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Abstract

Pseudorandom functions (PRFs) play a central role in symmetric cryptography. While in prin-
ciple they can be built from any one-way functions by going through the generic HILL (SICOMP
1999) and GGM (JACM 1986) transforms, some of these steps are inherently sequential and far from
practical. Naor, Reingold (FOCS 1997) and Rosen (SICOMP 2002) gave parallelizable constructions
of PRFs in NC2 and TC0 based on concrete number-theoretic assumptions such as DDH, RSA, and
factoring. Banerjee, Peikert, and Rosen (Eurocrypt 2012) constructed relatively more efficient PRFs
in NC1 and TC0 based on “learning with errors” (LWE) for certain range of parameters. It remains
an open problem whether parallelizable PRFs can be based on the “learning parity with noise” (LPN)
problem for both theoretical interests and efficiency reasons (as the many modular multiplications
and additions in LWE would then be simplified to AND and XOR operations under LPN).

In this paper, we give more efficient and parallelizable constructions of randomized PRFs from LPN
under noise rate n−c (for any constant 0 < c < 1) and they can be implemented with a family of
polynomial-size circuits with unbounded fan-in AND, OR and XOR gates of depth ω(1), where ω(1)
can be any small super-constant (e.g., log log log n or even less). Our work complements the lower
bound results by Razborov and Rudich (STOC 1994) that PRFs of beyond quasi-polynomial security
are not contained in AC0(MOD2), i.e., the class of polynomial-size, constant-depth circuit families
with unbounded fan-in AND, OR, and XOR gates.

Furthermore, our constructions are security-lifting by exploiting the redundancy of low-noise LPN.
We show that in addition to parallelizability (in almost constant depth) the PRF enjoys either of (or
any tradeoff between) the following:

• A PRF on a weak key of sublinear entropy (or equivalently, a uniform key that leaks any
(1− o(1))-fraction) has comparable security to the underlying LPN on a linear size secret.

• A PRF with key length λ can have security up to 2O(λ/ log λ), which goes much beyond the
security level of the underlying low-noise LPN.

where adversary makes up to certain super-polynomial amount of queries.

Keywords: Foundations, Symmetric Cryptography, Low-depth PRFs, Learning Parity with Noise.

1 Introduction

Learning Parity with Noise. The computational version of learning parity with noise (LPN)
assumption with parameters n ∈ N (length of secret), q ∈ N (number of queries) and 0 < µ < 1/2
(noise rate) postulates that it is computationally infeasible to recover the n-bit secret s ∈ {0, 1}n given
(a·s⊕e, a), where a is a random q×n matrix, e follows Berqµ, Berµ denotes the Bernoulli distribution with
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parameter µ (i.e., Pr[Berµ = 1] = µ and Pr[Berµ = 0] = 1− µ), ‘·’ denotes matrix vector multiplication
over GF(2) and ‘⊕’ denotes bitwise XOR. The decisional version of LPN simply assumes that a · s⊕ e
is pseudorandom (i.e., computationally indistinguishable from uniform randomness) given a. The two
versions are polynomially equivalent [12, 36, 5].

Hardness of LPN. The computational LPN problem represents a well-known NP-complete problem
“decoding random linear codes” [9] and thus its worst-case hardness is well studied. LPN was also
extensively studied in learning theory, and it was shown in [24] that an efficient algorithm for LPN
would allow to learn several important function classes such as 2-DNF formulas, juntas, and any function
with a sparse Fourier spectrum. Under a constant noise rate (i.e., µ = Θ(1)), the best known LPN
solvers [13, 40] require time and query complexity both 2O(n/ logn). The time complexity goes up to
2O(n/ log logn) when restricted to q = poly(n) queries [42], or even 2O(n) given only q = O(n) queries [45].
Under low noise rate µ = n−c (0 < c < 1), the security of LPN is less well understood: on the one
hand, for q = n+O(1) we can already do efficient distinguishing attacks with advantage 2−O(n1−c) that
match the statistical distance between the LPN samples and uniform randomness (see Remark 4.1);
on the other hand, for (even super-)polynomial q the best known attacks [54, 15, 11, 39, 7] are not
asymptotically better, i.e., still at the order of 2Θ(n1−c). We mention that LPN does not succumb to
known quantum algorithms, which makes it a promising candidate for “post-quantum cryptography”.
Furthermore, LPN also enjoys simplicity and is more suited for weak-power devices (e.g., RFID tags)
than other quantum-secure candidates such as LWE [52] 1.

LPN-based Cryptographic Applications. LPN was used as a basis for building lightweight
authentication schemes against passive [31] and even active adversaries [35, 36] (see [1] for a more
complete literature). Recently, Kiltz et al. [38] and Dodis et al. [20] constructed randomized MACs
based on the hardness of LPN, which implies a two-round authentication scheme with man-in-the-middle
security. Lyubashevsky and Masny [43] gave an more efficient three-round authentication scheme from
LPN (without going through the MAC transformation) and recently Cash, Kiltz, and Tessaro [16]
reduced the round complexity to 2 rounds. Applebaum et al. [4] showed how to constructed a linear-
stretch2 pseudorandom generator (PRG) from LPN. We mention other not-so-relevant applications
such as public-key encryption schemes [3, 22, 37], oblivious transfer [19], commitment schemes and
zero-knowledge proofs [33], and refer to a recent survey [49] on the current state-of-the-art about LPN.

Does LPN imply low-depth PRFs? Pseudorandom functions (PRFs) play a central role in sym-
metric cryptography. While in principle PRFs can be obtained via a generic transform from any one-way
function [29, 26], these constructions are inherently sequential and too inefficient to compete with prac-
tical instantiations (e.g., the AES block cipher) built from scratch. Motivated by this, Naor, Reingold
[46] and Rosen [47] gave direct constructions of PRFs from concrete number-theoretic assumptions
(such as decision Diffie-Hellman, RSA, and factoring), which can be computed by low-depth circuits
in NC2 or even TC0. However, these constructions mainly established the feasibility result and are far
from practical as they require extensive preprocessing and many exponentiations in large multiplicative
groups. Banerjee, Peikert, and Rosen [6] constructed relatively more efficient PRFs in NC1 and TC0

based on the “learning with errors” (LWE) assumption. More specifically, they observed that LWE for
certain range of parameters implies a deterministic variant which they call “learning with rounding”
(LWR), and that LWR in turn gives rise to pseudorandom synthesizers [46], a useful tool for building
low-depth PRFs. Despite that LWE is generalized from LPN, the derandomization technique used for
LWE [6] does not seemingly apply to LPN, and thus it is an interesting open problem if low-depth
PRFs can be based on (even a low-noise variant of) LPN (see a discussion in [49, Footnote 18]). In
fact, we don’t even know how to build low-depth weak PRFs from LPN. Applebaum [4] observed that

1The inner product of LWE requires many multiplications modulo a large prime p (polynomial in the security parameter),
and in contrast the same operation for LPN is simply an XOR sum of a few AND products.

2A PRG G : {0, 1}`1 → {0, 1}`2 has linear stretch if the stretch factor `2/`1 equals some constant greater than 1.
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LPN implies “weak randomized pseudorandom functions”, which require independent secret coins on
every function evaluation, and Akavia et al. [2] obtained weak PRFs in “AC0◦MOD2” from a relevant
non-standard hard learning assumption.

Our contributions. In this paper, we give constructions of low-depth PRFs from low-noise LPN
(see Theorem 1.1 below), where the noise rate n−c (for any constant 0 < c < 1) encompasses the noise
level of Alekhnovich [3] (i.e., c = 1/2) and higher noise regime. Strictly speaking, the PRFs we obtain
are not contained in AC0(MOD2)3, but the circuit depth ω(1) can be arbitrarily small (e.g., log log log n
or even less). This complements the negative result of Razborov and Rudich [51] (which is based on
the works of Razborov and Smolensky [50, 53]) that PRFs with more than quasi-polynomial security
do not exist in AC0(MOD2).

Theorem 1.1 (main results, informal) Assume that the LPN problem with secret length n and noise
rate µ = n−c (for any constant 0 < c < 1) is (q = 1.001n, t = 2O(n1−c), ε = 2−O(n1−c))-hard4. Then,

1. for any d = ω(1), there exists a (q′ = nd/3, t − q′poly(n), O(nq′ε))-randomized-PRF on any weak
key of Rényi entropy no less than O(n1−c · log n), or on an n1− c

2 -bit uniform random key with any

(1− O(logn)

nc/2
)-fraction of leakage (independent of the public coins of the PRF);

2. let λ = Θ(n1−c log n), for any d = ω(1), there exists a (q′ = λΘ(d), t′ = 2O(λ/ log λ), ε′ =
2−O(λ/ log λ)))-randomized PRF with key length λ;

where both PRFs are computable by polynomial-size depth-O(d) circuits with unbounded-fan-in AND,
OR and XOR gates.

On lifted security. Note that there is nothing special with the factor 1.001, which can be replaced
with any constant greater than 1. The first parallelizable PRF has security5 comparable to the under-
lying LPN (with linear secret length) yet it uses a key of only sublinear entropy, or in the language of
leakage resilient cryptography, a sublinear-size secret key with any (1− o(1))-fraction of leakage (inde-
pendent of the public coins). From a different perspective, let the security parameter λ be the key length
of the PRF, then the second PRF can have security up to 2O(λ/ log λ) given any nΘ(d) number of queries.
We use security-preserving PRF constructions without relying on k-wise independent hash functions.
This is crucial for low-depth constructions as recent works [34, 17] use (almost) ω(log n)-wise inde-
pendent hash functions, which are not known to be computable in (almost) constant-depth even with
unbounded fan-in gates. We remark that circuit depth d = ω(1) is independent of the time/advantage
security of PRF, and is reflected only in the query complexity q′ = nΘ(d). This is reasonable in many
scenarios as in practice the number of queries may depend not only on adversary’s computing power
but also on the amount of data available for cryptanalysis. It remains open whether the dependency of
query complexity on circuit depth can be fully eliminated.

Bernoulli-like Randomness Extractor/Sampler. Of independent interests, we propose the
following randomness extractor/sampler in constant depth and they are used in the first/second PRF
constructions respectively.

• A Bernoulli randomness extractor in AC0(MOD2) that converts almost all entropy of a weak Rényi
entropy source into Bernoulli noise distributions.

3Recall that AC0(MOD2) refers to the class of polynomial-size, constant-depth circuit families with unbounded fan-in
AND, OR, and XOR gates.

4t and 1/ε are upper bounded by 2O(n1−c) due to known attacks.
5Informally, we say that a PRF has security T if it is 1/T -indistinguishable from a random function for all oracle-aid

distinguishers running in time T and making up to certain superpolynomial number of queries.
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• A sampler in AC0 that uses a short uniform seed and outputs a Bernoulli-like distribution of
length m and noise rate µ, denoted as ψmµ (see Algorithm 1).

Alekhnovich’s cryptosystem [3] considers a random distribution of length m that has exactly µm 1’s,
which we denote as χmµm. The problem of sampling χmµm dates back to [12], but the authors only mention
that it can be done efficiently, and it is not known whether χmµm can be sampled in AC0(MOD2). Instead,
Applebaum et al. [4] propose the following sampler for Bernoulli distribution Berqµ using uniform
randomness. Let w = w1 · · ·wn be an n-bit uniform random string, and for convenience assume that µ
is a negative power of 2 (i.e., µ = 2−v for integer v). Let sample : {0, 1}v → {0, 1} output the AND of
its input bits, and let

e = (sample(w1 · · ·wv), · · · , sample(w(q−1)v+1 · · ·w(q−1)v+v))

so that e ∼ Berqµ for any q ≤ bn/ log(1/µ)c. Note that Berµ has Shannon entropy H1(Berµ) =
Θ(µ log(1/µ)) (see Fact A.1), and thus the above converts a (qH1(Berµ)/n) = O(µ)-fraction of the
entropy into Bernoulli randomness. It was observed in [4] that conditioned on e source w remains of
(1−O(µ))n bits of average min-entropy, which can be recycled into uniform randomness with a universal
hash function h. That is, the two distributions are statistically close

( e, h(w) , h )
s∼ ( Berqµ, U(1−O(µ))n , h ) ,

where Uq denotes a uniform distribution over {0, 1}q. The work of [4] then proceeded to a construction
of PRG under noise rate µ = Θ(1). However, for µ = n−c the above only samples an O(n−c)-fraction
of entropy. To convert more entropy into Bernoulli distributions, one may need to apply the above
sample-then-recycle process to the uniform randomness recycled from a previous round (e.g., h(w) of
the first round) and repeat the process many times. However, this method is sequential and requires
a circuit of depth Ω(nc) to convert any constant fraction of entropy. We propose a more efficient and
parallelizable extractor in AC0(MOD2). As shown in Figure 1, given any weak source of Rényi entropy
Θ(n), we apply i.i.d. pairwise independent hash functions h1, · · · , hq (each of output length v) to
w and then use sample on the bits extracted to get the Bernoulli distributions. We prove a lemma
showing that this method can transform almost all entropy into Bernoulli distribution Berqµ, namely,
the number of extracted Bernoulli bits q can be up to Θ(n/H1(Berµ)). This immediately gives an
equivalent formulation of the standard LPN by reusing matrix a to randomize the hash functions. For
example, for each 1 ≤ i ≤ q denote by ai the i-th row of a, let hi be described by ai, and let i-th LPN
sample be 〈ai, s〉 ⊕ sample(hi(w)). Note that the algorithm is non-trivial as (h1(w), · · · , hq(w)) can be
of length Θ(n1+c), which is much greater than the entropy of w.

w

h1

h1(w)

sample
e1

h2

h2(w)

sample
e2

· · ·
· · · · · · · · ·

· · ·

hq−1

hq−1(w)

sample
eq−1

· · · hq

hq(w)

sample
eq· · ·

Figure 1: An illustration of the proposed Bernoulli randomness extractor in AC0(MOD2).

The Bernoulli randomness extractor is used in the first PRF construction. For our second construc-
tion, we introduce a Bernoulli-like distribution ψmµ that can be more efficiently sampled in AC0 (i.e.,
without using XOR gates), and show that it can be used in place of Bermµ with provable security.

PRGs and PRFs from LPN. It can be shown that standard LPN implies a variant where the secret
s and noise vector e are sampled from Bern+q

µ or even ψn+q
µ . This allows us to obtain a randomized
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PRG Ga with short seed and polynomial stretch, where a denotes the public coin. We then use the
technique of Goldreich, Goldwasser and Micali [26] with a nΘ(1)-ary tree of depth ω(1) (reusing public
coin a at every invocation of Ga) and construct a randomized PRF (see Definition 2.4) Fk,a with input
length ω(log n), secret key k and public coin a. This already implies PRFs of arbitrary input length

by Levin’s trick [41], i.e., F̄(k,h),a(x)
def
= Fk,a(h(x)) where h is a universal hash function from any fixed-

length input to ω(log n) bits. Note that F̄(k,h),a is computable in depth ω(1) (i.e., the depth of the

GGM tree) for any small ω(1). However, the security of the above does not go beyond nω(1) due to a
birthday attack. To overcome this, we use a simple and parallel method [8, 44] by running a sub-linear
number of independent6 copies of F̄(k,h),a and XORing their outputs, and we avoid key expansions by
using pseudorandom keys (expanded using Ga or Fk,a) for all copies of F̄(k,h),a. We obtain our final
security-preserving construction of PRFs by putting together all the above ingredients.

The rest of the paper is organized as follows: Section 2 gives background information about relevant
notions and definitions. Section 3 presents the Bernoulli randomness extractor. Section 4 and Section 5
give the two constructions of PRFs respectively. We include in Appendix A well-known lemmas and
inequalities used, and refer to Appendix B for all the proofs omitted in the main text.

2 Preliminaries

Notations and definitions. We use [n] to denote set {1, . . . , n}. We use capital letters7 (e.g.,
X, Y ) for random variables and distributions, standard letters (e.g., x, y) for values, and calligraphic
letters (e.g. X , E) for sets and events. The support of a random variable X, denoted by Supp(X), refers
to the set of values on which X takes with non-zero probability, i.e., {x : Pr[X = x] > 0}. Denote by
|S| the cardinality of set S. We use Berµ to denote the Bernoulli distribution with parameter µ, i.e.,
Pr[Berµ = 1] = µ, Pr[Berµ = 0] = 1− µ, while Berqµ denotes the concatenation of q independent copies
of Berµ. We use χqi , i ≤ q, to denote a uniform distribution over {e ∈ {0, 1}q : |e| = i}, where |e| denotes
the Hamming weight of binary string e. For n ∈ N, Un denotes the uniform distribution over {0, 1}n
and independent of any other random variables in consideration, and f(Un) denotes the distribution
induced by applying the function f to Un. X∼D denotes that random variable X follows distribution

D. We use s ← S to denote sampling an element s according to distribution S, and let s
$←− S denote

sampling s uniformly from set S.

Entropy definitions. For a random variable X and any x ∈ Supp(X), the sample-entropy of x with
respect to X is defined as

HX(x)
def
= log(1/Pr[X = x])

from which we define the Shannon entropy, Rényi entropy and min-entropy of X respectively, i.e.,

H1(X)
def
= Ex←X [ HX(x) ], H2

def
= − log

∑
x∈Supp(X)

2−2HX(x), H∞(X)
def
= min
x∈Supp(X)

HX(x).

For 0 < µ < 1/2, let H(µ)
def
= µ log(1/µ) + (1 − µ) log(1/(1 − µ)) be the binary entropy function so

that H(µ) = H1(Berµ). We know that H1(X) ≥ H2(X) ≥ H∞(X) with equality when X is uniformly
distributed. A random variable X of length n is called an (n, λ)-Rényi entropy (resp., min-entropy)
source if H2(X) ≥ λ (resp., H∞(X) ≥ λ). The statistical distance between X and Y , denoted by
SD(X,Y ), is defined by

SD(X,Y )
def
=

1

2

∑
x

|Pr[X = x]− Pr[Y = x]|

6By “independent” we mean that F̄(k,h),a is evaluated on independent keys but still reusing the same public coin a.
7The two exceptions are G and F , which are reserved for PRGs and PRFs respectively.
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We use SD(X,Y |Z) as a shorthand for SD((X,Z), (Y,Z)).

Simplifying Notations. To simplify the presentation, we use the following simplified notations.
Throughout, n is the security parameter and most other parameters are functions of n, and we often
omit n when clear from the context. For example, µ = µ(n) ∈ (0, 1/2), q = q(n) ∈ N, t = t(n) > 0,
ε = ε(n) ∈ (0, 1), and m = m(n) = poly(n), where poly refers to some polynomial.

Definition 2.1 (computational/decisional LPN) Let n be a security parameter, and let µ, q, t and
ε all be functions of n. The decisional LPNµ,n problem (with secret length n and noise rate µ) is (q,
t, ε)-hard if for every probabilistic distinguisher D running in time t we have∣∣ Pr

A,S,E
[ D(A, A·S ⊕ E) = 1 ] − Pr

A,Uq
[ D(A,Uq) = 1 ]

∣∣ ≤ ε (1)

where A ∼ Uqn is a q × n matrix, S ∼ Un and E ∼ Berqµ. The computational LPNµ,n problem is
(q, t, ε)-hard if for every probabilistic algorithm D running in time t we have

Pr
A,S,E

[ D(A, A·S ⊕ E) = (S,E) ] ≤ ε,

where A ∼ Uqn, S ∼ Un and E ∼ Berqµ.

Definition 2.2 (LPN variants) The decisional/computational X-LPNµ,n is defined as per Defini-
tion 2.1 accordingly except that (S,E) follows distribution X.
Note that standard LPNµ,n is a special case of X-LPNµ,n for X ∼ (Un,Ber

q
µ).

In respect of the randomized feature of LPN, we generalize standard PRGs / PRFs to equivalent ran-
domized variants, where the generator/function additionally uses some public coins for randomization,
and that seed/key can be sampled from a weak source (independent of the public coins).

Definition 2.3 (randomized PRGs on weak seeds) Let λ ≤ `1 < `2, `3, t, ε be functions of security
parameter n. An efficient function family ensemble G = {Ga : {0, 1}`1 → {0, 1}`2 , a ∈ {0, 1}`3}n∈N is a
(t, ε) randomized PRG on (`1, λ)-weak seed if for every probabilistic distinguisher D of running time t
and every (`1, λ)-Rényi entropy source K it holds that∣∣ Pr

K,A∼U`3
[ D(GA(K), A) = 1 ] − Pr

U`2 ,A∼U`3
[ D(U`2 , A) = 1 ]

∣∣ ≤ ε .

The stretch factor of G is `2/`1. Standard (deterministic) PRGs are implied by defining G′(k, a)
def
=

(Ga(k), a) for a uniform random k.

Definition 2.4 (randomized PRFs on weak keys) Let λ ≤ `1, `2, `3, `, t, ε be functions of security
parameter n. An efficient function family ensemble F = {Fk,a : {0, 1}` → {0, 1}`2 , k ∈ {0, 1}`1 , a ∈
{0, 1}`3}n∈N is a (q, t, ε) randomized PRF on (`1, λ)-weak key if for every oracle-aided probabilistic
distinguisher D of running time t and bounded by q queries and for every (`1, λ)-Rényi entropy source
K we have ∣∣ Pr

K,A∼U`3
[ DFK,A(A) = 1 ] − Pr

R,A∼U`3
[ DR(A) = 1 ]

∣∣ ≤ ε(n),

where R denotes a random function distribution ensemble mapping from ` bits to `2 bits. Standard
PRFs are a special case for empty a (or keeping k′ = (k, a) secret) on uniformly random key.

Definition 2.5 (universal hashing) A function family H = {ha : {0, 1}n → {0, 1}m, a ∈ {0, 1}l} is
universal if for any x1 6= x2 ∈ {0, 1}n it holds that

Pr
a

$←−{0,1}l
[ ha(x1) = ha(x2) ] ≤ 2−m.
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Definition 2.6 (pairwise independent hashing) A function family H = { ha: {0, 1}n → {0, 1}m,
a ∈ {0, 1}l} is pairwise independent if for any x1 6= x2 ∈ {0, 1}n and any v ∈ {0, 1}2m it holds that

Pr
a

$←−{0,1}l
[ (ha(x1), ha(x2)) = v ] = 2−2m.

Concrete constructions. We know that for every m ≤ n there exists a pairwise independent (and
universal) H with description length l = Θ(n), where every h ∈ H can be computed in AC0(MOD2).
For example, H1 and H2 defined below are universal and pairwise independent respectively:

H1 =
{
ha : {0, 1}n → {0, 1}m | ha(x)

def
= a · x, a ∈ {0, 1}n+m−1

}
H2 =

{
ha,b : {0, 1}n → {0, 1}m | ha,b(x)

def
= a · x⊕ b, a ∈ {0, 1}n+m−1, b ∈ {0, 1}m

}
where a ∈ {0, 1}n+m−1 is interpreted as an m× n Toeplitz matrix and ‘·’ and ‘⊕’ denote matrix-vector
multiplication and addition over GF(2) respectively.

3 Bernoulli Randomness Extraction in AC0(MOD2)

First, we state below a variant of the lemma (e.g., [28]) that taking sufficiently many samples of i.i.d.
random variables yields an “almost flat” joint random variable, i.e., the sample-entropy of most values
is close to the Shannon entropy of the joint random variable. The proof is included in Appendix B for
completeness.

Lemma 3.1 (Flattening Shannon entropy) For any n ∈ N, 0 < µ < 1/2 and for any ∆ > 0 define

E def
=
{
~e ∈ {0, 1}q : HBerqµ(~e) ≤ (1 + ∆)qH(µ)

}
. (2)

Then, we have Pr[ Berqµ ∈ E ] ≥ 1− exp−
min(∆,∆2)µq

3 .

Lemma 3.2 states that the proposed Bernoulli randomness extractor (see Figure 1) extracts almost
all entropy from a Rényi entropy (or min-entropy) source. We mention that the extractor can be
considered as a parallelized version of the random bits recycler of Impagliazzo and Zuckerman [32] and
the proof technique is also closely relevant to the crooked leftover hash lemma [21, 14].

Lemma 3.2 (Bernoulli randomness extraction) For any m, v ∈ N and 0 < µ ≤ 1/2, let W ∈ W
be any (dlog |W|e,m)-Rényi entropy source, let H be a family of pairwise independent hash functions
mapping from W to {0, 1}v, let ~H = (H1, . . . ,Hq) be a vector of i.i.d. random variables such that each
Hi is uniformly distributed over H, let sample : {0, 1}v → {0, 1} be any Boolean function such that
sample(Uv) ∼ Berµ. Then, for any constant 0 < ∆≤1 it holds that

SD( Berqµ, sample( ~H(W )) | ~H ) ≤ 2

(
(1+∆)qH(µ)−m

)
/2 + exp−

∆2µq
3 ,

where
sample( ~H(W ))

def
= (sample(H1(W )), . . . , sample(Hq(W ))) .

Remark 3.1 (On entropy loss) The amount of entropy extracted (i.e., qH(µ)) can be almost as large
as entropy of the source (i.e., m) by setting m = (1 + 2∆)qH(µ) for any arbitrarily small constant ∆.
Further, the leftover hash lemma falls into a special case for v = 1 (sample being an identity function)
and µ = 1/2.
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Proof. Let set E be defined as in (2). For any ~e ∈ {0, 1}q and ~h ∈ Hq, use shorthands p~h
def
= Pr[ ~H = ~h],

p
~e|~h

def
= Pr[ sample(~h(W )) = ~e ] and p~e

def
= Pr[ Berqµ = ~e ]. We have

SD
(

(Berqµ, ~H), (sample( ~H(W )), ~H)
)

=
1

2

∑
~h∈Hq ,~e∈E

p~h| p~e|~h − p~e | +
1

2

∑
~h∈Hq ,~e/∈E

p~h| p~e|~h − p~e |

≤ 1

2

∑
~h∈Hq ,~e∈E

( √
p~h · p~e

)
·
(√

p~h
p~e

∣∣ p
~e|~h − p~e

∣∣ ) +
1

2

( ∑
~h∈Hq ,~e/∈E

p~hp~e|~h +
∑

~h∈Hq ,~e/∈E

p~hp~e

)

≤ 1

2

√√√√√
 ∑
~h∈Hq ,~e∈E

p~h · p~e

 ·
 ∑
~h∈Hq ,~e∈E

p~h
p~e
·
(
p
~e|~h − p~e

)2

+ Pr[Berqµ /∈ E ]

≤ 1

2

√√√√√ 1 ·
∑
~e∈E

( ∑
~h∈Hq

p~hp
2
~e|~h

p~e
− 2

∑
~h∈Hq

p~hp~e|~h +
∑
~h∈Hq

p~hp~e

)
+ exp−

∆2µq
3

≤ 1

2

√
|E| · 2−m + exp−

∆2µq
3

≤ 2
(1+∆)qH(µ)−m

2 + exp−
∆2µq

3 ,

where the second inequality is Cauchy-Schwarz, i.e., |
∑
aibi| ≤

√
(
∑
a2
i ) · (

∑
bi)2 and (3) below, the

third inequality follows from Lemma 3.1, and the fourth inequality is due to (4) and (5), i.e., fix any ~e
(and thus fix p~e as well) we can substitute p~e ·(2−m+p~e) for

∑
~h∈Hq p~hp

2
~e|~h

, and p~e for both
∑
~h∈Hq p~hp~e|~h

and
∑
~h∈Hq p~hp~e, and the last inequality follows from the definition of E (see (2))

|E| ≤ 1/min
~e∈E

Pr[Berqµ = ~e] ≤ 2(1+∆)qH(µ)

which completes the proof.

Claim 1 ∑
~h∈Hq ,~e/∈E

p~hp~e|~h =
∑

~h∈Hq ,~e/∈E

p~hp~e = Pr[Berqµ /∈ E ] (3)

∀~e ∈ {0, 1}q :
∑
~h∈Hq

p~hp
2
~e|~h ≤ p~e · (2−m + p~e) (4)

∀~e ∈ {0, 1}q :
∑
~h∈Hq

p~hp~e|~h =
∑
~h∈Hq

p~hp~e = p~e (5)

Proof. Let ~H(W )
def
= (H1(W ), . . . ,Hq(W )). The pairwise independence of H implies that

~H(W ) ∼ (U1
v , . . . , U

q
v )

holds even conditioned on any fixing of W = w, and thus sample( ~H(W )) ∼ Berqµ. We have∑
~h∈Hq ,~e/∈E

p~hp~e|~h = Pr[ sample( ~H(W )) /∈ E ] = Pr[ Berqµ /∈ E ],
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∀~e ∈ {0, 1}q :
∑
~h∈Hq

p~hp~e|~h = Pr[ sample( ~H(W )) = ~e ] = Pr[ Berqµ = ~e ] = p~e,

∑
~h∈Hq ,~e/∈E

p~hp~e =
∑
~h∈Hq

p~h ·
∑
~e/∈E

p~e = Pr[ Berqµ /∈ E ],

∀~e ∈ {0, 1}q :
∑
~h∈Hq

p~hp~e = p~e ·
∑
~h∈Hq

p~h = p~e.

Now fix any ~e ∈ {0, 1}q, and let W1 and W2 be random variables that are i.i.d. to W , we have∑
~h∈Hq

p~hp
2
~e|~h = Pr

W1,W2, ~H
[ sample( ~H(W1)) = sample( ~H(W2)) = ~e ]

≤ Pr
W1,W2

[W1 = W2] · Pr
W1, ~H

[ sample( ~H(W1)) = ~e ]

+ Pr
~H

[sample( ~H(w1)) = sample( ~H(w2)) = ~e | w1 6= w2]

≤ 2−m · p~e + Pr[Berqµ = ~e]2 = 2−m · p~e + p2
~e,

where the second inequality is again due to the pairwise independence of H, i.e., for any w1 6= w2, ~H(w1)
and ~H(w2) are i.i.d. to (U1

v , . . . , U
q
v ) and thus the two distributions sample( ~H(w1)) and sample( ~H(w2))

are i.i.d. to Berqµ. �

�

4 Parallelizable PRFs on Weak Keys

4.1 A Succinct Formulation of LPN

The authors of [22] observed that the secret of LPN is not necessary to be uniformly random and can
be replaced with a Bernoulli distribution. We state a more quantitative version (than [22, Problem 2])
in Lemma 4.1 that Bern+q

µ -LPNµ,n (see Definition 2.2) is implied by standard LPN for nearly the same
parameters except that standard LPN needs n more samples. The proof follows by a simple reduction
and is included in Appendix Appendix B.

Lemma 4.1 Assume that the decisional (resp., computational) LPNµ,n problem is (q, t, ε)-hard, then the
decisional (resp., computational) Bern+q

µ -LPNµ,n problem is at least (q−(n+2), t−poly(n+ q), 2ε)-hard.

Remark 4.1 (On the security of low-noise LPN) For µ = n−c, a trivial statistical test suggests
(by the piling-up lemma) that any single sample of decisional Bern+q

µ -LPNµ,n is (1/2+2−O(n1−c))-biased to

0. In other words, decisional Bern+q
µ -LPNµ,n is no more than (q = 1, t = O(1), ε = 2−O(n1−c))-hard and

thus it follows (via the reduction of Lemma 4.1) that decisional LPNµ,n cannot have indistinguishability

beyond (q = n + 3, t = poly(n), ε = 2−O(n1−c)). Asymptotically, this is also the current state-of-the-art
attack on low-noise LPN using q = poly(n) or even more samples.

4.2 A Direct Construction in Almost Constant Depth

To build a randomized PRG (on weak source w) from the succinct LPN, we first sample Bernoulli vector
(s, e) from w (using random coins a), and then output a·s⊕ e. Theorem 4.1 states that the above yields
a randomized PRG on weak seed w and public coin a.
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Theorem 4.1 (randomized PRGs from LPN) Let n be a security parameter, let δ > 0 be any
constant, and let µ = n−c for any 0 < c < 1. Assume that decisional LPNµ,n problem is ((1 + 2δ)n, t,

ε)-hard, then G = {Ga : {0, 1}n
1− c2 → {0, 1}δn, a ∈ {0, 1}δn×n}n∈N, where

Ga(w) = a · s⊕ e, s ∈ {0, 1}n, e ∈ {0, 1}δn

and (s, e) = sample( ~ha(w)), is a (t− poly(n), O(ε))-randomized PRG on (n1− c
2 , 4c(1 + δ2)n1−c · log n)-

weak seed with stretch factor δ·n
c
2 .

Proof. We have by Lemma 4.1 that ((1 + 2δ)n, t, ε)-hard decisional LPNµ,n implies (δn, t−poly(n), 2ε)-

hard decisional Bern+δn
µ -LPNµ,n, so the conclusion follows if we could sample (s, e)

$←− Bern+δn
µ from w.

This follows from Lemma 3.2 by choosing q = n+ δn, ∆ = δ, and m = 4c(1 + δ)2n1−c · log n such that
the sampled noise vector is statistically close to Bern+δn

µ except for an error bounded by

2

(
(1+∆)qH(µ)−m

)
/2 + exp−

∆2µq
3

≤ 2

(
(1+δ)2nH(µ)−2(1+δ)2nH(µ)

)
/2 + 2−Ω(n1−c)

= 2−Ω(n1−c·logn) + 2−Ω(n1−c)

= 2−Ω(n1−c)

where recall by Fact A.1 that µ log(1/µ) < H(µ) < µ(log(1/µ)+2) and thus m > 2(1+δ2)n1−c(c log n+
2) > 2(1 + δ2)nH(µ). We omit the above term since ε = 2−O(n1−c) (see Remark 4.1). �

We state a variant of the theorem by Goldreich, Goldwasser and Micali [26] on building PRFs from
PRGs, where we consider PRGs with stretch factor 2v for v = O(log n) (i.e., a balanced 2v-ary tree)
and use randomized (instead of deterministic) PRG Ga, reusing public coin a at every invocation of Ga.

Theorem 4.2 (PRFs from PRGs [26]) Let n be a security parameter, let v = O(log n), λ ≤ m =
nO(1), λ = poly(n), t = t(n) and ε = ε(n). Let G = {Ga : {0, 1}m → {0, 1}2v ·m, a ∈ A}n∈N be a (t, ε)
randomized PRG (with stretch factor 2v) on (m,λ)-weak seed. Parse Ga(k) as 2v blocks of m-bit strings:

Ga(k)
def
= G0···00

a (k)‖G0···01
a (k)‖ · · · ‖G1···11

a (k)

where Gi1···iva (k) denotes the (i1 · · · iv)-th m-bit block of Ga(k). Then, for any d ≤ poly(n) and q = q(n),
the function family ensemble F = {Fk,a : {0, 1}dv → {0, 1}2v ·m, k ∈ {0, 1}m, a ∈ A}n∈N, where

Fk,a(x1 · · ·xdv)
def
= Ga( G

x(d−1)v+1···xdv
a (· · ·Gxv+1···x2v

a (Gx1···xv
a (k)) · · · ) ),

is a (q, t− q · poly(n), dqε) randomized PRF on (m,λ)-weak key.

On polynomial-size circuits. The above GGM tree has Θ(2dv) nodes and thus it may seem that
for dv = ω(log n) we need a circuit of super-polynomial size to evaluate Fk,p. This is not necessary since
we can represent the PRF in the following alternative form:

Fk,a = Ga ◦ muxx(d−1)v+1···xdv ◦Ga︸ ︷︷ ︸
G
x(d−1)v+1···xdv
a

◦ · · · ◦muxxv+1···x2v ◦Ga︸ ︷︷ ︸
G
xv+1···x2v
a

◦muxx1···xv ◦Ga︸ ︷︷ ︸
G
x1···xv
a

where ‘◦’ denotes function composition, each multiplexer muxi1···iv : {0, 1}2vm → {0, 1}m simply selects
as output the (i1 · · · iv)-th m-bit block of its input, and it can be implemented with O(2v ·m) = poly(n)
NOT and (unbounded fan-in) AND/OR gates of constant depth. Thus, for v = O(log n) function Fk,p
can be evaluated with a polynomial-size circuit of depth O(d).
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Lemma 4.2 (Levin’s trick [41]) For any ` ≤ n ∈ N, let R1 be a random function distribution over
{0, 1}` → {0, 1}n, let H be a family of universal hash functions from n bits to ` bits, and let H1 be

a function distribution uniform over H. Let R1◦H1(x)
def
= R1(H1(x)) be a function distribution over

{0, 1}n → {0, 1}n. Then, for any q ∈ N and any oracle aided D bounded by q queries, we have

∣∣ Pr
R1,H1

[ DR1◦H1 = 1 ] − Pr
R

[ DR = 1 ]
∣∣ ≤ q2

2`+1
,

where R is a random function distribution from n bits to n bits.

Theorem 4.3 (A direct PRF) Let n be a security parameter, and let µ = n−c for constant 0 < c < 1.
Assume that decisional LPNµ,n problem is (αn, t, ε)-hard for any constant α > 1, then for any (efficiently
computable) d = ω(1) ≤ O(n) and any q ≤ nd/3 there exists a (q, t − q poly(n), O(dqε) + q2n−d)-
randomized PRF on (n1− c

2 , O(n1−c log n))8-weak key

F̄ = {F̄k,a : {0, 1}n → {0, 1}n, k ∈ {0, 1}n
1− c2 , a ∈ {0, 1}O(n2)}n∈N (6)

which is computable by a uniform family of polynomial-size depth-O(d) circuits with unbounded-fan-in
AND, OR and XOR gates.

Proof. For µ = n−c, we have by Theorem 4.1 that the decisional (αn, t, ε)-hard LPNµ,n implies
a (t − poly(n), O(ε)) randomized PRG in AC0(MOD2) on (n1− c

2 , O (n1−c log n) )-weak seed k and
public coin a ∈ {0, 1}O(n2) with stretch factor 2v = n

c
2 . We plug it into the GGM construction (see

Theorem 4.2) with tree depth d′ = 2d/c to get a (q, t − q poly(n), O(dqε)) randomized PRF on weak
keys (of same parameters) with input length d′v = d log n and output length 2v · n1− c

2 = n as below:

F = {Fk,a : {0, 1}d logn → {0, 1}n, k ∈ {0, 1}n
1− c2 , a ∈ {0, 1}O(n2)}n∈N. (7)

Now we expand k (e.g., by evaluating Fk,a on a few fixed points) into a pseudorandom (k̄, h̄1), where

k̄ ∈ {0, 1}n
1− c2 and h̄1 describes a universal hash function from n bits to ` = d log n bits. Motivated by

Levin’s trick, we define a domain-extended PRF F̄k,a(x)
def
= Fk̄,a ◦ h̄1(x). For any oracle-aided distin-

guisher D running in time t− qpoly(n) and making q queries, denote with δD(F1, F2)
def
=
∣∣Pr[ DF1(A) =

1 ] − Pr[ DF2(A) = 1 ]
∣∣ the advantage of D (who gets public coin A as additional input) in distinguishing

between function oracles F1 and F2. Therefore, we have by a triangle inequality

δD(FK̄,A ◦ H̄1, R) ≤ δD(FK̄,A ◦ H̄1, FK,A ◦H1) + δD(FK,A ◦H1, R1 ◦H1) + δD(R1 ◦H1, R)

≤ O(dqε) + q2n−d,

where advantage is upper bounded by three terms, namely, the indistinguishability between (K̄, H̄1) and
truly random (K,H1), that between FK,A and random function R1 (of the same input/output lengths
as FK,A), and that due to Lemma 4.2. Note that A is independent of R1, H1 and R. �

4.3 Going Beyond the Birthday Barrier

Unfortunately, for small d = ω(1) the security of the above PRF does not go beyond super-polynomial
(cf. term q2n−d) due to a birthday attack. This situation could be handled using security-preserving
constructions. Note the techniques from [34, 17] need (almost) Ω(d log n)-wise independent hash func-
tions which we don’t know how to compute with unbounded fan-in gates of depth O(d). Thus, we use
a more intuitive and depth-preserving approach below by simply running a few independent copies and

8Here the big-Oh omits a constant dependent on c and α.
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XORing their outputs. The essential idea dates backs to [8, 44] and the technique receives renewed
interest recently in some different contexts [23, 25]. We mention that an alternative (and possibly more
efficient) approach is to use the second security-preserving domain extension technique from [10] that
requires a few pairwise independent hash functions and makes only a constant number of calls to the
underlying small-domain PRFs. This yields the PRF stated in Theorem 4.4.

Lemma 4.3 (Generalized Levin’s Trick [8, 44]) For any κ, ` ≤ n ∈ N, let R1, . . . , Rκ be inde-
pendent random function distributions over {0, 1}` → {0, 1}n, let H be a family of universal hash
functions from n bits to ` bits, and let H1, · · · , Hκ be independent function distributions all uniform
over H. Let F~R, ~H be a function distribution (induced by ~R = (R1, . . . , Rκ) and ~H = (H1, . . . ,Hκ)) over

{0, 1}n → {0, 1}n defined as

F~R, ~H(x)
def
=

κ⊕
i=1

Ri(Hi(x)). (8)

Then, for any q ∈ N and any oracle aided D bounded by q queries, we have

∣∣Pr[ DF~R, ~H = 1 ] − Pr[ DR = 1 ]
∣∣ ≤ qκ+1

2κ`

where R is a random function distribution over {0, 1}n → {0, 1}n.

Finally, we get the first security-preserving construction below. To have comparable security to LPN
with secret size n, it suffices to use a key of entropy O(n1−c · log n), or a uniform key of size n1− c

2 with
any (1−O(n−

c
2 log n))-fraction of leakage (see Fact A.7), provided that leakage is independent of public

coin a.

Theorem 4.4 (A security-preserving PRF on weak key) Let n be a security parameter, and let
µ = n−c for constant 0 < c < 1. Assume that the decisional LPNµ,n problem is (αn, t, ε)-hard for any
constant α > 1, then for any (efficiently computable) d = ω(1) ≤ O(n) and any q ≤ nd/3 there exists
a (q, t− qpoly(n), O(dqε))- randomized PRF on (n1− c

2 , O(n1−c · log n))-weak key

F̂ = {F̂k,a : {0, 1}n → {0, 1}n, k ∈ {0, 1}n
1− c2 , a ∈ {0, 1}O(n2)}n∈N

which are computable by a uniform family of polynomial-size depth-O(d) circuits with unbounded-fan-in
AND, OR and XOR gates.

Proof sketch. Following the proof of Theorem 4.3, we get a (q, t − qpoly(n), O(dqε) )- randomized
PRF F = {Fk,a}n∈N on weak keys (see (7)) with input length d log n and of depth O(d). We define

F ′ = {F ′
(~k,~h),a

: {0, 1}n → {0, 1}n,~k ∈ {0, 1}O(κn1− c2 ),~h ∈ Hκ, a ∈ {0, 1}O(n2)}n∈N where

F ′
(~k,~h),a

(x)
def
=

κ⊕
i=1

Fki,a(hi(x)), ~k = (k1, · · · , kκ), ~h = (h1, · · · , hκ) .

Let δD(F1, F2)
def
=
∣∣Pr[ DF1(A) = 1 ] − Pr[ DF2(A) = 1 ]

∣∣. We have that for any oracle-aided distinguisher
running in time t− qpoly(n) and making up to q queries, we have by a triangle inequality that

δD( F ′( ~K, ~H),A, R ) ≤ δD( F ′( ~K, ~H),A, F~R, ~H ) + δD( F~R, ~H , R )

≤ O(κdqε) + nd(1−2κ)/3

= O(κdqε) + 2−ω(n1−c) = O(κdqε) ,
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where F~R, ~H is defined as per (8), the first term of the second inequality is due to a hybrid argument

(replacing every FKi,A with Ri one at a time), the second term of the second inequality follows from
Lemma 4.3 with ` = d log n and q ≤ nd/3, and the equalities follow by setting κ = n1−c to make
the first term dominant. Therefore, F ′

(~k,~h),a
is almost the PRF as desired except that it uses a long

key (~k,~h), which can be replaced with a pseudorandom one. That is, let F̂k,a(x)
def
= F ′

(~k,~h),a
(x) and

(~k,~h)
def
= Fk,a(1) ‖ Fk,a(2) ‖ · · · ‖ Fk,a(O(κ)), which adds only a layer of gates of depth O(d). �

5 An Alternative PRF with a Short Uniform Key

In this section, we introduce an alternative construction based on a variant of LPN (reducible from
standard LPN) whose noise vector can be sampled in AC0 (i.e., without using XOR gates). We state
the end results in Theorem 5.1 that standard LPN with n-bit secret implies a low-depth PRF with
key size Θ(n1−c log n). Concretely (and ideally), assume that computational LPN is (q = 1.001n, t =
2n

1−c/3, ε = 2−n
1−c/12)-hard, and let λ = Θ(n1−c log n), then for any ω(1) = d = O(λ/ log2 λ) there

exists a parallelizable (q′ = λΘ(d), t′ = 2Θ(λ/ log λ), ε′ = 2−Θ(λ/ log λ)))-randomized PRF computable in

depth O(d) with secret key length λ and public coin length O(λ
1+c
1−c ).

5.1 Main Results and Roadmap

Theorem 5.1 (A PRF with a compact uniform key) Let n be a security parameter, and let µ =
n−c for constant 0 < c < 1. Assume that the computational LPNµ,n problem is (αn, t, ε)-hard for any
constant α > 1 and efficiently computable ε, then for any (efficiently computable) d = ω(1) ≤ O(n) and
any q′ ≤ nd/3 there exists a (q′,Θ(t · ε2n1−2c), O(dq′n2ε))- randomized PRF on uniform key

F̃ = {F̃k,a : {0, 1}n → {0, 1}n, k ∈ {0, 1}Θ(n1−c·logn), a ∈ {0, 1}O(n2)}n∈N

which are computable by a uniform family of polynomial-size depth-O(d) circuits with unbounded-fan-in
AND, OR and XOR gates.

We sketch the steps below to prove Theorem 5.1, where ‘C-’ and ‘D-’ stand for ‘computational’ and
‘decisional’ respectively.

1. Introduce distribution ψmµ that can be sampled in AC0.

2. ((1+Θ(1))n,t,ε)-hard C- LPNµ,n =⇒ (Θ(n), t−poly(n), 2ε)-hard C- Bern+q
µ -LPNµ,n (by Lemma 4.1).

3. (Θ(n), t, ε)-hard C- Bern+q
µ -LPNµ,n =⇒ (Θ(n), t− poly(n), O(n3/2−cε))-hard C- ψn+q

µ -LPNµ,n (by
Lemma 5.4).

4. (Θ(n), t, ε)-hard C- ψn+q
µ -LPNµ,n =⇒ (Θ(n),Ω(t(ε/n)2), 2ε)-hard D- ψn+q

µ -LPNµ,n (by Theo-
rem 5.2).

5. (Θ(n), t, ε)-hard D- ψn+q
µ -LPNµ,n =⇒ (q, t−q poly(n), O(dq′ε))- randomized PRF for any d = ω(1)

and q′ ≤ nd/3, where the PRF has key length Θ(n1−c log n) and can be computed by polynomial-
size depth-O(d) circuits with unbounded-fan-in AND, OR and XOR gates. This is stated as
Theorem 5.3.
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Algorithm 1 Sampling distribution ψmµ in AC0

Require: 2µm logm random bits (assume WLOG that m is a power of 2)
Ensure: ψmµ satisfies Lemma 5.1

1: Sample random z1, . . . , z2µm of Hamming weight 1, i.e., for every i ∈ [m] zi
$←− {z ∈ {0, 1}m : |z| = 1}.

{E.g., to sample z1 with randomness r1 . . . rlogm, simply let each (b1 . . . blogm)-th bit of z1 to be

rb11 ∧ · · · ∧ r
blogm

logm , where r
bj
j

def
= rj for bj = 0 and r

bj
j

def
= ¬rj otherwise. Note that AC0 allows NOT

gates at the input level. }
2: Output the bitwise-OR of the vectors z1, . . . , z2µm.
{Note: we take a bitwise-OR (not bitwise-XOR) of the vectors.}

5.2 Distribution ψmµ and the ψn+q
µ -LPNµ,n Problem

We introduce a distribution ψmµ that can be sampled in AC0 and show that ψn+q
µ -LPNµ,n is implied by

Bern+q
µ -LPNµ,n (and thus by standard LPN). Further, for µ = n−c sampling ψmµ needs Θ(mn−c log n)

random bits, which asymptotically match the Shannon entropy of Bermµ .

Lemma 5.1 The distribution ψmµ (sampled as per Algorithm 1) is 2−Ω(µm log(1/µ))-close to a convex
combination of χmµm, χmµm+1, . . . , χm2µm.

Proof. It is easy to see that ψmµ is a convex combination of χm1 , χm2 , . . . , χm2µm as conditioned on
|ψmµ | = i (for any i) ψmµ hits every y ∈ {0, 1}m of Hamming weight |y| = i with equal probability.
Hence, it remains to show that those χmj ’s with Hamming weight j < µm sum to a fraction less than

2−µm(log(1/µ)−2), i.e.,

Pr[|ψmµ | < µm] =
∑

y∈{0,1}m:|y|<µm

Pr[ψmµ = y]

< µ2µm·2mH(µ)− logm
2

+O(1)

< µ2µm·2µm(log(1/µ)+2)+O(1) = 2µm(− log(1/µ)+2)+O(1)

where the first inequality is due to the partial sum of binomial coefficients (see Fact A.5) and that for
any fixed y with |y| < µm ψmµ = y happens only if the bit 1 of every zi (see Algorithm 1) hits the 1’s
of y (each with probability less than µ independently) and the second inequality is Fact A.1. �

By definition of ψn+q
µ the sampled (s, e) has Hamming weight no greater than 2µ(n + q) and the

following lemma states that ψn+q
µ -LPNµ,n is almost injective.

Lemma 5.2 (ψn+q
µ -LPNµ,n is almost injective) For q = Ω(n), define set Y def

= {(s, e) ∈ {0, 1}n+q :
|(s, e)| ≤ (n+ q)/ log n}. Then, for every (s, e) ∈ Y,

Pr
a←Uqn

[
∃(s′, e′) ∈ Y : (s′, e′) 6= (s, e) ∧ as⊕ e = as′ ⊕ e′

]
= 2−Ω(q) .

Proof. Let H def
= {ha : {0, 1}n+q → {0, 1}q, a ∈ {0, 1}qn, ha(s, e)

def
= as ⊕ e} and it is not hard to see

that H is a family of universal hash functions. We have

log |Y| = log

(n+q)/ logn∑
i=0

(
n+ q

i

)
= O

(
(n+ q) log log n/ log n

)
= o(q) ,

where the approximation is due to Fact A.5 and the conclusion immediately follows from Lemma 5.3
(with proof reproduced in Appendix B). �
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Lemma 5.3 (The injective hash lemma (e.g. [55])) For any integers l1 ≤ l2,m, let Y be any set

of size |Y| ≤ 2l1, and let H def
= {ha : {0, 1}m → {0, 1}l2 , a ∈ A,Y ⊆ {0, 1}m} be a family of universal

hash functions. Then, for every y ∈ Y we have

Pr
a

$←−A
[ ∃y′ ∈ Y : y′ 6= y ∧ ha(y′) = ha(y) ] ≤ 2l1−l2 .

5.3 Computational Bern+q
µ -LPNµ,n → Computational ψn+q

µ -LPNµ,n

Lemma 5.4 non-trivially extends the well-known fact that the computational LPN implies the compu-
tational exact LPN, i.e., (Un, χ

q
µq)-LPNµ,n.

Lemma 5.4 Let q = Ω(n), µ = n−c (0 < c < 1) and ε = 2−O(n1−c). Assume that the computational
Bern+q

µ -LPNµ,n problem is (q, t, ε)-hard, then the computational ψn+q
µ -LPNµ,n problem is (q, t− poly(n+

q), O(µ(n+ q)3/2ε))-hard.

Proof. Let m = n + q and write AdvD(X)
def
= Pr

a
$←−Uqn,(s,e)←X

[ D(a, a·s ⊕ e) = (s, e) ]. Towards a

contradiction we assume that there exists D such that AdvD(ψmµ ) > ε′, and we assume WLOG that
on input (a, z) D always outputs (s′, e′) with |(s′, e′)| ≤ 2µm. That is, even if it fails to find any
(s′, e′) satisfying as′ ⊕ e′ = z and |(s′, e′)| ≤ 2µm it just outputs a zero vector. Lemma 5.1 states that
ψmµ is 2−Ω(µn(log(1/µ))-close to a convex combination of χmµm, χmµm+1, . . . , χm2µm, and thus there exists

j ∈ {µm, µm+ 1, . . . , 2µm} such that AdvD(χmj ) > ε′− 2−Ω(n1−c logn) > ε′/2, which further implies that
AdvD(Bermj/m) = Ω(ε′/

√
m) as Bermj/m is a convex combination of χm0 , . . . , χmm, of which it hits χmj with

probability Ω(1/
√
m) by Lemma 5.5. Next, we define D′ as in Algorithm 2.

Algorithm 2 a Bermµ -LPNµ,n solver D′

Require: a random Bermµ -LPNµ,n instance (a, z = a·s⊕ e) as input
Ensure: a good chance to find out (s, e)

1: Sample j∗
$←− {µm, µm+ 1, . . . , 2µm} as a guess about j.

2: Compute µ′ = j∗/m.
3: (s1, e1)← Bermµ′−µ

1−2µ

. {This makes (a, z⊕ (as1⊕ e1)) a random Bermµ′-LPNµ′,n sample by the piling-up

lemma (see Fact A.6)}
4: (s′, e′)← D( a, z ⊕ (as1 ⊕ e1) ).
5: Output (s′ ⊕ s1, e

′ ⊕ e1). {D′ succeeds iff (s′ ⊕ s1, e
′ ⊕ e1) = (s, e)}

We denote Esuc the event that D succeeds in finding (s′, e′) such that as′ ⊕ e′ = z ⊕ (as1 ⊕ e1) and
thus we have a(s′ ⊕ s1) ⊕ (e′ ⊕ e1) = z = as ⊕ e, where values are sampled as defined above. This
however does not immediately imply (s, e) = (s′ ⊕ s1, e

′ ⊕ e1) unless conditioned on the event Einj that

ha(s, e)
def
= a·s⊕ e is injective on input (s, e).

Pr
a←Uqn, (s,e)←Bermµ , (s1,e1)←Berm

µ′−µ
1−2µ

, s′←D(a,y⊕(as1⊕e1))
[ (s′ ⊕ s1, e

′ ⊕ e1) = (s, e) ]

≥ Pr[Esuc ∧ Einj ]
≥ Pr[Esuc]− Pr[¬Einj ]
≥ Pr[j∗ = j] · AdvD(Bermj/m)− 2−Ω(m/ log2 n)

= Ω(ε′/µm3/2),
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where the bound on event ¬Einj is given below. We reach a contradiction by setting ε′ = Ω(1) · µm3/2ε
for a large enough Ω(1) so that D′ solves Bermµ -LPNµ,n with probability greater than ε.

Pr[¬Einj ]
≤ Pr[¬Einj ∧ (s, e) ∈ Y ∧ (s′ ⊕ s1, e

′ ⊕ e1) ∈ Y]

+ Pr[(s, e) /∈ Y ∨ (s′ ⊕ s1, e
′ ⊕ e1) /∈ Y

]
≤ 2−Ω(m) + Pr[(s, e) /∈ Y] + Pr[(s′ ⊕ s1, e

′ ⊕ e1) /∈ Y ]

≤ 2−Ω(m) + Pr
(s,e)←Bermµ

[ |(s, e)| ≥ m/ log n ] + Pr
(s1,e1)←Berm

µ′−µ
1−2µ

[ |(s1, e1)| ≥ (
1

logn
− 2µ)m ]

= 2−Ω(m/ log2 n),

where Y def
= {(s, e) ∈ {0, 1}m : |(s, e)| < m/ log n}, the second inequality is from Lemma 5.2, the third

inequality is that |(u⊕w)| ≥ κ implies |w| ≥ κ− |u| and by definition of D string (s′, e′) has Hamming
weight no greater than 2µm, and the last inequality is a typical Chernoff-Hoeffding bound. �

Lemma 5.5 For 0 < µ′ < 1/2 and m ∈ N, we have that

Pr

[
|Bermµ′ | = dµ′me

]
= Ω(1/

√
m).

5.4 C- ψn+q
µ -LPNµ,n → D- ψn+q

µ -LPNµ,n → ω(1)-depth PRFs

Next we show that the computational ψn+q
µ -LPNµ,n problem implies its decisional counterpart. The

theorem below is implicit in [5]9 and the case for ψn+q
µ -LPNµ,n falls into a special case. Note that

ψn+q
µ -LPNµ,n is almost injective by Lemma 5.2, and thus its computational and decisional versions

are equivalent in a sample-preserving manner. In fact, Theorem 5.2 holds even without the injective
condition, albeit with looser bounds.

Theorem 5.2 (Sample preserving reduction [5]) If the computational X-LPNµ,n is (q, t, ε)-hard
for any efficiently computable ε, and it satisfies the injective condition, i.e., for any (s, e) ∈ Supp(X) it
holds that

Pr
a←Uqn

[ ∃(s′, e′) ∈ Supp(X) : (s′, e′) 6= (s, e) ∧ a · s⊕ e = a · s′ ⊕ e′ ] ≤ 2−Ω(n).

Then, the decisional X-LPNµ,n is (q,Ω(t(ε/n)2), 2ε)-hard.

Theorem 5.3 (Decisional ψn+q
µ -LPNµ,n → PRF) Let n be a security parameter, and let µ = n−c

for any constant 0 < c < 1. Assume that the decisional ψn+q
µ -LPNµ,n problem is (δn, t, ε)-hard for any

constant δ > 0, then for any (efficiently computable) d = ω(1) ≤ O(n) and any q′ ≤ nd/3 there exists a
(q′, t− q′poly(n), O(dq′ε))- randomized PRF (on uniform key) with key length Θ(n1−c log n) and public
coin size O(n2), which are computable by a uniform family of polynomial-size depth-O(d) circuits with
unbounded-fan-in AND, OR and XOR gates.

Proof sketch. The proof is essentially the same as that of Theorem 4.4, replacing the Bernoulli
randomness extractor with the ψn+q

µ sampler. That is, decisional ψn+q
µ -LPNµ,n for q = Θ(n) implies a

constant-depth polynomial-stretch randomized PRG on seed length 2µ(n+q) log (n+ q) = Θ(n1−c log n)
and output length Θ(n), which in turn implies a nearly constant-depth randomized PRF, where the
technique in Lemma 4.3 is also used to make the construction security preserving. �

9Lemma 4.4 from the full version of [5] states a variant of Theorem 5.2 for uniformly random a and s, and arbitrary e.
However, by checking its proof it actually only requires the matrix a to be uniform and independent of (s, e).
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[22] Nico Döttling, Jörn Müller-Quade, and Anderson C. A. Nascimento. IND-CCA secure cryptography
based on a variant of the LPN problem. In Advances in Cryptology – ASIACRYPT 2012, pages
485–503, 2012.
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A Well-known Facts, Lemmas and Inequalities

Fact A.1 Let H(µ)
def
= µ log(1/µ) + (1−µ) log(1/(1−µ)) be the binary entropy function. Then, for any

0 < µ < 1/2 it holds that
µ log(1/µ) < H(µ) < µ(log(1/µ) + 2).

20



Proof.

µ log(1/µ)

<

(
H(µ) = µ log(1/µ) + (1− µ) log(1/(1− µ))

)
= µ log(1/µ) + (1− µ) log(1 +

µ

1− µ
)

= µ log(1/µ) + (1− µ)
ln(1 + µ

1−µ)

ln 2

≤ µ log(1/µ) +
µ

ln 2
< µ(log(1/µ) + 2) ,

where the first inequality is due to (1−µ) log(1/(1−µ)) > 0, the second one follows from the elementary
inequality ln(1 + x) ≤ x for any x > 0, and the last inequality is simply 1 < 2 ln 2. �

Lemma A.1 (Chernoff bound) For any n ∈ N, let X1, . . ., Xn be independent random variables
and let X̄ =

∑n
i=1Xi, where Pr[0≤Xi≤1] = 1 holds for every 1 ≤ i ≤ n. Then, for any ∆1 > 0 and

0 < ∆2 < 1,

Pr[ X̄ > (1 + ∆1) · E[X̄] ] < exp−
min(∆1,∆

2
1)

3
E[X̄] ,

Pr[ X̄ < (1−∆2) · E[X̄] ] < exp−
∆2

2
2

E[X̄] .

Theorem A.1 (The Hoeffding bound [30]) Let q ∈ N, and let ξ1, ξ2, . . ., ξq be independent random
variables such that for each 1 ≤ i ≤ q it holds that Pr[ai ≤ ξi ≤ bi] = 1. Then, for any t > 0 we have

Pr

[ ∣∣∣∣ q∑
i=1

ξi − E[

q∑
i=1

ξi]

∣∣∣∣ ≥ t

]
≤ 2 exp

− 2t2∑q
i=1

(bi−ai)2 .

Fact A.2 For any σ ∈ N+, the probability that a random (n + σ)×n Boolean matrix M ∼ U(n+σ)×n
has full rank (i.e., rank n) is at least 1− 2−σ+1.

Proof. Consider matrix M being sampled column by column, and denote Ei to be the event that
“column i is non-zero and neither is it any linear combination of the preceding columns (i.e., columns
1 to i− 1)”.

Pr[ M has full rank ] = Pr[E1] · Pr[E2|E1] · · · · · Pr[En|En−1]

= (1− 2−(n+σ))·(1− 2−(n+σ)+1) · · · · · (1− 2−(n+σ)+n−1)

> 2−
(

2−(n+σ)+1+2−(n+σ)+2+···+2−(n+σ)+n
)

> 2−2−σ+1

> exp−2−σ+1

> 1− 2−σ+1

where the first inequality is due to Fact A.4 and the last follows from Fact A.3. �

Fact A.3 For any x > 0 it holds that exp−x > 1− x.

Fact A.4 For any 0 < x < 2−
√

2
2 it holds that 1− x > 2−( 2+

√
2

2
)x > 2−2x.
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Fact A.5 (A partial sum of binomial coefficients ([27], p.492)) For any 0 < µ < 1/2, and any
m ∈ N

mµ∑
i=0

(
m

i

)
= 2mH(µ)− logm

2
+O(1)

where H(µ)
def
= µ log(1/µ) + (1− µ) log(1/(1− µ)) is the binary entropy function.

Fact A.6 (Piling-up Lemma) For any 0 < µ ≤ µ′ < 1/2, (Berµ ⊕ Ber µ′−µ
1−2µ

) ∼ Berµ′.

Fact A.7 (Min-entropy source conditioned on leakage) Let X be any random variable over sup-
port X with H∞(X) ≥ l1, let f : X → {0, 1}l2 be any function. Then, for any 0 < ε < 1, there exists a
set X1×Y1 ⊆ X×{0, 1}l2 such that Pr[ (X, f(X)) ∈ (X1×Y1) ] ≥ 1− ε and for every (x, y) ∈ (X1×Y1)

Pr[ X = x | f(X) = y ] ≤ 2−(l1−l2−log(1/ε)).

B Lemmas and Proofs Omitted

Proof of Lemma 3.1. Recall that H(µ)
def
= µ log(1/µ) + (1−µ) log(1/(1−µ)) equals to H1(Berµ). Parse

Berqµ as Boolean variables E1,. . .,Eq, and for each 1≤i≤q define

ξi
def
=

 1, if Ei = 1
log( 1

1−µ )

log( 1
µ

)
, if Ei = 0

and thus we have that ξ1, . . ., ξq are i.i.d. over { log(1/(1−µ))
log(1/µ) ,1}, each of expectation H(µ)/ log(1/µ).

Pr
[
Berqµ ∈ E

]
= 1 − Pr

[ q∑
i=1

ξi > (1 + ∆) · qH(µ)

log(1/µ)

]
> 1 − exp

−min(∆,∆2)qH(µ)
3 log(1/µ) > 1 − exp−

min(∆,∆2)µq
3 ,

where the inequality follows from the Chernoff bound (see Lemma A.1) and we recall H(µ) > µ log(1/µ)
by Fact A.1. �

Proof of Lemma 4.1.
Decisional LPNµ,n → decisional Bern+q

µ -LPNµ,n

Assume for contradiction there exists a distinguisher D that

Pr
A,S,E

[ D(A, A·S ⊕ E) = 1 ] − Pr
A,Uq−(n+2)

[ D(A,Uq−(n+2)) = 1 ] > 2ε,

where A ∼ U(q−(n+2))n, S ∼ Bernµ and E ∼ Ber
q−(n+2)
µ . To complete the proof, we show that there

exists another D′ (of nearly the same complexity as D) that on input (a′, b) ∈ {0, 1}qn × {0, 1}q that
distinguishes (A′, A′ ·X ⊕ Berqµ) from (A′, Uq) for A′ ∼ Uqn and X ∼ Un with advantage more than ε.
We parse the q × n matrix a′ and q-bit b as

a′ =

[
m
a

]
, b = (bm, ba) (9)

where m and a are (n + 2) × n and (q − (n + 2)) × n matrices respectively, bm ∈ {0, 1}n+2 and
ba ∈ {0, 1}q−(n+2). Algorithm D′ does the following: it first checks whether m has full rank or not, and
if not it outputs a random bit. Otherwise (i.e., m has full rank), D′ outputs D(am̄−1, (am̄−1)·bm̄ ⊕ ba),
where m̄ is an n× n invertible submatrix of m and bm̄ is the corresponding10 substring of bm. Now we

10E.g., if m̄ is the submatrix of m by keeping only the first n rows, then bm̄ is the n-bit prefix of bm.
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give the lower bound of the advantage in distinguishing the two distributions. On the one hand, when
(a′, b)← (A′, (A′ ·X)⊕ Berqµ) and conditioned on that m̄ is invertible, we have that

m̄ · x⊕ s = bm̄
a · x⊕ e = ba

(10)

where a←U(q−(n+2))n, x ← Un, s ← Bernµ, and e ← Ber
q−(n+2)
µ , and it follows (by elimination of x)

that ba = (am̄−1)s⊕ (am̄−1)bm̄ ⊕ e, and thus (am̄−1)bm̄ ⊕ ba = (am̄−1)s⊕ e. On the other hand, when
(a′, b) ← (Uqn, Uq) and conditioned on an invertible m it holds that (am̄−1, (am̄−1)·bm̄ ⊕ ba) follows

(U(q−(n+2))n, Uq−(n+2)). Therefore, for A ∼ U(q−(n+2))n, S ∼ Bernµ and E ∼ Ber
q−(n+2)
µ we have

Pr[ D′(Uqn, Uqn · Un ⊕ Berqµ) = 1 ] − Pr[ D′(Uqn, Uq) = 1 ]

≥ Pr[Ef ] ·
(

Pr
A,S,E

[D(A, A·S ⊕ E) = 1]− Pr
A,Uq−(1+δ)n

[ D(A,Uq−(1+δ)n) = 1 ]

)
> (1− 2−1)2ε = ε

where Ef denotes the event that m← U(n+2)×n has full rank whose lower bound probability is given in
Fact A.2.
Computational LPNµ,n → computational Bern+q

µ -LPNµ,n

The reduction follows steps similar to that of the decisional version. Assume for contradiction there
exists a distinguisher D that

Pr
A,S,E

[ D(A, A·S ⊕ E) = (S,E) ] > 2ε,

where A ∼ U(q−(n+2))n, S ∼ Bernµ and E ∼ Ber
q−(n+2)
µ , then there exists another D′ that on input

(a′, b = a′x ⊕ e′) ∈ {0, 1}qn × {0, 1}q recovers (x, e′) with probability more than ε. Similarly, D′

parses (a′, b) as in (9), checks if m has full rank and we define m̄, bm̄ and Ef same as the above
reduction. Let (s∗, e∗) ← D(am̄−1, (am̄−1) · bm̄ ⊕ ba). As analyzed above, conditioned on Ef we have
(am̄−1) · bm̄ ⊕ ba = (am̄−1)s ⊕ e where (am̄−1, s, e) follows distribution (A,S,E) defined above, and
hence (s∗, e∗) = (s, e) with probability more than 2ε. Once D′ got s∗, it computes x∗ = m̄−1 · (bm̄ ⊕ s∗)
(see (10)), e′∗ = a′x∗ ⊕ b and outputs (x∗, e′∗).

Pr[ D′(A′, A′ ·X ⊕ E′) = (X,E′) ]

≥ Pr[ Ef ] · Pr
A,S,E

[ D(A, A·S ⊕ E) = (S,E) ]

> (1− 2−1)2ε = ε

where A′ ∼ Uqn, X ∼ Un and E′ ∼ Berqµ.
�

Proof of Lemma 4.3. To prove this indistinguishability result we use Patarin’s H-coefficient technique
in its modern transcript-based incarnation [48, 18].

Without loss of generality the distinguisher D is deterministic and does not repeat queries. We refer
to the case when the D’s oracle is F~R, ~H as the real world and to the case where the D’s oracle is R as
the ideal world.

D transcript consists of a sequence (X1, Y1), . . . , (Xq, Yq) of query-answer pairs to its oracle, plus

(and following the “transcript stuffing” technique of [18]) the vector ~H = H1, . . . ,Hκ of hash functions,
appended to the transcript after the distinguisher has made its last query; in the ideal world, ~H consists
of a “dummy” κ-tuple H1, . . . ,Hκ that can be sampled after the distinguisher’s last query, and is
similarly appended to the transcript.
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The probability space underlying the real world is Ωreal
def
= Hκ × Fκ`→n where F`→n is the set of all

functions from ` bits to n bits, with uniform measure. The probability space underlying the ideal world
is Ωideal

def
= Hκ × Fn→n where Fn→n is the set of all functions from n bits to n bits, also with uniform

measure.
We can identify elements of Ωreal and/or Ωideal as “oracles” for D to interact with. We write Dω for

the transcript obtained when D interacts with oracle ω, where ω ∈ Ωreal in the real world and ω ∈ Ωideal

in the ideal world. Thus, the real-world transcripts are distributed according to DWreal where Wreal is
uniformly distributed over Ωreal, while the ideal-world transcripts are distributed according to DWideal

where Wideal is uniformly distributed over Ωideal.
A transcript τ is attainable if there exists some ω ∈ Ωideal such that Dω = τ . (Which transcripts are

attainable depends onD, but we assume a fixedD.) A transcript τ = ((X1, Y1), . . . , (Xq, Yq), H1, . . . ,Hκ)
is bad if there exists some i ∈ [q] such that

Hj(Xi) ∈ {Hj(X1), . . . ,Hj(Xi−1)}

for all j ∈ κ. We let Tbad be the set of bad attainable transcripts, Tgood the set of non-bad attainable
transcripts.

We will show that Pr[DWreal = τ ] = Pr[DWideal = τ ] for all τ ∈ Tgood. In this case, by Patarin’s
H-coefficient technique [18], D’s distinguishing advantage is upper bounded by Pr[DWideal ∈ Tbad]. We
commence by upper bounding the later quantity, and then move to the former claim.

Let Ei,j , (i, j) ∈ [q]× [κ], be the event that

Hj(Xi) ∈ {Hj(X1), . . . ,Hj(Xi−1)}

and let
Ei = Ei,1 ∧ · · · ∧ Ei,κ.

Since the values X1, . . . , Xq and the hash functions H1, . . . ,Hκ are uniquely determined by any ω ∈ Ωideal

or ω ∈ Ωreal, we can write Ei(Wideal) (in the ideal world) or Ei(Wreal) (in the real world) to emphasize
that Ei is a deterministic predicate of the uniformly distributed oracle, in either world. Then

(DWideal ∈ Tbad) ⇐⇒ (E1(Wideal) ∨ · · · ∨ Eq(Wideal)). (11)

Moreover,

Pr[Ei,j(Wideal)] ≤ (i− 1)
1

2`
≤ q

2`

since the hash functions H1, . . . ,Hκ are chosen independently of everything in the ideal world, and by
the universality of H, and

Pr[Ei(Wideal)] ≤
( q

2`

)κ
since the events Ei,1, . . . , Ei,κ are independent in the ideal world; finally

Pr[DWideal ∈ Tbad] ≤ q
( q

2`

)κ
=
qκ+1

2`κ

by (11) and by a union bound.
To complete the proof, we must show that Pr[DWreal = τ ] = Pr[DWideal = τ ] for all τ ∈ Tgood. Clearly,

Pr[DWideal = τ ] =
1

2nq
· 1

|H|κ

for all attainable τ . Moreover, if

τ = ((x1, y1), . . . , (xq, yq), h1, . . . , hκ)
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then it is easy to see that

Pr[DWreal = τ | ~H(Wreal) = (h1, . . . , hκ)] =
1

2nq

by induction on the number of distinguisher queries, using τ ∈ Tgood. (We write ~H(Wreal) for the
~H-coordinate of Wreal.) Since

Pr[ ~H(Wreal) = (h1, . . . , hκ)] =
1

|H|κ

this completes the proof. �

Proof of Lemma 5.3.

Pr
a

$←−A
[ ∃y ∈ Y : y′ 6= y ∧ ha(y′) = ha(y) ]

≤
∑

y′∈Y\{y}

Pr
a

$←−A
[ ha(y

′) = ha(y) ]

≤ |Y|·2−l2 ≤ 2−(l2−l1),

where the first inequality is a union bound and the second inequality follows by the universality of H.
�

Proof of Lemma 5.5. Assume WLOG that µ′m is integer and use shorthand pl
def
= Pr[ |Bermµ′ | = l ]

and thus

pµ′m =

(
m

µ′m

)
µµ
′m(1− µ′)m−µ′m

For 1 ≤ i ≤ µ′m, we have

pµ′m−i =

(
m

µ′m− i

)
µ′
µ′m−i

(1− µ′)m−µ′m+i

=
m!·µ′µ

′m(1− µ′)m−µ′m

(µ′m− i)!(m− µ′m+ i)!

= pµ′m
(µ′m− i+ 1)(µ′m− i+ 2) . . . (µ′m− i+ i)

(m− µ′m+ 1)(m− µ′m+ 2) . . . (m− µ′m+ i)
·(1− µ′

µ′
)i

= pµ′m
(1− i−1

µ′m)(1− i−2
µ′m) . . . (1− 0

µ′m)

(1 + 1
m(1−µ′))(1 + 2

m(1−µ′)) . . . (1 + i
m(1−µ′))

.

Similarly, for 1 ≤ i ≤ (1− µ′)m we can show that

pµ′m+i = pµ′m
(1− 0

m(1−µ′))(1− 1
m(1−µ′)) . . . (1− i−1

m(1−µ′))

(1 + 1
µ′m)(1 + 2

µ′m) . . . (1 + i
µ′m)

.

Therefore, we have pµ′m = max{pi | 0 ≤ i ≤ m } and thus complete the proof with the following

(1 + 2
√
m)·pµ′m ≥

µ′m+
√
m∑

j=µ′m−min{
√
m,µ′m}

pj

≥ 1 − Pr[
∣∣ |Bermµ′ | − µ′m∣∣ ≥ √m ]

≥ 1 − 2 exp−2 = Ω(1)

where the last inequality is a Hoeffding bound. �
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