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Abstract—Oblivious RAM (ORAM) is a security-
provable approach for protecting clients’ access patterns
to remote cloud storage. Recently, numerous ORAM con-
structions have been proposed to improve the communi-
cation efficiency of the ORAM model, but little attention
has been paid to the storage efficiency. The state-of-the-art
ORAM constructions have the storage overhead of O(N)
or O(N logN) blocks at the server, when N data blocks
are hosted. To fill the blank, this paper proposes a storage-
efficient ORAM (SE-ORAM) construction with config-
urable security parameter λ and zero storage overhead at
the server. Extensive analysis has also been conducted and
the results show that, SE-ORAM achieves the configured
level of security, introduces zero storage overhead to the
storage server (i.e., the storage server only storages N data
blocks), and incurs O(logN) blocks storage overhead at
the client, as long as λ ≥ 2 and each node on the storage
tree stores 4 logN or more data blocks.
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Oblivious RAM, Privacy Preservation, Access Pat-
tern.

I. INTRODUCTION

A. Motivations

Cloud storage services such as Amazon S3 and
Dropbox, have been popularly utilized by business
and individual clients to host their data. Due to
security and privacy concerns, the clients may en-
crypt their sensitive data before outsourcing them.
Nevertheless, data encryption itself is insufficient
for data security, because the secrecy of data can
still be exposed if a client’s access pattern to the
data is revealed [1].

The oblivious RAM (ORAM) model [2], which
continues shuffling data as the data are accessed, has
been a well-known security-provable approach for
access pattern protection. Many ORAM construc-
tions [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18] have recently been

proposed to make the ORAM model more feasible
in practice.

Most of these research have focused on the com-
munication efficiency improvement, but the stor-
age efficiency has not received much attention. To
host N data blocks, in general, the state-of-the-
art ORAM constructions need the storage server
to also store O(N) or O(N logN) dummy data
blocks; in particular, as the most communication-
efficient ORAM constructions, Path-ORAM [13]
and SCORAM [18] each requires the server to keep
5N dummy blocks, and a server running P-PIR [19]
has to store (2 logN−1)N dummy blocks. Though
the unit price for storage is cheaper than that for
communication, the significantly-enlarged demand
for storage capacity due to the high storage overhead
ratio could pose as a high monetary cost to the
client, especially when the client needs to have a
huge amount of data kept for a long period of time,
and when the data need to be replicated in multiple
copies for redundancy. Hence, reducing the storage
overhead is also imperative.

B. Research Goal and Rationales

This study aims to design an ORAM construc-
tion with zero storage overhead at the server. The
research is based on the following observations.

The security goal of an ORAM construction is to
prevent the storage server from correctly inferring
a client’s private data access sequence from the
client’s storage location access sequence that the
server can observe. Existing ORAM constructions
target at perfect security; that is, the probability is at
most 1

Nn for the server to correctly infer a sequence
with n data accesses from any observed location
access sequence, since Nn is the total number of
sequences with n data accesses. To attain this goal,



the client’s query and shuffling operations should be
fully random and independent of each other.

Particularly, let us consider the tree-based
ORAM [12]. When a data block is assigned to
a path of the storage tree, the path is selected
uniformly at random to make the query process
appear fully random. During an eviction process,
nodes are randomly selected to evict data, and each
selected node is dictated to evict a data block to its
left or right child with the equal probability. Due to
the randomness, following undesired situation may
happen: a node without any real data block evictable
to its left (or right) child is selected to evict data to
left (or right). To deal with such situation, dummy
blocks are pre-introduced into the storage when the
system is initialized; and it has been shown that,
O(N) or O(N logN) dummy blocks are needed to
keep a low failure probability, i.e., the probability
that a node has already used up dummy blocks when
it is in the afore-described undesired situation.

To address the above issue without introducing
storage overhead to the server, we design a new
eviction algorithm based on the following intuitions:

• Eviction with Non-uniform Probabilities. When
a node is selected to evict data to its children,
it can use different probabilities for different
children; i.e., a larger probability to evict data
to its left child if more of its data blocks are
evictable to left, and vice versa. This way, the
chance could be significantly reduced for the
afore-mentioned undesired situation to occur.

• On-demand Introduction of Dummies. Never-
theless, the undesired situation could still occur.
To deal with it, a dummy block (evictable to
both left and right) is inserted on demand to
replace a real data block, which is moved to the
client’s cache. Note that, the storage server still
stores the same number of data blocks, though
some of the blocks become dummies.

• Periodical Removal of Dummies. As the sys-
tem keeps running, more dummy blocks are
inserted to the server and the client’s cache may
overflow. To address this issue, an extra query
and eviction process is launched periodically to
retrieve and discard a dummy from the server
and evict a real data block from the client to
the server.

Due to the non-uniform eviction probabilities

used in the eviction algorithm, perfect security is not
attained. To quantify the level of security that our
new ORAM construction can achieve, we propose
a more generic security definition, which quantify
security level by a parameter λ: if an ORAM con-
struction is secure with parameter λ, the probability
is at most ( 1

Nn )
1− 1

λ for the server to correctly infer
a sequence with n data accesses from any storage
location access sequence. That is, the advantage for
the server to discover a client’s access pattern is
upper-bounded by ( 1

Nn )
1− 1

λ − 1
Nn , which decreases

as λ increases. We argue that, this notion of secu-
rity can be useful in practice, particularly when a
large number of data blocks are outsourced and/or
protecting relatively long access patterns (i.e., n is
large) is the major security goal. For example, when
N = 240 and n = 10 (or N = 210 and n = 40), and
λ = 2, the server’s advantage is upper-bounded by
2−200, which may be considered “negligibly small”
in practice. Besides, the definition allows a client
of our ORAM construction to configure her desired
level of security, and manage the tradeoffs between
security and performance.

C. Results
Based on the new eviction algorithm and the

new definition of security, we formalize a generic
SE-ORAM construction with parameter λ. Through
rigorous security and cost analysis, we show that the
construction is secure under the definition, and the
number of introduced dummy blocks is no more
than x logN with probability 1 − 1

N2x , as long as
λ ≥ 2 and each node on the storage tree can store
4 logN or more data blocks. We also instantiate a
SE-ORAM construction by setting λ = 2, analyze
its performance, and compare it with the state-of-
art ORAM constructions. To summarize, this study
makes the following contributions:

• We introduce a generic security definition for
ORAM constructions. It allows a client to con-
figure a desired security level and manage the
tradeoffs between security and performance.

• We propose SE-ORAM, a generic storage-
efficient ORAM construction with configurable
security parameter λ. Rigorous analysis shows
that, SE-ORAM achieves the configured level
of security, introduces zero storage overhead to
the storage server (i.e., the storage server only



storages N data blocks), and incurs O(logN)
blocks storage overhead at the client, as long
as λ ≥ 2 and each node on the storage tree
stores 4 logN or more data blocks.

D. Discussions

The current SE-ORAM construction incurs a
communication overhead of O(log2 N · B) bits for
each data query launched by the client, where B is
the size of a data block in the unit of bit. However,
the construction can be enhanced by incorporating
some existing techniques to achieve the same level
of communication efficiency as the state-of-the-art
constructions. For example, additive Homomorphic
encryption-based PIR primitives [19] can be used
to reduce the number of data blocks that should be
transferred between the server and the client, as the
way these primitives are used in P-PIR [19] to re-
duce the communication overhead of T-ORAM [12].
In addition, the technique of recursively exporting
the index structure from the client to the server [12],
[19], [13], which has been widely used in exiting
ORAM constructions, can also be incorporated into
the SE-ORAM construction to reduce the storage
cost of the client. Due to space limit, we do not
include such optimizations in this paper, in order
to focus the presentation on the major goal of
improving storage efficiency.

E. Organization

In the rest of the paper, Section II reviews the
related works on ORAM. Section III presents the
security definition. Section IV presents the basic
design of SE-ORAM, which is followed by security
analysis in Section V and overhead analysis and
comparison in Section VI. Finally, Section VII
concludes the paper.

II. RELATED WORK

ORAM constructions can be roughly categoried
into two classes, hash-based ORAMs and index-
based ORAMs. This section reviews the perfor-
mance of these constructions in terms of storage
and communication costs.

A. Hash-based ORAMs

Hash-based Oblivious RAMs [2], [3], [4], [5], [6],
[7], [8], [9], [10], [11] organize the server storage

as a hierarchy of layers. Each layer contains either
a series of buckets [2], [9], [10], [11], or a pair of
Cuckoo Hash tables with stash [8], [3], [4], [5], [6],
[7]. In a bucket ORAM proposed in [2], the server
needs to additionally store (2 logN − 1)N dummy
blocks in order to host its client’s N real data
blocks; its communication cost is O(log3N) blocks
per query, with a constant client-side storage. In a
bucket ORAM proposed in [9], [10], [11], the server
additionally stores at least N dummy blocks and cN
bits (0 < c < 1) of Bloom Filters for each layer; its
communication cost is O(log2 N log logN) blocks
per query, with a client-side storage of O(log2 N)
blocks. In a Cuckoo Hash ORAM [8], [3], [4], [5],
[6], [7], the server stores at least 7N dummy data
blocks; its communication cost is O(log2N) blocks
per query with a constant client-side storage, or
O(logN) blocks per query with a client-side storage
of O(N c) blocks (0 < c < 1).

B. Index-based ORAMs

Index-based ORAMs [12], [13], [14], [15], [16],
[17], [19] use index table for data lookup. They
require the client to either store the index table
locally, or outsource it to the server recursively
in a way similar to storing their data, at the
expense of increased communication cost. Rep-
resentative index-based ORAMs include Partition
ORAM [15], binary tree ORAM (T-ORAM) [12],
Path ORAM [13], Gentry’s ORAM [16], P-PIR [19]
and SCORAM [18]. Partition ORAM organizes its
server-side storage as a number of partitions, where
each partition is a fully-functional Oblivious RAM.
In Partition ORAM, the server side storage needs
to store 2.2N dummy blocks, and incurs a commu-
nication cost of O(logN) blocks per query, with
a client-side storage of O(cN) blocks. The other
index-based ORAMs organize their server-side stor-
age as a tree, where each node is a bucket storing a
certain number of data blocks. For T-ORAM and
P-PIR, the server needs to store (2 logN − 1)N
dummy blocks, and incurs a communication cost of
O(log2N) blocks per query, with a constant client-
side storage. Path ORAM and SCORAM each stores
at least 5N dummy blocks at the server, and incurs
a communication cost of O(logN · B) blocks per
query, with a client-side storage of O(logN) · ω(1)
blocks, where ω(1) is a security parameter. At last,



Gentry’s ORAM requires the server to store at least
N dummy blocks, and it achieves a communication
cost of O(log2N log logN) blocks per query, with
a client-side storage of O(log2N) blocks.

III. SECURITY DEFINITION

Let λ > 1 be a security parameter. A client
exports N equal-size data blocks to a remote storage
server. Each data access from the client, which
should be kept private, is one of the following two
types: (i) read a data block D of unique ID i from
the storage, denoted as a 3-tuple (read, i,D); (ii)
write a data block D of unique ID i to the storage,
denoted as a 3-tuple (write, i,D). To accomplish
each data access, the client needs to access some
storage location(s) at the remote storage server.
Each location access, which can be observed by
the server, is one of the following types: (i) retrieve
(i.e., read) a data block D from a location l, denoted
as a 3-tuple (read, l,D); (ii) upload (i.e., write) a
data block D to a location l, denoted as a 3-tuple
(write, l, D).

We assume the remote storage server is honest but
curious; that is, it stores data and serves the client’s
location access requests honestly, but it may attempt
to figure out the client’s data access pattern hidden
behind the location accesses. The network connec-
tion between the client and the server is assumed
to be secure; in practice, this can be achieved using
well-known techniques such as SSL [20].

We define the security of our proposed SE-
ORAM(λ, N ), which has security parameter λ and
stores N real data blocks, as follows.

Definition In SE-ORAM(λ, N ), let x⃗n = ⟨ (op1,
i1, D1), (op2, i2, D2), · · · , (opn, in, Dn) ⟩ denote
a private sequence of the client’s n data accesses,
where each opi is either a read or write operation;
let random variable A(x⃗n) denote the sequence of
location accesses (observable by the server) that the
client uses to accomplish data access sequence x⃗n.
Note that, there may exist multiple location access
sequences that can accomplish x⃗n, each with certain
probability to be used by the client as A(x⃗n); hence,
A(x⃗n) is a random variable.

Let Xn denote the set of all possible sequences
of the client’s n data accesses, and An the set of
all location access sequences that can accomplish
at least one data access sequence in Xn.

Let Pr[T⃗n|A⃗n], where A⃗n ∈ An and T⃗n ∈ Xn,
denote the conditional probability of A(T⃗n) = A⃗n

given that A⃗n has been observed by the server.
SE-ORAM(λ, N ) is said to be secure if ∀A⃗n ∈ An

and ∀T⃗n ∈ Xn:

(
1

Nn
)1+

1
λ ≤ Pr[T⃗n|A⃗n] ≤ (

1

Nn
)1−

1
λ . (1)

Note that, if the client’s data access pattern is
perfectly protected, Pr[T⃗n|A⃗n] =

1
Nn ; i.e., no matter

what location access sequence (that can accomplish
a certain sequence with n data accesses) has been
observed, it is impossible for the server to infer the
client’s actual data access sequence hidden behind
this observed pattern, because each of the Nn data
access sequences has the same probability 1

Nn to be
the one. According to the above definition, when
λ→∞, Pr[T⃗n|A⃗n]→ 1

Nn indeed.
Generally speaking, if an SE-ORAM(λ, N ) is

secure, the advantage for the server to infer the
client’s actual data access sequence T⃗n from a
location access sequence A⃗n that has been ob-
served, i.e., |Pr[T⃗n|A⃗n]− 1

Nn |, is upper-bounded by
( 1
Nn )

1− 1
λ − 1

Nn ; the larger is λ, the smaller is the
bound. Hence, parameter λ quantifies the level of
security that an SE-ORAM construction can attain.

IV. THE SE-ORAM CONSTRUCTION

This section elaborates the SE-ORAM construc-
tion in terms of storage organization, data query and
data eviction algorithms.

A. Storage Organization and Initialization

1) Server-side Storage: In the server, the storage
is initially organized as a complete binary tree. Each
node on the tree can store up to s data blocks, where
s is a system parameter and an even number. To
simplify presentation, we denote the height of tree
as h and assume the total number of data blocks N
as N = s·

∑h
l=0 2

l = s(2h+1−1). Hence, the number
of level-h nodes is 2h, which also is N/s+1

2
≈ N

2s
.

The content of each data block Bi is encrypted
probabilistically with a symmetric cipher (e.g.,
AES) before the blocks are randomly distributed
to the nodes on the tree. Specifically, denoting the
plain-text content of a block Bi as Di, we have
Bi = E(r|Di), where r is a nonce and E is a
symmetric encryption function.



In each node n, data blocks are randomly divided
into two equal-size groups, called left group and
right group and denoted as GL(n) and GR(n). Each
block in the left group randomly picks a level-h
node n′ from the left branch of n, and the block
is restricted to be evictable toward node n′ only;
hence, we call the ID of node n′ as the path ID
of the data block. Similarly, each block in the right
group also randomly selects a level-h node from the
right branch of n, whose ID becomes the block’s
path ID.

As the data query and eviction processes go on,
the tree may become incomplete and some nodes
may become non-full (i.e., containing less than s
data blocks). Figure 1(a) shows an example of the
server-side storage. Here, h = 3, two of the level-
h nodes (i.e., n3,1 and n3,6) are absent, and one
level-h node (i.e., n3,2) is non-full. Also, the data
blocks with path IDs of n3,0, n3,4 and n3,7 cannot
be completely contained in nodes between level 0
to level 3; hence, supplementary nodes have been
introduced to provide additional storage, e.g., n4,0

for n3,0, n4,4 and n5,4 for n3,4, and n4,7 for n3,7.
2) Client-side Storage: The client-side storage

includes three parts: (i) an index table I maintaining
the mapping between data block IDs and their path
IDs (therefore it has N entries and each entry has
h bits); (ii) a data block cache C used to cache data
blocks; and (iii) a small secret storage storing the
key for symmetric data encryption.

B. Data Query

When the client queries a data block of ID t
(denoted as Bt), it first checks whether Bt is in
C; if so, the block is accessed and retained in C.
Otherwise, the client looks up the index table I to
obtain Bt’s path ID (i.e., the ID of a level-h node,
denoted as nh

t hereafter). Then, the client follows
the steps below to obliviously retrieve Bt.

The client requests the server to return data blocks
on the path from the root to the nh

t . In response,
the server first finds out all the nodes that should be
returned to the client, based on the current topology
of the tree: (i) Case I - if node nh

t is currently on
the tree and has no supplementary nodes, all the
nodes along the path from the root to nh

t should be
returned. (ii) Case II - if nh

t is currently on the tree
and has supplementary nodes, all the nodes along

the path from the root to nh
t as well as all of nh

t ’s
supplementary nodes should be returned. (iii) Case
III - if node nh

t is absent, the server acts as follows.
Let nh0

t denote the node that is on the path from
the root toward nh

t (as if nh
t were still there) and

the furthest away from the root. Let nh1
t denote the

leaf node of the longest branch within the subtree
rooted at nh0

t . Note that, the path from the root to
nh1
t is the longest path that has the largest overlap

with the path from the root to nh
t (as if nh

t were still
there). All the nodes along the path from the root
to nh1

t should be returned. Let us denote the nodes
that should be returned as n0

t , n1
t , · · · , nL

t , where
n0
t is the root and nL

t is the leaf node. Among them,
suppose node ny

t on layer y contains Bt.
The server returns only the blocks in nL

t in the
first round. If Bt is among the blocks, the client
keeps Bt locally, re-encrypts the rest of the blocks
and uploads them back to the server; otherwise, one
arbitrary block denoted as BL is picked from the
returned blocks, and the rest of the blocks are re-
encrypted and uploaded back to the server.

Next, the server returns all the blocks in nL−1
t . If

Bt is among the blocks, the block is kept locally,
and the rest of the blocks in nL−1

t together with BL

are re-encrypted and uploaded back to the server.
Otherwise, all the blocks in nL−1

t are re-encrypted
and uploaded to the server. This process continues
until all the blocks on the selected path have been
returned to the client, re-encryption and finally
uploaded back to the server. Figure 1 shows two
examples of data query.

C. Data Eviction

Data eviction should be conducted following the
query process, to store the query target Bt back to
the server obliviously.

A path (i.e., a level-h node) is selected uniformly
at random for Bt, and then all the data blocks on
the path are retrieved node-by-node. The eviction
process should place Bt into a node on the selected
path before the blocks are all re-encrypted and
uploaded back to the server. The ID of the path
becomes the new path ID of Bt and hence should
be recorded in the client’s index table I. During
the course of eviction, some other blocks may be
moved; the movement should ensure that, a data
block stays in a node on the path specified by its
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Figure 1. Query Examples. In (a), query target Bt is at node n2,2 and has path ID n3,4. Node n3,4 exists on the tree and has two
supplementary nodes. The client requests the server to retrieve nodes from the root to n5,4 which is the further supplementary node of n3,4.
Then, BL obliviously replaces Bt; finally, as node n5,4 becomes empty after BL has moved, the node is removed from the tree. In (b),
query target Bt is at node n1,0 and has path ID n3,1. Node n3,1 does not exist on the tree. The client requests the server to retrieve nodes
on the path from the root to n4,0, which is the longest path that has the largest overlap with the path from the root to n3,1. Then, the client
obliviously replaces Bt with BL.

path ID or it stays in the local cache maintained by
the client. The eviction steps are elaborated in the
following, and an example containing evictions in
four layers of the storage tree is given in Figure 3
in Appendix 1.

a) E1: Initial Step.: Let Be denote the current
block to evict (called the evicted block), and ne the
current node (called the evicting node) to accommo-
date Be’s eviction. Initially, Be = Bt and ne = root.
All the data blocks in ne are sent from the server
to the client.

b) E2: Conditional Termination.: If ne is non-
full, the client writes Be into ne. Then, Be is put
into the left or right group of ne (i.e., GL(ne) or
GR(ne)) according to its path ID; note that, if Be

is a dummy, it is randomly put into either GL(ne)
or GR(ne).

Another condition for the process to terminate is
when ne is a level-h node. Be should be written to
the furthest supplementary node of ne. If the sup-
plementary node is full, an additional supplementary
node is created to contain Be.

For both cases, blocks in ne (and its supplemen-

tary nodes if applicable) should be re-encrypted and
uploaded back to the server.

c) E3: Selection of the Next Evicting Node.:
Depending on the sizes of GL(ne) and GR(ne), the
selection of the next evicting node (denoted as n′

e)
works as follows:

If |GL(ne)| > |GR(ne)|, the left child of ne is
selected as n′

e with probability 1−p while the right
child is selected as n′

e with probability p, where
p = 1

21/λ+1
and 1− p = 21/λ

21/λ+1
.

If |GL(ne)| = |GR(ne)|, the left and right children
of ne have the same probability 0.5 to be selected
as n′

e.
If |GL(ne)| < |GR(ne)|, the left child of ne is

selected to be n′
e with probability p while the right

child is selected to be n′
e with probability 1− p.

Note that, if n′
e does not exist on the tree, it

should be created: 1) If ne is a level-h node or
a supplementary node, a supplementary node n′

e is
created and linked to ne; 2) otherwise, n′

e is created
as a left or right child node of ne accordingly.

d) E4: Selection of the Next Evicted Block.:
There are a few different cases. Case I - If Be is



a dummy block, it remains to be the next evicted
block denoted as B′

e. Case II - If Be is a real data
block, and there is at least one block in ne ∪ {Be}
(we also use ne to denote the set of all data blocks
in ne, for simplicity) that is evictable to n′

e, one such
block is selected to be B′

e and the selected block is
replaced by Be. Case III - If Be is a real data block,
no data blocks in ne ∪{Be} are evictable to n′

e, but
ne contains dummy blocks, one dummy block is
selected as B′

e and the selected block is replaced
by Be. Case IV - If Be is a real data block, no
data blocks in ne∪{Be} are evictable to n′

e, and ne

does not contain any dummy blocks, a new dummy
block is created to be B′

e, while the original Be is
saved to the client’s local cache. Finally, all current
blocks in ne are re-encrypted and uploaded back to
the server; then, after Be ← B′

e and ne ← n′
e are

performed, the process continues to Step E2.

D. Extra Query-Eviction Round

With the above eviction algorithm, the dummy
blocks at the storage server and the cached blocks
at the client may keep increasing as more data
blocks are queried. To bound the number of these
blocks and hence the storage overhead, we propose
to periodically remove dummy blocks and dump
cached data blocks as follows.

Every time after an eviction process is completed,
with probability ρ, the following extra round of
query and eviction is conducted: The client ran-
domly selects a path. Depending on the selected
path, this step proceeds with one of the following
two cases. Case I - the selected path contains
dummy blocks. In this case, one dummy block is
retrieved from the selected path following the above
data query algorithm. Then, one real data block
is randomly picked from the client’s cache, and
evicted to the tree structure at the storage server
following the above data eviction algorithm. Case
II - the selected path does not contain any dummy
blocks. In this case, one data block is randomly
retrieved from the selected path following the above
data query algorithm, and then evicted following the
above data eviction algorithm.

V. SECURITY ANALYSIS

Recall that Section III defines the concepts of data
access sequence and location access sequence, and

introduces the notations of Xn, An, random variable
A(x⃗n) for x⃗n ∈ Xn, and conditional probability
Pr[T⃗n|A⃗n] for T⃗n ∈ Xn and A⃗n ∈ An. To facilitate
the security analysis in this section, we further
introduce the following notations:

For any A⃗n ∈ An, we expand it to A⃗n = q1, e1,
· · · , qn, en. Here, for each i = 1, · · · , n, qi denotes
the path accessed during the i-th query process and
ei denotes the path accessed during the i-th eviction
process.

Each ei in the above is further expanded to
ei = ei,1, ei,2, · · · , ei,hi

. Here, ei,j ∈ {0, 1} for
j ∈ {0, 1, · · · , hi}. ei,1 represents whether the root
node (i.e., the first evicting node in the i-th eviction
process) evicts data to its left (if ei,1 = 0) or right
child (if ei,1 = 1), and ei,j represents whether the
(j − 1)-th evicting node evicts data to its left (if
ei,j = 0) or right child (if ei,j = 1).

Let Pr[x⃗n], where x⃗n ∈ Xn, denote the probabil-
ity that x⃗n is the client’s actual data access sequence.

Let Pr[A⃗n|x⃗n], where A⃗n ∈ An and x⃗n ∈ Xn,
denote the conditional probability of A(x⃗n) = A⃗n

given that x⃗n is the client’s actual data access
sequence.

Let Pr[qi|x⃗n; q1, e1, · · · , qi−1, ei−1] denote the
conditional probability of qi being selected to access
during the i-th query process given that the client’s
actual data access sequence is x⃗n and the location
access sequence has been q1, e1, · · · , qi−1, ei−1 be-
fore the i-th query is processed.

Let Pr[ei,j|x⃗n; q1, e1, · · · , qi, ei,1, · · · , ei,j−1] de-
note the conditional probability for the i-th evicting
node to evict to left (if ei,j is 0) or right (if ei,j
is 1), given that the client’s actual data access
sequence is x⃗n and the location access sequence
has been q1, e1, · · · , qi, ei,1, · · · , ei,j−1 before this
evicting node is accessed.

Lemma 1: In SE-ORAM(λ, N ), for ∀ x⃗n ∈ Xn

and ∀ i ∈ {1, 2, · · · , n},

Pr[qi | x⃗n; q1, e1, · · · , qi−1, ei−1] =
2s

N
.

Proof: Initially and after being queried, data
blocks are all distributed to the paths uniformly at
random. Hence, every path has the same probability
to be selected for each query. The probability is 2s

N

as the total number of paths is N
2s

.



Lemma 2: In SE-ORAM(λ, N ), for ∀x⃗n ∈ Xn, ∀i
∈ {1,2,· · · ,n} and ∀j ∈ {1,2,· · · ,hi}: p ≤ Pr[ei,j |
x⃗n; q1, e1, · · · , qi−1, ei,1, · · · , ei,j−1] ≤ 1− p.

Proof: During an eviction process, the proba-
bility for an evicting node to evict a data block to
its left (or right) child is between p and 1− p. The
lemma is therefore proved.

Theorem 1: SE-ORAM(λ, N ) is secure under
Definition III. That is, for any A⃗n ∈ An and
T⃗n ∈ Xn,( 1

Nn

)1+ 1
λ ≤ Pr[T⃗n | A⃗n] ≤

( 1

Nn

)1− 1
λ . (2)

Proof: In Appendix 2.

VI. COST ANALYSIS

A. Storage Overhead

In SE-ORAM, the storage server initially stores
only real data blocks exported by the client. As the
system keeps running, dummy blocks are introduced
or removed, and the server needs to store some
dummy blocks. However, when a dummy block
is introduced, it always replaces a real data block
which should be moved to the client’s cache; when
a dummy block is removed, it is always replaced
with a real data block previously cached by the
client. Hence, the storage consumption at the server
keeps unchanged. In this sense, there is no storage
overhead at the server. However, extra storage over-
head has been introduced to the client, who needs
to cache real data blocks that have been replaced by
dummies.

In the following, we analyze the number of
dummy blocks in the storage, which is equal to the
number of real data blocks that should be cached
by the client. We first introduce the notation of
node state and its transitions. Then, we analyze the
probability to introduce a new dummy block during
every data eviction process. Finally, we show that,
with appropriate setting of system parameters (i.e.,
λ ≥ 2 and s = 2cλ logN for c ≥ 1), the number of
dummy data blocks is bounded by x logN with a
probability greater than 1− ( 1

N
)2x.

According to the eviction algorithm in SE-
ORAM, a new dummy block may be introduced
only when a data block is evicted from a node that
is full and does not contain any dummy block. For
any of such node, we use (x, s− x) to represent its

state, where x is the number of data blocks in the left
group and s−x is the number of data blocks in the
right group. Thus, the state transition probabilities
are as follows:

Pr[(x+ 1, s− x− 1)|(x, s− x)] = (3)
1−p
2
, if x < s− x,

1
4
, if x = s− x,

p
2
, if x > s− x,

Pr[(x− 1, s− x+ 1)|(x, s− x)] = (4)
p
2
, if x < s− x,

1
4
, if x = s− x,

1−p
2
, if x > s− x.

Pr[(x−1, s−x+1)|(x, s−x)] can be computed
similarly. We skip it due to space limit. Figure 2
shows the complete set of node state transitions.
Based on the above analysis, we can get the fol-
lowing lemma.

Lemma 3: In SE-ORAM, any node on the stor-
age tree has a probability less than 2−

s
2λ to stay

in state (0, s) (or state (s, 0)); that is, Pr[(0, s)] =
Pr[(s, 0)] < 2−

s
2λ .

Lemma 4: In SE-ORAM, when s = 2cλ logN ,
the probability for an eviction process to introduce
a new dummy block is less than logN

2Nc .
Theorem 2: In SE-ORAM, when ρ ≥ 1

2
and s =

2cλ logN for c ≥ 1,

Pr[number of dummy blocks ≤ x]

> 1− (
1

2cλN c−1
)x ≥ 1− (

1

2λ
)x.

The proofs of the above lemmas and theorems are
presented in Appendix 3, 4 and 5. As the number
of data blocks cached by the client is the same as
the number of dummy blocks stored at the server
side, we have the following corollary based on
Theorem 2.

Corollary 3: In SE-ORAM, when ρ ≥ 1
2

and s =
4 logN , the number of data blocks cached at the
client side is bounded by x logN with a probability
of 1− ( 1

N
)2x.
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Figure 2. Node State and Transition

B. Communication Overhead
Each query or eviction process needs to access

a series of nodes along a path from the root to a
leaf. The communication and computational costs
for query and eviction are therefore affected by the
height of the storage tree.

Theorem 4: In SE-ORAM, the height of the stor-
age tree is upper-bounded by log(N/s) + 3 with a
probability of at least 1−(1

2
)s. When s = 2cλ logN ,

the probability is 1− ( 1
N
)2cλ.

Proof: In Appendix 6.
For each query, all blocks on a path containing the

target data block need to be downloaded and then
uploaded; and in the following eviction process, all
the data blocks on a randomly-selected path need
to be downloaded and then uploaded. The number
of nodes on each root-to-leaf path is O(logN) and
each node stores O(logN) data blocks. Hence, the
communication overhead is O(log2N) data blocks
per query.

C. Performance Comparison
We instantiate the generic SE-ORAM by setting

λ = 2, c = 1 and thus s = 4 logN , and compare the
instantiated SE-ORAM with several state-of-the-art
ORAMs including T-ORAM [12], G-ORAM [16],
Path ORAM [13], SCORAM [18], and P-PIR [19],
in terms of storage and communication overheads.

Table I compares SE-ORAM with state-of-the-
art ORAM constructions in terms of the client and
server storage overheads as well as the communica-
tion overhead per query. As we can see, SE-ORAM
does not consume any extra storage in the server
other than N ·B bits for the N data blocks. On the
contrary, the server storage overhead of each of the
state-of-the-art ORAM constructions is O(N ·B) or
(N logN ·B) bits. Though the communication cost
of SE-ORAM is on the same level as T-ORAM,
as discussed in Section 1, it can be reduced to
O(logN ·B) by adopting the additive Homomorphic

encryption-based PIR primitives [19], similar to the
way that P-PIR reduced the communication cost of
T-ORAM from O(log2N ·B) to O(logN ·B).

VII. CONCLUSION

In this paper, we introduce a generic security
definition for ORAM constructions, which allows a
client to configure a desired security level and man-
age the tradeoffs between security and performance.
We also propose SE-ORAM, a generic storage-
efficient ORAM construction with configurable se-
curity parameter λ. The results of extensive analysis
show that, SE-ORAM achieves the configured level
of security, introduces zero storage overhead to the
storage server (i.e., the storage server only storages
N data blocks), and incurs O(logN) blocks storage
overhead at the client, as long as λ ≥ 2 and each
node on the storage tree stores 4 logN or more data
blocks.
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APPENDIX 1: EVICTION EXAMPLES

In Figure 3, an example involving evictions oc-
curring on four layers of the storage tree is shown,
to further illustrate the eviction process.

APPENDIX 2: PROOF OF THEOREM 1

Proof: Since

Pr[T⃗n | A⃗n] =
Pr[A⃗n|T⃗n]Pr[T⃗n]∑

∀x⃗n∈Xn
Pr[A⃗n|x⃗n]Pr[x⃗n]

, (5)

we need to compute Pr[T⃗n], Pr[A⃗n|T⃗n], Pr[x⃗n] and
Pr[A⃗n|x⃗n].

First, as the server has no a prior knowledge of
the client’s actual data access pattern, for T⃗n and
any x⃗n ∈ Xn, it holds that

Pr[T⃗n] = Pr[x⃗n] =
1

Nn
. (6)

Second, due to Lemmas 1 and 2 and Pr[A⃗n|x⃗n]
being equal to

∏n
i=1 Pr[ qi | x⃗n; q1, e1, · · · , qi−1,

ei−1 ]·
∏n

i=1

∏hi

j=1 Pr[ ei,j | x⃗n; q1, e1, · · · , qi, ei,1,
· · · , ei,j−1], it follows that(2s
N

)n
·p

∑n
i=1 hi ≤ Pr[A⃗n|x⃗n] ≤

(2s
N

)n
·(1−p)

∑n
i=1 hi .

(7)
Hence,( p

1− p

)∑n
i=1 hi

≤ Pr[A⃗n|T⃗n]

Pr[A⃗n|x⃗n]
≤

(1− p

p

)∑n
i=1 hi

.

(8)
Since hi ≤ log(N/s) < logN ,( p

1− p

)n logN

≤ Pr[A⃗n|T⃗n]

Pr[A⃗n|x⃗n]
≤

(1− p

p

)n logN

. (9)

Based on Equations (5), (6) and (9), it holds that( p

2(1− p)

)n logN

≤ Pr[T⃗n|A⃗n] ≤
(1− p

2p

)n logN

.

(10)
As p = 1

21/λ+1
, Equation (10) becomes Equation (2),

which completes the proof.

APPENDIX 3: PROOF OF LEMMA 3
Proof: In the Markov chain of node state transi-

tion shown in Figure 2, the steady state distribution
has the following property:

1

2
> Pr[(

s

2
− 1,

s

2
+ 1)] (11)

= Pr[(0, s)] · (1− p

p
)
s
2
−1

= Pr[(0, s)] · 2
s−2
2λ .
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Figure 3. Data eviction example. (a) Evicting data block from layer 0 to 1: Evicted block Be has path ID n3,7 but the evicting node
n0,0 chooses to evict to left. Hence, Be is written obliviously to n0,0, while a block with path ID n3,0 (and therefore evictable to left) is
selected from n0,0 to the new evicted block. This is Case II in Section 4.3 E4. (b) Evicting data block from layer 1 to 2: Evicting node n1,0

chooses to evict to right. No block (including Be and the blocks in n1,0) is evictable to right. Hence, a dummy block is created to replace
a randomly-selected real block in n1,0, which is moved to the cache of the client. The dummy block then becomes the new evicted block.
This is Case IV in Section 4.3 E4. (c) Evicting data blocks from layer 2 to 3: As the evicted block Be is a dummy, it remains as the evicted
block no matter whether the evicting node chooses to evict to left or right. This is Case I in Section 4.3 E4. (d) Evicting data blocks from
layer 3 to 4: The evicting node is non-full. So the evicted block is written to it obliviously and the eviction process terminates, as explained
in Section 4.3 E4.



Also because λ > 1, it follows that Pr[(0, s)] <
2−

s−2
2λ · 1

2
< 2−

s
2λ . Similarly, it can be proved that

Pr[(s, 0)] < 2−
s
2λ .

APPENDIX 4: PROOF OF LEMMA 4

Proof: According to Lemma 3, for any node,
Pr[(0, s)] = Pr[(s, 0)] < 2−

s
2λ , which is less than

1
Nc since s = 2cλ logN .

During an eviction process, at most one dummy
data block may be introduced. And the introduction
occurs only if: there is at least one evicting node
that is in state (0, s) (or (s, 0)), block evicted to
this node is evictable only to right (or left), and the
node chooses to evict to left (or right). For this to
occur, the probability is at most

1−
(
1− (Pr[(0, s)] + Pr[(s, 0)]) · p

2

)h+1
,

which is less than 1 − (1 − 1
2Nc )

logN since p =
1

1+21/λ
< 1

2
and h + 1 = log(N/s) + 1 < logN .

Expanding it, we obtain

1− 1 + logN · 1

2N c

−
∞∑
i=1

[

(
logN

2i

)
(

1

2N c
)2i −

(
logN

2i+ 1

)
(

1

2N c
)2i+1],

which is less than logN
2Nc , since

(
logN
2i

)
( 1
2Nc )

2i >(
logN
2i+1

)
( 1
2Nc )

2i+1 for every i. Hence, the Lemma is
proved.

APPENDIX 5: PROOF OF THEOREM 2
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Figure 4. State Transition of Dummy Block Number Nd

Proof: Let Nd denote the number of dummy
blocks in the storage server when an eviction pro-
cess just finishes. Figure 4 depicts the Markov Chain
of the transition of Nd value.

The transition from Nd = x to Nd = x+1 occurs
after one eviction process iff: during the eviction
process and the immediately-preceding query pro-
cess, (i) a new dummy block is introduced, and (ii)
no dummy block is removed. The probability that (i)

occurs is at most logN
2Nc . Hence, px,x+1 = Pr[Nd =

x+ 1|Nd = x] ≤ logN
2Nc .

The transition from Nd = x+1 to Nd = x occurs
after an eviction process iff: during the eviction pro-
cess and the immediately-preceding query process,
(i) no new dummy block is introduced, and (ii) an
existing dummy block is removed. The probability
for (i) to occur is at least 1− logN

2Nc . The probability
for (ii) to occur is ρ

1+ρ
· 2s

N
, where ρ

1+ρ
is the

probability that this query-eviction round is an extra
round, and 2s

N
is the low bound of the probability

that a path containing dummy block is queried and
thus a dummy block can be removed. Also note that
1− logN

2Nc ≥ 3
4

because logN ≤ N
2

for every N ≥ 4;
we do not consider N < 4 as it is trivial. Hence,
px+1,x = Pr[Nd = x|Nd = x+ 1] ≥ 3sρ

2(1+ρ)N
.

Since s = 2cλ logN for c ≥ 1, and ρ ≥ 1
2

and
thus (1+ρ)/ρ ≤ 3, px,x+1

px+1,x
< 2(1+ρ)N logN

6sρNc ≤ 1
2cλNc−1 .

So, Pr[Nd > x] < ( 1
2cλNc−1 )

x ≤ ( 1
2λ
)x; that is,

Pr[Nd ≤ x] > 1− ( 1
2cλNc−1 )

x ≥ 1− ( 1
2λ
)x.

APPENDIX 6: PROOF THEOREM 4
Proof: In SE-ORAM, N data blocks are dis-

tributed to N
2s

paths uniformly at random. We first
show that probability for a path to be assigned with
more than 4s blocks is no greater than 1

N4c .
Assigning N blocks to N

2s
is a standard balls in

bins game with N balls and N
2s

bins. The expected
number of blocks assigned to each path is 2s.
According to Chernoff bound, the probability for
any path to be assigned with more than 4s blocks
is upper-bounded by e−2s/3 ≤ 2−s. That is, the
probability is at least 1 − (1

2
)s that every path is

assigned with no more than 4s block.
A path has the longest length if all the blocks

assigned to it have to be stored in its level-h node
and supplementary nodes. In this extreme case, a
path has a length of no longer than log(N/s)+ 3 if
no more than 4s blocks are assigned to it.

So far, we have proved that the probability is at
least 1− (1

2
)s that the height of the tree is no larger

than log(N/s) + 3. When s = 2cλ logN , obviously
the probability is 1− ( 1

N
)2cλ.


