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Abstract. Kiasu-BC is a tweakable block cipher presented within the
TWEAKEY framework at AsiaCrypt 2014. Kiasu-BC is almost identi-
cal to AES-128, the only difference to AES-128 is the tweak addition,
where the 64-bit tweak is xored to the first two rows of every round-key.
The security analysis of the designers focuses primarily on related-key
related-tweak differential characteristics and meet-in-the-middle attacks.
For other attacks, they conclude that the security level of Kiasu-BC is
similar to AES-128. In this work, we provide the first third-party anal-
ysis of Kiasu-BC. We show that we can mount Square attacks on up to
7-round Kiasu-BC with a complexity of about 248.5 encryptions, which
improves upon the best published 7-round attacks for AES-128. Further-
more, we show that such attacks are applicable to the round-reduced
ΘCB3-like mode of the CAESAR candidate Kiasu. To be specific, we
show a key-recovery attack on 7-round Kiasu 6= with a complexity of
about 282 encryptions.
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1 Introduction

In contrast to standard block ciphers, tweakable block ciphers provide an ad-
ditional input called tweak. This tweak is usually public and is used to select
one specific instance of the block cipher. The concept of tweakable block ciphers
was first formalized by Liskov et al. [15,16]. Since then, tweakable block ciphers
have proven to be a valuable building block of cryptographic schemes for var-
ious applications, like encryption, authentication, or authenticated encryption.
For example, several of the authenticated encryption schemes in the ongoing
CAESAR competition [19] are based on tweakable block ciphers [8, 12,13].

Recently, Jean et al. presented the TWEAKEY framework [10] for design-
ing tweakable block ciphers. The extended version of their paper [11] specifies
three instances: Deoxys-BC, Joltik-BC, and Kiasu-BC. Kiasu-BC is a tweakable
variant of AES-128, accepting a 64-bit tweak T in addition to the 128-bit key
and 128-bit data block. The specification of Kiasu-BC is essentially identical to
AES-128, except that T is xored to the first two rows of every round key. Hence,
Kiasu-BC exactly matches AES-128 if T = 0. This has several advantages. First
of all, it allows easy reuse or updates of existing implementations of AES-128.
Moreover, the trust of the industry and academia in AES-128 has been steadily
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growing over the past years and it might be easier in practice to promote the
use of AES-128 with slight modifications instead of proposing new tweakable
block ciphers. Another advantage of the similarity of Kiasu-BC and AES-128
is that AES-128 has been very thoroughly analyzed due to its prominence and
widespread adoption. Since Kiasu-BC corresponds to AES-128 if T = 0, exist-
ing and also new analysis results for AES-128 directly carry over to Kiasu-BC.
However, it is not trivial to determine the effects of the tweak on the security
of the design. Therefore, we provide—to the best of our knowledge—the first
third-party analysis of Kiasu-BC.

The existing cryptanalysis of Kiasu-BC by its designers [9,11] focuses mainly
on meet-in-the-middle attacks and related-key related-tweak differential attacks.
The designers argue that the existing meet-in-the-middle attacks for AES-128
also apply to Kiasu-BC. Regarding related-key related-tweak differential char-
acteristics, the designers were able to show that the minimum number of active
S-boxes for 7 rounds of Kiasu-BC is 22 and thus, an upper bound for the probabil-
ity is 2−132. Since this bound is not tight, the designers conclude that Kiasu-BC
suffers at most one round security loss compared to AES [9] in the framework of
related-key related-tweak differential attacks. For the remaining types of attacks,
the designers claim: “As we keep the original round function and key schedule
of AES, we believe that the security level of KIASU-BC against the remaining
types of attacks stays the same” [9]. In Table 1, we have listed some of these
remaining attacks. The best-performing attacks that cover 7 rounds of AES-128
fall into the category of impossible differential and meet-in-the-middle attacks.
Our goal is to find stronger attacks than these.

Table 1. Excerpt of best attacks on AES-128.

Rounds Type Data (CP) Time Ref

6 Partial sum 234.6 244 [6]
7 Partial sum 2128−ε 2120 [6]
7 Collisions 232 2128−ε [7]
7 Impossible differential 2112.2 2117.2 ma [17]
7 Meet-in-the-middle 280 2123 [4]
7 Impossible differential 2106.2 2110.2 [18]
7 Meet-in-the-middle 297 299 [5]

ma – memory accesses

All our attacks are based on the Square attack [1]. In the attack, a so-called
Λ-set of 256 different plaintexts is observed during the encryption. In the case
of AES, it is possible to construct 3-round distinguishers based on the Square
property [2,3]. This leads to efficient 6-round key-recovery attacks on AES-128 by
prepending 1 round and appending 2 rounds to the 3-round distinguisher [6]. To
extend these attacks, we use the additional freedom introduced by the tweak of
Kiasu-BC to create a Square-based distinguisher covering 4 rounds. This leads to



7-round attacks on Kiasu-BC (shown in Table 2), which are significantly better
than the best published attacks on 7 rounds of AES-128 (see Table 1 for an
overview of attacks on AES-128). Furthermore, we show that variants of our
Square attack are also applicable to round-reduced variants of an authenticated
encryption mode of the CAESAR candidate Kiasu [9]. To be more specific, we
target a round-reduced variant of Kiasu6=, which uses 7-round Kiasu-BC in a
ΘCB3-like [14] mode of operation. The attacks on round-reduced Kiasu6= are
performed in a nonce-respecting scenario, and also comply with the very low
data complexity limits imposed by Kiasu6=.

Table 2. Dedicated attacks on round-reduced Kiasu-BC and Kiasu6=.

Target Rounds Type Data (CP) Time Ref

Kiasu-BC
7/10 Square 240 282 4.1
7/10 Square 243.6 248.5 4.2

Kiasu 6= 7/10 Square 228 × 216 282 5.2

The remainder of the paper is organized as follows. First, we describe the de-
sign of Kiasu-BC in Section 2. Afterwards, we construct a 4-round distinguisher
based on the Square attack (Section 3), followed by two key-recovery attacks on
7-round Kiasu-BC in Section 4. Next, we demonstrate the applicability of vari-
ants of the key-recovery attacks on the mode of operation Kiasu6= in Section 5.
Finally, we conclude in Section 6.

2 Description of Kiasu-BC

The tweakable block cipher Kiasu-BC was introduced as building block of the
Kiasu authenticated cipher family [9], a candidate in the CAESAR competi-
tion [19]. Kiasu-BC is an instantiation of the TWEAKEY framework [10], a
general construction framework for tweakable block ciphers. For each 128-bit
key and public 64-bit tweak, Kiasu-BC defines a 128-bit permutation.

Kiasu-BC is essentially identical to AES, except that the 64-bit tweak value
is xored to the state in each round after the round-key addition. Thus, like for
AES, the 128-bit Kiasu-BC state S is represented as a 4 × 4 matrix of bytes,
labeled x0, . . . , x15:

S =

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

.



In each of Kiasu-BC’s 10 rounds, the round operations SubBytes, ShiftRows,
MixColumns and AddRoundTweakey are applied to the state in turn. Except for
AddRoundTweakey, they are identical to the AES round operations:

– SubBytes: Applies the 8-bit AES S-box S to each of the 16 state bytes.
– ShiftRows: Rotates row i of the state, 0 ≤ i ≤ 3, by i bytes to the left.
– MixColumns: Multiplies each byte column of the state by the MDS-matrix
M over K = F2[α]/(α8 + α4 + α3 + α+ 1),

M =




α α+ 1 1 1
1 α α+ 1 1
1 1 α α+ 1

α+ 1 1 1 α


 =




02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02




– AddRoundTweakey: In round i, xors the 128-bit round key RKi and the tweak
T to the state, where

RKi =

RKi,0

RKi,1

RKi,2

RKi,3

RKi,4

RKi,5

RKi,6

RKi,7

RKi,8

RKi,9

RKi,10

RKi,11

RKi,12

RKi,13

RKi,14

RKi,15

, T =

T0

T1

T2

T3

T4

T5

T6

T7

.

We omit the details of the AES key schedule that derives the round subkeys
RKi from the key K, since they are not relevant for our attack. Note that
there is no tweak schedule, i.e., the same tweak T is xored in each round. So
for the all-zero tweak T = 0, Kiasu-BC is equivalent to AES-128.

To refer to intermediate states of Kiasu-BC, we denote by Si the state after
i rounds: S0 = P ⊕ T ⊕ RK0, S1, . . . , S10 = C. In addition, the state after
SubBytes of round i is denoted SSB

i , after ShiftRows SSR
i , after MixColumns SMC

i ,
and after AddRoundTweakey SAK

i = Si. So the states of full-round Kiasu-BC are

P
AK−−→ S0

SB−→ SSB
1

SR−→ SSR
1

MC−−→ SMC
1

AK−−→ S1

...

S9
SB−→ SSB

10
SR−→ SSR

10
AK−−→ S10 = C .

3 Distinguisher for 4 rounds of Kiasu-BC

The distinguisher presented in this section is based on the Square attack. This
attack, originally demonstrated for the block cipher Square [1], is also applicable
to AES [2, 3]. As in the Square attack on AES, we will observe a Λ-set of 256
different plaintexts through the encryption. By making use of the tweak input



of Kiasu-BC, we show that a distinguisher for 4 rounds can be created. This is
one round more than the distinguisher used in the Square attack on AES. Before
giving the distinguisher, we recall the effect of the round functions of AES on
Λ-sets.

3.1 Preliminaries

For the Square attack, we will make statements about the 256 values for single
byte positions xi of a Λ-set. We index the individual byte value of byte position
i in Λ-set element k as xi[k], where the index k is in the range from 0 to 255.
We call a byte of a Λ-set active (A) if it takes all possible 256 values; constant
(C) if all 256 values are equal; balanced (B) if the sum of all 256 values is 0; or
unknown (?) if we cannot make any statements about the 256 values for this
byte position.

SubBytes. SubBytes affects each byte of the state individually. Therefore, we
can put our focus on the effects of the S-box on our four different byte states:
active, constant, balanced, and unknown. The AES S-box is a permutation.
Hence, if the input of the S-box iterates over all 256 possible values, then so will
the output. Thus, an active byte remains active after SubBytes. Since the AES
S-box is deterministic, a certain value at the input of the S-box will always map
to the same value at the output. This means a constant byte remains constant
after SubBytes. However, a balanced byte becomes unknown, because the S-box
is non-linear. An unknown byte remains, of course, unknown.

ShiftRows. The ShiftRows operation works on byte-level. To be more concrete,
it simply reorders the bytes of the state. Hence, our statements about the bytes
remain the same, just the position differs after ShiftRows.

MixColumns. MixColumns is a linear transformation that mixes the single bytes
of one column. Clearly, an all-constant input set will be mapped to an all-
constant output set. Furthermore, if at least one of the input byte positions
of the set is unknown, the entire output will be unknown.

Since MixColumns is based on an MDS matrix, it has a branch number of
5. This implies that if two input columns differ only in one byte, the output
will differ in all 4 bytes. In particular, if the 4 input byte positions of a set
are all constant except for one active byte, then all output bytes will be active.
(Assume that one byte is not active, but takes one particular value twice. The
corresponding pair of inputs will have a difference in only 1 input byte and at
most 3 output bytes, violating the branch number property.) The same reasoning
also clearly applies for the inverse operation of MixColumns.

AddRoundTweakey. Here, the specific round key as well as the tweak are xored
to the state. Our attacks are performed in the single-key setting, so each key



byte is constant. This means that an active byte of the state remains active,
a constant byte constant, a balanced byte balanced (since the constant key is
added an even number of times and cancels out), and an unknown byte remains
unknown.

The situation changes if we take a look at the tweak addition. For the distin-
guisher, we want to use Λ-sets where one byte of the tweak is active, so we have
to consider the following situations. The xor of an active byte with an active
byte definitely results in a balanced byte. If the tweak byte as well as the state
byte are active and Ti[k]⊕ xi[k] = c for each k, the byte gets constant. The xor
of an active byte with a balanced byte results in a balanced byte.

3.2 The 4-round distinguisher

The distinguisher used in the Square attack against AES [2, 3] spans over 3
rounds. It starts with a Λ-set that is active in one byte of the plaintext and
constant in the rest of the state. The distinguisher ends after the key addition of
the third round with an all-balanced state. By introducing an active tweak byte,
we are able to extend the distinguisher by one round. However, the condition we
get after round 4 is slightly more difficult to exploit (see Fig. 1).
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Fig. 1. Distinguisher for 4 rounds of Kiasu-BC.

As shown in Fig. 1, we start with a Λ-set of 256 plaintexts P , where one byte
is active and the others remain constant. Additionally, we require that byte T0 of



the tweak is active as well. Since always the same tweak is xored to every round
key, every resulting round key xored with the tweak can be described as a Λ-set
that is active at byte 0 and constant in the rest of the bytes. The tweak and
plaintext values have to be chosen in a way that the xor of the tweak and the
plaintext is constant. For instance, T0[k] can always be chosen to be equal to the
first byte of the plaintext x0[k] for all 256 values of k. In this way, it is ensured
that state S0 is constant at every byte position. The state remains constant until
S1, where byte x0 becomes active again due to the addition of the tweak.

The second round of our distinguisher for Kiasu-BC corresponds to the first
round of the distinguisher used in the AES Square attack, except for the addition
of the active tweak byte at the end. Since SubBytes and ShiftRows affect neither
active nor constant bytes, we get to state SSR

2 , where still only the byte at position
0 remains active. The rest of the state is still constant. The next MixColumns
operation leads to an active column in state SMC

2 . In contrast to the first tweak
addition, the tweak addition at the end of round 2 leads to a balanced byte at
position 0. We get a balanced byte here, because we cannot make any assumption
on the concrete ordering of the 256 values of x0 of state SMC

2 .
In the third round, we have one balanced byte before SubBytes. This byte

becomes unknown after the S-box application. The ShiftRows operation shifts the
active bytes away from the first column. So we have at state SSR

3 one unknown,
and three constant bytes in the first column and one active, and 3 constant bytes
in every other column. This leads to one completely unknown first column, and
three completely active columns in state SMC

3 . The next tweak addition does not
change anything.

For the fourth round, we only go with active or unknown bytes through the
S-box layer, thus SubBytes does not influence our knowledge about the Λ-set
at this point. ShiftRows shifts one unknown byte to every column, so we get a
completely unknown state SMC

4 if we only limit our view to single byte positions.
Hence, we have to take a closer look at the MixColumns operation. To do so, we
represent the bytes of SSR

4 as xi and the bytes of SMC
4 as yi. Now, let us take a

look at what happens if we xor y1 with y2:

y1 ⊕ y2 = 01·x0 ⊕ 02·x1 ⊕ 03·x2 ⊕ 01·x3 ⊕ 01·x0 ⊕ 01·x1 ⊕ 02·x2 ⊕ 03·x3

= 03·x1 ⊕ 01·x2 ⊕ 02·x3 (1)

As shown in (1), x0 cancels and thus does not influence y1 ⊕ y2. In the first
column of SSR

4 , x0 is the only byte which is unknown. The rest of the bytes are
active. Since (1) only contains active coefficients, y1 ⊕ y2 is balanced. The next
key and tweak addition is an addition with constant bytes. This addition with
constant values does not influence the balanced property and therefore, also the
xor of byte 1 and 2 of state S4 is balanced.

4 Attacking 7 Rounds of Kiasu-BC

For attacking 7 rounds of Kiasu-BC, we extend the distinguisher by one round
in the backward and two rounds in the forward direction. At first we present a



basic version of the attack. Then, we improve the attack by using partial sums
in a similar way as Ferguson et al. [6].

4.1 Basic Square attack

The key-recovery attack is based on a set of plaintexts with differences only on
one of the diagonals of the state, combined with a set of tweaks with differences
only in the top left byte T0. Fig. 2 shows the trail we use to attack 7 rounds
of Kiasu-BC, where rounds 2 to 5 correspond to the distinguisher explained
in Section 3. To perform this attack, we first collect the encryption of all 232

plaintexts P where the diagonal bytes (x0, x5, x10, x15) loop through all possible
values, whereas the remaining 12 bytes are fixed to some constant. Each of these
plaintexts is encrypted under all 28 possible tweaks where all bytes except T0

are fixed to some constant, and T0 loops through all values. Thus, in total, we
require the ciphertext for 28 · 232 = 240 plaintext-tweak combinations.
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Fig. 2. Square attack for 7 rounds of Kiasu-BC.



Building Λ-sets. Next, we want to group this data into suitable Λ-sets, so
that the previously introduced distinguisher can be applied to state S1. This
has to be done separately for each possible key guess of the 32 key bits RK0,0,
RK0,5, RK0,10, and RK0,15, which determine the values of the first column of
state SMC

1 . What we want to achieve is that this first column has only 1 active
byte in x0, and that this activity is canceled by AddRoundTweakey. Thus, we
can fix the 3 constant bytes x1, x2, x3 in SMC

1 to some arbitrary value, and set
x0 = T0 for each of the 28 tweaks. If we decrypt these 28 set elements by 1 round,
MixColumns will produce 4 active S-boxes in SSR

1 , which will be shifted to active
S-boxes in x0, x5, x10, x15 in state S0. Depending on the different tweak bytes T0

and the current key guess for the partial first-round key RK0, we get a Λ-set of
28 plaintexts. We can repeat this procedure for a few different constant values
in SMC

1 in order to build 16 Λ-sets for each of the 232 key guesses of RK0. For
the correct key guess, all 16 Λ-sets will follow the 4-round distinguisher from
Section 3.

Applying the distinguisher. We now want to partially decrypt all ciphertexts
of each Λ-set back to state S5, in order to verify the distinguishing property.
Remember that we are interested in computing the xor sum y1⊕y2 of each Λ-set,
marked in black (y1) and gray (y2) in Fig. 2. To do so, we have to calculate all
intermediate values marked in black and gray in Fig. 2. We can do this for the
black and the gray trail separately, requiring to guess 5 byte of key material for
each trail. Note that we swapped the order of MixColumns and AddRoundTweakey
in round 6, so that we only have to guess 1 byte of an equivalent round-key
RKequ

6 = MC−1(RK), rather than 4 bytes of the original RK6.
We end up building two lists L1 and L2 (per key guess of RK0). Each list

has 240 entries of 16-byte length each. For L1, each entry represents the 16 xor
sums of y1 that result when decrypting the 16 Λ-sets for one guess of RK7,3,
RK7,6, RK7,9, RK7,12, and RKequ

6,13. In the case of L2, each entry represents the 16
xor sums of y2 that result when decrypting the 16 Λ-sets for one guess of RK7,2,
RK7,5, RK7,8, RK7,15, and RKequ

6,10.
As explained in Section 3, y1 and y2 of state S5 sum to 0 for the correct key

guess. Hence, we have to search for matching 16-byte entries between lists L1

and L2. A match indicates a key guess combination for the 10 guessed bytes of
RKequ

6 , RK7 that satisfies the distinguishing property for all 16 Λ-sets of one key
guess for 4 bytes of RK0; that is, a candidate for 14 bytes (or 112 bits) of key
material for the correct key. The probability that a wrong key fulfills our 16-byte
distinguisher is 2−128 (distinguishing property is the zero value for 128 bits, all
other values reveal wrong keys). Therefore, we expect that only one candidate
for the correct key bytes remains.

Attack complexity. To determine the overall complexity of this attack, we first
take a look at the complexity per first-round key guess (guess of RK0,0, RK0,5,
RK0,10, and RK0,15). To generate the 16 Λ-sets, we have to partially decrypt
16 · 28 plaintext-tweakey combinations for one round, for one column of the



state. This will allow us to select suitable Λ-sets from the 240 chosen-plaintext
queries encrypted under the target key. Then, we have to create our two lists L1

and L2. For creating one list, we have to decrypt 24 · 28 ciphertexts for 240 key
guesses 2 rounds back to one byte at S5. Since we decrypt for 2 rounds to one
byte, we only have to look at one column of the state. Hence, we estimate the
costs for such a partial decryption with half a Kiasu-BC round. So, creating one
list has approximately the complexity of 24 ·28 ·240 = 252 half-round decryptions,
which corresponds to less than 249 7-round Kiasu-BC decryptions. For creating
both lists, we require about 250 7-round Kiasu-BC decryptions. This complexity
dominates both the complexity of 212 one-round encryptions for creating the 16
Λ-sets and the complexity for finding a match between the two lists, which is
approximately 40 · 240 comparison operations for sorting one list and 40 · 240

memory look-ups for finding a match.
Since we have to build the two lists for each of the 232 first-round key guesses,

we end up having a total attack complexity of 282 7-round Kiasu-BC encryptions.
For carrying out this attack, we have to query 28 · 232 = 240 chosen plaintexts.
In addition to the plaintext-ciphertext pairs, we have to store our two lists L1

and L2. One entry of the lists corresponds to the memory complexity of storing
one plaintext. Thus, we have an additional memory requirement of roughly 241

Kiasu-BC states.

4.2 Improvements using partial sums

Ferguson et al. [6] showed that the complexity of the Square attack on AES
can be significantly improved by using the partial sum technique. Their first
observation is that for AES, the effort of guessing the 32 bits of RK0 can be
traded for summing over larger sets (of all 232 plaintexts, rather than only 28

Λ-set messages), thus reducing the complexity by a factor of 28. Then, as a second
improvement, the increased number of operations necessary for evaluating the
distinguisher can be rearranged into partial sums to significantly cut down the
computational complexity. In this section, we will show that a similar reasoning
applies to Kiasu-BC, and that the techniques of Ferguson et al. [6] can be adapted
to improve the complexity of the attack on 7-round Kiasu-BC significantly.

Summing all messages. In the basic attack, we had to guess 4 bytes of the
first round key RK0 in order to select a suitable Λ-set of 28 plaintext-tweak com-
binations and apply the distinguisher. For such a Λ-set, which is characterized
by a single active byte x0 in state SMC

1 and a constant difference between this
byte and tweak byte T0 (e.g., x0 = T0), we know that in S5, the values y1 ⊕ y2

sum to 0. Clearly, the same distinguishing property also applies if we sum not
just over one, but over several Λ-sets.

Now consider again our set of 28 · 232 plaintext-tweak combinations. This
set can actually be grouped into 28 · 224 Λ-sets as follows. For every value of
T0, the state bytes x0, x1, x2, x3 in state SMC

1 take all 232 values. Therefore, for
each of the 224 fixed constant values of x1, x2, x3 and each fixed value x0⊕T0 in



state SMC
1 , we can find exactly 28 plaintext-tweak combinations that map to this

state, where x1, x2, x3 and x0⊕T0 are constant. Each of these 28 plaintext-tweak
combinations fulfills our conditions for a Λ-set. Thus, if we sum over all plaintext-
tweak combinations, we actually sum over many Λ-sets, so the distinguishing
property for y1⊕y2 will apply – and we do not have to guess the round key RK0

in order to evaluate it. In other words, we can trade guessing the 32 key bits of
RK0 for summing over 240 instead of 28 messages. Unfortunately, in contrast to
the original attack on AES [6], this first improvement described so far does not,
by itself, decrease the attack complexity, since we have to sum over all values of
T0. However, as we will show next, this modified distinguisher can be evaluated
in an optimized way by reorganizing the order of summation.

Adapting the distinguisher. To evaluate the distinguisher, we now need to
decrypt our 240 ciphertexts back to y1 and y2. To identify valid key candidates,
we calculate the sum in y1 for each key guess of RK7,3, RK7,6, RK7,9, RK7,12, and
RK6,13, storing the result in L1 (indexed by the key guess); and we do the same
for y2 in L2, based on all guesses of RK7,2, RK7,5, RK7,8, RK7,15, and RK6,10.
Since we guess in total 10 bytes of key material, a 1-byte distinguisher is not
enough to filter all wrong key guesses. Hence, we repeat the whole procedure
for a total of 12 collections (of 240 ciphertexts each), so that L1 and L2 are in
the end populated with 12-byte entries (and indexed by 5-byte key guesses). We
expect only one 12-byte match between L1 and L2, providing us with the correct
10 bytes of key material.

We now want to optimize the costs for calculating the entries of L1 and L2,
which dominate the overall runtime by making use of the partial-sum technique
described by Ferguson et al. [6]. They show that the cost for computing the
240 sums (for each key guess) of one byte located 2 AES rounds before the end
(similar to our case, y1 or y2 of State S5), using 232 ciphertexts, can be reduced
to approximately 250 S-box applications. Assuming that one encryption under
a new key is equivalent to 28 S-box applications, the overall cost is only about
242 encryptions. In contrast to the original attack, we actually want to sum over
240 values, and additionally have to consider the tweak input. However, it turns
out that the original partial-sum technique can be adapted to allow this with no
significant computational overhead.

First, observe that in each AddRoundTweakey step, the different values of T0

only influence the first byte x0 of the state; and in the AddRoundTweakeyequ step
that we apply in round 6, T0 modifies the equivalent round key of the first column
(state bytes x0, x1, x2, x3). As illustrated in Fig. 2, neither L1 nor L2 depend on
these state bytes, so we do not need to know T0 in order to partially decrypt.
Second, note that for building L1 (or L2), we are only interested in 32 bits of
each of the 240 encrypted messages (per collection). Thus, instead of decrypting
each message with each key guess, we can count how often each possible 32-bit
value occurs among the encrypted messages, and then only decrypt based on
each 32-bit value once. Furthermore, since the effects of two occurrences of the
same 32-bit value will simply cancel out in the final xor-sum, it is sufficient



to count occurrences modulo 2. We can store the counters in a 232-bit vector
δcccc = (δcccc

0 , . . . , δcccc
232−1), indexed by the possible values x = x0‖x1‖x2‖x3.

Equipped with these two observations, we can now directly apply Fergu-
son et al.’s partial-sum technique, which we summarize below.

Ferguson et al.’s partial sums [6]. Consider the byte y1 we need to evaluate
for one entry of L1, i.e., the sum over the 240 messages of one collection. If
we denote the 4 relevant (black) ciphertext bytes of message i in state S7 by
ci,0, . . . , ci,3 and the 5 guessed round-key bytes (after xoring the known tweak)
by k0, . . . , k4, and summarize the inverse SubBytes in round 7 and the constant
multiplications by MixColumns in round 6 in the bytewise functions S0, . . . ,S3,
then the value we want to compute is

σ =

240−1⊕

i=0

S−1[S0[ci,0 ⊕ k0]⊕ S1[ci,1 ⊕ k1]⊕ S2[ci,2 ⊕ k2]⊕ S3[ci,3 ⊕ k3]⊕ k4]

=

232−1⊕

x=0

δcccc
x · S−1[S0[x0 ⊕ k0]⊕ S1[x1 ⊕ k1]⊕ S2[x2 ⊕ k2]⊕ S3[x3 ⊕ k3]⊕ k4].

To optimize this computation, we first count for every key guess of k0 and k1

the modulo-2 frequency of the values (S0[ci,0 ⊕ k0]⊕ S1[ci,1 ⊕ k1], ci,2, ci,3) and
store it in the 224-bit vector δscc. This vector can easily be computed from δcccc

as

δscc
x0,x1,x2

=

28−1⊕

s=0

δcccc
s,S−1

1 [x0⊕S0[s⊕k0]]⊕k1,x1,x2
. (2)

Similarly, after guessing k2 and subsequently k3, we can compute the frequency
δsc of (S0[ci,0 ⊕ k0] ⊕ S1[ci,1 ⊕ k1] ⊕ S2[ci,2 ⊕ k2], ci,3) (216 entries) and then δs

of (S0[ci,0 ⊕ k0]⊕ S1[ci,1 ⊕ k1]⊕ S2[ci,2 ⊕ k2]⊕ S3[ci,3 ⊕ k3]) (28 entries) via

δsc
x0,x1

=

28−1⊕

s=0

δscc
s,S−1

2 [x0⊕s]⊕k2,x1
, (3)

δs
x0

=

28−1⊕

s=0

δsc
s,S−1

3 [x0⊕s]⊕k3
. (4)

Finally, we guess k4 and compute the desired result byte via

σ =

28−1⊕

s=0

δs
s · S−1[s⊕ k4]. (5)

The same procedure can be applied to compute the entries of L2, and needs to be
repeated for each of the 12 collections. Afterwards, L1 and L2 can be sorted and
matched as before to identify the correct partial key for 10 bytes of key material.
The remaining 6 bytes of key information can be recovered with a brute-force
approach.



Overall complexity. The data complexity for the improved attack is 12 ·240 ≈
243.6 chosen plaintext-tweak combinations. Per list and collection, we have the
following complexity. The original 232-bit vector δcccc can be constructed with
negligible overhead to each chosen-plaintext query. The 224-bit vector δscc is
computed for 216 key guesses, and requires 2 ·28 ·224 = 233 S-box lookups, so the
computations of (2) contribute 249 S-box lookups per list and collection. Simi-
larly, computations (3), (4) and (5) contribute 248 S-box lookups each. Overall,
computing lists L1 and L2 require 2 · 12 · (249 + 3 · 248) ≈ 254.9 S-box lookups,
or roughly 246.9 7-round encryptions.

Sorting the 240 entries of L1 and L2 can be implemented, for example, with
less than 40·240 ≈ 245.3 comparisons (worst-case) and 2·240.1 Kiasu-BC states of
memory per list via MergeSort, or a total of 246.3 comparisons and 241.7 memory
for both lists. Finding all matches between the sorted lists takes a negligible 2·240

comparisons (worst-case).
We expect to find only one match, and guessing the remaining 6 bytes of

key information takes, in the worst case, 248 encryptions (assuming that the
known 10 bytes of key information can be combined efficiently). In total, the
worst-case attack complexity is about 248.5 7-round Kiasu-BC encryptions, and
requires about 241.7 Kiasu-BC states of memory, and 243.6 chosen-plaintext-
tweak queries.

5 Application to Authenticated Cipher Kiasu6=

In this section, we show that variants of the previously presented Square attacks
are applicable when Kiasu-BC is used in a ΘCB3-like [14] mode of operation. To
be specific, we demonstrate the feasibility of a variant of the attack presented
in the previous section on Kiasu 6=. Kiasu 6= is one of two proposed modes of the
CAESAR candidate Kiasu [9], which only claims security when used in a nonce-
respecting way. Thus, the attacks presented in this section follow this restriction
and never require the nonce to be equal for queries on the encryption oracle.
Before describing the attack, we give a short description of Kiasu6=.

5.1 Description of Kiasu6=

Fig. 3 shows the plaintext processing part of the authenticated encryption scheme
Kiasu6=. Here, each plaintext block Pi is encrypted with the help of Kiasu-BC
using always a different value for its tweak. The tweak value is constructed by
concatenating a 3-bit 0, the 32-bit nonce N and a 29-bit value representing the
index i of the plaintext block Pi that is encrypted. To generate the tag T , the
sum of the plaintext blocks is encrypted and xored with Auth, which is derived
from processing the authenticated data.

5.2 A Key-Recovery Attack on Round-Reduced Kiasu 6=

Our attack targets the encryption of the plaintexts blocks. For the attack to
be carried out, we need an encryption oracle that encrypts plaintexts chosen



P1 P2 P`

⊕
Pi

E0,N,1
K E0,N,2

K
· · · E0,N,`

K E1,N,`
K

⊕ Auth

C1 C2 C` T

Fig. 3. Plaintext processing for the nonce-respecting mode Kiasu 6= for a multiple of
the block length.

by the attacker. We use the block counter to iterate over the tweak byte T7 to
construct our Λ-sets. Since the least significant byte of the block counter is xored
to byte 13 of the state, we have to use a slightly different distinguisher, which is
shown in Fig. 4. Similar to the attacks presented in Section 4, we prepend one
round to the distinguisher and append two rounds. Then, we can apply a slight
modification of the Square attack described in Section 4.1.

The attack of Section 4.1 can be partitioned in two phases. The first one is the
generation of 16 Λ-sets under a specific guess of 32-bits of RK0, the second part is
the evaluation of the Λ-sets to see if the distinguishing property holds for partial
guesses of RK6 and RK7. While this evaluation of the Λ-sets works equivalent
as in Section 4.1 for the attack on Kiasu6=, we have to change the way we built
our Λ-sets. For building the Λ-sets, the attack of Section 4.1 uses the same 28

tweak values for every Λ-set. This is no longer an option, since the attacks on
round-reduced Kiasu6= are performed in a nonce-respecting setting. Therefore,
we have to build each Λ-set using different tweak values and respecting the data
limits of Kiasu 6=, which limit the number of encrypted blocks per message to
229, and the total number of encrypted messages to 232. Next, we will describe
how to select suitable plaintexts to obtain Λ-sets under these constraints.

Observe that for a single multi-block plaintext message, the tweaks used for
encrypting the individual plaintext blocks will be constant in the first 35 bits,
where 32 bits represent the nonce value. Dependent on the attack model, the
nonce may be known before we make an encryption query (e.g., it is implemented
as a counter, to avoid collisions of the very short nonces), or the oracle picks a
random nonce. Note that one byte of the nonce at tweak position T1 influences
our key guess at RK0,1 in the upcoming attack. Hence, for sake of simplicity, we
assume that the nonce value is known before we make each encryption query
(we discuss the case of unpredictable nonces at the end of this section). The
remaining bits of the tweak represent a 29-bit block counter and are always
known in advance. In our attack we want to use the least significant 8 counter
bits in T7 for the active tweak byte. Since the counter starts with a value of 1,
we actually can only start building Λ-sets from block 256 on. So the first Λ-set
includes blocks 256, . . . , 511, i.e., T6 = 1 and T7 is active. Now, we need to define



AK

AK

C

S0 SSB
1 SSR

1 SMC
1P

C

C

C

C

C

C

C

C

C

C

C C

C

A

C

SB SR MC

C

C

C

C

SB SR AKequ

SB SR AK

AK

MC

S5 SSB
6 SSR

6 SAKequ

6

S6 SSB
7 SSR

7 S7

C

C

C

C

C

C

C

C

ACC

A CC

CA

ACC

C

C

C

C

C

ACC

A CC

CA

ACC

C





4-
ro
u
n
d
d
is
ti
n
gu

is
h
er

SB SR MC

AK

SB SR MC

SB SR MC

SB SR MC

C C

C

C

C

A B A

A B A

A B A

A B A

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

S1 SSB
2 SSR

2 SMC
2

S1

AK

AK

AK

SSB
2 SSR

2 SMC
2

S3 SSB
4 SSR

4 SMC
4

S4 SSB
5 SSR

5 SMC
5

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

C

C

C

C

C

A

A

A

A

C

C

C

CC

C

C

C

C

C

C

C

C

C

C

C

C

C

A

C C

C

C

C

C

C

C

C

C

C

A

C

C

C

C

C

C

C

C

C C

C

C

C

A

A

A

A

C

C

A

C C

C

C

C C

C

C

C

A

A

A

A

C

C

A

C C

C

A

C C

C

A

C

C

C

A

A

A

C

C

C A

A

A

A

A B A

A B B

A B A

A B A

A

A

A

A

A ? A

A ? ?

A ? A

A ? A

A

A

A

A

A ? A

? ? A

A A A

A A ?

A

A

?

A

A

A

A

A

C

C

C

C

C

C

C

C

ACC

A AC

CA

ACC

C

Fig. 4. Attack for 7 rounds of Kiasu6=.



suitable plaintext blocks to query, so that the ciphertext blocks of one 511-block
message will allow us to evaluate the distinguisher.

Let pi denote the individual state bytes of the plaintext, xi the bytes of
SMC

1 , and zi the bytes of the state right after adding the tweak (but before
adding the round key). We start by choosing some arbitrary constant value for
the bytes z12, z13, z14, z15. Then, we apply the inverse tweak-addition to obtain
x12, . . . , x15, which will add a constant value of T6 = 1 to z12, and an active
T7 = 0, . . . , 255 to z13. The inverse first round will map this column to some set
of states with 4 active bytes in S0. For one key guess of RK0,1, RK0,6, RK0,11, and
RK0,12, we obtain a set of 256 values for (p1, p6, p11, p12). The only other active
byte, p13, needs to be chosen so that the difference p13 ⊕ T7 is fixed, e.g., by
setting p13 = T7. The rest of the state can be chosen as some arbitrary constant.
The resulting plaintext blocks have to be encrypted by the encryption oracle at
block positions P256 to P511 and form a Λ-set for the right guess of RK0,1, RK0,6,
RK0,11, and RK0,12.

The second part of the attack is evaluating the constructed Λ-sets. Since we
changed the position of the active tweak byte from T0 to T7 compared to the
original attack of Section 4.1, we also need to adapt the distinguishing property
and evaluate, for instance, y0 ⊕ y3 in state S5, instead of y1 ⊕ y2. The indices
of the guessed round keys and ciphertext bytes need to be adapted accordingly,
but otherwise, the attack procedure remains the same. This modification also
has no influence on the attack runtime, so the computational complexity is still
a total of 282 encryptions to recover 12 bytes of key information.

Accomodating the data complexity limit. Note that with the above strat-
egy, we would need to encrypt 16 · 232 messages to obtain 16 Λ-sets per 32-bit
guess of RK0. Thus, we would exceed the maximum number of messages that
can be encrypted per key. However, it is possible and necessary to build more
than one Λ-set per message following block 511, so that we do not exceed the
maximum number of possible messages in our attack. Assume we construct 28

Λ-sets per message. This means the first Λ-set covers blocks 256, . . . , 511, so
T6 = 1 and T7 is active, the second Λ-set covers blocks 512, . . . , 767, so T6 = 2
and T7 is active, and so on, until we have 28 Λ-sets. Thus, every message we
query has a length of 216 + 255 blocks. This means we need 228 chosen messages
sent to the encryption oracle, corresponding to 244 + 236 chosen plaintext blocks
for the attack.

Adaptation for unpredictable nonces. For simplicity, we assumed that the
nonce value for each encryption query is predictable, since we needed the value
of the nonce byte at tweak position T1 in order to derive the plaintext values p1

for each key guess of RK0,1. However, the attack can also be adapted for cases
where the nonce is not known as follows. The attacker assumes T1 = 0 and simply
queries one message per guess of RK0. The actual values of T1 will be random,
so for each value of RK0,6,RK0,11,RK0,12, the attacker effectively queried sets
for 28 random values of RK0,1. Due to possible collisions, these queries will, on



average, cover a fraction of about 1 − 1
e ≈ 63.2 % of all 28 possible values of

RK0,1. The attack is only successful if the correct value of RK0,1 is among the
covered fraction, so the success probability of the overall attack will be about
63.2 %. This can be improved by asking several queries per key guess, e.g., 4
queries for a success probability of about 1 − 1

e4 ≈ 98.2 %, at the cost of an
increase in data complexity by a factor of 22 (but no increase in computational
complexity).

An alternative, deterministic approach is to query 28 Λ-sets per guess of
RK0,1, one for each possible value of T1. All 28 Λ-sets need to be queried in
one message, to get a constant nonce value and thus definitely cover the correct
guess of T1. Each message now contains 224 +255 blocks, and we query a total of
252+236 blocks. Again, the computational complexity remains at 282 encryptions.

6 Conclusion

In this work, we presented the first third-party analysis of Kiasu-BC. We showed
that the additional tweak input can be exploited to create a distinguisher based
on the Square property spanning 4 rounds. This is one more round compared
to the distinguisher used in Square attacks on AES-128. Hence, we were able
to perform key-recovery attacks on 7-round Kiasu-BC with a computational
complexity of only about 248.5 encryptions, which is faster than the best 7-
round attacks for AES-128. However, we cannot attack more rounds compared
to AES-128 and hence our analysis does not contradict the claim of the designers
that Kiasu-BC has a sufficient security margin.

Variants of the Square attacks on Kiasu-BC are also applicable if Kiasu-BC
is used in one of its recommended modes of operation. We demonstrated this
with a nonce-respecting key-recovery attack on Kiasu6=, a ΘCB3-like mode of
the CAESAR candidate Kiasu. The computational complexity of this attack
is approximately 282 encryptions for 7-round Kiasu-BC, and the attack also
respects the low data query limits.
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