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Abstract

NTRU is a public-key cryptosystem introduced at ANTS-III. The two most used techniques
in attacking the NTRU private key are meet-in-the-middle attacks and lattice-basis reduction
attacks. In the 2007 CRYPTO paper “A Hybrid Lattice-Reduction and Meet-in-the-Middle
Attack Against NTRU” both techniques are combined and it is pointed out that the largest
obstacle to attacks is the memory capacity that is required for the meet-in-the-middle phase.

In this paper an algorithm is presented that applies low-memory techniques to find ‘golden’
collisions to Odlyzko’s meet-in-the-middle attack against the NTRU private key. Several aspects
of NTRU secret keys and the algorithm are analysed. The running time of the algorithm with a
maximum storage capacity of w is estimated and experimentally verified. Experiments indicate
that decreasing the storage capacity by a factor c increases the running time by a factor

√
c.

1. Introduction

NTRU [12] is a ring-based public key cryptosystem that so far has survived quantum
attacks (e.g. [27, 9]). Therefore it is one of the proposals to become standard in a post-
quantum-computer world. There has been much research into which parameters to choose for
NTRU [16, 10, 11] to keep up with new attacks and new proposals for the structure of the
private key.

Odlyzko’s meet-in-the-middle attack is one of those attacks which attempts to recover the
NTRU private key from the public key. In a CRYPTO 2007 paper [14] by Nick Howgrave-
Graham it is said regarding this attack:

“Odlyzko’s attack on the ees251ep6 parameter set will require too many operations (295.8

modular additions) and/or too much storage (294 bits) to be feasible, and hence the parameter
set is more than adequate for a k = 80 security level. Of these two constraints the storage
requirement is by far the larger obstacle in today’s hardware.”

The requirement of 294 bits of storage would mean that at a conservative estimate of a $25
1TB Hard Drive, this attack would cost over 50 quadrillion dollars.

In this paper we show that it is possible to apply low-memory search techniques to find a
golden collision to the meet-in-the-middle attacks against the NTRU private key. Using these
techniques we can achieve a factor c reduction in the required space of this attack at the cost
of a factor of approximately

√
c in the running time.
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1.1. Roadmap

In Section 2 we describe the theory of NTRU and the corresponding key recovery problem.
We then explain how a meet-in-the-middle attack can be mounted to find the NTRU private
key. We end this section with explaining how a low-memory search for collisions works as was
described in [25].
In Section 3 we describe how we can use this collision search in the meet-in-the-middle attack
to achieve the reduction in the required memory.
In Section 4 we analyze some mathematical aspects of the attack. We look at the number of
rotations of a key that have the correct form to be found by the attack and the probability
that one of those rotations cannot be detected by the collision search. This section is ended
with a heuristic for the estimated running time of the attack.
In Section 5 we verify the analysis by running simulated attacks implemented in the computer
algebra system Sage [7].
Lastly, in Section 6, we discuss open questions about this work such as optimizations of the
attack and applicability to other key forms and the hybrid attack of [14].

2. Preliminaries

2.1. The NTRU Cryptosystem

NTRU [12] is a ring-based public key cryptosystem and a proposed alternative to RSA and
ECC. The original proposal, which we will work with for the remainder of this paper, works
over the ring R = Zq[X]/(Xn − 1) in which elements can be represented by vectors in Znq
and multiplications with powers of X are cheap rotations. The integers q and n are system
parameters.

Keys in this system are generated as follows. The user chooses two random small polynomials
f, g ∈ R. If we suppose that elements R are represented by coefficients in the interval
[−q/2, q/2), then small in this context means that the coefficients of f and g are much smaller
than the average q/4. The cryptosystem has additional parameters df and dg determining how
small they are by setting the private key f to have df coefficients equal to 1 and the rest equal
to 0 and g to have dg coefficients equal to 1 and the remainder equal to 0. In this paper we
will assume d = df = dg although they can be chosen differently.

The user then computes the public key as follows:

h ≡ f−1g.

Note that since f, g ∈ R, the result is also in R and, as is common for NTRU, we will assume
the coefficients to be centralized to fall in the interval [−q/2, q/2). In the remainder of the paper
we will assume the same for operations involving elements of R. We will denote ring elements
by regular typesetting f and the corresponding vectors in (Zq)n by f . For q we choose a prime
smaller than the odd prime parameter n. Again, many variations are possible in n, q, the form
of f and g and the ring that is chosen and we conjecture the attack work on all variants. Some
of these variations will be discussed in Section 6, but in the next sections we will assume the
cryptosystem as is described above.

2.2. Odlyzko’s Meet-in-the-Middle Attack

The original description of a meet-in-the-middle attack on NTRU is attributed to Andrew
Odlyzko and first described in [15]. We will follow the description in [14] and use its notation
for the remainder of this paper.
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The goal of a general meet-in-the-middle attack is to find specific elements x, x′ in a search
space of which it is known that F1(x) = F2(x′) for some functions F1, F2. There may be more
solutions to the equation, also known as collisions, but usually a specific solution is sought. This
solution is called the golden collision [26]. In NTRU this idea can be applied by splitting the
search space of the possible private keys into two parts and searching through them seperately
to find the full private key. Recall that the private key f is a polynomial of degree n− 1.
Searching for the key f is split up by looking for polynomials f1 in the polynomials of degree
at most n/2− 1 (F1) and polynomials f2 which only contain terms of degree between n/2 and
n− 1 (F2). For f = f1 + f2 it holds that

h = (f1 + f2)−1g

f1 · h = g − f2 · h. (2.1)

This implies that the correct pair of f1 and f2 will only differ by a binary vector after
multiplication with h. All rotations of the keys f and g will be a solution to this equation.
Therefore the mean value theorem implies the search can be restricted to f1, f2 with (almost)
equal number of ones. Without the g term the search would boil down to a simple collision
search. We are however not searching for a collision, but a near-collision.

To search for near-collisions an auxiliary function a(x) is needed. This function takes a vector
of length n and in each coordinate xi returns 1(xi > 0). If g does not cause the coordinates of
−f2 · h to change sign, i.e. a(−f2 · h) 6= a(−f2 · h+ g), we have that a(f1h) = a(−f2h).

The attack then works as follows. We generate elements fi from the sets F1 and F2 and
store them in a hash table according to their auxiliary function values, or addresses, ai until
a collision is found. For colliding values fi, fj we compute if (fi + fj) · h is binary. If it is we
almost surely found the private key f .

There is a probability that g does change the sign of −f2h (see more on this in Section 4.1).
This can be taken into account by storing it in each address that could be achieved by all
possible values of g.

The expected number of loops before a collision is found is

L =
1√
n

(
n

d/2

)(
d

d/2

)−1/2
. (2.2)

If we assume the computation of f1h and f2h require nd/2 operations each and that each
f1, f2 takes at least

(
n
d/2

)
space to store, then this attack requires expected time ndL/2 and

expected space
(
n
d/2

)
L.

Note that this does not take the possibility of g changing the address into account. If we do
do this the space complexity needs to be multiplied by the average number of addresses that
fih can have after adding a sparse, binary g.

2.3. Parallel Collision Search

Parallel collision search [24] is a method to search for colliding values x, x′ in the function
values F (x), F (x′) for a given function F : S → S. Its techniques are based on Pollard rho [21]
and try to find the collisions by creating deterministic sequences. In [25] and subsequently [26]
the application of this technique to, among others, meet-in-the-middle attacks was shown. We
will follow [26]’s description of the attack.

Let D be a nonempty subset of S and let θ = |D|/|S|. We call this set of points the
distinguished points. We then create sequences in S, also called trails, by picking a random
point x0 ∈ S and computing xi = F (xi−1) until a point xt ∈ D is detected. Note that the
expected value of t is 1

θ . For each trail we store the triples (x0, xt, t). Whenever we find two



Page 4 of 14 C. VAN VREDENDAAL

triples (x0, xt, t), (x′0, x
′
t′ , t
′) with xt = x′t′ and x0 6= x′0 we have found a collision. These trails

can be re-run from their starting values to find the steps xi 6= xj for which F (xi) = F (xj). It
can then be checked if this is the golden collision we were looking for.

This method can fail in one of two ways. It can happen that a sequence gets stuck in a cycle
of which none of the points are distinguished. This risk can be managed by setting a maximal
sequence length after which it is highly likely that a distinguished point has been found, for
instance 20/θ. The second type of hazard is called a Robin Hood. This is whenever one trail
hits the starting point of another trail. Such an occurrence does not lead to a collision, but can
be easily detected. The occurance is also highly unlikely.

Assuming there is one golden collision, the following (heuristic) running time for the attack
is given.

Heuristic 1. (From [26]) Let F : S → S and w ≥ 210 the number of triples (x0, xt, t)
that can be stored. Then the (conjectured) optimum proportion of distinguished points is θ ≈
2.25

√
w/|S|, and one should generate about 10w trails per version of F . The expected number

of iterations of F required to complete a meet-in-the-middle attack using these parameters is
(2.5|S|3/2/w1/2)r, and the expected number of memory accesses is 4.5|S|.

With ‘a version of F ’ we mean that the function needs to be varied to increase the probability
of success and r is the time required for a function iteration. This attack time can be linearly
reduced with the number of processors used.

Also discussed in [26] is the application to meet-in-the-middle attacks. We deviate slightly
from their exposition, but the idea and heuristic running times remain the same. We define
two functions F1 : S1 → S and F2 : S2 → S and we wish to find x, x′ such that F1(x) = F2(x′).
Assume without loss of generality that |S1| ≥ |S2|.

To apply parallel collision search to meet-in-the-middle attacks, we construct a single
function F which has identical domain and codomain to do the collision search on. This
function is constructed from the functions F1 and F2 as follows. Let I be a large enough
interval of integers [0, . . . , I) (|I| ≥ |S1|) and let h1 : I → S1 and h2 : I → S2 functions which
map elements of the interval onto elements of respectively S1 and S2. There are many options
for these functions but they should map to each element in the codomain with (almost) uniform
probability.

Now let G : S → I × {0, 1} be a mapping that maps elements from the codomain of the Fi
to elements of I and a bit selector. A hash function in which the most significant bit is split off
is a good example for G. The function F (x, i) = G(Fi+1(hi+1(x))) is now a function of equal
domain and codomain in which collision search can be performed. Note that even though |I|
can be as large as we want, only |S| = |S1|+ |S2| different values of the interval will be used.

The (almost) uniform codomain stipulation, as well the requirement for a large interval I,
makes finding a surjective G improbable and it can occur that none of the paths lead to the
golden collision. A solution for this is to vary F . For instance different hash functions for G
could be used, or the hi could be randomized.

Using Heuristic 1 and θ = 2.25
√
w/|S| we get a slightly overestimated runtime of

(2.5
√
|S|3/w)t with memory w. In [26] it is noted that with a small variation of the described

attack, it can also be run in (7|S1|
√
|S2|/w)t. Although this is an improvement when S2 is

much smaller than S1, we will focus on cases where 1 < |S1|/|S2| < 2.

3. The Reduced Memory Meet-in-the-Middle Algorithm

In this section we describe how to apply low-memory search for golden collisions to NTRU.
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Recall the secret keys are denoted by f and g, the public key h ≡ f−1g mod q and f =
f1 + f2. To apply collision techniques we first need a function F , of equal domain and codomain,
in which f1 and f2 collide.

Let H be a hash function. This can be any function with codomain larger than the keyspace
of the NTRU private key that is being attacked. We will denote the codomain of this hash
function by I = I × {0, 1}. If the space F1 is the space of possibilities for f1 and F2 the space of
possibilities for f2, then |I| > max{|F1|, |F2|}. There is an easy surjective function that maps
elements from an interval I to elements in either of the spaces F1 and F2.

Ii : I → Fi
x→ detcomb(x mod |Fi|),

where i = 1, 2 and detcomb is a function that deterministically assigns the integer x to
a vector fi in {0, 1}n which corresponds to a ring element fi ∈ Fi. The problem of assigning
deterministic indices to binary sequences of length n and weight d is well known in combinatorial
literature (e.g. [18]). An algorithm for the application of data compression can be found in [20,
6, 22, 5]

Note that if |F1| = |F2|, then elements in both sets have a one-to-one correspondence by
division by xn/2. This can be useful for efficient implementation.

We define

F1 : [0, I)→ {0, 1}n

x→ a(I1(x) · h)

F2 : [0, I)→ {0, 1}n

x→ a(−I2(x) · h),

where as before a is an address function and

G : {0, 1}n → I
x→ (H(x) mod |I|)×MSB(H(x)),

where MSB denotes the most significant bit. Note that the address function a, which is
independent of i could also be moved to the G function. Also note that in theory we want
to map uniformly onto I. In practice, taking |I| = max{|F1|, |F2|} there is a large risk of H
mapping to the same values after reduction modulo |I|. To avoid these ‘fake’ collisions we took
I = |F1| · |F2|, which seems to solve this problem. The function we will use for the collision
search is now defined as

F : I → I
(x, i)→ G(Fi+1(x))

The function F can now be used for a collision attack as follows. We define a distinguishing
property D on I and create trails starting from x0 ∈ I chosen at random. We run trails until
they reach a distinguished point in xt ∈ D and then store the triple (x0, xt, t) in a hashlist,
where t is the number of function iterations until the distinguished point was reached. When
the memory is full we do not append new values to the hashlist, but instead replace a random
triple. Upon a collision (x0, xt, t), (x′0, x

′
t, t
′) the trails are re-run to find the collision point (this

can be done efficiently by storing t and t′). It is then checked if it is a golden collision, and
if it is, the key f = f1 + f2 is returned. If a collision is non-golden, we replace (x0, xt, t) with
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(x′0, x
′
t, t
′) in the hashlist. After producing 10w points we delete the hashlist and start from

scratch after randomizing H by appending a seed to the addresses that are hashed.

4. Analysis

This section will present analysis of the new attack of which aspects are also applicable to
Odlyzko’s meet-in-the-middle attack. We will end with an estimated running time for our new
reduced memory meet-in-the-middle attack. To ease the readability of the analysis, this section
we will assume that n and d are even, such that |F1| = |F2| =

(
n/2
d/2

)
= |S|/2. All statements

can be generalized to odd cases by adding bc and de in the appropriate places.

4.1. Success Probability

As mentioned before, the meet-in-the-middle attack will work if g does not cause the
addresses of the parts to change sign. To solve this problem we could store each sample f1
into all boxes it could fall into if g were to change the address. In the attack we use however
this will not be practical. To this end we analyse the probability that g changes the sign.

Lemma 1. Suppose f and g are randomly chosen of degree n− 1 with d coefficients set to
1. Under the assumption that the public key h is uniformly distributed over R, the probability

that g will change the address of −f2h in Equation (2.1) is (1− d
nq )n ≈ e−

d
q .

Proof. If g is randomly chosen with d ones, then the probability that an entry of g can
change a sign is d/n. If we assume that the public key h is uniformly distributed over R, then
each entry of h is unformly distributed over [0, q]. Multiplying f2 and h can be seen as summing
over d/2 rotations of h. Since the rotations are uniform we get a sum of uniform distributions
modulo q, which is again uniform. Therefore we assume that −f2 · h, where f2 has d/2 ones,
is uniformly distributed over R and so we have a probability of d

nq for one specific entry to
change sign and thus probability

(1− d

nq
)n ≈ e−

d
q

of having no sign change.

If q ≈ 2/3n and d ≈ n/3 then this boils down to a probability of exp−1/2 ≈ 0.61.
Because of the mean value theorem we always have a rotation of f that has d/2 ones in its

first n/2 coordinates. To get a better estimate of our running times we first present a heuristic
which estimates how many rotations have this form.

Heuristic 2. Let f be a polynomial of degree n− 1 with binary coefficient vector f . Define
a correct form of f as one of its n rotations xif that has d/2 ones in the first n/2 coordinates
of f i. Then the average number of correct forms for f can be approximated by

n
√

2√
πd
. (4.1)

Proof. Let f be of degree n− 1 with d coordinates equal to 1. Then the probability that f
has d/2 ones in its first n/2 coordinates is
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Pr[X = d/2] =

(
n/2
d/2

)2(
n
d

) . (4.2)

Then because each f has n rotations, if we assume independence, we have an approximate
number of nPr[X = d/2] rotations. This is not an equality, because we neglect the cases in
which f has overlapping rotations. We can approximate this quantity as follows

nPr[X = d/2] ≈
n
(
n/2
d/2

)2(
n
d

)
≈ n ·

 (n/2d/2 − 1/2)d/2ed/2
√
πd

2

·
√

2πd

(nd − 1/2)ded

=
n
√

2πd

πd

=
n
√

2√
πd
.

Here the first approximation applies (4.2) and the second approximation is due to Stirling’s
Approximation.

As [15] discovered experimentally, this is more than
√
n rotations for common parameters.

4.2. Performance

We can now estimate how many collisions we need to find before we find a golden collision.

Lemma 2. Under the assumption that Heuristic 2 is correct, when mounting a meet-in-
the-middle attack like described in Section 2.2 we expect to find a golden collision after |S|2 ·(
e
d
q ·
√
πd√
2n

)1/2
collisions.

Proof. The number of unordered pairs of elements in S is close to |S|
2

2 . For each of these
pairs the probability that they map to the same value in S by F is 1

|S| . This means that

the total number of collisions is approximately equal to |S|2 . By Heuristic 2 and Lemma 1 on

average e−
d
q · n

√
2√
πd

of them are golden. By combining this with the birthday paradox, the lemma
follows.

The next lemma shows, as [25] argues intuitively, that analysis using a full memory does
not suffice.

Lemma 3. Let θ be the fraction of distinguished points and assume they are distributed
uniformly over S. Furthermore assume each one has equal probability of being reached. Then
if paths are run until the memory of w points is full, an expected

1− e
w

θ2|S|

1− e
1

θ2|S|
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collisions have been found.

Proof. Suppose there are i distinguished points in the memory. The average walk length is
1/θ, so the expected number of points covered by these i distinguishing points is i/θ. Let Xi

be a new path. The probability that this path does not hit any of the paths leading up to the
distinguished points is then

(1− i

θ|S|
)1/θ ≈ e−

i
θ2|S| .

This gives an expected e
i

θ2|S| collisions at the point where i memory elements are filled.
Therefore when the allotted memory is full the expected number of collisions that have occurred
is

w−1∑
i=0

(e
1

θ2|S| )i =
1− e

w
θ2|S|

1− e
1

θ2|S|
.

Of course the above lemma does not take into account that in reality some paths are more
likely to be hit than others. It should however serve as a good estimate. A similar analysis
implies that if the memory is full with w points then a new collision is found after every
θ|S|
w paths. Using the above lemmas we can now derive a heuristic running time and memory

requirement for the reduced memory meet-in-the-middle attack.

Heuristic 3. Let w be the number of triples (x0, xt, t) for which there is available memory.
Let D be a set of distinguished points with |D|/|S| = θ = α

√
w/|S| = 2.25

√
w/|S|.

Then the algorithm is expected to run in

L∗ = 5r

√
2
(
n
d

)(
n/2
d/2

)
nw

, (4.3)

operations, where r is the number of operations needed for a function evaluation of F .

Proof. As was noted in [25] a simple analysis leads to a cost per detected collision of

α
√
|S|
w + 2/α

√
|S|/w. In Lemma 2 we proved that we need on average γ = |S|

2 ·
(
e
d
q ·
√
πd√
2n

)1/2
collisions before we find a golden one, which means a runtime of γ · (α

√
|S|
w + 2/α

√
|S|
w )

function iterations if the memory is full.
There are multiple problems with this heuristic time. If the memory is not yet full, the

running time per collision is longer. In Lemma 3 we saw that a number of collisions are already
found during the filling of memory. On top of this, not all distinguished points have the same
probability of being hit.

Therefore we use the experimentally found formula of [25] that for θ = 2.25
√
w/|S| the

expected running time to find a golden collision is slightly overestimated as 2.5r
√
|S|3
w . This is

however an estimate for the case where there is only one golden collision. In Lemmas 2 and 1

it was shown that on average
n(n/2d/2)

2

(nd)
e−

d
q golden collisions can be found. We get an estimated

number of function evaluations of
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2.5

e− dq n(n/2d/2

)2(
n
d

)
−1/2

√
(2
(
n/2
d/2

)
)3

w
= 5

√√√√2
(
n
d

)(
n/2
d/2

)
nwe−

d
q

,

which concludes our proof.

The cost for each function iteration of F will be slightly higher than the cost of F ′ in each
loop of the classic meet-in-the-middle attack. We argue that it will not make a large difference:

– Both F and F ′ compute a product of nd/2 operations.
– Both F and F ′ compute an address by checking n bits in n operations
– F first computes detcomb of an integer. The function performs at most n/2 steps and at

each step there is a comparison, a multiplication and a division. We therefore require a
computational cost of 1.5n. Since the random sampling of an element in F ′ will also incur
at least n operations, it only makes a small difference.

– In F a hash function H is evaluated, which is not used in F ′. The number of operations
this requires depends on the hash function that is used and can be optimized based on
the sample space.

As for the storage costs, each triple (x0, xt, t) has the following storage requirements.

Total Storage = storage(x0) + storage(xd) + storage(t)

= |F|+ |F|θ +

∣∣∣∣20

θ

∣∣∣∣
= |S|+ α

√
w|S|+

√
|S|

α
√
w

The total storage per triple is therefore approximately 2 log2

(
n/2
d/2

)
bits. Therefore if we have

b bits of memory available, we should choose w ≈ b

2 log2 (n/2d/2)
.

5. Results

We implemented tests and the attack in the computer-algebra system Sage [7] and ran it on
a single core of an AMD FX-8350 Vishera 4.0GHz CPU of the Saber cluster [1].

5.1. Rotations

First we verified the correctness of Heuristic 2. Counting the number of correct rotations of
100000 random keys, we observed that the number is independent of q. For the dependence on
n and d we graph the results in Figure 1.

We see that the experimental results of the number of rotations of the right form converge
to the theoretic estimate.

5.2. Probability of failure

Next we verified the validity of Lemma 1. For n = 37 we generated 100000 random keys f
and g for different values of q and d. We then checked if g − f2h had a different address from
f1h. The results are displayed in Figures 2 and 3.

We see that Lemma 1 predicts the probability well and that the assumption that the
coefficients of −f2h can be modeled as uniformly distributed is realistic. We also observed
that for larger n, the value of n no longer significantly influences the probability.
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Figure 1. Theoretical (dashed) and experimental average (solid) of “good” rotations of 100000
random secret keys. The results for setting the parameter d equal to 6, 8, 10, 12, 14, 16, 18 and 20 are

shown in respectively red, blue, green, brown, yellow, orange, purple and black.

Figure 2. Theoretical (dashed) and experimental average (solid) of the probability of g not changing
the address of 100000 random secret keys with n = 37 and varying d. The results for setting q equal

to 17, 23, 31, 41 and 47 are shown in respectively red, blue, green, orange and black.

5.3. Performance of the Algorithm

Although on average there are multiple rotations of a key f that have d/2 ones in each half of
its vector f , it can happen that a chosen key has only a very small number of correct rotations.
If this is the case it can happen that our algorithm does not find the key at all, because g
might change all possible addresses.

In the experiments to measure the performance of the attack algorithm we picked a prime
n, q ≈ (2/3)n, d ≈ (1/3)n and varied the number of triples w that could be stored. As advised
in [25] we took the number of distinguished points as D = 1/θ with θ = 2.25

√
w/|F1 + F2| =
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Figure 3. Theoretical(dashed) and experimental average(unbroken) of the probability of g not
changing the address of 100000 random secret keys with n = 37 and varying q. The results for setting
the parameter d equal to 6, 8, 10, 12, 14, 16 and 18 are shown in respectively red, blue, green, brown,

yellow, orange and black.

2.25

√
w/
((bn/2c

d/2

)
+
(dn/2e
d/2

))
and randomized the step function F after every 10w distinguished

points. If a distinguished point was to be added to a full memory, we deleted a random entry.
We ran the algorithm until at least 20 times the value predicted by Heuristic 3.

We looked at the number of evaluations of F and the success probability of the algorithm.
On each set of parameters we ran 1000 attacks, each time taking a fresh random f and g. The
results are given in Table 1.

We see that there is a high variance in the results; the expectation is that the first version
of F will find the solution, if it does not then it takes on average 10w|D| steps to get another
chance. If our algorithm uses approximately the same memory as required on average by the
classic meet-in-the-middle attack, it uses more iterations. We also see that a decrease of factor
4 in memory capacity leads to an increased the runtime by a factor 2, which we expected from
Equation 4.3. Note that this increase is limited by the search space. Increasing the alloted
memory above |F1 + F2| is no longer useful. We see this by allowing the storage of 216 triples
for the n = 37 set and 218 and for the n = 43 set, which surpasses the size of the search space.

Although there is a bit of fluctuation in the success rate with varying w, this seems to be
due to the sample size. The values do seem to correlate with the probability of g not changing
the address of a single rotation. Equation 1 gives values of 0.625, 0.591, 0.592, 0.617 for the
parameters of respectively n = 23, 31, 37, 43. Although this is not very strong evidence, it leads
us to believe that this probability will remain similar as long as q ≈ 2d.

6. Open Questions

Generalization of Key Forms In this paper we assumed that the system uses binary
form keys. This is the most basic version of the NTRU scheme, but other forms have been
proposed. For varying reasons other proposals include ternary polynomials [16, 10, 11],
sampling keys from a discrete Gaussian distribution [23], keys with a set number of ones,
minus ones, twos and minus twos [8] and so called product form polynomials [13].
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n q d w Success Experimental L∗ (Eq. 4.3) L (Eq 2.2)

23 17 8 24 0.53 12.82 12.85 7.79

23 17 8 26 0.50 11.61 11.85 7.79

23 17 8 28 0.53 10.56 10.85 7.79

31 19 10 26 0.44 16.02 16.48 10.91

31 19 10 28 0.45 14.59 15.48 10.91

31 19 10 210 0.45 14.60 14.48 10.91

31 19 10 212 0.42 13.44 13.48 10.91

37 23 12 210 0.50 18.70 18.38 13.62

37 23 12 212 0.46 17.59 17.38 13.62

37 23 12 214 0.49 16.13 16.38 13.62

37 23 12 216 0.46 15.99 15.38 13.62

43 29 14 214 0.55 20.57 20.26 16.36

43 29 14 216 0.55 18.95 19.26 16.36

43 29 14 218 0.56 18.68 18.26 16.36

Table 1. Table with the results of 1000 trials for each set of parameters. For each set the
experimental successrate and (log2) runtime (in number of loops), as well as the theoretic (log2)
runtime ( 4.3) and the classic meet-in-the-middle (log2) runtime and storage capacity ( 2.2) are

given.

This attack will work for these forms. Although we chose to attack the keys by splitting them
in the middle, the only requirement is that the key space F can be rewritten as a decomposition
F = F1 ⊕F2. This can also be done for the other forms. It does have to be taken into acccount
that for some forms there might be fewer rotations to take advantage of; in these cases the
running time will increase accordingly.

Re-keying Given that the attack has a significant probability of failing, it would be
possible to adapt the key generation algorithm of NTRU such that none of the rotations
of f and g will cause addresses to collide. However, since we can choose any d/2-sized set of
positions for F1 and split the keyspace into F1 and F \ F1 = F2, the attack will still work.

Also the attack could be adapted to succeed with probability 1. As discussed in Section 2.2
we can store the keys in all possible addresses that can occur by g changing the sign of −f2h.
In our attack, we could add a few extra bits to I that would not only map it to a polynomial,
but also select a deterministic option out of its possible addresses. If the expected number of
addresses that can occur is A, then we could add log2(2A) bits to I. This would increase the
search space by a factor 2A and therefore also increase the expected running time by (2A)3/2,
but it would remove the possibility of failure.

Optimization Many optimizations are possible to increase the speed of the algorithm
further. The values for α, the number of distinguished points to try before switching functions
as well as the method to replace distinguished points are taken from [25], but could be optimized
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for this particular attack. To remove the constraint of good rotations, the attack can be adapted
to choose random polynomials of d/2 ones are chosen instead of splitting the space into two
disjoint parts. Also, parallelization could be easily achieved by using a central server that
collects the distinguished points and thus lets multiple cores give a linear speed-up in the
runtime. Furthermore, as is for instance suggested in [2], it might be better to not replace the
distinguished points randomly when the memory is full, but instead replace the “less-used”
points. The goal of this paper was however not to implement an optimized attack, but to show
that the amount of memory that is used can be varied and in particular that this does not
constitute a bottleneck.

Hybrid Attack The hybrid lattice-basis reduction and meet-in-the-middle attack [14]
mentioned in the introduction works by taking the NTRU lattice and applying lattice-basis
reduction to part of the matrix and then applying a meet-in-the-middle approach to the
remaining key space. Although we did not write down the details of such an attack, it should
be possible to apply the reduced memory algorithm of this paper to reduce the memory
requirement for the hybrid attack. The difference is that the guess for the structure of the
key and the fact that a good guess of the key might not be detected by a rounding algorithm
must be considered.

A related class of cryptographic schemes that have so far withstood quantum attacks are
based on the Learning with Errors problem (see e.g. [19, 8, 3] and [17]). It has recently been
shown that the hybrid attack applies to LWE with binary error as well [4]. This reduced
memory variation of the attack should be taken into account for parameter considerations of
NTRU and LWE-based schemes.

For the ees251ep6 parameter set of NTRU, [14] estimated a storage cost of 265.6 after
applying the lattice reduction phase of the hybrid attack with 256.7 loops of the algorithm.
We conjecture that if the attack had to be run with only 1TB storage available, then using
a similar attack as described in this paper could be mounted at the expense of only a factor
∼ 213 more running time. We leave the details of the attack for possible future research, but
this paper’s goal is to show that the expense of storage capacity is not as unambiguous as
portrayed in [14].
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