
Nonce-based Kerberos is a Secure Delegated
AKE Protocol

Jörg Schwenk
joerg.schwenk@rub.de

Horst Görtz Institute for IT Security
Ruhr University Bochum

Abstract. Kerberos is one of the most important cryptographic proto-
cols, first because it is the basisc authentication protocol in Microsoft’s
Active Directory and shipped with every major operating system, and
second because it served as a model for all Single-Sign-On protocols (e.g.
SAML, OpenID, MS Cardspace, OpenID Connect). Its security has been
confirmed with several Dolev-Yao style proofs [1–12], and attacks on cer-
tain versions of the protocol have been described [13,14].

However despite its importance, despite its longevity, and despite the
wealth of Dolev-Yao-style security proofs, no reduction based security
proof has been published until now. This has two reasons: (1) All widely
accepted formal models either deal with two-party protocols, or group
key agreement protocols (where all entities have the same role), but not
with 3-party protocols where each party has a different role. (2) Kerberos
uses timestamps and nonces, and formal security models for timestamps
are not well understood up to now.

As a step towards a full security proof of Kerberos, we target problem (1)
here: We propose a variant of the Kerberos protocol, where nonces are
used instead of timestamps. This requires one additional protocol mes-
sage, but enables a proof in the standard Bellare-Rogaway (BR) model.
The key setup and the roles of the different parties are identical to the
original Kerberos protocol.

For our proof, we only require that the authenticated encryption and
the message authentication code (MAC) schemes are secure. Under these
assumptions we show that the probability that a client or server process
oracle accepts maliciously, and the advantage of an adversary trying to
distinguish a real Kerberos session key from a random value, are both
negligible.

One main idea in the proof is to model the Kerberos server a a public
oracle, so that we do not have to consider the security of the connection
client–Kerberos. This idea is only applicable to the communication pat-
tern adapted by Kerberos, and not to other 3-party patterns (e.g. EAP
protocols).

1 Introduction

1.1 Reduction based vs. Doley-Yao security proofs

Reduction based security proofs are the basis of modern cryptography: New
complex cryptographic constructions are shown to be secure by giving a poly-
nomial reduction to a (small) set of well-established security assumptions (e.g.
the factoring assumption or the decisional Diffie-Hellman assumption). Reduc-
tion based proofs for cryptographic protocols (following [15]) mostly deal with
either (a) two-party protocols where each party has a different role (i.e. it ex-
ecutes a different code), or (b) with group key agreement protocols where all
parties have the same role (i.e. they all execute the same code). Examples are
(a) SSL/TLS [16], SSH [17] and HMQV [18], and (b) Burmester-Desmedt [19]
and [20,21].

For Kerberos-type, three-party protocols where each part has a different role,
publications on reduction-based security are rare, although they also play an
important role in practical IT security: EAP protocols (mobile device – access
point – RADIUS server) are used to secure enterprise WLAN environments,
Kerberos is the basis for MS Active Directory security, and novel Single-Sign-
On (SSO, identity provider – browser – relying party) protocols like SAML
and OpenID Connect strive to replace passwort-based authentication on the
Internet. One of the sparse results published is the paper of Bellare et al. [22],
which describes a reduction-based model for communication pattern 3 in Figure
1.

A second (earlier) important line of research was started with the seminal
paper of Burrows, Abadi and Needham [23] (the latter being the inventor of
a predecessor of Kerberos, together with Michael D. Schroeder): Abstractions
of (idealized) cryptographic operations were used for logic reasoning, e.g. that
equations like Dk(Ek(m)) = m always hold. Here research on Kerberos and
related protocols has a long history, with many important results, which will be
sketched in the Related Work section.

Serious efforts have been made to unite these two approaches (e.g. [24]), e.g.
by adapting the cryptographic primitives used to the requirements of Dolev-Yao
proofs, but please note that these approaches still use a methodology different
from reduction-based proofs.

1.2 Three-party communication patterns

The different communication patterns used in three-party scenarios are depicted
in Figure 1. The key setup in all these patterns is the same: Parties A and B
each share a symmetric key with the trusted party TP. The goal is always to
establish an authenticated symmetric session key between A and B, by using
only symmetric cryptographic primitives.

In the early days of cryptographic protocols, different authenticated key es-
tablishment (AKE) protocols using only symmetric cryptography have been pro-
posed: Needham-Schroeder [25] for Pattern 1, Otway-Rees [26, 27] for Pattern

A	
 B	

TP	

A	
 B	

TP	

A	
 B	

TP	

•  Needham-­‐Schroeder	

•  Kerberos	

•  Single-­‐Sign-­‐On	

•  Otway-­‐Rees	

•  Extended	
 Authen@ca@on	

Protocols	
 (EAP)	

•  Wide-­‐Mouthed	
 Frog	

•  Bellare-­‐Pointcheval-­‐	

Rogaway	
 1995	

PaJern	
 1:	
 TP/A/B	
 PaJern	
 2:	
 A/B/TP	
 PaJern	
 3:	
 A/TP/B	

Fig. 1: Different communication models for 3-party protocols.

2, and the Wide Mouthed Frog protocol [23] for Pattern 3. Their goal was to
solve the symmtric key distribution problem: If n parties want to communicate
securely using symmetric cryptography, a symmetric key has to be established
between each of the n(n − 1) pairs of parties. Instead of n(n − 1) keys, only n
keys have to be manually configured in the setup phase, and all other keys are
established automatically.

Although it seemed that with the advent of Public Key Infrastructures (PKI)
this type of key management was outdated, recent discussions on quantum com-
puters may revive the interest in this topic: while breaking all public key algo-
rithms used today, quantum algorithms affect symmetric algorithms only slightly,
by requiring a doubling of the key length. Thus e.g. Kerberos with 256 Bit keys
will still be secure in a post-quantum world.

Since the three example protocols mentioned above were proposed by pio-
neers of logical protocol analysis, there are many Dolev-Yao-style analysis pa-
pers, e.g. [3, 5, 6, 23, 28–33]. However, the only reduction-based security model
was proposed for the least used of the three patterns, namely for Pattern 3 [22].1

1.3 Kerberos

Kerberos was developed to protect network services in the MIT project Athena.
It was inspired by the Needham-Schroeder protocol [34], and its primary design-
ers were Steve Miller and Clifford Neuman.

Version 4 was published in [35], and Version 5 in RFC 1510 [36] in 1993. The
current version of the protocol is described in RFC 4120 [37]. Version 5 eliminated
some security problems with the initial protocol, and was subsequently adopted
in Microsoft Windows 2000 and all later OS versions as the default authentication
protocol. Many other operating systems like FreeBSD, Apple’s Mac OS X and
Red Hat Enterprise Linux, also support Kerberos.

1 Please note that this security model cannot simply be reused for Pattern 1 and 2,
because it it heavily depends in Pattern 3.

The body of the Kerberos protocol consists of two or three 2-message ex-
changes. The two-exchange case is the basis for the version of the nonce-based
Kerberos variant analyzed in this paper, and we will discuss the extension to the
three-exchange case in Section 6.

The initial exchange is called Authentication Service Exchange (AS) ([37],
Section 3.1). It is used by the client to request an intial credential, either a
ticket granting ticket (TGT) for subsequent use with the ticket granting server
(TGS) (the three exchange case) of for use with a high security service (the two
exchange case), from the Kerberos Authentication Server (KAS).

The last exchange is called Client/Server Authentication exchange (CS) (
[37], Section 3.2), and as a prerequisite the client needs an authentication cre-
dential either directly from the authentication server (AS exchange), or from a
Ticket Granting Server (TGS exchange).

The often used, but optional “middle” exchange is the Ticket Granting Ser-
vice (TGS) exchange ([37], Section 3.3). Here the client needs a Ticket Grant-
ing Ticket (TGT) from an inital AS exchange to authenticate against a Ticket
Granting Server, which then issues a ticket for an application server.

The three-exchange case is described in detail in the appendix. There is also a
public-key variant of Kerberos which we do not consider here, since the strengths
of the protocol (and its post-quantum security!) lie in the symmetric version.

1.4 Kerberos and nKerberos

In this paper, we present a formal reduction-based model for Pattern 1, which in-
cludes the well studied and important Kerberos protocol. Since reduction-based
models did not consider timestamps until recently [38], we analyze an idealized
version of the Kerberos protocol which replaces timestamps with nonces. We
also idealize the encryption used: Our analysis assumes that all messages are
encrypted using authenticated encryption, and our reduction is to this crypto-
graphic primitive (cf [39]) and to message authentication codes.

Figure 2 shows a direct comparison between Kerberos v5 and the protocol
analyzed in this paper (and subsequently denoted by nKerberos for “nonce-based
Kerberos”). We tried to model nKerberos as closely as possible on Kerberos
v5, to facilitate the adaption of the model and the proof presented here. The
differences between both protocols are the following:

– The timestamp tS generated by the Ticket Granting Server TGS and the
timestamp tC generated by the client are replaced by a nonce nS generated
by the server. The generation of the nonce is triggered by an Init message
to the server (which will not be included in the transcript of all messages),
thus our protocol requires one additional Round Trip Time (RTT).

– The handling of identitites is simplified: we always include the identities of
both client and server in all messages.

– We replace the authenticated encryption of the last two messages by a MAC
computation. This change is optional (the proof will still work if authen-
ticated encryption is used) and was mainly done for didactic reasons: We
wanted to stress the fact that confidentiality does not play any role here.

KAS	
 Client	
 Server	
 KAS	
 Client	
 Server	

Init	

nS	

C,S,nC,nS	

AE(kC	
 ;	
 C,S,nC,nS,kCS,kMAC)	

AE(kS	
 ;	
 C,S,nC,nS,kCS,kMAC)	

	

AE(kS	
 ;	
 C,S,nC,nS,kCS,kMAC)	

MAC(kMAC	
 ;	
 C,S,nS)	

	

MAC(kMAC	
 ;	
 S,C,nC)	

C,S,nC	

AE(kC	
 ;	
 S,nC,tS,kCS)	

AE(kS	
 ;	
 C,tS,kCS)	

	

AE(kS	
 ;	
 C,tS,kCS)	

AE(kCS	
 ;	
 C,tC)	

	

AE(kCS	
 ;	
 tC)	

Kerberos	
 nKerberos	

Fig. 2: A direct comparison between the 3-party case in Kerbers v5 and nKe-
beros. AE(k;m) denotes authenticted encryption of message m with key k, and
MAC(k;m) denotes a message authentication code.

– We split the session key kCS used in Kerberos v5 into two independant keys:
the session key kCS which is the result of the 3-party delegated authenticated
key exchange, and the MAC key kMAC which is used for key confirmation.
It is important that kCS is not used for key confirmation, otherwise we will
have to use the more complex ACCE model [40] instead of the AKE model.
Instead of transmitting two keys, a standard PRF-based forking construction
could be used: kCS ||kMAC := PRF (k; const).

1.5 Formal model

Our formal model only differs in the key setup from two-party AKE protocols.
E.g. in [15], Bellare and Rogaway introduced the AKEP protocol, where client
and server shared a (long-lived) symmetric key, and used this key to authenticate
each other and to agree on a new session key. In our model, client and server
do not share anything, but need the help of a trusted third party, the Kerberos
Authentication Server (KAS), to estabish a session key. We therefore speak of
delegated AKE protocols. Our setup condition is that each party shares a long-
lived symmetric key with the KAS.

The KAS itself is modelled as a public oracle: any party can call it (even
the adversary), and on input two identities and two nonces it will output two
authenticated ciphertexts encrypted with the long-lived keys of the two entities
whose IDs were given.

We kept all other details of the formal model as close as possible on the
formal model of Bellare and Rogaway [15], to enable comparison of our results
with results on AKE protocols in general.

1.6 Contributions

The contributions of this paper can be summarized as follows.

– We give the first reduction-based security proof for a close variant of the
Kerberos protocol.

– We propose a general security model for 3-party protocols using communi-
cation pattern 1.

– We give new insights on how pattern-1-protocols should be constructed.

2 Building blocks

We only need two building blocks in our construction of nKerberos.

2.1 Message Authentication Codes (MAC).

Informally speaking, a MAC is a cryptographic checksum that can only be gen-
erated or verified by parties who know the corresponding symmetric key; an
adversary who does not know the key used in a MAC construction should not
be able to generate a valid message authentication code (MAC).

This is formalized in a game between an adversary an a MAC challenger:
The challenger generates a random key and uses this key to compute and verify
MACs. The adversary may send polynomially many messages m1,m2, . . . ,mq

to the challenger, and receives valid MACs maci := MAC(k;mi) for these
messages. If the adversary manages to produce a MAC mac∗ for a message
m∗ /∈ {m1,m2, . . . ,mq}, then he wins the game.

The MAC assumption now states that the pobability εMAC that any adver-
sary wins the MAC game is negligibly small.

2.2 Authenticated encryption.

Informally speaking, an adversary should not be able to alter or forge a ciphertext
(INT-CTXT), or to distinguish the contents of a ciphertext from random data
(IND-CCA). Instantiations of authenticated encryption e.g. include ENCRYPT-
then-MAC constructions, and the Galois Counter Mode (GCM) of block ciphers.
Please refer to [41] for a detailed discussion of authenticated encryption and the
relation of the different security notions.

To capture this intuition in a formal way, consider an authenticated en-
cryption challenger that offers the two interfaces described in Figure 3 to an
adversary. Since all messages issued by the KAS are of equal length, we adapted
the length-hiding authenticated encryption game from [42].

The Encrypt interface models indistinguishability of plaintexts: Obviously ci-
phertexts must have the same length len to be indistinguishable; the correspond-
ing plaintexts may share the same header H. If the adversary can distinguish
the ciphertext containing m0 from the ciphertext containing m1, he can predict
the secret bit b of the AE challenger and win the game.

Encrypt(m0,m1, len, H): Decrypt(C,H):

C(0) $← enc(k; len, H,m0) If C in CList abort

C(1) $← enc(k; len, H,m1) If bsi = 0, then return ⊥
If C(0) = ⊥ or C(1) = ⊥ then return ⊥ m = dec(k;H,C)

C := C(b) Return m
Add C to CList
Return C

Here b (a bit) and k (a key) are randomly chosen at the begin of the experiment,
and kept fixed during the experiment.

Fig. 3: Encrypt and Decrypt oracles in the length-hiding authenticated encryption
security experiment.

Less obvious is the role of the Decrypt interface: It should of course not be
misused to distinguish a ciphertext on m0 from a ciphertext on m1, so it will
not decrypt messages on CList. However, if the adversary manages to produce
a valid ciphertext (e.g. a ciphertext plus a valid MAC on the ciphertext), then
he can compute the secret bit of the AE challenger: if the challenger outputs ⊥,
then b = 0, else if the output is a valid message m, then b = 1.

In the AE security game, a challenger chooses a key k and a bit b randomly,
and makes the Encrypt and Decrypt interfaces available to a polynomial adversary
A. After polynomially many queries to these interfaces, the adversary eventually
outputs a bit b′. Let AdvAE(A) := |Pr(b = b′)− 1/2|.

The authenticated ecryption (AE) assumption now states that for a secure
AE scheme with a randomly chosen key k, the advantage εAE = maxA{AdvAE(A)}
in the above security game is negligibly small.

3 Formal Model

Formal models for autheticated key exchange typically consist of three different
parts: (1) A computational model, where the implementation of the protocol is
described in a precise way in the terminology of theoretical computer science,
i.e. as Turing machines. Here we model e.g. global variables (managed by the
party P), and local variables (managed by each process π). (2) An adversarial
model, where we describe the attack capabilities of our adversary. Typically we
exaggerate these capabilities (e.g. we assume that the adversary controls the
whole network, and may compute some of the cryptographic keys used by the
system). If the protocol is secure against such an exceedingly strong adversary,
it will be secure against any real, weaker adversary. (3) In the security model,
we must define which events we will count as “breaking” the protocol. This is
a difficult task, since we have to exclude trivial attacks on the protocol which
result directly from the adversariual capabilities.

3.1 Computational Model for Key Exchange

In accordance with the line of research [40, 43–46] initiated by Bellare and Ro-
gaway [15], we model the execution environment in terms of polynomial Turing
machines. Our notation closely follows [40].

Execution environment. Let P0, . . . , Pn denote the different parties involved
in the cryptographic protocol. Each party Pi has several global variables, e.g.
an identity IDi (which we may omit from time to time since it is uniquely
determined by the index i), and a symmetric long-lived key ki which it may share
with another party. Each party Pi may fork off processes {πsi : s ∈ {1, ..., l}}
(sometimes called process oracles or oracle in the following). These processes
share the global variables of party Pi, and may store new local variables in
their own process memory, e.g. session keys ksi , transcripts T si and nonces nsi .
A process πsi may be activated by the party (forking off a new process). After
activation, it performs actions described in the protocol specification, and may
either accept or reject in the end.

Party P0 is the Kerberos Authentication Server (KAS). The KAS acts a a
public oracle: Any party (including the adversary A may send queries to this
party, and these queries will be answered. We model P0 as a single process.
W.l.o.g. we assume that there is only one KAS, and we discuss in Section 6 how
to deal with more than one KAS.

Parties Pi, 1 ≤ i ≤ n, may have either the role client or the role sever during
protocol execution. The adversary A /∈ {P0, ..., Pn} is another special party that
may interact with all processes by issuing different types of queries.

Key Setup. Before the first query is asked, long-term symmetric keys ki for
each party Pi, i ∈ {1, ..., n} are generated. Each key ki is stored as a global
variable at party Pi, and additionally at the KAS.

Matching conversations. An cryptographic protocol is run between two pro-
cesses πsi and πtj , where each process may either “accept” or “reject” at the end of
the protocol. We define correctness and security of a protocol using the concept
of matching conversations as introduced by Bellare and Rogaway [15].2

In the following let Ti,s denote the transcript of all messages sent and received
by process πsi . Intuitively, we would like to say that an authentication protocol
is correct, if a process πsi outputs “accept” if there exists a process πtj with
Ti,s = Tj,t. Likewise, we would like to say that an authentication protocol is
secure, if a process accepts only if there exists a process πtj with Ti,s = Tj,t.

As pointed out in [15], we face a minor technical obstacle here, which is
inherent to all protocols. Suppose that πtj sends the last message of the protocol.
Then process πtj does not get any response to its last message, and thus has
to accept or not without knowing whether πsi received the last message. Thus
the concept of matching conversation is not symmetric, but directional. This is
captured by the following definition.

2 As an alternative, session identifiers may be used, which can be defined as partial
transcripts of the protocol messages.

Definition 1. Let Ti,s denote the transcript of all messages sent and received

by process πsi . Let T
(−1)
i,s be the transcript Ti,s truncated by the last message. We

say that a processes πsi has a matching conversation to process πtj, if

– πsi has sent the last message, and it holds that T
(−1)
i,s = T

(−1)
j,t , or

– πtj has sent the last message, and it holds that Ti,s = Tj,t.

We say that two processes πsi and πtj have matching conversations if πsi has a
matching conversation to process πtj, and vice versa.

3.2 Adversarial Model for Key Exchange

We model adversarial capabilities through different queries. The fact that our
adversary controls the whole network is modelled by the Send query: Two par-
ties/processes are never allowed to exchange messages directly, they must all
pass though the adversary. The adversary then forwards these messages through
Send queries to other process oracles, and receives their responses, which he
again forwards via Send. If he only forwards unaltered messages to the intended
destination, we call the adversary benign. A benign adversary may be used to
model passive attacks on protocols. An active adversary may however alter any
parameter of the message: Its destination, its content, its ordering, etc.

The fact that, in a distributed cryptographic system, the adversary may be
able to learn “old” session keys (e.g. through exhaustive key search, or in the case
of TLS through Bleichenbacher attacks) is modelled by the Reveal query. It will
be part of the security model to define what “old” means in a mathematically
correct definition.

Finally the fact that the adversary may learn “something” about a “fresh”
session key is modelled by the Test query. Please notice that it would be sufficient
for the adversary to learn a single bit of the session key to reliably distinguish
this key from a random value. If on the other hand we can prove that he cannot
distinguish the key from a random value, then the adversary will never be able
to compute this key.

– Send(P0,m): This query can be used to send a message to the KAS P0, the
answer will be returned to the adversary. Please note that this is the only
query that can be addressed to P0, all other queries are restricted to indices
1, ..., n.

– Send(πsi ,m): The active adversary can use this query to send any message
m of his own choice to oracle πsi . The oracle will respond according to the
protocol specification. If m = ∅, where ∅ denotes the empty string, then πsi
will respond with the first protocol message.

– Reveal(πsi): The adversary may learn the encryption key K computed in
process πsi by asking this type of query. The adversary submits πsi to the
black-box. If process πsi has “accepted”, the black-box responds with the key
k in process πsi . Otherwise some failure symbol ⊥ is returned.

– Test(πsi): This query may only be asked once throughout the game. If process
πsi has not (yet) “accepted”, the black-box returns some failure symbol ⊥.
Otherwise the black-box flips a fair coin b. If b = 0, a random element from
the keyspace is returned. If b = 1 then the session key k computed in process
πsi is returned.

– Corrupt(Pi): If the adversary sends this query to any of the oracles πsi , this
oracle will answer with the secret long-lived key ki of party Pi. This key is
then marked as corrupted. In case a party only possesses one key (i.e. it is a
client or server party), then we call this party corrupted too.

3.3 Security Model

We define protocol security as a game where a protocol is insecure if any ad-
versary can win the game with non-negligible advantage. This advantage may
either be the probability that something “bad” happens during protocol execu-
tion, or the difference of distinguishing a key from a random value, and a random
coin toss. To better describe the game, instead of using a distributed protocol
environment we let a challenger faithfully simulate the protocol.

Consider the following security game played between a challenger C and an
adversary A.

1. The challenger generates n + 1 parties Pi, i ∈ {0, 1, ..., n}, where party P0

is the KAS. He randomly generates n symmetric keys for authenticated en-
cryption, assigns one key ki to each party Pi for i = 1, ..., n, and also assigns
all keys to party P0.

2. The adversary may ask arbitrary queries Send,Reveal and Corrupt to any
process πsi , i ∈ {1, ..., n}, s ∈ {1, ..., `}. Queries can be made adaptively.

3. Eventually, the adversary ask a Test query.
4. Again, the adverary may ask the above queries.
5. Finally, the adversary outputs a bit b′.

The following definition only targets client or server processes, since only
these only these processes can reach the state “accept”. Thus the KAS P0 cannot
accept maliciously by definition.

Definition 2. We say that a process πsi , i ∈ {1, ..., n} accepts maliciously with
intended partner Pj if the messages returned during protocol execution were ad-
dressed to an uncorrupted party Pj, but there is no process πtj with a matching
conversation.

Please note that in the following definition, the two winning events only
address processes of parties P1, ..., Pn, i.e. client or sever processes.

Definition 3. Let A be a PPT adversary, interacting with challenger C in the
security game described above. Let b be the bit chosen by the challenger while
answering the Test query, and let b′ be the output of A. We say that A wins the
game with probability ε, if

KAS
kC , kS

Client
kC

Server
kS

−−−−−−−−
Init
−−−−−−−−−−−−−−→

←−−−−−−−−
nS−−−−−−−−−−−−−−

←−−−−−−−
C, S, nC , nS−−−−−−−−−−−−−−−−

−
[C, S, nC , nS , kCS , kMAC]kC−−−−−−−−−−−−−−−−−−−−−−→

−
[C, S, nC , nS , kCS , kMAC]kS−−−−−−−−−−−−−−−−−−−−−−→

−
[C, S, nC , nS , kCS , kMAC]kS−−−−−−−−−−−−−−−−−−−−−−→

−−−−−
(C, S, nS)kMAC−−−−−−−−−−−−−−−−→

←−−−−−
(S,C, nC)kMAC−−−−−−−−−−−−−−−−

Fig. 4: nKerberos: A nonce-based variant of the Kerberos protocol. Here [m]k
denotes length-hiding authenticated encryption of message m with key k, and
(m)k denotes the MAC computed over message m using key k.

– with probability ≥ ε there is a process πsi that accepts maliciously, or
– AdvA := |Pr(b = b′)− 1

2 | ≥ ε.

Definition 4. We say that an authenticated key exchange protocol is ε-secure if
no PPT adversary A exists with winning probability greater than ε.

4 A Nonce-based Kerberos Protocol

The ultimate goal of this paper is to prove that the nKerberos protocol is a
secure AKE between Client and Server. To do so, we assume that the KAS is a
publicly available oracle, and show that under this assumption the protocol flow
between Client and Server constitutes a secure AKE in the sense of the original
Definition from [15].

The KAS T accepts requests from any party. These requests must be quadru-
ples consisting of two different identities of parties registered at the KAS, and
two nonces. For each such request he issues two authenticated ciphertexts. Both
contain the quadruple received, plus a randomly chosen session key kCS . This
data is encrypted and MACed with the key(s) registered for the parties whose
identities were contained in the request. Please note that the adversary is also
allowed to make such requests.

The client C receives a nonce nS from a party which he assumes (but is
not sure about) to be the server application he wants to communicate with.
He generates a fresh client nonce nC , and forms a request quadruple from his
own identity, the identity of the intended communication party, and the two
nonces. Upon receiving an answer from the KAS, he decrypts and verifies the
first ciphertext, and checks if it contains the request quadruple. If both checks are
successful, he uses the received session key kcs to encrypt and MAC a message
consisting of the received nonce rS , and the two identities. He forwards the
second ciphertext from KAS together with the freshly generated ciphertext to
the intended communication partner (asumed to be server S).

The server S decrypts and verifies the ciphertext from the KAS, and checks
if his nonce nS is contained in the ciphertext. If both checks succeed, he stores
values C, rC and kCS in local variables, and decrypts and verifies the second
ciphertext with kCS . Then he checks if the second message also contains his own
nonce nS . If this is the case, he accepts. S then encrypts and MACs the message
(S,C, nC) and sends the ciphertext to C.

When C receives this last ciphertext, he decrypts and verifies it, and checks
if it contains the intended identities and the nonce nC chosen by him. If these
checks suceed, he accepts.

5 nKerberos is a secure delegated AKE

To prove the following theorem, we use the sequence of games technique to
structure the proof. In this technique, the scurity game is slightly modified from
one game to another, and a bound on the difference on the winning probabilities
of the two successive games is given.

Theorem 1. Let n be the number of parties, let l be an upper bound on the
number of processes of each party, and let q be the number of queries made to
the KAS (both from legal parties and the adversary). Let λ and ν be the bitlengths
of the nonces and the keys, resp. Let εMAC and εAE be defined as in Section 2.
Then nKerberos is a ε-secure delegated AKE with

ε ≤ 3 · (2 · q
2

2ν
+

(nl)2

2λ
+ (nl) · (3εAE + εMAC)).

Proof. We have to show that client and server only accept if there is a matching
conversation between them, and that the adversary cannot distinguish the real
key kCS from a random value. We start with the original security game (Game
G0) played between the adversary A and a challenger that simulates nKerberos.

The proof is contained in Lemmata 1, 2 and 3, and ε is an upper bound on
the sum of the probabilities from the 3 Lemmata.

Lemma 1. The advantage of an adversary to distinguish real from random in
a Test query is bounded by

AdvAdvTest ≤ 2 · q
2

2ν
+

(nl)2

2λ
+ (nl) · (2εAE).

.

Proof. We first show that the adversary cannot distinguish ciphertexts contain-
ing the real session key kCS from a random value.

Game G1: In this game, the challenger aborts the game if any nonce is
chosen twice, or if any session key or MAC key is chosen twice. Please note that
each process oracle may choose at most one nonce (thus we have at most nl
nonces alltogether, and that there may be at most nl

2 sessions (and the same
number of session keys needed). We may upper bound the number of session

keys with q, for both the MAC keys and the session keys. The probability that

either of these collissions happens is upper bounded by (nl)2

2λ
, thus we have

Adv(G0) ≤ Adv(G1) + 2 · q
2

2ν
+

(nl)2

2λ
.

Game G2: In this game, the challenger guesses the oracle π which will be
the target of the adversary’s Test query. This may be either a client oracle πsC ,
or a server oracle πtS . In the following we assume that the server targets a client
oracle πsC , the other case is analogous. If the guess of the challenger was wrong,
b′ is chosen randomly. Thus we have

Adv(G1) ≤ (nl)Adv(G2).

Game G3: In this game, the challenger replaces message [C, S, nC , nS , kCS , kMAC]kC
with [C, S, nC , nS , k

∗, k′]kC , for randomly chosen keys k∗, k′. The challenger in-
ternally keeps a key replacement table, where he adds new entries (k∗, kCS) and
(k′, kMAC). Since we have excluded key collissions in Game 1, all entries are
unique.

This key replacement table is used in the following way: Whenever a process
oracle successfully descrypts an authenticated ciphertext and stores key k∗ in its
local variable κ, the challenger replaces this value with kCS . The same happens
for the value k′ stored in the local variable κMAC , which will be replaced with
kMAC .

Now we argue that any adversary that is able to distinguish games G2 and
G3 can be used to break the authenticated encryption assumption. To do so,
we replace all operations involving the long-lived key kC with calls to the AE
oracle. The AE adversary now sets m0 = (C, S, nC , nS , kCS , kMAC) and m1 =
(C, S, nC , nS , k

∗, k′). Thus if the AE challenger chooses to encrypt m0, we are in
Game G2, and if he chooses to encrypt m1, we are in game G3. Assume that our
nKerberos adversary capable of distinguishing both games outputs 0 for Game
G2 and 1 for Game G3. Then the AE adversary just outputs the same bit, and
subsequently has the same advantage of breaking the AE assumption than the
nKerberos adversary has to distinguish both games. Thus we have

Adv(G2) ≤ Adv(G3) + εAE .

Game G4: In this game, the challenger replaces message [C, S, nC , nS , kCS , kMAC]kS
with [C, S, nC , nS , k

∗, k′]kS , for the randomly chosen keys k∗, k′ from the previ-
ous game. The challenger uses the entries (k∗, kCS) an (k′, kMAC) in his key
replacement table as described before. With the same reduction argument as in
the previous game we get

Adv(G3) ≤ Adv(G4) + εAE .

Now our adversary cannot distinguish real from random in a Test query: If
he queries Test(πsC), he will either get kCS (the real content of the key variable
κ), or a random value. Both values have nothing to do with the ciphertexts
exchanged, so the advantage of the adversary is 0.

Lemma 2. The probability εS that a server oracle accepts maliciously is bounded
by

εS ≤ 2 · q
2

2ν
+

(nl)2

2λ
+ (nl) · (3εAE + εMAC).

Proof. Games G1 to G4 are identical to Lemma 1, except that in Game G2

the challenger guesses which oracle will be the first to accept maliciously. If his
guess was wrong, or if the first oracle to accept maliciously was a client oracle,
he aborts the game.

Now in Game G4, the MAC over message (C, S, nS) is computed with key
kMAC , which is randomly chosen and independent from all previous messages
(which contain a different key k′). So any adversary who can forge this MAC
can be turned into an adversary breaking the MAC assumption: Just replace all
MAC computations involving key kMAC with calls to the MAC oracle.

Now server oracle πtS will only accept if message (C, S, nC , nS , k
∗, k′) can be

verified with the long-lived AE key kS , and if the MAC over message (C, S, nS)
can be verified with the replacement key kMAC which was written into κMAC

instead of k′ by the nKerberos challenger. Since we have excluded nonce collis-
sions in Game G1, these messages must either come from an oracle that has a
matching conversation, or must habe been forged by the adversary.

Two cases must be distinguished:

Case 1: Only the MAC was forged, and the AE message comes from an oracle
with matching conversation. In this case, any adversary succeeding in making
πtS accept can be turned into an adversary breaking the MAC assumption, by
replacing all operation including key kMAC with calls to the MAC oracle as
described above.

Case 2: Also the AE message was forged. In this case, any adversary suc-
ceeding in making πtS accept can be turned into an adversary breaking the AE
assumption, by replacing all operation including key kS with calls to the AE
oracle.

Lemma 3. The probability εC that a client oracle accepts maliciously is bounded
by

εC ≤ 2 · q
2

2ν
+

(nl)2

2λ
+ (nl) · (3εAE + εMAC).

Proof. Games G1 to G4 are identical to Lemma 1, except that in Game G2

the challenger guesses which oracle will be the first to accept maliciously. If his
guess was wrong, or if the first oracle to accept maliciously was a server oracle,
he aborts the game.

Please note that now we know that no server oracle accepted maliciously
before our client oracle.

Thus with a similar agument as in Lemma 2 we can argue that either only
the last MAC message must be forged, or also the AE message from the KAS
to the client must be forged. In both cases the same reductions as above apply.

6 Extension of the results

6.1 Modelling more than one Kerberos server

If each party Pi shares a key with exactly one KAS, then introducing several
KAS simply results in a partition of the set of all parties. This would allow us
to define a Corrupt query für KAS, but after a simple change in the security
definition (which excludes protocol executions with the help of corrupted KAS
from the list of winning events) the security proof need not be changed.

So the only interesting case is that at least one party is assigned two keys,
which it shares with different KAS. In this case, in addition to guessing the
test oracle or the oracle that accepts maliciously, we would also have to guess
which KAS was involved, and thus we would loose a constant factor, namely
the number of different KAS, in our reduction. Since this does not change the
success probability of any adversary significantly, nKerberos still remains secure.

6.2 Extending the proof to the three-exchange case

The 4-party, 3-exchange version of nKerberos is depicted in Figure 5. It needs 2
additional messages to provide the nonces from the TGS and the server, and one
additional exchange between client and TGS. This additional overhead clearly
shows the advantages of traditional Kerberos using timestamps over the nonce-
based version as far as performance is concerned (cf. Figure 6).

The 4-party case consist of two similar 3-party protocols (client–KAS–TGS
and client–TGS–server). Our security proof directly applies to the first of these
3-party protocols, if we model the (different) TGS as servers. This first protocol
also establishes a symmetric key between client and TGS.

In the second 3-party protocol, the proof can easily be adapted if we adjust
the key setup conditions: Here the servers share distinct long-lived symmetric
keys with the TGS that is serving them.

7 Related Work

A search for “kerberos” in the computer science bibliography database (http:
//dblp.uni-trier.de/search?q=kerberos) returns 115 results. Most of these
papers describe modifications of the Kerberos protocol, either enhancements of
certain subprotocols (e.g. replacing passwords with smartcards), or combinations
with other protocols.

The very first (informal) security analysis of Kerberos was given by Steven
M. Bellovin and Michael Merritt [47].

There are several papers containing a security analysis of Kerberos or its
variants, and most of them contain a Dolev-Yao style analysis. Kirsal et al.
[33] describe an analysis of a Kerberos variant using Communication Sequential
Processes (CSP) and Rank functions. CSP is also used in the analysis of Li et
al. [10]. Yongjian and Pang [12] extend the Strand spaces model with timestamps,

TGS	
 Client	
 Server	

Init	

nTGS	

C,TGS,n'C,nTGS	

AE(kC	
 ;	
 C,TGS,n'C,nTGS,kCTGS,k'MAC)	

AE(kTGS	
 ;	
 C,TGS,n'C,nTGS,kCTGS,k'MAC)	

AE(kTGS	
 ;	
 C,TGS,nC,nTGS,kCTGS,k'MAC)	

MAC(k'MAC	
 ;	
 C,TGS,nTGS)	

MAC(k'MAC	
 ;	
 TGS,C,nC)	

nKerberos	
 –	
 4	
 Party	
 Se@ng	

AS	

Init	

nS	

C,S,nC,nS	

AE(kCTGS	
 ;	
 C,S,nC,nS,kCS,kMAC)	

AE(kS	
 ;	
 C,S,nC,nS,kCS,kMAC)	

	

AE(kS	
 ;	
 C,S,nC,nS,kCS,kMAC)	

MAC(kMAC	
 ;	
 C,S,nS)	

	

MAC(kMAC	
 ;	
 S,C,nC)	

Fig. 5: nKerberos extended to the 4-party case.

and apply this extended model to Kerberos. A previous analysis was given in [7].
Abdelmajid et al. [11] use a BAN Logic variant in their analysis, thereby using a
similar approach as Fan et al. [9]. Using formal analysis tools [8], Cerversato et
al. [48] found a man-in-the-middle attack in PKINIT, the public key extension
of Kerberos. The MSR language is chosen in the formal analysis performed by
Butler et al. [6]. Giampaolo Bella analyzed, with various co-authors, Version 4
in a series of papers [3–5].

A security analysis in the abstract Dolev-Yao style which also considers cryp-
tographic soundness is presented by Backes et al. [24]. In this model, crypto-
graphic primitives are treated as abstract objects, but their implementation is
shown to indeed fulfill the assumptions of the formal model. Please note that
although cryptographic soundness is a goal of this paper, it does not contain a
reduction-based proof as proposed in [15] and [44].

Yu et al. show that Kerberos v4 uses weak encryption, which enables an
attacker to perform a chosen-plaintext attack to impersonate arbitrary princi-
pals [49]. Boldyreva and Kumar [39] confirm that the “general profile” used in
Kerberos v5 doesn not provide authenticated encryption, but they also propose
a slightly modified profile that is IND-CCA and IND-CTXT secure. Together
both papers indicate that the reduction-based proof given in this paper only
could be applied to the modified general profile given in [39].

8 Future work

The present paper has shown the feasability of reduction-based proofs for three-
party protocols using the Kerberos communication pattern. One basic idea of
the proof given in this paper was to model the KAS as a public oracle.

To give a complete proof of the Kerberos protocol, this idea can be adapted.
It remains to show that timestamps can be integrated into a reduction-based
security proof, e.g. along the lines of [38].

For SSO protocols, a different type of proof must be developed: Here it is
essential that the browser authenticates itself to the identity provider, so the
IdP cannot be modelled as a public oracle.

References

1. M. Backes, I. Cervesato, A. D. Jaggard, A. Scedrov, and J.-K. Tsay, “Cryptograph-
ically sound security proofs for basic and public-key kerberos,” in ESORICS 2006:
11th European Symposium on Research in Computer Security, ser. Lecture Notes
in Computer Science, D. Gollmann, J. Meier, and A. Sabelfeld, Eds., vol. 4189.
Hamburg, Germany: Springer, Heidelberg, Germany, Sep. 18–20, 2006, pp. 362–
383.

2. B. Blanchet, A. D. Jaggard, A. Scedrov, and J.-K. Tsay, “Computationally sound
mechanized proofs for basic and public-key Kerberos,” in ASIACCS 08: 3rd ACM
Symposium on Information, Computer and Communications Security, M. Abe and
V. Gligor, Eds. Tokyo, Japan: ACM Press, Mar. 18–20, 2008, pp. 87–99.

3. G. Bella and E. Riccobene, “Formal analysis of the kerberos authentication
system,” J. UCS, vol. 3, no. 12, pp. 1337–1381, 1997. [Online]. Available:
http://www.jucs.org/jucs 3 12/formal analysis of the

4. G. Bella and L. C. Paulson, “Kerberos version 4: Inductive analysis of
the secrecy goals,” in Computer Security - ESORICS 98, 5th European
Symposium on Research in Computer Security, Louvain-la-Neuve, Belgium,
September 16-18, 1998, Proceedings, 1998, pp. 361–375. [Online]. Available:
http://dx.doi.org/10.1007/BFb0055875

5. ——, “Mechanising BAN kerberos by the inductive method,” in Computer Aided
Verification, 10th International Conference, CAV ’98, Vancouver, BC, Canada,
June 28 - July 2, 1998, Proceedings, 1998, pp. 416–427. [Online]. Available:
http://dx.doi.org/10.1007/BFb0028763

6. F. Butler, I. Cervesato, A. D. Jaggard, A. Scedrov, and C. Walstad, “Formal
analysis of kerberos 5,” Theor. Comput. Sci., vol. 367, no. 1-2, pp. 57–87, 2006.
[Online]. Available: http://dx.doi.org/10.1016/j.tcs.2006.08.040

7. Y. Li and J. Pang, “Extending the strand space method to verify
kerberos V,” in Eighth International Conference on Parallel and Distributed
Computing, Applications and Technologies (PDCAT 2007), 3-6 December
2007, Adelaide, Australia, 2007, pp. 437–444. [Online]. Available: http:
//dx.doi.org/10.1109/PDCAT.2007.22

8. B. Blanchet, A. D. Jaggard, A. Scedrov, and J. Tsay, “Computationally sound
mechanized proofs for basic and public-key kerberos,” in Proceedings of the
2008 ACM Symposium on Information, Computer and Communications Security,
ASIACCS 2008, Tokyo, Japan, March 18-20, 2008, 2008, pp. 87–99. [Online].
Available: http://doi.acm.org/10.1145/1368310.1368326

9. K. Fan, H. Li, and Y. Wang, “Security analysis of the kerberos protocol using
BAN logic,” in Proceedings of the Fifth International Conference on Information
Assurance and Security, IAS 2009, Xi’An, China, 18-20 August 2009, 2009, pp.
467–470. [Online]. Available: http://dx.doi.org/10.1109/IAS.2009.320

10. Q. Li, F. Yang, H. Zhu, and L. Zhu, “Formal modeling and analyzing
kerberos protocol,” in CSIE 2009, 2009 WRI World Congress on Computer
Science and Information Engineering, March 31 - April 2, 2009, Los
Angeles, California, USA, 7 Volumes, 2009, pp. 813–819. [Online]. Available:
http://dx.doi.org/10.1109/CSIE.2009.64

11. N. T. Abdelmajid, M. A. Hossain, S. Shepherd, and K. Mahmoud, “Improved
kerberos security protocol evaluation using modified BAN logic,” in 10th IEEE
International Conference on Computer and Information Technology, CIT 2010,
Bradford, West Yorkshire, UK, June 29-July 1, 2010, 2010, pp. 1610–1615.
[Online]. Available: http://dx.doi.org/10.1109/CIT.2010.285

12. Y. Li and J. Pang, “Extending the strand space method with timestamps: Part
II application to kerberos V,” J. Information Security, vol. 1, no. 2, pp. 56–67,
2010. [Online]. Available: http://dx.doi.org/10.4236/jis.2010.12007

13. B. Dole, S. W. Lodin, and E. H. Spafford, “Misplaced trust: Kerberos 4 session
keys,” in Proceedings of the Network and Distributed System Security Symposium,
NDSS 1997, San Diego, California, USA, 1997, pp. 60–71. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/NDSS.1997.579221

14. T. Yu, S. Hartman, and K. Raeburn, “The perils of unauthenticated encryption:
Kerberos version 4,” in ISOC Network and Distributed System Security Symposium
– NDSS 2004. San Diego, California, USA: The Internet Society, Feb. 4–6, 2004.

15. M. Bellare and P. Rogaway, “Entity authentication and key distribution,” in Ad-
vances in Cryptology – CRYPTO’93, ser. Lecture Notes in Computer Science, D. R.
Stinson, Ed., vol. 773. Santa Barbara, CA, USA: Springer, Heidelberg, Germany,
Aug. 22–26, 1994, pp. 232–249.

16. T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version
1.2,” RFC 5246 (Proposed Standard), Internet Engineering Task Force, Aug.
2008, updated by RFCs 5746, 5878, 6176, 7465, 7507, 7568, 7627, 7685. [Online].
Available: http://www.ietf.org/rfc/rfc5246.txt

17. T. Ylonen and C. Lonvick, “The Secure Shell (SSH) Authentication Protocol,”
RFC 4252 (Proposed Standard), Internet Engineering Task Force, Jan. 2006.
[Online]. Available: http://www.ietf.org/rfc/rfc4252.txt

18. H. Krawczyk, “HMQV: A high-performance secure Diffie-Hellman protocol,” in
Advances in Cryptology – CRYPTO 2005, ser. Lecture Notes in Computer Sci-
ence, V. Shoup, Ed., vol. 3621. Santa Barbara, CA, USA: Springer, Heidelberg,
Germany, Aug. 14–18, 2005, pp. 546–566.

19. M. Burmester and Y. Desmedt, “A secure and efficient conference key distribution
system (extended abstract),” in Advances in Cryptology – EUROCRYPT’94, ser.
Lecture Notes in Computer Science, A. D. Santis, Ed., vol. 950. Perugia, Italy:
Springer, Heidelberg, Germany, May 9–12, 1995, pp. 275–286.

20. M. Steiner, G. Tsudik, and M. Waidner, “Diffie-Hellman key distribution extended
to group communication,” in ACM CCS 96: 3rd Conference on Computer and
Communications Security. New Delhi, India: ACM Press, Mar. 14–15, 1996, pp.
31–37.

21. ——, “Key agreement in dynamic peer groups,” IEEE Transactions on Parallel
and Distributed Systems, vol. 11, no. 8, pp. 769–780, Aug. 2000.

22. M. Bellare and P. Rogaway, “Provably secure session key distribution: The three
party case,” in 27th Annual ACM Symposium on Theory of Computing. Las
Vegas, Nevada, USA: ACM Press, May 29 – Jun. 1, 1995, pp. 57–66.

23. M. Burrows, M. Abadi, and R. M. Needham, “A logic of authentication,”
ACM Trans. Comput. Syst., vol. 8, no. 1, pp. 18–36, 1990. [Online]. Available:
http://doi.acm.org/10.1145/77648.77649

24. M. Backes, I. Cervesato, A. D. Jaggard, A. Scedrov, and J. Tsay,
“Cryptographically sound security proofs for basic and public-key kerberos,”
Int. J. Inf. Sec., vol. 10, no. 2, pp. 107–134, 2011. [Online]. Available:
http://dx.doi.org/10.1007/s10207-011-0125-6

25. R. M. Needham and M. D. Schroeder, “Using encryption for authentication in
large networks of computers,” Communications of the Association for Computing
Machinery, vol. 21, no. 21, pp. 993–999, Dec. 1978.

26. M. Backes, “A cryptographically sound Dolev-Yao style security proof of the
Otway-Rees protocol,” in ESORICS 2004: 9th European Symposium on Research in
Computer Security, ser. Lecture Notes in Computer Science, P. Samarati, P. Y. A.
Ryan, D. Gollmann, and R. Molva, Eds., vol. 3193. Sophia Antipolis, French
Riviera, France: Springer, Heidelberg, Germany, Sep. 13–15, 2004, pp. 89–108.

27. D. J. Otway and O. Rees, “Efficient and timely mutual authentication,”
Operating Systems Review, vol. 21, no. 1, pp. 8–10, 1987. [Online]. Available:
http://doi.acm.org/10.1145/24592.24594

28. G. Lowe, “Breaking and fixing the needham-schroeder public-key protocol using
FDR,” Software - Concepts and Tools, vol. 17, no. 3, pp. 93–102, 1996.

29. C. Meadows, “Analyzing the needham-schroeder public-key protocol: A
comparison of two approaches,” in Computer Security - ESORICS 96,

4th European Symposium on Research in Computer Security, Rome, Italy,
September 25-27, 1996, Proceedings, 1996, pp. 351–364. [Online]. Available:
http://dx.doi.org/10.1007/3-540-61770-1 46

30. M. Backes and B. Pfitzmann, “A cryptographically sound security proof of the
needham-schroeder-lowe public-key protocol,” in FST TCS 2003: Foundations of
Software Technology and Theoretical Computer Science, 23rd Conference, Mumbai,
India, December 15-17, 2003, Proceedings, 2003, pp. 1–12. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-24597-1 1

31. M. Backes, “A cryptographically sound dolev-yao style security proof of
the otway-rees protocol,” in Computer Security - ESORICS 2004, 9th
European Symposium on Research Computer Security, Sophia Antipolis, France,
September 13-15, 2004, Proceedings, 2004, pp. 89–108. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-30108-0 6

32. K. Wagatsuma, Y. Goto, and J. Cheng, “Formal analysis of cryptographic
protocols by reasoning based on deontic relevant logic: A case study
in needham-schroeder shared-key protocol,” in International Conference on
Machine Learning and Cybernetics, ICMLC 2012, Xian, Shaanxi, China,
July 15-17, 2012, Proceedings, 2012, pp. 1866–1871. [Online]. Available:
http://dx.doi.org/10.1109/ICMLC.2012.6359660

33. Y. Kirsal-Ever, A. Eneh, O. Gemikonakli, and L. Mostarda, “Analysing the
combined kerberos timed authentication protocol and frequent key renewal using
CSP and rank functions,” TIIS, vol. 8, no. 12, pp. 4604–4623, 2014. [Online].
Available: http://dx.doi.org/10.3837/tiis.2014.12.021

34. R. M. Needham and M. D. Schroeder, “Using encryption for authentication in
large networks of computers,” Commun. ACM, vol. 21, no. 12, pp. 993–999, 1978.
[Online]. Available: http://doi.acm.org/10.1145/359657.359659

35. J. G. Steiner, B. C. Neuman, and J. I. Schiller, “Kerberos: An authentication ser-
vice for open network systems,” in Proceedings of the USENIX Winter Conference.
Dallas, Texas, USA, January 1988, 1988, pp. 191–202.

36. J. Kohl and C. Neuman, “The Kerberos Network Authentication Service (V5),”
RFC 1510 (Historic), Internet Engineering Task Force, Sep. 1993, obsoleted by
RFCs 4120, 6649. [Online]. Available: http://www.ietf.org/rfc/rfc1510.txt

37. C. Neuman, T. Yu, S. Hartman, and K. Raeburn, “The Kerberos Network
Authentication Service (V5),” RFC 4120 (Proposed Standard), Internet
Engineering Task Force, Jul. 2005, updated by RFCs 4537, 5021, 5896, 6111,
6112, 6113, 6649, 6806. [Online]. Available: http://www.ietf.org/rfc/rfc4120.txt

38. J. Schwenk, “Modelling time for authenticated key exchange protocols,” in
Computer Security - ESORICS 2014 - 19th European Symposium on Research
in Computer Security, Wroclaw, Poland, September 7-11, 2014. Proceedings,
Part II, 2014, pp. 277–294. [Online]. Available: http://dx.doi.org/10.1007/
978-3-319-11212-1 16

39. A. Boldyreva and V. Kumar, “Provable-security analysis of authenticated
encryption in kerberos,” IET Information Security, vol. 5, no. 4, pp. 207–219,
2011. [Online]. Available: http://dx.doi.org/10.1049/iet-ifs.2011.0041

40. T. Jager, F. Kohlar, S. Schäge, and J. Schwenk, “On the security of TLS-DHE
in the standard model,” in Advances in Cryptology – CRYPTO 2012, ser. Lecture
Notes in Computer Science, R. Safavi-Naini and R. Canetti, Eds., vol. 7417. Santa
Barbara, CA, USA: Springer, Heidelberg, Germany, Aug. 19–23, 2012, pp. 273–293.

41. M. Bellare and C. Namprempre, “Authenticated encryption: Relations among no-
tions and analysis of the generic composition paradigm,” Journal of Cryptology,
vol. 21, no. 4, pp. 469–491, Oct. 2008.

42. K. G. Paterson, T. Ristenpart, and T. Shrimpton, “Tag size does matter: At-
tacks and proofs for the TLS record protocol,” in Advances in Cryptology – ASI-
ACRYPT 2011, ser. Lecture Notes in Computer Science, D. H. Lee and X. Wang,
Eds., vol. 7073. Seoul, South Korea: Springer, Heidelberg, Germany, Dec. 4–8,
2011, pp. 372–389.

43. S. Blake-Wilson and A. Menezes, “Unknown key-share attacks on the station-to-
station (STS) protocol,” in PKC’99: 2nd International Workshop on Theory and
Practice in Public Key Cryptography, ser. Lecture Notes in Computer Science,
H. Imai and Y. Zheng, Eds., vol. 1560. Kamakura, Japan: Springer, Heidelberg,
Germany, Mar. 1–3, 1999, pp. 154–170.

44. R. Canetti and H. Krawczyk, “Analysis of key-exchange protocols and their use
for building secure channels,” in Advances in Cryptology – EUROCRYPT 2001,
ser. Lecture Notes in Computer Science, B. Pfitzmann, Ed., vol. 2045. Innsbruck,
Austria: Springer, Heidelberg, Germany, May 6–10, 2001, pp. 453–474.

45. B. A. LaMacchia, K. Lauter, and A. Mityagin, “Stronger security of authenticated
key exchange,” in ProvSec 2007: 1st International Conference on Provable Security,
ser. Lecture Notes in Computer Science, W. Susilo, J. K. Liu, and Y. Mu, Eds.,
vol. 4784. Wollongong, Australia: Springer, Heidelberg, Germany, Nov. 1–2, 2007,
pp. 1–16.

46. C. J. F. Cremers and M. Feltz, “Beyond eCK: Perfect forward secrecy under actor
compromise and ephemeral-key reveal,” in ESORICS 2012: 17th European Sympo-
sium on Research in Computer Security, ser. Lecture Notes in Computer Science,
S. Foresti, M. Yung, and F. Martinelli, Eds., vol. 7459. Pisa, Italy: Springer,
Heidelberg, Germany, Sep. 10–12, 2012, pp. 734–751.

47. S. M. Bellovin and M. Merritt, “Limitations of the kerberos authentication sys-
tem,” in Proceedings of the Usenix Winter 1991 Conference, Dallas, TX, USA,
January 1991, 1991, pp. 253–268.

48. I. Cervesato, A. D. Jaggard, A. Scedrov, J. Tsay, and C. Walstad, “Breaking and
fixing public-key kerberos,” Inf. Comput., vol. 206, no. 2-4, pp. 402–424, 2008.
[Online]. Available: http://dx.doi.org/10.1016/j.ic.2007.05.005

49. T. Yu, S. Hartman, and K. Raeburn, “The perils of unauthenticated encryption:
Kerberos version 4,” in Proceedings of the Network and Distributed System Security
Symposium, NDSS 2004, San Diego, California, USA, 2004. [Online]. Available:
http://www.isoc.org/isoc/conferences/ndss/04/proceedings/Papers/Yu.pdf

A Cryptographic description of Kerberos

In this appendix we describe the complete Kerberos protocol in basic authenti-
cation mode. Recall that Kerberos, strictly speaking, may be a three-party or a
four-party protocol, between a client, a Kerberos Authentication Server (KAS),
a Ticket Granting Server (TGS), and a server. The KAS and TGS together play
the role of the identity provider. The message flow of the Kerberos protocol
appears in Figure 6.

The splitting of the key management functionality to two parties (KAS and
TGS) has several practical advantages:

– The client has to use his long-lived secret to decrypt the message recieved
from the KAS. In many cases, this secret is derived from a password on a
computer that is not fully trusted. By splitting the functionality, this long-
lived secret can immediately be erased from memory after decrypting the
KAS message. All subsequent messages are encrypted with kC,TGS , which
has only a limited lifetime, and where a leakage wouldn’t affect system se-
curity too much.

– The KAS only has to answer one message per validity period from each
client, thus security can have priority over performance. The TGS on the
other hand only handles short-lived secrets, so here performance may get
priority.

In the full Kerberos protocol, the protocol flow is as follows:

– The client C sends his identity, the identity of the TGS and a nonce n1 as a
first message. In response, he receives two cryptograms containing the session
key with the TGS: The ticket granting ticket (TGT), which is destined for
the TGT , and the first cryptogram ct1 which contains the nonce n1 (to
guarantee freshness of the message), the session key kC,TGS , a timestamp
issued by KAS, and the (repeated) identity of TGS.

– Now the client forwards the TGT, a cryptogram under the session key which
contains the client’s identity and a client timestamp, the identity of the
target server and a new nonce n3. The response of the TGT is similar to
the response of the KAS: It contains a server ticket TS destined for the
server, and a cryptogram ct3 containing a new session key, the nonce n3, a
timestamp, and the identity of the server.

– In the last exchange the client forwards ST and a new crytogram ct4 to the
target server, who checks both values and in case of acceptance returns an
ecryption of the client timestamp.

This four-party message flow is an adaption of Kerberos to practical require-
ments. Both the ancestor of Kerberos (the Needham-Schroeder protocol) and
the descendants of Kerberos (Microsoft Passport, OpenID, SAML Web Authen-
tication) only use a three-party setting. We therefore proved security only for
this 3-party setting, because our proof should be adaptable to all these other
3-party cases.

C

eC,KAS

KAS

eC,KAS , eKAS,TGS

n1 ← {0, 1}λ1

idC , idTGS , n1

kC,TGS ← {0, 1}λ1

TGT ← EnceKAS,TGS (kC,TGS , tsKAS , idC)

ct1 ← EnceC,KAS (kC,TGS , n1, tsKAS , idTGS)

idC , TGT, ct1

(k′
C,TGS , n

′
1, ts

′
KAS , id

′
TGS)← DeceC,KAS (ct1)

verify n′
1, ts

′
KAS , id

′
TGS

TGS

eKAS,TGS , eTGS,S

ct2 ← Enckc,tgs′ (idC , tsC)

n3 ← {0, 1}λ1

TGT, ct2, idS , n3

kC,S ← {0, 1}λ1

(k′
C,TGS , ts

′
KAS , id

′
C)← DeceKAS,TGS (TGT)

verify ts′KAS
(id′′C , ts

′
C)← Deck′

C,TGS
(ct2)

verify (id′C = id′′C), ts′C

ST ← EnceTGS,S (kC,S , tsTGS , id
′
C)

ct3 ← Enck′
C,TGS

(kC,S , n3, tsTGS , idS)

idC , ST, ct3

(k′
C,S , n

′
3, ts

′
TGS , id

′
S)← DeckC,TGS (ct3)

verify n′
3, ts

′
TGS , id

′
S

S

eTGS,S

ct4 ← Enck′
C,S

(idC , ts
†
C)

ST, ct3

(k′′
C,S , ts

′′
TGS , id

′′′
C)← DeceTGS,S (ST)

verify ts′′TGS

(id′′′′C , ts†
′

C)← Deck′′
C,S

(ct4)

verify (id′′′C = id′′′′C), ts†
′

C

ct5 ← Enck′′
C,S

(ts†
′

C)
ct5

ts††C ← DeckC,S (ct5)

verify ts†C = ts††C

ACCEPT ACCEPT

Fig. 6: Kerberos protocol with basic authentication

An extension of the proof to the four-party case was sketched (for nKerberos)
in Section 6.

In this full proof, the role of the timestamps must be considered: They serve
as a replacement for nonces, but have different security properties. E.g. the TGT
and ST can be used several times to authenticate the client, so the notion of
“maliciously accepts” must be adapted, too.

