synchronous functionality.

Oblivious common coin. In the oblivious common coin ideal functionality (introduced in [28])
every honest party P; outputs a bit y; € {0, 1} such that the following holds: with probability p > 0
all honest parties will agree on a uniformly distributed bit, and with probability 1 — p the output
for each honest party is determined by the adversary. The meaning of obliviousness here is that
the parties are unaware of whether agreement on the coin is achieved or not.

In more detail, each honest party P; sends an empty string x; = A as input, and the leakage
function is ly.(x1,...,2,) = L. The function to compute, fo.(z1,...,2n,a) = (Y1,...,Yn), is
parametrized by an efficiently sampleable distribution D over {0, 1}, that outputs 1 with probability
p and 0 with probability 1 — p, and works as follows:

e Initially, sample a “fairness bit” b < D.

21

e If b =1o0rif a =L (ie., if the adversary did not send an adv-input message) sample a
uniformly distributed bit y <— {0, 1} and set y; « y for every i € [n].

e If b =0 and a # L, parse the adversarial input a as a vector of n values (a1, ...,a,), and set
y; + a; for every i € [n].

We denote by Fo the CSF functionality parametrized with the above functions f,. and [,.. Feldman
and Micali [28, Thm. 3] showed a constant-round oblivious common coin protocol for p = 0.35.
Denote by Dy the deterministic distribution that outputs a depth-1 trace consisting of a root
whoc (Foc) and 32 leaves Fpgyr.

strict

Theorem 5.1 ([28]) Let t < n/3, then, assuming all honest parties receive their inputs at the
same round, wlhe (Foc) can be UC-realized in the Fpsyr-hybrid model, with perfect security, in

strlct
the presence of an adaptive malicious t-adversary.

Overview of the protocol. The binary BA functionality, realized by the protocol, is the
wrapped functionality Wp ' (Fy, {0, 1}) (the distribution Dgg, is formally defined in Lemma 5.2),
denoted Fyp, for short. The protocol myp,, described in Figure 9, is based on the protocol from [28]
modified using the “best-of-both-worlds” technique due to Goldreich and Petrank [34]. Recall that
following Section 4, it is sufficient to describe the protocol using CSFs as hybrids rather than
wrapped CSFs (even though such a description might be overly ideal, and cannot be instantiated
in the real world), and the same level of security is automatically achieved in a compiled proto-

col (that can be instantiated) where the underlying CSFs are properly wrapped. Therefore, the
protocol is defined in the (Fosyr, Foc, Fua {0, }) hybrid model.

At first sight, it may seem odd that the binary Byzantine agreement functionality Fg, {01} 4
used in order to implement the randomized binary Byzantine agreement functionality Frg,. How—
ever, the functionality Fga 01} wint only be invoked in the event (which occurs with a negligible
probability) that the protocol does not terminate within a poly-log number of rounds. Once the
protocol is compiled, the CSF functionality]-"1;{2’1} will be wrapped using a strict wrapper, such that
the wrapped functionality Wstrict(Fég’l}) can be instantiated using any linear-round deterministic
Byzantine agreement protocol (e.g., the protocol in [37]).

At a high level, protocol mrp, proceeds as follows. Initially, each party sends its input to all
other parties over a point-to-pint channel using Fpgyr, and sets its vote to be its input bit. Next,
the parties proceed in phases, where each phase consists of invoking the functionality Foc followed
by a voting process consisting of three rounds of sending messages via Fpgyr. The voting ensures
that (1) if all honest parties agree on their votes at the beginning of the phase, they will terminate
at the end of the phase, (2) in each phase, all honest parties will agree on their votes at the end
of each phase with probability at least p, and (3) if an honest party terminates in some phase
then all honest parties will terminate with the same value by the end of the next phase. In the
negligible event that the parties do not terminate after 7 = log!>(x)+1 phases (where x denotes the
security parameter), the parties use the Byzantine agreement functionality .7:];{2’1}
termination. To avoid confusion in 7, between the different calls to Foc, the a’th invocation will
use the session identifier sid, = sid o a, obtained by concatenating « to sid.

in order to ensure

Denote by Dgga the distribution that outputs a depth-1 trace, where the root is W{%‘(BA (Fia {0, 1}),
and the leaves are set as follows: initially sample an integer r from the geometric distribution with
parameter p = 0.35 and support {1...,7+1} (representing the phase where Fo. samples a fairness

bit 1, plus the option that Foc samples 0 in all 7 phases). The first leaf in the trace is Fpgyr,

22

followed by min(r, 7) sequences of (Foc, Fpsurs Frsurs Frsur)- Finally, if 7 > 7 add the leaf Fj, {0.1}
to the trace. In Appendix D.1 we prove the following lemma.

Lemma 5.2. Lett < n/3, then, assuming all honest parties receive their inputs at the same round,
protocol mppa UC-realizes Frpa = WI%(BA(.F{O 1}), in the (.FPSMT,.FOC,}"{O 1}) hybrid model, with
perfect security, in the presence of an adaptive malicious t-adversary.

We now use Theorem 4.3 to derive the main result of this section.

Theorem 5.3. Let ¢ > 0 and t < n/3. There exists an efficiently sampleable distribution D such
that the functionality Wlﬁex(}'{o 1}) has an expected constant round complexity and can be UC-
realized in the Fsur-hybrid model, with perfect security, in the presence of an adaptive malicious
t-adversary, assuming that all honest parties receive their inputs within ¢ + 1 consecutive rounds.

Protocol myp,

Each party P, € P ={Py,..., P,} proceeds as follows:

o Initially, P; sets the phase counter a <— 0 and the termination indicator term < 0. For every other
party P; € P set a value B; < 0 for storing the last bit value received from P;. In addition, denote
5
T =log °(k) + 1.

e In the first round, upon receiving (input,sid,v) with v € {0,1} from the environment, party P;
sets b; < v (note that the value b; will change during the protocol) and sends (sid, ;) to all the
parties (via Fpsyr). Upon receiving (sid, b;) from P; (via Fpgur) with b; € {0,1}, set B; < b;. If
no message was received from P;, set b; < B;.

e While term = 0 and o < 7, do the following:

1. Set @ + a+ 1 and send (input,sids, A) to Foc. Let (output,sidy, 8), with 8 € {0, 1}, be the
output received from Foc.

2. Compute ¢ < > 7, b;.
Ifc<n/3set b < 0;Ifn/3<c<2n/3setb; + B;If 2n/3 < c<nsetb «+ 1.
Send (sid, b;) to all the parties (via Fesur). Upon receiving (sid,b;) from P; (via Fpeyur) with
b; € {0,1}, set B; < bj; if no message was received from P;, set b; < B;.

3. Compute ¢ < >7_, b;.
If c <m/3 set b; < 0 and term < a; If n/3 < c < 2n/3 set b; + 0; If 2n/3 < c < mnset b; + 1.
Send (sid, b;) to all the parties (via Frsur). Upon receiving (sid,b;) from P; (via Fpeyr) with
b; € {0,1}, set B; < bj; if no message was received from P;, set b; < B;.

4. Compute ¢ < 7, b;.
Ifc<n/3setb; < 0;Ifn/3 <c<2n/3setb; + 1;If 2n/3 < ¢ < mn set b; < 1 and term < a.
Send (sid, b;) to all the parties (via Fpsyr). Upon receiving (sid, b;) from P; (via Fpeyr) with
b; € {0,1}, set Bj < b;; if no message was received from P;, set b + B;.

e If 0 < term < 7, then output (output,sid, b;) and halt.

e Else (i.e., if term = 0 or term = 7), send (input,sid, b;) to]-"éf’l} (note that b; is the value that was
set in phase 7). Upon receving (output,sid, b), with b € {0, 1}, if term = 0 output (output,sid, b)
and halt. Else, if term = 7, output (output,sid, b;) and halt.

Figure 9: The binary randomized Byzantine agreement protocol, in the (Fpsyr, Foc, Faa (0.1})-hybrid
model

23

Proof (sketch). Denote by Dg, the deterministic distribution that outputs a depth-1 trace consist-
ing of a root W2 (]-"{0 1}) and t +1 leaves Fpsur- Let DU = full-trace(Drgpa, Doc, Drsyir, Dpa)-

strict

: : [m\u 0,1 _ DPSMT7 _ DOCa
For simplicity, denote Fi = W, WV (Fiy { }) Franr = W ¥(Fesur), Foo = Waet (Foc)
and F2T = Whne (F91) In addition, denote Dy = Dysyr, Dy = Doc, Dy = Dy, and I = 0.

From Lemma 5.2, mpy UC-realizes W{ﬁg‘(“ (.7:];{2 A}), in the (Fosur, Focs Fpa {0, 1}) hybrid model, in
an expected constant number of rounds, assuming all parties receive their inputs at the same round.
Following Theorem 4.3, the compiled protocol Comp§. . (Trea, D1, D2, D3, I) UC-realizes Fj4, in the
(Foers Foos Fid)-hybrid model, in an expected constant number of rounds, assuming all parties
receive their inputs within ¢ + 1 consecutive rounds.

The proof follows since each of the functionalities (Frsyr, Foos Faa) can be UC-realized in the
Fsur-hybrid model. This follows from Lemma 4.5, Theorem 5.1, and the protocol from [37]. d

Multi-valued Byzantine agreement protocol. In Appendix D.1 we present an analogue of
the multi-valued Byzantine agreement protocol due to Turpin and Coan [55] for the UC framework,
and prove the following.

Theorem 5.4. Let ¢ > 0, t < n/3 and V C {0,1}*. There exists an efficiently sampleable
distribution D such that the functionality W, ﬂex(fhyA) has an expected constant round complexity,
and can be UC-realized in the Fsyr-hybrid model, with perfect security, in the presence of an adaptive
malicious t-adversary, assuming that all honest parties receive their inputs within ¢+ 1 consecutive
rounds.

5.2 Fast and Perfectly Secure Parallel Broadcast

As discussed in Section 1 (and Appendix A), composing protocols with probabilistic termination
naively does not retain expected round complexity. Ben-Or and El-Yaniv [5] constructed an elegant
protocol for probabilistic-termination parallel broadcast?® with a constant round complexity in
expectation, albeit under a property-based security definition. In this section, we adapt the [5]
protocol to the UC framework and show that it does not realize the parallel broadcast functionality,
but rather a weaker variant which we call unfair parallel broadcast. Next, we show how to use
unfair parallel broadcast in order to compute (fair) parallel broadcast in constant excepted number
of rounds.

In a standard broadcast functionality (cf. Section 3.1), the sender provides a message to the
functionality which delivers it to the parties. Hirt and Zikas [37] defined the unfair version of the
broadcast functionality, in which the functionality informs the adversary which message it received,
and allows the adversary, based on this information, to corrupt the sender and replace the message.
Following the spirit of [37], we now define the unfair parallel broadcast functionality, using the
language of CSF.

— UNFAIR PARALLEL BROADCAST. In the unfair parallel broadcast functionality, each party
P; with input z; distributes its input to all the parties. The adversary is allowed to learn
the content of each input value from the leakage function (and so it can corrupt parties and
change their messages prior to their distribution, based on this information). The function
to compute i8 fippe(21, ..., Tn,a) = ((x1,. .., 20),. .., (21,...,25)), and the leakage function is
lopse(Z1, -« oy xn) = (z1,...,2,). We denote by Fuppc the functionality Fegr when parametrized
with the above functions fi.,c and lj..c.

26Tn [5] the problem is referred to as “interactive consistency.”

24

In Appendix D.2.1, we present an adaptation of the [5] protocol, show that it perfectly UC-
realizes (a wrapped version of) Fyppc (see Figure 12) and prove the following result.

Theorem 5.5. Let ¢ > 0 and t < n/3. There exists an efficiently sampleable distribution D such
that the functionality WS?_ gex(fUPBc) has an expected constant round complezity, and can be UC-
realized in the Fgyr-hybrid model, with perfect security, in the presence of an adaptive malicious

t-adversary, assuming that all honest parties receive their inputs within ¢ + 1 consecutive rounds.

We now turn to define the (fair) parallel broadcast functionality.

— PARALLEL BROADCAST. In the parallel broadcast functionality, each party P; with input x;
distributes its input to all the parties. Unlike the unfair version, the adversary only learns
the length of the honest parties’ messages before their distribution, i.e., the leakage function
is lone(T1, - -y xn) = (|1, ..., |2n]|). It follows that the adversary cannot use the leaked infor-
mation in a meaningful way when deciding which parties to corrupt. The function to compute
is identical to the unfair version, i.e., fupo(21,...,2n,a) = (x1,...,2n), ..., (X1,...,25)). We
denote by Fppc the functionality Fogr when parametrized with the above functions f,,. and [,..

Unfortunately, the unfair parallel broadcast protocol mypge (cf. Figure 12) fails to realize (a wrapped
version of) the standard parallel broadcast functionality Fppe. The reason is similar to the argument
presented in [37]: in the first round of the protocol, each party distributes its input, and since we
consider a rushing adversary, the adversary learns the messages before the honest parties do. It
follows that the adversary can corrupt a party before the honest parties receive the message and
replace the message to be delivered. This attack cannot be simulated in the ideal world where the
parties interact with Fppc, since by the time the simulator learns the broadcast message in the ideal
world, the functionality does not allow to change it.

Protocol mpp¢

1. In the first round, upon receiving (input,sid, z;) with z; € V from the environment, P; secret
shares x; using Shamir’s (¢ + 1)-out-of-n secret-sharing scheme, denoted by (xl,...,27) <«
Share(x;). Next, P; sends for every party P; its share (sid,wg) (via Fpsur). Denote by x; the
value received from P; (replace invalid/missing values by zero).

2. In the second round, P; broadcasts the values x; = (z%,..., 2%) using the unfair parallel broad-
cast functionality, i.e., P; sends (input,sid, x;) to Fypsc. Denote by y,; = (y,...,yl) the value
received from P; (replace invalid/missing values by zero). Now, P; reconstructs all the input
values, i.e., for every j € [n] reconstructs y; = Recon(y}, oy yr) (in case y; = L set y; < 0),

and outputs (output,sid, (y1,...,Yn))-

Figure 10: The parallel broadcast protocol, in the (Fpsyr, Fupsc)-hybrid model

Although protocol myppe does not realize Fppe, it can be used in order to construct a protocol
that does. Each party commits to its input value before any party learns any new information, as
follows. Each party, in parallel, first secret shares its input using a (¢ + 1)-out-of-n secret-sharing
protocol.?” In the second step, every party, in parallel, broadcast a vector with all the shares he
received, by the use of the above unfair parallel broadcast functionality Fypsc, and each share is
reconstructed based on the announced values. The reason this modification achieves fair broadcast
is the following: If a sender P; is not corrupted until he distributes his shares, then a t-adversary
has no way of modifying the reconstructed output of P;’s input, since he can at most affect t < n/3

2Tn [37] verifiable secret sharing (VSS) is used; however, as we argue, this is not necessary.

25

shares, which can be self-corrected by the reconstruction algorithm (e.g., using Shamir’s scheme).
Thus, the only way the adversary can affect any of the broadcast messages is by corrupting the
sender independently of his input, an attack which is easily simulated. In case a malicious sender
generates shares that do not correspond to a degree ¢t polynomial, all honest parties identify the
misbehavior (since all shares are publicly transmitted over the unfair broadcast channel) and agree
on a default value for the sender, e.g., zero. We describe this protocol, denoted mpp¢, in Figure 10.

Theorem 5.6. Let ¢ > 0 and t < n/3. There exists an efficiently sampleable distribution D such
that the functionality Ws?—’ﬂcex(fPBC) has an expected constant round complexity, and can be UC-
realized in the Fsyr-hybrid model, with perfect security, in the presence of an adaptive malicious
t-adversary, assuming that all honest parties receive their inputs within ¢ + 1 consecutive rounds.

Proof (sketch). The simulator uses the adversary attacking mppc in a black-box straight-line man-
ner. To simulate the first (secret-sharing) round, for honest senders the simulator simply hands
the adversary random shares for all corrupted parties and for corrupted senders he follows the
adversary’s instructions. If during this step the adversary asks to corrupt new senders, the simu-
lator learns their outputs and can easily complete the sharing to match this output. At the end
of this phase, the simulator interacts with its hybrid until it produces output. Once this is the
case, he uses this output to continue the simulation with its adversary. Clearly, for any sender P;
who is not corrupted until he distributes his shares, then a t-adversary has no way of modifying
the reconstructed output of P;’s input, since he can at most affect ¢ < n/3 shares (and Shamir’s
scheme can correct up to n/3 erroneous shares). Thus, the only way the adversary can affect any
of the broadcasted message is by corrupting the sender independently of his input, an attack which
is easily simulated. The fact that the running time is constant (expected) follows trivially from the
fact that mppe executes only one round (namely the sharing round) more than the unfair protocol
which is expected constant round (cf. Theorem 5.5). O

5.3 Fast and Perfectly Secure SFE

We conclude this section by showing how to construct a perfectly UC-secure SFE protocol which
computes a given circuit in expected O(d) rounds, independently of the number of parties, in
the point-to-point channels model. The protocol is obtained by taking the protocol from [6],2®
denoted mpgw. This protocol relies on (parallel) broadcast and (parallel) point-to-point channels,
and therefore it can be described in the (Fpgyr, Feec)-hybrid model. It follows from Theorem 4.4,
that the compiled protocol Comp§. (mpaw, D1, D2,), for D1 = Dpgyr, Do = D;‘g”c and I = {2},

UC-realizes the corresponding wrapped functionality Wsjlj_ ’;ex (Fspr) (for an appropriate distribution

full
D), in the (WDPS“T’C(}}SI\H), W?_‘H:;;C(.Fp[;c))—hybrid model, resulting in the following.

sl-strict S

Theorem 5.7. Let f be an n-party function, C' an arithmetic circuit with multiplicative depth d
computing f, ¢ > 0 andt < n/3. Then there exists an efficiently sampleable distribution D such that
the functionality Ws?_’gex(fsj;E) has round complezity O(d) in expectation, and can be UC-realized in
the Fsur-hybrid model, with perfect security, in the presence of an adaptive malicious t-adversary,

assuming that all honest parties receive their inputs within ¢ + 1 consecutive rounds.

References

[1] Gilad Asharov, Abhishek Jain, Adriana Lépez-Alt, Eran Tromer, Vinod Vaikuntanathan, and Daniel
Wichs. Multiparty computation with low communication, computation and interaction via threshold

28 A full simulation proof of the protocol with a black-box straight-line simulation was recently given by [2] and [23].

26

fhe. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS,
pages 483-501. Springer, April 2012.

Gilad Asharov and Yehuda Lindell. A full proof of the BGW protocol for perfectly-secure multiparty
computation. Electronic Colloquium on Computational Complexity (ECCC), 18:36, 2011.

Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols (extended
abstract). In 22nd ACM STOC, pages 503-513. ACM Press, May 1990.

Michael Ben-Or. Another advantage of free choice: Completely asynchronous agreement protocols
(extended abstract). In Robert L. Probert, Nancy A. Lynch, and Nicola Santoro, editors, 2nd ACM
PODC, pages 27-30. ACM Press, August 1983.

Michael Ben-Or and Ran El-Yaniv. Resilient-optimal interactive consistency in constant time. Dis-
tributed Computing, 16(4):249-262, 2003.

Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation (extended abstract). In 20th ACM STOC, pages 1-10. ACM
Press, May 1988.

Gabriel Bracha. An asynchronou [(n-1)/3]-resilient consensus protocol. In Robert L. Probert, Nancy A.
Lynch, and Nicola Santoro, editors, rd ACM PODC, pages 154-162. ACM Press, August 1984.

Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and efficient asynchronous
broadcast protocols. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 524-541.
Springer, August 2001.

Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryptology,
13(1):143-202, 2000.

Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd
FOCS, pages 136-145. IEEE Computer Society Press, October 2001.

Ran Canetti. Universally composable signature, certification, and authentication. In 17th IEEE Com-
puter Security Foundations Workshop, (CSFW-17), pages 219-235, 2004.

Ran Canetti, Asaf Cohen, and Yehuda Lindell. A simpler variant of universally composable security for
standard multiparty computation. In Rosario Gennaro and Matthew Robshaw, editors, CRYPTO 2015,
Part II, volume 9216 of LNCS, pages 3—22. Springer, August 2015.

Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-party and
multi-party secure computation. In 84th ACM STOC, pages 494-503. ACM Press, May 2002.

Ran Canetti and Tal Rabin. Universal composition with joint state. In Dan Boneh, editor,
CRYPTO 2003, volume 2729 of LNCS, pages 265-281. Springer, August 2003.

David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty unconditionally secure protocols (ex-
tended abstract). In 20th ACM STOC, pages 11-19. ACM Press, May 1988.

Seung Geol Choi, Jonathan Katz, Alex J. Malozemoff, and Vassilis Zikas. Efficient three-party compu-
tation from cut-and-choose. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II,
volume 8617 of LNCS, pages 513-530. Springer, August 2014.

Ran Cohen, Sandro Coretti, Juan A. Garay, and Vassilis Zikas. Probabilistic termination and compos-
ability of cryptographic protocols. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016,
Part I1I, volume 9816 of LNCS, pages 240-269. Springer, August 2016.

Ran Cohen, Sandro Coretti, Juan A. Garay, and Vassilis Zikas. Round-preserving parallel composition
of probabilistic-termination cryptographic protocols. In ICALP 2017, volume 80 of LIPIcs, pages 37:1—
37:15, July 2017.

Ran Cohen, Iftach Haitner, Eran Omri, and Lior Rotem. Characterization of secure multiparty com-
putation without broadcast. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part I, volume
9562 of LNCS, pages 596-616. Springer, January 2016.

27

[20]

[21]

[31]

[32]

[33]

Ran Cohen and Yehuda Lindell. Fairness versus guaranteed output delivery in secure multiparty com-
putation. In ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages 466-485. Springer, December
2014.

Ivan Damgard and Yuval Ishai. Constant-round multiparty computation using a black-box pseudo-
random generator. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 378-394.
Springer, August 2005.

Ivan Damgard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P. Smart. Prac-
tical covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits. In Jason Crampton,
Sushil Jajodia, and Keith Mayes, editors, ESORICS 2013, volume 8134 of LNCS, pages 1-18. Springer,
September 2013.

Ivan Damgard and Jesper Buus Nielsen. Adaptive versus static security in the UC model. In ProvSec
2014, pages 10-28, 2014.

Ivan Damgard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation from
somewhat homomorphic encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 643—662. Springer, August 2012.

Danny Dolev, Riidiger Reischuk, and H. Raymond Strong. Early stopping in byzantine agreement. J.
ACM, 37(4):720-741, 1990.

Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement. SIAM
Journal on Computing, 12(4):656-666, 1983.

Bennett Eisenberg. On the expectation of the maximum of IID geometric random variables. Statistics
& Probability Letters, 78(2):135-143, 2008.

Pesech Feldman and Silvio Micali. An optimal probabilistic protocol for synchronous byzantine agree-
ment. SIAM Journal on Computing, 26(4):873-933, 1997.

Michael J. Fischer and Nancy A. Lynch. A lower bound for the time to assure interactive consistency.
Information Processing Letters, 14(4):183-186, 1982.

Matthias Fitzi and Juan A. Garay. Efficient player-optimal protocols for strong and differential con-
sensus. In Elizabeth Borowsky and Sergio Rajsbaum, editors, 22nd ACM PODC, pages 211-220. ACM
Press, July 2003.

Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure MPC from indis-
tinguishability obfuscation. In Yehuda Lindell, editor, TCC 2014, volume 8349 of LNCS, pages 74-94.
Springer, February 2014.

Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity and
a methodology of cryptographic protocol design (extended abstract). In 27th FOCS, pages 174-187.
IEEE Computer Society Press, October 1986.

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM STOC, pages 218-229.
ACM Press, May 1987.

Oded Goldreich and Erez Petrank. The best of both worlds: Guaranteeing termination in fast random-
ized byzantine agreement protocols. Information Processing Letters, 36(1):45-49, 1990.

Shafi Goldwasser and Yehuda Lindell. Secure multi-party computation without agreement. Journal of
Cryptology, 18(3):247-287, July 2005.

S. Dov Gordon, Feng-Hao Liu, and Elaine Shi. Constant-round MPC with fairness and guarantee of
output delivery. In Rosario Gennaro and Matthew Robshaw, editors, CRYPTO 2015, Part II, volume
9216 of LNCS, pages 63-82. Springer, August 2015.

Martin Hirt and Vassilis Zikas. Adaptively secure broadcast. In Henri Gilbert, editor, FURO-
CRYPT 2010, volume 6110 of LNCS, pages 466-485. Springer, May 2010.

28

[38]

Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-party computation with identifiable
abort. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 201/, Part II, volume 8617 of LNCS,
pages 369-386. Springer, August 2014.

Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer -
efficiently. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 572—-591. Springer,
August 2008.

Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzantine agreement. In
Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 445-462. Springer, August 2006.

Jonathan Katz and Chiu-Yuen Koo. Round-efficient secure computation in point-to-point networks. In
Moni Naor, editor, EUROCRYPT 2007, volume 4515 of LNCS, pages 311-328. Springer, May 2007.

Jonathan Katz and Yehuda Lindell. Handling expected polynomial-time strategies in simulation-based
security proofs. In Joe Kilian, editor, TCC 2005, volume 3378 of LNCS, pages 128-149. Springer,
February 2005.

Jonathan Katz, Ueli Maurer, Bjorn Tackmann, and Vassilis Zikas. Universally composable synchronous
computation. In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 477-498. Springer, March
2013.

Marcel Keller, Peter Scholl, and Nigel P. Smart. An architecture for practical actively secure MPC with
dishonest majority. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 13,
pages 549-560. ACM Press, November 2013.

Joe Kilian. Founding cryptography on oblivious transfer. In 20th ACM STOC, pages 20-31. ACM
Press, May 1988.

Eyal Kushilevitz, Yehuda Lindell, and Tal Rabin. Information-theoretically secure protocols and security
under composition. In Jon M. Kleinberg, editor, 38th ACM STOC, pages 109-118. ACM Press, May
2006.

Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine generals problem. ACM
Trans. Program. Lang. Syst., 4(3):382—401, 1982.

Yehuda Lindell, Anna Lysyanskaya, and Tal Rabin. On the composition of authenticated byzantine
agreement. In 34th ACM STOC, pages 514-523. ACM Press, May 2002.

Yehuda Lindell, Anna Lysyanskaya, and Tal Rabin. Sequential composition of protocols without simul-
taneous termination. In Aleta Ricciardi, editor, 21st ACM PODC, pages 203-212. ACM Press, July
2002.

Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient constant round multi-
party computation combining BMR and SPDZ. In Rosario Gennaro and Matthew Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 319-338. Springer, August 2015.

Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-key FHE. In Marc
Fischlin and Jean-Sébastien Coron, editors, FEUROCRYPT 2016, volume 9666 of LNCS, pages 735-763.
Springer, May 2016.

Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in the presence of
faults. Journal of the ACM, 27(2):228-234, 1980.

Michael O. Rabin. Randomized byzantine generals. In 24th Annual Symposium on Foundations of
Computer Science, Tucson, Arizona, USA, 7-9 November 1983, pages 403-409. IEEE Computer Society,
1983.

Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest majority
(extended abstract). In 21st ACM STOC, pages 73-85. ACM Press, May 1989.

Russell Turpin and Brian A. Coan. Extending binary byzantine agreement to multivalued byzantine
agreement. Information Processing Letters, 18(2):73-76, 1984.

Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd FOCS, pages
160-164. IEEE Computer Society Press, November 1982.

29

A On Parallel (In)Composability of Protocols with Probabilistic
Termination

Ben-Or and El-Yaniv [5] observed that when executing randomized protocols with probabilistic
termination in parallel, then, in general, the expected running time of the composed protocol (i.e.,
the rounds its takes for all protocols to give output to all parties) is not preserved. We prove a
formal example where this is the case. Concretely, consider a protocol realizing a particular ideal
functionality such that the probability that all parties have completed the protocol by round k
is p* for some 0 < p < 1. Then, the expected running time of the protocol is 1/p rounds, i.e.,
constant. (This is essentially the case in most randomized BA protocols starting with Feldman and
Micali [28].) However, as implied by the following lemma, if m instances of the protocol are run in
parallel, in a straightforward manner, the resulting protocol will have an expected running time of
©(logm), which is no longer constant.

In particular, running m parallel copies of the protocol of Feldman and Micali [28] results in a
protocol that in expectation takes ©(logm) phases (and thus rounds) to complete.

Lemma A.1. Let X1,..., X, be independent, identically distributed (IID) geometric random vari-
ables, such that for every i € [m] it holds that Pr[X; = 1] = p for some 0 < p < 1. Then,

E Lglzaich] O(logm).

Proof. As shown in Eisenberg [27], the expected value of the maximum of the random variables
satisfies the following inequality:

1 1 1
— Xl <14 — —.
log Z k— [122(% Z] =T log(1 — p) ; k
The lemma follows immediately from the properties of the Harmonic numbers H,, = Y ;' %

In particular, denote u,, = H,, — logm, then the series (u,)m, converges to Euler’s constant =,
implying that
m = O(logm).

B The Model (Cont’d)

In this section, we give complementary material to Section 2 and in particular we include a high-level
overview of the formulation of synchronous UC from [43]. More concretely, Katz et al. [43] intro-
duced a framework for universally composable synchronous computation. For self-containment we
describe here the basics of the model and introduce some terminology that simplifies the description
of corresponding functionalities.

Synchronous protocols can be cast as UC protocols which have access to a special clock func-
tionality Ferock—which allows them to coordinate round switches as described below—and com-
municate over bounded-delay channels.?? In a nutshell, the clock-functionality works as follows:
It stores a bit b which is initially set to 0 and it accepts from each party two types of messages:
CLOCK-UPDATE and CLOCK-READ. The response to CLOCK-READ is the value of the bit b to the

29 As argued in [43], bounded-delay channels are essential as they allow parties to detect whether or not a message
was sent within a round.

30

requestor. Each CLOCK-UPDATE is forwarded to the adversary, but it is also recorded, and upon
receiving such a CLOCK-UPDATE message from all honest parties, the clock functionality updates b
to b@ 1. It then keeps working as above, until it receives again a CLOCK-UPDATE message from all
honest parties, in which case it resets b to b ® 1, and so on.

Such a clock can be used as follows to ensure that honest parties remain synchronized, i.e.,
no honest party proceeds to the next round before all (honest) parties have finished the current
round: Every party stores a local variable where it keeps (its view of) the current value of the
clock indicator b. At the beginning of the protocol execution this variable is 0 for all parties.
In every round, every party uses all its activations (i.e., messages it receives) to complete all its
current-round instructions and only then sends CLOCK-UPDATE to the clock signaling to the clock
that it has completed its round; following CLOCK-UPDATE, all future activations result in the party
sending CLOCK-READ to the clock until its bit b is flipped; once the party observes that the bit b
has flipped, it starts its next round. Recall that, as mentioned in Section 2, for the sake of clarity,
we do not explicitly mention F¢pock in our constructions.

In [43], for each message that is to be sent in the protocol, the sender and the receiver are given
access to an independent single-use channel.?* We point out, that instead of the bounded-delay
channels, in this work we will assume very simple SFEs?!' that take as input from the sender the
message he wishes to send (and a default input from other parties) and deliver the output to the
receiver in a fetch mode. Such a simple secure-channel SFE can be realized in a straightforward
manner from bounded-delay channels and a clock Fepock-

As is common in the synchronous protocols literature, throughout this work we will assume
that protocols have the following structure: In each round every party sends/receives a (potentially
empty) message to all parties and hybrid functionalities. Such a protocol can be described in UC
in a regular form (cf. Section 2) using the methodology from [43] as follows: Let p € N denote
the maximum number of messages that any party P; might send to all its hybrids during some
round.?? Every party in the protocol uses exactly pu activations in each round. That is, once
a party P; observes that the round has changed, i.e., the indicator-bit b of the clock has being
flipped, P; starts its next round as described above. However, this round finishes only after P;
receives p additional activations. Note that P; uses these activations to execute his current round
instructions; since g is a bound on the number of hybrids used in any round by any party,
activations are enough for the party to complete its round (If P; finishes the round early, i.e., in
less than p activations, it simply “does nothing” until the p activations are received, i.e., forward
the activation from the environment to its hybrid functionalities.) Once u activations are received
in the current round, P; sends CLOCK-UPDATE to the clock and then keeps sending CLOCK-READ
message, as described above, until it observes a flip of b indicating that P; can go to the next round.

In addition to the regular form of protocol execution, Katz et al. [43] described a way of capturing
in UC the property that a protocol is guaranteed to terminate in a given number of rounds.?*> The
idea is that a synchronous protocol in regular form which terminates after r rounds realizes the

30 As pointed out in [43], an alternative approach would be to have a multi-use communication channel; as modeling
the actual communication network is out of the scope of the current work, we will use the more standard and formally
treated model of single-use channels from [43].

3In fact, in Section 3 we introduce a more liberal variant of the UC SFE functionality that we call canonical
synchronous functionality (in short, CSF) that allows us to abstract several (even more complicated) tasks such as
Byzantine agreement.

32In the simple case where the parties only use point-to-point channels, i = 2(n — 1), since each party uses n — 1
channels as sender and n — 1 as receiver to exchange his messages for each round with all other n parties.

33The wrappers presented in this work generalize the notion of guaranteed termination to capture randomized
number of rounds. Concretely, one can view the functionality for SFE with guarantee termination from [43] as a
wrapped version of the standard SFE functionality with our wrapper with a deterministic round distribution.

31

following functionality F. The functionality F keeps track of the number of times every honest
party sends p activations/messages and delivers output as soon as this has happened r times. More
concretely, imitating an r-round synchronous protocol with p activations per party per round, upon
being instantiated, F initiates a global round-counter A = 0 and an indicator variable A; := 0 for
each P; € P; as soon as some party P; sends p messages to F, while the round-counter A is the same,
F sets \; := 1 and does the following check:** if \; = 1 for all honest P; then increase A := A + 1
and reset A; = 0 for all P; € P. As soon as A = r, the functionality F enters a “delivery” mode. In
this mode, whenever a message (fetch-output,-) is received by some party P;, the functionality
F outputs to P; its output. (If F has no output to P; is outputs L.)

We refer to a functionality that has the above structure, i.e., which keeps track of the current
round A by counting how many times every honest party has sent a certain number p of messages,
as a synchronous functionality. To simplify the description of our functionalities, we introduce the
following terminology. We say that a synchronous functionality F is in round p if the current value
of the above internal counter in F is A = p.

We note that protocols in the synchronous model of [43] enjoy the strong composition properties
of the UC framework. However, in order to have protocols being executed in a lock-step mode, i.e.,
where all protocols complete their round within the same clock-tick, Katz et al. [43] make use of
the composition with joint-state (JUC) [14]. The idea is the parties use an Fepocx-hybrid protocol
7 that emulates toward each of the protocols, sub-clocks and assigns to each sub-clock a unique
sub-session ID (ssid). Each of these sub-clocks is local to its calling protocol, but # makes sure that
it gives a CLOCK-UPDATE to the actual (joint) clock functionality Fepock, only when all sub-clocks
have received such a CLOCK-UPDATE message. This ensures that all clocks will switch their internal
bits at the same time with the bigger clock, which means that the protocols using them will be
mutually synchronized. This property can be formally proved by direct application of the JUC
theorem. For further details the interested reader is referred to [43, 14].

A final delicate point that needs to be addressed is with respect to whether/when parties can
stop sending messages to their functionalities. Concretely, since the parties do not a priori know
the termination round, a party cannot halt as soon as it produces output, since some other party
might still need several rounds to produce its own output. Rather, every protocol in our setting
continues sending (dummy) messages to all its hybrids even after having generated its output—
as long as it keeps being activated by the environment—to enable also the other (slower) parties
compute their outputs. Note that this is a straightforward adaptation of classical UC protocols—
instead of the protocol ignoring messages after it has produced output, it enters a special dummy
stage. Most importantly, it does not yield inefficient protocols, as the input of a UC protocol
consists of the concatenation of its inputs, and, therefore, as long as the environment provides new
inputs/activations the protocol can continue executing dummy steps. (The UC experiment finishes
when the environment decides to stop and make its guess.)

C Composition of Probabilistic-Termination Protocols (Cont’d)

This section contains the proofs for Section 4.

34To make sure that the simulator can keep track of the round index, F notifies S about each received input,
unless it has reached its delivery state defined below.

32

C.1 Composition with Deterministic Termination (Cont’d)

We start by giving the intuition for the proof of Theorem 4.2. Loosely speaking, the main differences
between the SNF protocol 7 implementing the functionality Ws[t)rict(]:) and the compiled protocol
7’ implementing Wsjlj_ thllfct(f) is that m uses CSF as hybrids, whereas 7’ uses wrapped CSF's, and
in addition, parties might not start at the same round, but with a slack of ¢ rounds. In order to
ensure that any potential overlap between concurrent calls to different wrapped hybrids remain
secure, the wrappers expand each round to 3¢ + 1 rounds.

Now, given a simulator S for the dummy adversary and the SNF protocol 7w, we construct a
simulator S’ for the dummy adversary and the compiled protocol 7. The new simulator acts as a
proxy between S on the one hand and the environment and the ideal functionality on the other,
with the exception that it must “synchronize” the round counters between them. Therefore, S’
stores a local round counter p; for every hybrid H;, and a “slack counter” c¢; for every party P; to
ensure that its messages are delivered with the same initial slack it started the protocol.

Theorem 4.2. Let F,Fi,...,Fm be canonical synchronous functionalities, let t < n/3, and let
7 an SNF protocol that UC-realizes WL . (F) with perfect security in the (Fi,...,Fm)-hybrid
model, for some depth-1 distribution D, in the presence of adaptive, malicious t-adversary, and
assuming that all honest parties receive their inputs at the same round. Let D1, ..., D,, be arbitrary

distributions over traces, D' = full-trace(D, Dy, ..., D,,), and ¢ > 0.

Then, the compiled protocol ©' = Comp§,(w, D1, ..., Dy,) UC-realizes Wsll)_ :t”rlcct(}') with perfect

security in the (Ws?_ls’tiict(fl), . ,W:i_’;t}cict(fm))—hybrid model, in the presence of adaptive, mali-
ctous t-adversary, assuming that all honest parties receive their inputs within ¢ + 1 consecutive
rounds.

The expected round complexity of the compiled protocol 7' is

Be- Y di- Elew(Ty)),

i€[m]

where d; is the expected number of calls in w to hybrid F;, T; is a trace sampled from D;, and
B. = 3c+1 is the blowup factor.

Proof. Let S be the simulator for protocol 7 running with the dummy adversary.?> Consider the
following simulator &’ for #’/, that internally runs a copy of S. Initially, S’ sets slack counters
c1,...,cp < 0 and proceeds as follows.

full
e At any round forward (adv-input,sid, -) messages from S to WSIID_ st (F)-

e Inrounds p =1,...,2c+1, upon receiving (leakage,sid, Pj, -) from WPfU|I7C (F), forward the

sl-strict
message to & and in addition record the slack for party P; as ¢; < p — 1.

full
Along with the very first such message, S’ receives a trace 7! from wh= e

Lt (F)- S’ constructs
a new trace T with the root Wgrict(]:), where the leaves are set as follows: Each node in the

first layer of T is a root for a subtree labeled with W2 (F;) (for some i € [m]); S’ adds

strict

the leaf F; to the first layer in T'. Finally, S’ passes T to S.

Dj,c

e Simulate the execution of every wrapped hybrid H; = W, . . (F;) (for some j € [m]) in

the order they appear in the first layer in 7™ as follows?® (the first such hybrid must be

35Recall that proving security with respect to the dummy adversary is sufficient (cf. [10, Claim 10]).
36Recall that the children at each node in a trace are ordered.

33

simulated as early as in round p = 1. Note that if there is actual slack among the parties,
the simulations of consecutive hybrids overlap):

— Let p; be the (simulated) round counter of H; and let Tif“” be the corresponding subtree
in Tfull.

— In any round p; forward the messages (adv-input,sid,-) (that are directed to H;) from
the environment to S.

— For every party P;, in round p; = ¢j + 1, obtain the simulated leakage for P; from S and
pass it to the environment;*” add (trace, sid, Tz-f””) to the first such message.

full
— In all other rounds p;, simply forward (fetch-output,sid, -) messages from Wsji sttt (F)
to the environment (to simulate the advancement of the execution of H;).

— The simulation for party P; ends in round p; = B, - ctr(Tif“”) + ¢;.

Let Z’ be an environment that can distinguish between an execution of protocol 7’ in the
owhre (F)), L o WEme (F))-hybrid model with the dummy adversary and the execution in

sl-strict sl-strict

full
the ideal model with WS?_ Str’icct(]-') and §’. We construct the following environment Z distinguishing
between an execution of 7 in the (Fi, ..., Fp,)-hybrid model with the dummy adversary and the

ideal model with W2. (F) and S:

strict

e Z internally runs a copy of Z’, emulating the parties and the adversary (either in a real
execution of 7 or an ideal execution of WX . (F)). Initialize slack counters ci,..., ¢, + 0
and a simulated round counter p (for Z’).

e Whenever Z’ sends a message (input,sid,-) to P; in rounds p = 1,...,2c+1, Z forwards the
message to P; and records slack ¢j < p — 1.

e For each executed (resp. simulated) two-round CSF hybrid F;, proceed as follows to simulate

an execution (resp. simulation) of Wsll)_ 2 (Fi) to 27 (the first such simulation takes place as

early as in round p = 1. Note that if there is actual slack among the parties, the simulations
of consecutive hybrids overlap):

— TInitialize a round counter p; ¢+ 1 and sample a trace T from D;.

— At any round, forward (adv-input,sid,-) messages from Z’ to the adversary.

— For every party P;, in round p; = ¢j + 1, obtain the leakage for P; from the adversary
and pass it to 2’;%® add (trace, sid, Tl-f””) to the first such message.

— In all other rounds p;, upon receiving (fetch-output,sid, -) messages from Z’ for some
party Pj, pass (fetch-output,sid, P;) to Z (to simulate the advancement of the execu-
tion).

— The simulation for party P; ends in round p; = B, - cer (T + ¢
e At any round, forward (output,sid,-) messages from a party to Z’.

e Output whatever decision bit Z’ outputs.

It can be seen by inspection that:

37S can be advanced by suitably sending it (fetch-output, sid,) messages.
38The execution Z interacts with can be advanced by suitably sending (fetch-output,sid,-) messages to the
parties.

34

e When Z interacts with a real-world execution of 7 with hybrids F;, the view of Z’ is ex-
actly the view it would have when interacting with a real-world execution of 7/ with hybrids
whie (Fi), and

sl-strict

e When Z interacts with an ideal-world execution of W2, . (F) with simulator S, the view

of Z’ is exactly the view it would have when interacting with an ideal-world execution of
full
WP € (F) with simulator &

sl-strict

The expected round complexity follows by linearity of expectation and by noting that the
expected number of times a hybrid F; is called in m and the expected trace complexity of D; are
independent random variables. Indeed, the trace complexity needed to implement Wslt)ﬁict(]:i) is
independent of the protocol 7, and the number of calls to F; in m depends on the CSF representation

of F;, and not on its wrapped version.]

C.2 Composition with Probabilistic Termination (Cont’d)

The intuition for proving Theorem 4.3 is similar to that of proving Theorem 4.2. In addition to
simply synchronizing between the simulator S and the ideal functionality and environment, S’ must
also address the following issues. First, some CSFs (F; for i € I) are wrapped using the flexible
wrapper, whereas others (F; for ¢ ¢ I) are wrapped using the strict wrapper. Second, &’ must
simulate the termination procedure at the end of every flexibly wrapped CSF and at the end of the
simulation.

Theorem 4.3. Let F, F1,...,Fm be canonical synchronous functionalities, let t < n/3, and let
an SNF protocol that UC-realizes ngx(]:) with perfect security in the (Fi,...,Fm)-hybrid model,
for some depth-1 distribution D, in the presence of adaptive, malicious t-adversary, and assuming
that all honest parties receive their inputs at the same round. Let I C [m] be the subset (of indices)
of functionalities to be wrapped using the flexible wrapper, let D1, ..., Dy, be arbitrary distributions
over traces, denote D™ = full-trace(D, Dy,...,D,,) and let ¢ > 0. Assume that F and F;, for
every © € I, are public-output functionalities.

Then, the compiled protocol @' = Comp§p(m, D1, ..., Dy, I) UC-realizes Wsll)fful!)f(}') with per-
fect security in the W(F1), ..., W(Fnm))-hybrid model, where W(F;) = Ws%ﬁgx(]:i) if i € I and
W(F;) = Ws%s’tiict(fi) if i ¢ I, in the presence of adaptive, malicious t-adversary, assuming that

all honest parties receive their inputs within ¢ + 1 consecutive rounds.
The expected round complexity of the compiled protocol 7' is

B.- > di- Eleu(T)]+2- Y di- Efflexe(T})] + 2,
i€[m] i€[m]

where d; is the expected number of calls in w to hybrid F;, T; is a trace sampled from D;, and
B. = 3c+1 is the blowup factor.

Proof. Let S be the simulator for protocol 7 running with the dummy adversary.?® Consider the
following simulator &’ for 7/, that internally runs a copy of S. Initially, S’ sets slack counters
C1y...,cn < 0 and proceeds as follows.

full
e At any round forward (adv-input,sid, -) messages from S to Wsll)_ o (F).

39Recall that proving security with respect to the dummy adversary is sufficient [10, Claim 10].

35

e Inrounds p=1,...,2c+ 1, upon receiving (leakage,sid, P;,-) from Wll)_fﬁu!;f(]:), forward the

S
message to & and in addition record the slack for party P; as ¢; < p — 1.

fu
Along with the very first such message, S’ receives a trace T from WS?_ ﬂ!;f (F). &’ constructs
anew trace 1" with the root Wﬂ’éx(}"), where the leaves are set as follows: Each node in the first
layer of T™ is a root for a subtree labeled with W2i (F;) or Wéi;(}"i) (for some i € [m]);

strict

S’ adds the leaf F; to the first layer in 7. Finally, S’ passes T' to S.

e Simulate the execution of all wrapped hybrids H; in the order they appear in 7! (the first
such hybrid must be simulated as early as in round p = 1. Note that if there is actual slack
among the parties, the simulations of consecutive hybrids overlap). If the hybrid H; is of the

D 3,C
form Wsl—strict

(F;) (for some j € [m]), i.e., if j ¢ I, proceed as follows:

— Let p; be the (simulated) round counter of H; and let 77! be the corresponding subtree
in Tfull.

— In any round p; forward the messages (adv-input,sid,-) (that are directed to H;) from
the environment to S.

— For every party P;, in round p; = ¢j + 1, obtain the simulated leakage for P; from S and
pass it to the environment;*® add (trace, sid, Tif“”) to the first such message.

full
— In all other rounds p;, simply forward (fetch-output,sid,-) messages from Wsjlj_ fos (F)
to the environment (to simulate the advancement of H;’ execution).

— The simulation for party P; ends in round p; = B, - ct,(Tl-f“”) + ¢j.

If the hybrid #; is of the form W-7%°

sl-flex

(Fj) (for some j € [m]), i.e., if j € I, proceed as follows:

— Let p; be the (simulated) round counter of H; and let T{!' be the corresponding subtree
in 7T Set prerm < Be - ctr(Tf“”) + 2. ﬂextr(Tf””) +c.

— In any round p;, forward the messages (adv-input,sid,) (that are directed to H;) from
the environment to S.

— For every party P;, in round p; = ¢j + 1, obtain the simulated leakage for P; from S and
pass it to the environment;*! add (trace, sid, Tz-f””) to the first such message.

full
— In all other rounds p;, simply forward (fetch-output,sid,-) messages from Wsjlj_ Ao (F)
to the environment (to simulate the advancement of H;’ execution).

— If the environment issues (early-output,sid,-) commands, before round pierm, for cer-
tain parties P; € P, set ¢; <— 0 for these parties and c; <— 1 for the others and end the
simulation of H; one round later. If the environment does not issue such a command for
any party, set ¢; <— 0 for all parties and end the simulation of H; in round prerm.

DFuII7C

e When § wants to output (early-output,sid, P;) to W, o “°(F), proceed as follows:

S
— Pass (get-output,sid) to Wsll)_:!;f(f), obtain (output,sid,y), and record y (the first
time).

— Simulate P; sending (end, sid, y) to all parties.

40S can be advanced by suitably sending it (fetch-output, sid,-) messages.
1S can be advanced by suitably sending it (fetch-output, sid, -) messages.

36

— For every party P;, keep track of how many simulated (end, sid,-) messages have been
received by P; (including those sent by corrupted parties).

* When a party receives t + 1 such messages (for the same value y), simulate that
party’s sending of such a message of its own (unless already done so).

* When a party P; receives n — t such messages (for the same value y), send
(early-output,sid, P;) to WL (F).

Let Z’ be an environment distinguishing between an execution of 7’ in the (W(F1), ..., W(Fn))-

hybrid model and the ideal model with Wsji EZXC (F) and &’. We construct the following environment
Z distinguishing between an execution of 7 in the (Fy,. .., Fp,)-hybrid model and the ideal model
with W _(F) and S:

e Z internally runs a copy of Z’ and emulates the parties and the adversary (either in a real
execution of 7 or an ideal execution of WP _(F)). Initialize slack counters c1, ..., ¢, + 0 and
a simulated round counter p (for Z’).

e When Z’ sends a message (input,sid,-) for P; in rounds p = 1,...,2c¢ + 1, Z forwards the
message to P; and records slack ¢j < p — 1.

e For each executed (resp. simulated) two-round CSF hybrid F;, simulate an execution (resp.
simulation) of Wsllj_ e (Fi) or Wi ot (Fi) to Z’ (the first such simulation takes place as early
as in round p = 1. Note that if there is actual slack among the parties, the simulations of
consecutive hybrids overlap). If i ¢ I, i.e., if the hybrid functionality in 7" is of the form

H; = WS]Z et (Fi), proceed as follows:
— Initialize a round counter p; < 1 and sample a trace TifUII from D;.
— At any round, forward (adv-input,sid, -) messages from Z’ to the adversary.

— For every party P;, in round p; = ¢j + 1, obtain the leakage for P; from the adversary
and pass it to 2’;*? add (trace, sid, Tif””) to the first such message.

In all other rounds p;, upon receiving (fetch-output,sid, -) messages from Z’ for some
party Pj, pass (fetch-output,sid, P;) to Z (to simulate the advancement of the execu-
tion).

— The simulation for party P; ends in round p; = B, - ctr(Tl-f“”) + ¢j.

Di ,C
sl-flex

If i € I, i.e., if the hybrid functionality is of the form H; = (Fi), proceed as follows:

— Initialize a round counter p; < 1 and sample a trace Tif“” from D;. Set

Prerm < Be - coe(TH) 4 2 - flexe (T/U) + c.

— At any round, forward (adv-input,sid,-) messages from Z’ to the adversary.

— For every party Pj, in round p; = ¢j + 1, obtain the leakage for P; from the adversary
and pass it to 2’;*3 add (trace, sid, Tif“”) to the first such message.

In all other rounds p;, upon receiving (fetch-output,sid) messages from Z’ for some
party P;, pass (fetch-output,sid, P;) to Z (to simulate the advancement of the execu-
tion).

*2The execution Z interacts with can be advanced by suitably sending (fetch-output, sid) messages to the parties.
43The execution Z interacts with can be advanced by suitably sending (fetch-output, sid) messages to the parties.

37

— If 2’ issues (early-output,sid,) commands for certain parties P; € P before round
Prerm, set ¢j <— 0 for these parties and c; < 1 for the others, and end the simulation of
H; one round later. If Z’ did not issue such a command to any party by round pierm,
set ¢; < 0 for all parties and end the simulation of H; in round prerm.

e When a party wants to output (output,sid,y), proceed as follows:

fu
— Pass (get-output,sid) to Ws?_ﬁ!;f(]:), obtain (output,sid,y), and record y (only at the

first time).
— Simulate (to Z’) P; sending (end, sid, y) to all parties.

— For every party P;, keep track of how many simulated (end, sid, -) messages it has received
(including those sent by corrupted parties).
* When a party receives t + 1 such messages (for the same y), simulate that party’s
sending such a message of its own (unless already done so).

* When a party P; receives n —t such messages (for the same y), pass (output,sid, y)
to Z’ on behalf of P;.

e Output whatever decision bit Z’ outputs.

It can be seen by inspection that:

e When Z interacts with a real-world execution of m with hybrids F;, the view of Z’ is exactly
the view it would have when interacting with a real-world execution of 7/ with hybrids W(F;)
and the dummy adversary.

e When Z interacts with an ideal-world execution of W (F) with simulator S, the view of Z’

full
is exactly the view it would have when interacting with an ideal-world execution of WS?_ fos (F)
with simulator S'.

The expected round complexity follows by similar arguments as in Theorem 4.2. O

D Applications of Our Fast Composition Theorem (Cont’d)

This section includes complementary material to Section 5.

D.1 Fast and Perfectly Secure Byzantine Agreement (Cont’d)

In Section 5.1, we presented the randomized binary Byzantine agreement protocol mzpy. We now
proceed to prove Lemma 5.2.

Lemma 5.2. Lett < n/3, then, assuming all honest parties receive their inputs at the same round,
protocol mppy UC-realizes Frpy = DRBA(];{2’1}), in the (Fpsur, Foc, ég’l})—hybm'd model, with

flex
perfect security, in the presence of an adaptive malicious t-adversary.

Proof. We first claim correctness, i.e., that all honest parties output the same value and that if
n —t of the inputs are the same, this value will be the common output. The protocol mgg, consists
of two parts, the first is running (up to) 7 phases of the Feldman-Micali protocol, and the second
(which only occurs if there exists an honest party that did not receive output, i.e., has value
term = 0, in the first part, or if there exists an honest party that received output in phase 7, i.e.,

38

has value term = 7) consists of calling a BA functionality. As shown in [28, Thm. 4], the Feldman-
Micali protocol satisfies the consistency and validity properties in the property-based definition of
Byzantine agreement. In addition, if some honest party received output b in some phase « (i.e.,
if it sets term = «/), then the value b; of every honest party P; equals b at the end of phase a. It
follows that:

e In case n — t honest parties (in particular if all honest parties) start with the same input,
they will agree on this value as their output and terminate in the first phase. (In all other
cases it remains only to show that all honest parties agree on the output.)

e In case the first honest party received output in phase o < 7 — 1, it holds that by phase
a4+ 1 < 7 all honest parties will receive the same output (i.e., 0 < term < 7 for all honest
parties), and so correctness follows from [28].

e In case no honest party received output in all 7 phases (i.e., term = 0 for all honest parties),

}

all honest parties send their internal values to]:];{2’1 and output the result, hence, correctness

follows from the .7:1;{2’1} functionality.

e In case all honest parties receive their outputs in phase 7 (i.e., term = 7 for all honest parties),
then by [28] they receive the same value. In this case, this is the value they will output after

calling fég’l} and so correctness is satisfied.

e In case some honest parties receive their outputs in phase 7 (i.e., term = 7) and the other
honest parties do not (i.e., term = 0), then it holds that all honest parties send the same

{0,1}

value to F3, 7, and correctness is satisfied.

e In case some honest parties receive their outputs in phase 7 — 1 (i.e., term = 7 — 1), they do

not send any input to]:ég’l}. However, the remaining honest parties will receive the same
output in phase 7 (i.e., term = 7), and will output this value, regardless of the output they

. 0,1 . .
receive from]-"E;{A s Therefore, correctness is satisfied.

Regarding termination, [28, Claim T4-4] showed that for any positive integer m, if all honest
parties agree on the same bit at the beginning of the m’th phase, then they will all terminate at
the end of the phase with probability at least p. It follows that in case all honest parties start
with the same input value, they will terminate within the first iteration. Otherwise, the probability
distribution of terminating in less than 7 = log1'5(/<o) + 1 phases is geometric with parameter p. In
the negligible probability that the parties did not receive output in less than 7 phases, termination
is guaranteed by .7:];{2’1}.

We now prove that mrp, UC-realizes Fppa. Let A be the dummy adversary and let Z be an
environment. We construct a simulator S that simulates the honest parties in myg,, the adversary

A and the ideal functionalities Fpgyr, Foc and ég’l} to the environment, as follows.
e S forwards all messages from the environment to A (and vice versa).

e S simulates every honest party by independently sampling random coins for the party and
running the protocol according to the protocol’s specification. Note that S learns the in-
put for each honest party P; as soon as P; sends it to JFgzga by receiving the message
(leakage,sid, P;, (z1,...,2y)). In addition, S learns the trace of the protocol by receiving
the message (trace,sid, T') from Fyg,, and can derive the terminating phase royt by counting
the number of sequences (Foc, Fesur, Fesurs Frsur) i1 T (and setting roye <— 7 + 1 if the last

.. {01}
leaf is F5,77).

39

e Whenever A sends a message (sid, b;) on behalf of a corrupted party P; to some honest party
during the first round, S sends (input,sid, b;) to Frpa on behalf of P;.

e Whenever A requests to corrupt some party P; € P, S corrupts P; and sends the simulated
internal state of P; (consisting of P;’s input, randomness and incoming messages) to A. Recall
that in case A corrupts a party P; after it sent its input to some corrupted party, during the
first round, A may instruct P; to send a different value as its input to all other parties. In
this case, S sends (input,sid, b;) to Frss on behalf of P;.

e When simulating Fo in the first 7o, — 1 phases, instead of sampling the fairness bit, S acts as
if b= 0, i.e., it allows A to decide on the output values of the parties. In case some subset of
simulated honest parties P’ terminate in a phase r (prior to phase rou) with value y € {0, 1},
S sends (adv-input,sid,y) to Fygs followed by (early-output,sid, P;) for every P; € P'. In
addition, S proceeds based on the following cases:

— In case r < 7, § sends (early-output,sid, P;) for every P; € P\ P’ in the next phase,
ensuring that all honest parties will terminate appropriately.

— In case 7 = 7, then the honest parties in P \ P’ proceed to the invocation of];{2’1}, S

simulates all honest parties in P \ P’ sending y as their input and receives input values

} would, and sends to
the adversary the output values. (Recall that the output value from fég’l}
used by the honest parties.)

from the adversary. Next, & computes the output just like]:1;{2’1
is not being

— Note that the case » = 7 4+ 1 can never happen.
e In case no honest party has terminated prior to phase rou:, then S proceeds as follows:

— In case rout < 7, & samples a random bit y € {0,1} in the rou'th phase, sends
(adv-input,sid,y) to Fyea, and simulates the next invocation of Foc by setting the
fairness bit b = 1 and with output y, i.e., ensuring that the honest parties will receive
output y in the simulated protocol. Recall that if rou < 7 then indeed all honest parties
will terminate in the simulated protocol, however, if ro,t = 7 the simulator must simulate
Fég’l} to A. Note that A cannot affect the output value in this scenario (as all honest
parties participate with input value y); S simulates all honest parties sending y as their
input, and responds with y as the output for all corrupted parties.

— In case 1oyt = T+1, i.e., in case no party received output in all 7 phases, S simulates the

functionality éﬁ’l} to the adversary. Initially, S simulates all honest parties sending

their local intermediate value as their input to fég’l}, and receives the input values
from the adversary on behalf of the corrupted parties. (Recall that the adversary may

dynamically corrupt honest parties and change their input message.) Next, S computes
the result as in Fég’l}, i.e., it checks whether there exists at least n —t input values that
all equal to some value y, and if so sets it as the output; otherwise, it sets the output
based on the (adv-input,sid,-) message sent by the adversary.

It follows using a standard hybrid argument that the view of the environment Z is identically
distributed when interacting with a real-world execution of 7gg, in the (Fpsur, Foc, fég’l})-hybrid
model and the dummy adversary, and when interacting with the simulator S and the ideal model

computation of Fypa. O

40

D.1.1 Multi-Valued Byzantine Agreement Protocol

As presented above, mpp, is a binary BA protocol. Using a transformation due to Turpin and
Coan [55], the decision domain can be extended without increasing the expected running time.
Given a set V' C {0, 1}*, denote by Dyy.pa the deterministic distribution that outputs a depth-1

.. 0,1
trace consisting of a root Wslt)ﬁ:éf“(]: V') and three leaves (Fpsyr, Frsr, éA }).

Protocol myy_ga

The protocol s is parametrized by the set V. Each party P, € P = {Py,..., P,} proceeds as
follows:

e Initially, P; sets the values y < 1, z + L and vote < 0.

e In round p = 1: upon receiving (input,sid, v;) from the environment, P; sends (sid,v;) to all the
parties (via Fpsur). Denote by v; the value received from P; in this round.

e In round p = 2: if there exists a value v € V that appears more than n — ¢ times in the set
{v1,...,v,} then set y < v. Send (sid,y) to all the parties (via Fpeyr). Denote by y; the value
received from P; in this round.

e Inround p = 3: if there exists a value v € V that appears more than n—t times in the set {y1,...,yn}
then set vote < 1. In addition, set z to be the value that appears the most in {y1,...,yn}.

Send (input, sid, vote) to F2M and let (output,sid, b), with b € {0, 1}, be the output from FLou
If b = 1 then output (output,sid, z), otherwise output (output,sid, vg) for some default vy € V.

Figure 11: The multi-valued Byzantine agreement protocol, in the (Fpsyr, fég’l})—hybrid model

Lemma D.1. Let t < n/3 and V. C {0,1}*. Then, assuming all honest parties receive their
inputs at the same round, the protocol myy.ga UC-realizes WS?&{“(.F&) in the (fPSMT,]:{O 1})
hybrid model, with perfect security, in the presence of an adaptive malicious t-adversary.

The proof of the Lemma is straightforward.

Theorem 5.4. Let ¢ > 0, t < n/3 and V. C {0,1}*. There exists an efficiently sampleable
distribution D such that the functionality W ﬂex(fg//;) has an expected constant round complezity,
and can be UC-realized in the Fsyr-hybrid model, with perfect security, in the presence of an adaptive
malicious t-adversary, assuming that all honest parties receive their inputs within ¢+ 1 consecutive
rounds.

Proof (sketch). Let D! .~ = full-trace(Dywy-pa, Dpsur, D). For simplicity, denote Fpy' =

DY
Wi i‘ll\e)]im (}—gx) D1 = Dypsyr, D2 = DI%”A and I = {2}.

From Lemma D.1, my.ps UC-realizes Ws?r‘;gt“(]:éi) in the (fPSMT,f{O 1}) hybrid model,
three rounds, assuming all parties receive their inputs at the same round. Following Theorem 4.4,

PT,V

the compiled protocol Compg,(myv-a, D1, D2,1) UC-realizes Fg,'", in the (Fpayr Fua)-hybrid
model, in an expected constant number of rounds, assuming all parties receive their inputs within
¢+ 1 consecutive rounds.

The proof follows since, following Lemma 4.5 and Theorem 5.3 the functionalities Fpg,, and
Fiy can be UC-realized in the Fgyr-hybrid model, using expected-constant-round protocols. [

41

D.2 Fast and Perfectly Secure Parallel Broadcast (Cont’d)

Our construction proceeds in two steps. In a first step we show how to adapt the protocol from
Ben-Or and El-Yaniv [5] to obtain a probabilistic-termination (expected-constant-round) version
of unfair parallel broadcast with perfect security. In step two, we use (and improve on) an idea
due to Hirt and Zikas [37] to transform our unfair protocol into a fair parallel broadcast protocol.

D.2.1 The Unfair Parallel Broadcast Protocol

In this section, we adjust the interactive-consistency protocol of Ben-Or and El-Yaniv [5] (with
minor adjustments) to the UC framework. The protocol mypsc (see Figure 12 for a detailed de-
scription) is parametrized by two integers d and m. Initially, each party distributes its input to
all other parties. The underlying idea of the protocol is to run n - m instances of the BA protocol
mrea 10 parallel, such that for each P;, a class of m instances of mzp, are executed on the input of
P;. However, in order to avoid the blowup in the number of rounds, the parallel execution of the
protocols is truncated after d phases. Once the first step concludes, each party checks for each of
the n classes if it received output in at least one of the executions. If so, it arbitrarily selects one
output for each class and distributes the vector of output values to all the parties.

Next, the parties run a leader-election protocol and once some party Py is elected to be the
leader, all parties run a BA protocol on the output vector that was distributed by the leader P
earlier (which might be null). Each party checks whether the agreed output corresponds to the
output values it received in the first step and sets a termination indicator accordingly. Finally, the
parties run another BA protocol on the termination indicators and terminate in case the output is
1; otherwise another iteration is executed.

Ben-Or and El-Yaniv showed that consistency and validity properties are satisfied, and further-
more, if m =log(n) and d is such that at least 5 phases of the truncated randomized BA protocol
are executed, then the protocol will terminate in a constant expected number of rounds.

We analyze this protocol in a hybrid model, where parties have access to a leader-election
functionality F. and a Byzantine agreement functionality Fs,. We actually require two types of
BA functionalities, the first is a standard BA functionality, whereas the second is a “truncated”
BA, which runs for a specific number of rounds and halts even if no output is specified. We now
describe these ideal functionalities as CSFs.

Leader election. In the leader-election functionality, the parties agree on a random value k €p
[n]. This functionality can be cast as a special case of secure function evaluation (as defined in
Section 3.1), where the parties compute the function gie(A,...,A) = (k,..., k). We denote by Fip
the functionality F2e,.

Ben-Or and El-Yaniv [5] showed how to implement the leader-election functionality by first
using the oblivious common coin protocol from [28] to compute an oblivious leader election, and
next run a (multi-valued) Byzantine agreement protocol on the result. The oblivious leader election
functionality Forp is defined in a similar way to the oblivious common coin functionality (Foc,
Section 5.1), with the exception that output value y is not a bit, but a uniformly distributed element
in [n]. Denote by D,y the deterministic distribution that outputs a depth-1 trace consisting of a

root WP (FLe) and 2 leaves (FOLE,.F};[;”]).

strict

Lemma D.2 ([5]). Lett < n/3. Then, assuming all honest parties receive their inputs at the same
round, Ws?;ﬁzt(fw), in the (fOLE,f]gﬁ})—hybrid model, with perfect security, in the presence of an
adaptive malicious t-adversary.

42

Truncated Byzantine agreement. The truncated Byzantine agreement functionality, is a
CSF whose function is parametrized by a set V', an efficiently sampleable distribution D, and
a nonnegative integer d. FEach party P; has input x; € V, and receives two output values
(y4,95). The adversary is allowed to learn all the input values as the honest parties send
them, i.e., the leakage function is [, . (21,...,2n) = (21,...,25). The function to compute is
Fraon (@15 20, a) = (W4, 95), - -+, (¥4, 95)), which operates as follows:

e If there exists a value y such that y = x; for at least n — ¢ input values z;, then set (yi,y3) +
(y, L) for every i € [n].

e Else, sample a number r < D. The adversarial input a is parsed as a vector of n + 1 integer
values (ag,ai ...,an). The first coordinate ay represents the output value, i.e., set y < ag.
Next, for each party P;, set a value d; < min(a;, 7). Finally, the output values for each party
P; is defined as follows:

— If d; < d then set (yi,y
— If d; = d then set (yi,y
— If d; > d then set (4%,

5) « (v, L)

3) < (L)

3) < (L, 1)

In fact, in the protocol myppc, a parallel version (of s instances, for some s) of the above described
functionality is required. That is, each party P; has a vector of input values x; = (21, ..., %), and
receives a vector of s output values (¢, . ..,y) where each y; is a pair of values as above. The leakage
function reveals all the input values to the adversary, and the function to compute is essentially
s instances of the above function f, where for each instance the value r is sampled from D using
independent random coins. In addition, the adversarial input a is parsed as a vector of s(n + 1)
integer values, where for each instance, the adversary specifies a different vector (ag,a; ..., ap).
Note, however, that the value d is the same in all s instances.

We denote by Frrsa the functionality Feer describing the parallel version of truncated random-
ized BA, as described above.

The protocol. We first describe a version of the protocol by [5] augmented with (a simpler
version of) the technique from [34], where all hybrids used are CSFs;** using Theorem 4.3 we
then obtain our result. Recall that the unfair parallel broadcast functionality Fypgc is defined in
Section 5.2.

Let d > 5, let m = log(n), and let 7 = log’®(k) + 1. Denote by D the geometric distribution
with parameter 2¢/3 and support {1...,7+ 1}, where ¢ is the probability that when independently
sampling nm “terminating phases” (r1, ..., 7ny) from the distribution Dgg, then, for every 5 € [n] it
holds that at least one of the values (r(j_1)m+1;-- -, T(j—1)m+m) is smaller than d. (The distribution
D outputs the phase in which the event where F; returned a party that was honest before the Fi
invocation and received output in each BA occurs, plus the option that this event did not occur in
all 7 phases.)

Denote by Dyppc the distribution that outputs a depth-1 trace with a root Wf?e;”‘c (Fupsc) and
where the leaves are set as follows: initially sample an integer » <— D. The first leaf is Fpgur,
followed by min(r, 7) sequences of (Fr-gpa, Fesurs Fres Foas Fua)- Finally, if r =7 + 1 add the leaf
Fuppc-

““Note that although the hybrids are CSFs, and all honest parties terminate at the same round, the protocol has
probabilistic termination.

43

Lemma D.3. Let t < n/3, and assume all honest parties receive their inputs at the same
round. Then, the protocol mypge UC-realizes the functionality Fprypse = fﬁ‘;(PBC(]:UPBC), i the

(Fesurs Foas FLe, Frrea, Fuesc)-hybrid model, with perfect security, in the presence of an adaptive
malicious t-adversary.

Proof. We first claim correctness. The protocol myppe consists of two parts, the first is running
(up to) 7 phases of the Ben-Or and El-Yaniv [5] protocol, and the second (which only occurs if
no output was generated in the first part, i.e., if all honest parties have value term = 0) consists
of calling an unfair parallel broadcast functionality. As shown in [5, Thm. 5], the Ben-Or and
El-Yaniv protocol satisfies the consistency and validity properties in the property-based definition
of interactive consistency (i.e., parallel Byzantine agreement). In addition, since the last step in
each phase is invoking the BA functionality in order to agree whether all honest parties received
output and can safely terminate, or whether an additional phase should be executed, it follows that
if one honest party has received output in some phase, then so do the rest of the honest parties.
It follows that:

e In case some honest party received output in phase a < 7, then all honest parties also receive
the same output at this phase (i.e., term = 1 for all honest parties), and so correctness follows
from [5].

e In case no honest party received output in all 7 phases (i.e., term = 0 for all honest parties),
all honest parties send their initial values to Fypge and output the result; hence, correctness
follows from the Fyppe functionality.

Regarding termination, Ben-Or and El-Yaniv showed that for d > 5 and m = log(n), all honest
parties receive their outputs within a constant number of phases in expectation. In the negligible
probability that the parties did not receive output in less than 7 phases, termination is guaranteed
by Fupsc-

We now prove that mypge UC-realizes Fpr.yppe. Let A be the dummy adversary and let Z be an
environment. We construct a simulator S that simulates the honest parties in myppc, the adversary
A and the ideal functionalities Fpsyr, Fia, Fri, Fr-rrea alld Fuppe to the environment, as follows.

e S forwards all messages from the environment to A (and vice versa).

e S simulates every honest party by independently sampling random coins for the party and
running the protocol according to the protocol’s specification. Note that S learns the in-
put for each honest party P; as soon as P; sends it to Fprypsc by receiving the message
(leakage,sid, P;, (z1,...,2y)). In addition, S learns the trace of the protocol by receiving
the message (trace,sid,T) from Fpryppc, and can derive the guaranteed-termination phase
Tout Dy counting the number of sequences (Frprpas Frsmr, FLes FoasFea) in T (and setting
Tout < 7 + 1 if the last CSF is Fyppc).

e Whenever A sends a message (sid, ;) on behalf of a corrupted party P; to some honest party
during the first round, S sends (input,sid,z;) to Fprypgc on behalf of P;. (Note that z; is
in fact a vector.)

44

Protocol myppe

Protocol myppe, parametrized by positive integers d (number of phases to run the truncated BA func-
tionality) and m (how many instances of truncated BA to compute for each input value). The
functionality Fi.zza runs nm instances in parallel, and is parametrized by the distribution Dgg, and
integer d.

1. Initially, P; sets the phase index a < 0, and the termination indicator term < 0. In addition,
denote 7 = log"® (k) + 1.

2. In the first round, upon receiving (input,sid, z;) with z; € V from the environment, P; sends
(sid, z;) to all the parties (via Fpsur). Denote by x; the value received from P;.

3. While term = 0 and a < 7, do the following:

(a) Set a +— o+ 1 and send values to Fr.gpa, such that the value z; is sent to the m instances
corresponding to the j’th value. Formally, prepare the vector z = (z1,. .., zZnm) such that
for every j € [n] and every [€ [m] set 2(j_1)m4; = x;. Send (input,sidy, z) to Frppa-
Let (output,sidy,v) be the outpgt from Frppa, where v is a vector of mm pairs
((v1,v3), ..., (V™ vB™)) with v],v) € VU {L}.

(b) For every j € [n], set S{ — {Uijfl)mfl, ...,v]™} (corresponding to output values before
phase d) and S5 + {véj “bm+l , 03"} (corresponding to output values at phase d).

(c) If S7 # {1} for every j € [n] (i.e., if for every class of BAs there was at least one output),
then for every j € [n] choose ¢; € S7 (arbitrarily), set ¢; = (c1,...,¢,) and send (sid, ¢;)
to all the parties (via Fpgyr)-

Denote by ¢; the tuple received from P;; if no message was received, set ¢; = (.

(d) Send (input,sidy, A) to the functionality Fiz. Let (output,sids, k), with k € [n], be the
output received from Fiy.

(e) Send (input,sids,cy) to Fg,, parametrized by the set V™ U {f}. Let (output,sids,c) be
the output received from Fy, (with ¢ = (¢1,...,¢,) € V™ or ¢ = 0).

(f) If ¢ # 0 and for every j € [n], ¢; € SJ U S) then set b < 1; otherwise set b ¢ 0.
(g) Send (input,sidy,b) to Fy,, parametrized by the set {0,1}. Let (output,sidy,), with
B € {0,1}, be the output received from Fy,. If 8 = 1 then set term <« 1.
4. If term = 1, then output (output,sid, ¢) and halt.

5. Else, set the vector @; = (A\,..., A\, z;, A, ..., \) (the vector of length n whose i’th coordinate
is z; and all other cooridinates are the empty string A) and send (input,sid, x;) to Fupsc. Let
(output,sid, ¢) be the output received from Fyppc. Output (output,sid, ¢) and halt.

Figure 12: The unfair parallel broadcast protocol, in the (Fpsyr, FpasFre, Fr-reas Fupsc)-hybrid
model

e Whenever A requests to corrupt some P; € P, the simulator S corrupts P; and sends the
simulated internal state of P; (consisting of P;’s input, randomness, and incoming messages)
to A. Recall that in case A corrupts a party P; after it sent its input to some corrupted party,
during the first round, A may instruct P; to send a different value z; as its input to all other
parties. In this case, S sends (input,sid, z;) to Fprypsc on behalf of P;.

e In the first rouy — 1 phases, S simulates Fr_pga according to the behavior of the ideal func-
tionality, i.e., by independently sampling nm values from Dgp,. Next, when simulating the
functionality iz, instead of sampling a random index k € [n], the simulator S samples k such
that in case Frgpa was successful (i.e., if the honest parties received output) & is uniformly

45

distributed conditioned on Py is corrupted, i.e., S allows A to decide whether the protocol
will successfully terminate or not in this phase. In case A instructs P to follow the protocol,
then all honest parties will terminate in this phase (prior to phase ro,:) with value ¢; S sends
(adv-input,sid, ¢) to Fpr_ypsc followed by (early-output,sid, P;) for every P; € P.

e In case no honest party has terminated prior to phase rout, then S proceeds as follows:

— In case rout < 7, when simulating Fr g in the rout’th phase, S ensures that honest
parties will receive output, and when simulating F 5, S uniformly selects an index k such
that Py was honest before the simulation of Fip. Next, S sends (adv-input,sid, ¢x) to
Ferupse, and continues simulating the protocol. Since P was honest when distributing
ci, this ensures that the honest parties will receive output ¢ in the simulated protocol.

— In case rout = T+1, i.e., in case no party received output in all 7 phases, S simulates the
functionality Fyppc to the adversary. Initially, S simulates all honest parties sending their
initial inputs as their input to Fyppc, and receives the input values from the adversary
on behalf of the corrupted parties. (Recall that the adversary may dynamically corrupt
honest parties and change their input message.) Next, S computes the result as in Fyppc,

e., it provides the output (x1,...,z,) to each party.

It follows using a standard hybrid argument that the view of the environment Z is identically
distributed when interacting with a real-world execution of myppc and the dummy adversary, and
when interacting with the simulator S and the ideal model computation of Fpr_yppc. O

Using Theorem 4.3 we obtain the following as a result.

Theorem 5.5. Let ¢ > () and t < n/3. There exists an efficiently sampleable distribution D such
that the functionality Wlﬁex(‘FUPBC) has an expected constant round complexity, and can be UC-
realized in the Fsur-hybrid model, with perfect security, in the presence of an adaptive malicious
t-adversary, assuming that all honest parties receive their inputs within ¢ 4+ 1 consecutive rounds.

Proof (sketch). Denote by Dy gpa the deterministic distribution that outputs a trace consisting

of a root Wsi)glé‘t“(fT_RBA) and a constant number of leaves Fpgyr (corresponding to d phases

of mgrea). Denote by Dprypse the deterministic distribution that outputs a trace consisting of
a root WPrr U (Fuppe) and t + 1 leaves Fpgyr. Denote by Dgip the deterministic distribu-

strict
tion that outputs a trace consisting of a root Wou (Foug) and 32 leaves Fpgyr. Let DMl =

ol strict
u
full-trace(Drg, Dpswir, Dijyv_pa)-

. . s . p: PT _ ’ DT _ DT»RBmC
For smlph(:lty, denote the functionalities Fpp. = W, ‘f{g{ (Furpe), FREL = ot (Fr-rpa)s
PT _) DT _ YDoruesec ¢ — full
’FLE — sl- LﬂEex (FLE) 'FUPBC — Sl—ls)tllrli;:c (UPBC)' In addltlon, denOte Dl —_— DPSI\'TT7 D2 — DRL;BA,

D3 = Dy, Dy = Drppa, D5 = Dpryppe and I = {2 3}-

Following Lemma D.3, myppc UC-realizes WD Ue(Fupge), in the (Fpgyr, Foas FLe, Fr-reas Fupsce)—
hybrid model, using an expected constant number of rounds, assuming that all the parties
receive their inputs at the same round. By applying Theorem 4.3, the compiled protocol
Compgrp (Tupse, D1, D2, D3, Dy, D5, I) UC-realizes Fppo, in the (Frsur FoasFims Frnsas Foosc)-
hybrid model, in an expected constant number of rounds, assuming all parties receive their inputs
within ¢+ 1 consecutive rounds.

The proof follows since each of the functionalities { Fpgr, Fuas Fins Frrsa Foescs can be UC-
realized in the Fgyr-hybrid model with expected constant round complexity. O

46

	Introduction
	The Model
	Secure Computation with Probabilistic Termination
	Canonical Synchronous Functionalities
	Probabilistic Termination in UC

	(Fast) Composition of Probabilistic-Termination Protocols
	Composition with Deterministic Termination
	Composition with Probabilistic Termination
	Wrapping Secure Channels

	Applications of Our Fast Composition Theorem
	Fast and Perfectly Secure Byzantine Agreement
	Fast and Perfectly Secure Parallel Broadcast
	Fast and Perfectly Secure SFE

	On Parallel (In)Composability of Protocols with Probabilistic Termination
	The Model (Cont'd)
	Composition of Probabilistic-Termination Protocols (Cont'd)
	Composition with Deterministic Termination (Cont'd)
	Composition with Probabilistic Termination (Cont'd)

	Applications of Our Fast Composition Theorem (Cont'd)
	Fast and Perfectly Secure Byzantine Agreement (Cont'd)
	Fast and Perfectly Secure Parallel Broadcast (Cont'd)

