SPECTRE:

Serialization of Proof-of-work Events: Confirming Transactions via

Recursive Elections

Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar

School of Engineering and Computer Science,
The Hebrew University of Jerusalem, Israel
{yoni_sompo,yoadlew,avivz} @cs.huji.ac.il

Abstract

Bitcoin utilizes the Nakamoto Consensus to achieve agreement on a consistent set of
transactions, in the permissionless setting, where anyone can participate in the protocol
anonymously. Since its rise, many other permissionless consensus protocols have been proposed.
We present SPECTRE, a new protocol for the consensus core of cryptocurrencies that remains
secure even under high throughput and fast confirmation times. At any throughput, SPECTRE
is resilient to attackers with up to 50% of the computational power (reaching the limit defined
by network congestion and bandwidth constraints). SPECTRE can operate at arbitrarily high
block creation rates, which implies that its transactions confirm in mere seconds (limited mostly
by the round-trip-time in the network).

SPECTRE’s underlying model falls into the category of partial synchronous networks: its
security depends on the existence of some bound on the delivery time of messages between
honest participants, but the protocol itself does not contain any parameter that depends on this
bound. Hence, while other protocols that do encode such parameters must operate with extreme
safety margins, SPECTRE converges according to the actual network delay.

Key to SPECTRE’s achievements is the fact that it satisfies weaker properties than classic
consensus requires. In the conventional paradigm, the order between any two transactions must
be decided and agreed upon by all non-corrupt nodes. In contrast, SPECTRE only satisfies
this with respect to transactions performed by honest users. We observe that in the context of
money, two conflicting payments that are published concurrently could only have been created
by a dishonest user, hence we can afford to delay the acceptance of such transactions without
harming the usability of the system. Our framework formalizes this weaker set of requirements
for a cryptocurrency’s distributed ledger. We then provide a formal proof that SPECTRE satisfies
these requirements.

1. INTRODUCTION

Bitcoin is a novel cryptocurrency system, and an accompanying protocol, invented and
deployed by Satoshi Nakamoto [13]. Transactions made in the currency are organized in a public
ledger, the blockchain. Each block in the chain is a batch of transactions that were published by
users of the currency. The blockchain contains consistent transactions only, as new blocks that
extend it are required to maintain consistency.

Unfortunately, Nakamoto Consensus has severe scalability limitations [5], [18], [14]: adjusting
the protocol to support a high transaction throughput — by creating larger or more frequent blocks
— requires stronger assumptions on the underlying network, hence smaller safety margins.

In this paper we propose a new protocol, SPECTRE, that achieves high scalability. Transactions
in SPECTRE can be confirmed within seconds, and the throughput can be improved by
orders-of-magnitude over Bitcoin; it is limited by the network infrastructure and capacity only.
The protocol thus alleviates the security-scalablility trade-off imposed by Nakamoto Consensus.

In SPECTRE, every block is counted and integrated into the ledger. Technically, SPECTRE
generalizes Nakamoto’s blockchain into a direct acyclic graph — a block DAG. By maintaining a
full DAG of blocks, SPECTRE can allow miners to create blocks concurrently and much more
frequently. This design is intended to avoid the need for nodes to reconcile their different world
views regarding the identity of a selected chain at the time of block creation.

Reasoning about the consensus properties of SPECTRE requires a new formal framework.
Indeed, previous work that formalized the robustness of Nakamoto Consensus [7], [15] focused
on robustness of blocks in the ledger. Extending this to the robustness of tranmsactions in
SPECTRE is not immediate, because all blocks are incorporated into the DAG, but individual
transactions embedded in the DAG may still be rejected due to conflicts.

Thus, this paper contains two contributions: (1) an inherently scalable protocol, SPECTRE,;
and (2) a formal framework for cryptocurrency payment protocols that do not necessarily use
a chain of blocks to represent their ledger (in this respect we differ from previously proposed
frameworks). We apply it on SPECTRE, and provide rigorous analysis of SPECTRE’s robustness
properties.

The main technique behind SPECTRE is a voting algorithm regarding the order between
each pair of blocks in the DAG. The voters are blocks (not miners); the vote of each block is
interpreted algorithmically (and not provided interactively) according to its location within the
DAG. We show that the majority’s aggregate vote becomes irreversible very fast, and we use
this majority vote to extract a consistent set of transactions. Essentially, Bitcoin’s longest chain
rule can be seen as a voting mechanism as well — each block adding one vote to every chain that
contains it — the highest-scoring chain being also the longest one. However, Bitcoin’s selection
of a “single winner chain” makes it inherently unscalable, as we demonstrate below.

We note that there have been several recent works revolving around new protocols for public
blockchain systems. These include Bitcoin-NG [6], Byzcoin [9], a work by Decker et. al. [4],
Hybrid Consensus [16], Solidus [1], and recently Algorand [11]. We discuss these and other
related works in Section 6.

2. FORMAL STATEMENT OF THE PROBLEM

In this section we describe a generic framework for reasoning about the security and scalability
properties of cryptocurrency protocols. Generally, in our framework, a cryptocurrency protocol
specifies two sets of instructions — the mining protocol, regarding the creation of blocks and
formation of the block ledger, and the TxO protocol, interpreting the ledger and extracting
from it a consistent subset of valid transactions. Since transactions in the protocol are accepted
with increasing probability as time goes on, users additionally run the Robust TxO protocol, to
quantify the robustness of an accepted transaction — a bound on the probability that it will ever
be reversed, when a malicious attacker attempts to do so (Bitcoin transactions for example, can
be reversed if the attacker manages to produce a longer alternative chain on which they are not
present — this event occurs with decreasing probability as time passes). Next, we present our
framework in the abstract sense, so as to keep it as general as possible. In Section 4, we present
a protocol that meets the requirements and uses a block DAG to do so. We defer the specifics
of the solution and the mining protocol, till then. We will use our framework to make clear the
sense in which SPECTRE avoids the security-scalability trade-off that Bitcoin suffers from.

Transactions. A transaction is typically denoted tx. inputs (tx) is the set of transactions that
must be accepted before tx can be accepted; these are the transactions that have provided the
money that is being spent in tx. Two different transactions tx; and txs conflict if they share
a common input, i.e., they double spend the same money; we then write tzo € conflict (tz1)
(this is a symmetric relation).

Mining protocol. We denote by N the set of nodes, aka miners. Miners maintain and extend the
ledger, by adding transactions to it and propagating messages, according to the mining protocol.
The propagation time of a message of size B KB to all nodes in the system is assumed to be
under D = D(B) seconds. For now, we regard the mining protocol as an abstract set of rules
that miners must follow. We denote by honest the set of nodes that always follow the protocol’s
instructions, and by malicious the complementary of this set.

In the family of protocols we focus on, miners possess computational power and perform
proof-of-work (PoW). We denote by « the attacker’s relative computational power. Formally, it
is the probability that the creator of the next PoW in the system belongs malicious; this is well
defined, as PoW creation is modeled as a memoryless process [13], [18], [17].

Formation of ledger. The result of the mining protocol is an (abstract) public data structure G
containing transactions (to be instantiated later, in our solution proposal, as a block DAG), aka
the ledger. Nodes replicate the ledger locally. As they might hold slightly different views of the
ledger (e.g., since blocks take time to propagate to all nodes), we denote by Gy the state of the
ledger as observed by node v at time ¢; we write G; when the local context is unimportant.
TxO protocol. Given a public ledger G, the TxO protocol extracts a consistent subset of
transactions from G, denoted TxO(G). Every transaction in this set must have its inputs in
it as well, and cannot conflict with another transaction in the set.

Robust TxO protocol. Users of the system must get assurances regarding their payments.
Basically, we want to guarantee that transactions will be accepted by all users, and that they

will remain so forever. Given Gy, the RobustTxO protocol specifies a subset of TzO(G/), denoted
RobustTxO(Gy), which represents the set of accepted transactions that are guaranteed to remain
so forever, up to an error probability of e. RobustTxzO takes as input Gy (the local replicate of
v), and the values of D\, and €.! A tx in (Robust) TxO is said to be (robustly) accepted.

Desired properties. Thus, the following properties are essential for a cryptocurrency protocol:

Property 1 (Consistency). The accepted set is consistent: For any ledger G,
1) if tz € TzO(G) and tzy € inputs (tx) then txg € TzO(G).
2) if tx € TxO(G) and txy € conflict (tx) then txe ¢ TzO(G).

Property 2 (Safety). If a transaction is robustly accepted by some node, then w.h.p. it will be
robustly accepted forever by all nodes, and the expected waiting time for this event is constant.
Formally, Ve > 0, Vv € N, if tx € RobustTzO(G?, D, \, «, €), then w.p. of at least 1 — e, there
exists a time 7 > t such that Yu € N,Vs > 7 : tz € RobustTzO(GY¥, D, \, a, €). If this event
occurs, the expected value of 7 — ¢ is constant.

Property 3 (Weak Liveness). If a transaction is published in the ledger, it is robustly accepted
by any node after a short while, provided that its inputs are robustly accepted and that no
conflicting transactions are published. Formally, let v € N, tx € G}, and ¢ > 0. Define
by ¥ (t,D,\,a,€) := min{s >t : tx € RobustTxO(GY, D, \,c,€)} the waiting time for its
robust acceptance by v. Then, E [w —t [inputs (tx) C TzO(GY) A conflict (tx) NGy, =0
is constant.

Definition 1. The security threshold of a cryptocurrency protocol is defined by the maximal «
(attacker’s relative computational power) for which Properties 1-3 hold.

The expected values of 7 — ¢ and 1) — ¢, as written in Properties 2 and 3, define the expected
waiting time for confirmation of transactions in the given protocol.

The “weakness” of the Liveness property corresponds to the fact that we do not guarantee
(though it is still hard for an attacker to prevent) a resolution in case conflicting transactions
were published soon one after the other. Contrast this to traditional consensus protocols, where
all conflicts are required to be decided in finite time, a property usually referred to as Liveness.
Observe, however, that an honest user of the system will never publish conflicting transactions,
and will transfer money only after he robustly accepted the original funds (the inputs) himself;
payments of honest users are thus guaranteed to meet the conditions formalized in Weak Liveness,
and to be robustly accepted. On the other hand, an attacker trying to defraud must keep his
attack secret before publishing the conflict, until the victim robustly accepts; but then the victim
is guaranteed that w.h.p. his transaction will not be reversed. Therefore, these two properties
together ensure that payments of honest users will be robustly accepted in constant expected
time, and that they remain robustly accepted forever, w.h.p.

"For the sake of clear exposition, we regard here these values as known. However, we emphasize that SPECTRE
does not assume that nodes know or agree on the precise values of these parameters. See Section 3.

In this work we set out to design a protocol that can support a large throughput, and achieve
fast confirmation times, while maintaining a high security threshold.

3. SPECTRE vs BITCOIN — OVERVIEW

SPECTRE adopts many of Bitcoin’s solution features. In particular, miners create blocks,
which are batches of transactions. A valid block must contain a solution to the PoW puzzle
(Bitcoin for example, uses PoW that is based on partial SHA256 collisions). The block creation
rate, denoted), is kept constant by the protocol by occasional readjustments of the PoW
difficulty; we elaborate on this mechanism in SPECTRE in Appendix D. The size of a block is
limited by some B KB.

Bitcoin’s throughput can be increased by increasing either the block size limit (which in
turn increases D) or\and the block creation rate A. Alas, it is well established that the security
threshold of Nakamoto Consensus deteriorates as D - \ increases:

Theorem 2. [Bitcoin is not scalable] The security threshold of the Bitcoin protocol goes to zero
as D - X increases.

The proof of this theorem appears in various forms in previous works, see [18], [15], [7]. To
maintain a high security threshold, Bitcoin suppresses its throughput by keeping A low — 1/600
blocks per second. This large safety margin is needed because A (and B) are decided once
and for all at the inception of the protocol. Consequently, even when the network is healthy
and D is low, Bitcoin suffers from a low throughput — 3 to 7 transactions per second, and
slow confirmation times — tens of minutes. In contrast, SPECTRE’s throughput can be increased
without deteriorating the security threshold:

Theorem 3. [SPECTRE is scalable] For any D - \, SPECTRE’s security threshold is 50%.

Therefore, in the context of the Distributed Algorithms literature, SPECTRE falls into the
partial synchronous setup, as it remains secure for any value of D. Theorem 3 is proven rigorously
in Appendix E.

Of course, A\ cannot be increased indefinitely or otherwise the network will be flooded with
messages (blocks) and become congested. Theorem 3 “lives” in the theoretical framework
(specified in Section 2), which does not model the limits on nodes’ bandwidth and network
capacity. Practically, these barriers allow for a throughput of thousands of transactions per second,

by setting A = 10 and b = 100, for instance. For further discussion refer to Appendices B and D.
e
this allows for confirmation times of mere seconds, under normal network conditions. When
running RobustTxO, each node in SPECTRE uses its own upper bound on the recent D in the
network. This bound affects only its own operation—underestimating D will result in premature
acceptance of transactions, and overestimating it by far will delay acceptance unnecessarily (by
a time linear in the difference). Importantly, in case of network hiccups and long network delays,
the node can switch in his local client to a more conservative bound on D without coordinating
this with other nodes.

Asymptotically, SPECTRE’s confirmation times are in (’)(=+ %) In practice,

4. THE SPECTRE ProTOCOL
A. The generation of the block DAG

As in Bitcoin, participating nodes (called miners) create blocks of transactions by solving PoW
puzzles. A block specifies its direct predecessors by referencing their ID in its header (a block’s
ID is obtained by applying a collision resistant hash to its header); we will describe in the next
subsection how these predecessors are chosen. This results in a structure of a direct acyclic graph
(DAG) of blocks (as blocks can only reference blocks created before them), denoted typically
G = (C, E). Here, C represents blocks and E represents the hash references. We will frequently
write z € GG instead of z € C.

past (z,G) C C denotes the subset of blocks reachable from z, and similarly future (z,G) C
C denotes the subset of blocks from which z is reachable; these are blocks that were provably
created before and after z, correspondingly. Note that an edge in the DAG points back in time,
from the new block to previously created blocks which it extends. A node does not consider a
block as valid until it receives its entire past set. We denote by cone (z, G) the set of blocks that
the DAG directly orders with respect to z: cone (z,G) := past (z, G)U{z}U future (z,G), and
by anticone (z) the complementary of cone (z,G). The set past (b,G) is fixed once and for
all at the creation of b (in sharp contrast to future (z,G) and anticone (z,G) that may grow
as blocks are added later to the DAG), hence we can simply write past (b) without noting the
context.

The unique block genesis is the block created at the inception of the system, and every valid
block must have it in its past set. In addition, we relate to a hypothetical block, virtual (G). This
block satisfies past (virtual (G)) = G. While its role is merely methodological, virtual (G)
can also be thought of as representing the next block that a node whose current observed DAG
is G attempts to create.

G} denotes the block DAG observed by node v € N at time ¢. This DAG represents the
history of all (valid) block-messages received by the node, instantiating the abstract data structure
assumed in Section 2.

B. The mining protocol
SPECTRE’s instructions to miners are extremely simple:

1) When creating or receiving a block, transmit the block to all peers.
2) When creating a block, embed in its header a list containing the hash of all leaf-blocks
(blocks with in-degree 0) in the locally-observed DAG.

Note that these instructions allow miners to operate concurrently irrespective of potential
conflicts in the contents of their blocks.

C. The TxO protocol

Overview. As the block DAG may contain conflicting transactions, we must provide a method
for nodes to interpret the DAG and extract from it the set of accepted transactions. Doing so in

a way that will be agreed upon by all nodes (eventually) is the main challenge of SPECTRE.
We now describe how this is done.

The topology of a block DAG G induces a natural precedence-relation over blocks: if x is
reachable from y (i.e., € past (y)) then x precedes y, as it was provably created before it.
SPECTRE extends this relation into a complete relation over GG’s blocks, denoted <. This order
is immediately translatable into an order over transactions in G: tx1 precedes txo if the block
containing the former precedes that containing the latter. This relation, in turn, induces a natural
subset of accepted transactions: ¢z is accepted if it precedes all of its conflicting transactions
in G. The relation < is generated by a pairwise vote procedure that occurs independently for
every pair of blocks. The operation of this layer will be explained in the next subsections.

Although we may at times refer to < as though it orders blocks, we stress that < is not

necessarily a transitive relation. It is possible to have a series of blocks that precede each other
cyclically.? The lack of a total linear ordering over blocks is in fact the way SPECTRE utilizes
the weaker consensus requirements of our framework, as a linear order is equivalent to solving
the consensus problem [3].
Pairwise ordering of blocks. The basic layer of SPECTRE involves deciding on a pairwise
order over the block DAG. Fix two blocks z,y € G. In order to decide if z < y or y < =,
we interpret the structure of the DAG as representing an abstract vote. Every block z € G is
considered a voter with respect to the pair (x,y), and its vote is inferred from the structure of the
DAG. We represent a vote by a number in {—1,0,+1}, and we denote z’s voting-profile on all
pairs by vote (2, G). vote , (2, G) = —1 represents x preceding y (x < y), voteg, (2, G) = +1
represents y preceding x, and vote, , (2, G) = 0 represents a tie. Importantly, vote (2, G) is an
asymmetric relation: vote, , (2, G) = —votey , (2, G).

To simplify presentation, we associate a vote with virtual (G) as well. Recall that the
virtual block of G is a hypothetical block which satisfies past (virtual (G)) = G. The vote
of virtual (G) represents essentially the aggregated vote of the entire block DAG. The basic
rules of z’s vote, for any z € G U {virtual (G)}, are as follows:

1) if z € G is in future (z) but not in future (y) then it will vote in favour of x (i.e., for

T < Y).

2) if z € G isin future (x)N future (y) then z’s vote will be determined recursively according
to the DAG that is reduced to its past, i.e., it has the same vote as virtual (past (z2)). If
the result of this vote is a tie, z breaks it arbitrarily.

3) if z € G is not in the future of either blocks then it will vote the same way as the vote of
the majority of blocks in its own future.

4) if z is the virtual block of G then it will vote the same way as the vote of the majority of
blocks in G.

5) finally, (for the case where z equals x or y), z votes for itself to succeed any block in
past (z) and to precede any block outside past (z).

This is related to the Condorcet paradox in social choice [2].
*We can use information encoded in 2’s header, e.g., explicit instructions for tie-breaking, or use the lexicographical
ordering of (hashes of) tied blocks, etc.

Fig. 1: An example of the voting
procedure on a simple DAG.
Block = and blocks 6-8 vote x <
y as they only see x in their past,
and not y. Similarly, block y and
blocks 9-11 vote y < x. Block 12
> votes according to a recursive call
(X<Y) on the DAG that does not contain
blocks 10,11,12. Any block from
1-5 votes = < y, because it sees
more xr < y voters in its future
than y < x voters.

Intuitively, the first rule dictates that a block that was honestly published gain votes over
blocks that are secretly withheld, as honest nodes keep adding new blocks to its future set.
The second and fourth rules together guarantee majority amplification, as new blocks add votes
that comply with and enhance previous decisions. The third rule is the most subtle; basically,
it allows blocks in past (x) (in addition to those in future (x)) to vote in its favour against y,
in case y was withheld for a long time. This is needed to counter a pre-mining attack scheme,
which will be described in future sections. Notice that all votes respect the DAG’s topology: If
x is reachable from y then all blocks vote unanimously x < y.

Figure 1 illustrates the voting procedure with regards to a single pair of blocks (x,y). Additional
examples along with intuition regarding this key algorithm are provided in Appendix A.

The voting procedure is implemented in Algorithm 1 below. In the algorithm, sgn (n) = —1
for n < 0, sgn (n) = +1 for n > 0, and sgn (0) = 0. To see that the recursion calls from line 4
halt, observe that they take as inputs DAGs strictly smaller than G (because past (z) C G), and
hence eventually all arrive at the base case G = () and return. The algorithm is written in its
naive form, for the sake of readability, with a run time of O(|G|*). We have written a more
sophisticated implementation of this procedure, which runs in expected time of O(d - \). We
will make the code available online in the full version.

The pairwise ordering of SPECTRE has the following highly valuable property:

Property 4. Once a block is published, the set of blocks that precede it in the pairwise ordering
closes fast—w.h.p. it consists only of blocks published before or right after its publication.

The implications of this guarantee to the security of transactions is immediate, at least at the
intuitive level: A user whose transaction is embedded in some published block = can guarantee
its safety by waiting some time after z’s publication before accepting it; he is then guaranteed
that any block published later on — and that might contain a conflicting transaction — will be
preceded by = hence will not threaten the acceptance of his transaction. In Section 5 we will
explain how this guarantee is achieved.

Algorithm 1 CalcVotes

Input: G — a block DAG
Output: vote (virtual (G)) — a pairwise ordering of blocks in G
1: if G = () then
2: return an empty ordering
: for all z € G do
vote (z, past (z)) «+ CalcVotes (past (z)) and break ties arbitrarily

3

4

5: for all z € GG in some topological order (from leaves to root) do

6: for all z,y € G (x # y) do

7 if (z € past (2) Ay ¢ past (2)) V (z € past () ,y = z) then
8 voteg , (2,G) +— —1

9: else if (y € past (2) Az ¢ past (z)) V (y € past (z) ,x = z) then
10: voteg (2,G) +— +1

11: else if =,y € past (z) then

12: votey y (2, G) < voteg , (2, past (2))

13: else if x,y ¢ past (z) then

14: votey , (2, G) < sgn (Zz’efutuTe(z,G) votey ., (7, G))

15: wvote (virtual (G) , G) < sgn (3, vote (z,G))
16: return vote (virtual (G) ,G)

Accepting transactions. Equipped with the pairwise relation over blocks, we now turn to
construct the set of accepted transactions. To maintain consistency, we mark a transaction as
accepted iff all three conditions below hold true:

1) all of its inputs have been accepted.

2) all conflicting transactions from its anticone set (i.e., that are not related to it topologically)

are contained in blocks that are preceded by the block containing the transaction.

3) all conflicting transactions from its past set (i.e., that precede it in the DAG, topologically)

have been rejected.

Algorithm 2 implements these rules, and outputs a set of accepted transactions. It operates
recursively, and should be initially called with TxO(G,G) (we later denote this simply by
TxO(Q)). In the algorithm, the notation Z;(tx) stands for all blocks in G that contain tx.
Some complexity arises due to possible multiple copies of the same transaction in the DAG; we
denote by [tz] the equivalence class containing all of ¢x’s copies.

The third part of the SPECTRE protocol, namely, the RobustTx(O procedure, is rather
involved. We defer its description to Appendix C.

5. HIGH-LEVEL OVERVIEW OF THE PROOF

We now provide some intuition as to why SPECTRE’s procedures indeed guarantee that
transactions can be accepted safely, and that all transactions of honest users are quickly accepted.
We aim at proving Property 4. As mentioned above, this property is easy to translate to the desired

Algorithm 2 Tx0O

Input: G — a block DAG, subG — a subDAG of G which is the past of a (possibly virtual)
block
Output: 7T'x — a hyper-set of valid transactions in &G
1: vote (virtual (G)) < CalcVotes(G)
2 Tx <0
3: for all z1 € subG do
4 for all tx € z; do
5: for all tzy € G Nconflict (tz) do
6: for all zo € Zg(txa) Nanticone (z1,G) do
7.
8
9

if vote, ,, (virtual (G)) > 0 then
break (to line 4 and pick next tx)

if [tza] N T2O(G, past (z1)) # 0 then

10: break (to line 4 and pick next tx)
11: for all [tx3] € inputs (tz) do

12: if [tzs] N TxO (G, past (z1)) = () then
13: break (to line 4 and pick next tx)
14: add tx to Tx

15: return Tz

security properties of transactions (as we do formally in Appendix E). Concretely, we wish to
prove the following statement (in the proposition, Gf“b = UuchonestG):

Proposition. Assume block x was published at time tp,;, (v € Gf:ﬁ), and y not published before

time toce (Y ¢ Gfilz)Y Let T = tgyee — tpub- Then the probability that x will not always precede
y (Pr (Ju € honest,3s > tqc. : voteyy (virtual (GY)) > 0)) decreases exponentially in T.

Proof overview. Assume that the event in which y comes to precede x in some future DAG

occurs. Let s be the earliest moment in time that such an event occurred at some node. Notice

that ¢y cannot be in the past of x or in its future (otherwise their order is determined by the

topology and cannot be reversed). We thus assume henceforth y € anticone ().

The block race after = is published. We first consider the votes of blocks created after the

publication of block x:

 (Almost) all honest blocks created between t,,;, and t,.. vote forever in favour of x < y, as
they have x in their past but not y. Denote by n; the number of such blocks.

o All honest blocks created between t,.. and s vote in favour of < y, as well, by the choice
of s. Denote by no the number of such blocks.

o Denote by m; and mso the number of blocks created by the attacker in the time intervals
corresponding to n; and ny. Honest nodes possess a fraction 1 — a > «a of the computational

“Intuitively, tqc. represents the time at which some node accepted a transaction which appears in block x.

power. Consequently, for any positive constant C, the probability that the relation m; +mgo +
C — (n1 + ng) > 0 will ever be satisfied decreases exponentially with ny. This is typically
analyzed as the probability that a biased random walk on the integers, beginning at C, returns
to the origin (see [13], [17], [18]).

The term mj + mas — (n1 + ng) represents the aggregate vote between = and y, considering
only blocks created after x’s publication. We now show that blocks that the attacker prepared
in advance before x’s publication, in a preparatory “pre-mining” stage, do not give him more
than some constant advantage (which will be counted into C' above).

The pre-mining stage. Honest blocks that were created before was published are typically in
its past (apart from a small set of blocks) and hence have their vote decided by the majority of
votes in their future (as per Alg. 1). Their vote is thus possibly subject to change as the DAG
grows, and as the attacker publishes blocks.

For every block z in the past of x we must therefore consider the number of blocks above
it that vote in favour of = and those that vote against it. Denote by X, the gap between the
number of attacker blocks and honest blocks in the future of z, up to time #,,;. In Lemma 24 we
show that the worst case gap X, (over all blocks z € past (z)) can be modeled as a reflecting
random walk over the nonnegative integers, with bias towards the origin. Consequently, the best
gap that the attacker can secretly gain over a block in past (z) has an exponentially decaying
tail, and, in particular, is bounded by a constant w.h.p.

All in all, as t4cc — tpyp grows, the number ny of votes, or “confirmations”, that = receives
increases linearly, and the probability that the attacker will be able to reveal enough blocks so
that some z € past (x) will have more y < z votes in its future than = < y votes, decreases
exponentially in n;. Since this holds for all z € past (x) uniformly, it implies in particular that
the genesis block has more x < y votes in its future than y < = votes (unless an exponentially
unlikely event occurred). The vote of the virtual block is determined by that of the genesis
block (this is easy to see, and is proven in Lemma 13), completing the argument. O

The proposition above is the gist of Lemmas 14 and 15. In the above sketch, we abstracted out
many additional subtleties and details. For instance, honest blocks that were created D seconds
around pup, tace, Or s may not have contributed votes in favour of . In our formal analysis
(Appendix E) we count these as attacker blocks, accounting for the worst case, and add them to
the aforementioned constant C'. We additionally show how the user can measure n; correctly,
even if the attacker publishes his blocks in an attempt to delay acceptance.

6. RELATED WORK

Previous research has produced several suggestions for protocols that attempt to address the
security-scalability challenge, but all protocols still provide a total order over blocks:

GHOST is an alternative chain selection rule that gradually chooses a tree of blocks until
converging on a single chain [18]. It can be shown that the Liveness property of GHOST can
be attacked, as was demonstrated by [8]. The use of block DAGs was proposed in the Inclusive
work [10], in which throughput was increased by integrating off-chain blocks into the ledger.

Due to the reliance on a chain, Inclusive mitigates but does not avoid the security-scalability
trade-off. The Inclusive paper further includes a game theoretic analysis of the incentives of
nodes to embed different transactions in their blocks (without the ability to coordinate).’

Bitcoin-NG [6] provides a clever chain structure that is composed of two types of blocks: key
blocks that require PoW but contain no transactions, and mini-blocks that do not require PoW
but do contain transactions. Bitcoin-NG manages to obtain a significant scalability increase, but
its key blocks are still generated slowly, hence, confirmation times remain high. Another line of
work bootstraps PoW to instantiate a committee that is later used to run classical BFT protocols.
Examples from this line of research include Byzcoin [9], a work by Decker et. al. [4], Hybrid
Consensus [16], and recently Solidus [1]. Protocols built in this manner are highly scalable,
building upon work in consensus protocols, but lack some of the properties achieved by Bitcoin.
They typically require large committees and require committee members to remain online for
long periods of time, making them susceptible to network isolation and DoS attacks. [9], [4],
[1] additionally fail without recovering if the committee is ever composed of a high fraction of
malicious entities (Bitcoin, on the other hand, is self-stabilizing). Moreover, they require forward
secrecy. If the cryptographic keys of a sufficient fraction of the committee at any point in the
past is compromised, the attacker can create an alternative equally acceptable version of events.

The Algorand protocol [11] is a proof-of-stake based algorithm that uses the ownership of
currency itself to achieve a scalable consensus protocol. It utilizes additional techniques (based
on VRFs) to hide the committee members that take place in the consensus protocol. In contrast,
miners in SPECTRE are not directly involved in any explicit consensus protocol and moreover
can operate with little regard of other nodes’ synchronization status. Honey Badger [12] is an
atomic broadcast protocol that is oblivious to network parameters and does not require tuning
under different network conditions (similarly to SPECTRE). It is set in the classical permissioned
setting where identities of the participants are known.

7. CONCLUSION

In this work we presented SPECTRE, a new cryptocurrency protocol that is inherently scalable.
Unlike Bitcoin and its many variants, SPECTRE is secure against attackers with less than 50%
of the computational power, even when its throughput is increased and the propagation delay
becomes non-negligible. Our results demonstrate that SPECTRE can achieve incredibly low
confirmation times, especially compared to Nakamoto Consensus. Further work to improve
and tighten the acceptance policy we derived can lower confirmation times further. Key to
SPECTRE’s achievements is its willingness to delay the decision regarding visibly double-spent
transactions. It thus solves a weaker problem than traditional consensus protocols. This fact also
makes it less suitable for systems like Ethereum, where a total order over transactions is required

The core algorithm of SPECTRE — the pairwise voting procedure (Alg. 1) — is nontrivial. We
encourage the reader to refer to Appendix A for intuition and illustrations about its operation.

SWe build on this argument, and indeed assume that nodes will maximize their profits by avoiding transaction
“collisions” and will try to embed unique content in their blocks.

(1]

(2]
[3]
(4]
[3]
[6]

(71

[8]
(9]

[10]
(1]
[12]
[13]
[14]
[15]
[16]

(17]
(18]

REFERENCES

Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Alexander Spiegelman. Solidus: An
incentive-compatible cryptocurrency based on permissionless byzantine consensus. arXiv preprint
arXiv:1612.02916, 2016.

Kenneth J Arrow, Amartya Sen, and Kotaro Suzumura. Handbook of Social Choice & Welfare, volume 2.
Elsevier, 2010.

Miguel Correia, Nuno Ferreira Neves, and Paulo Verissimo. From consensus to atomic broadcast: Time-free
byzantine-resistant protocols without signatures. The Computer Journal, 49(1):82-96, 2006.

Christian Decker, Jochen Seidel, and Roger Wattenhofer. Bitcoin meets strong consistency. In Proceedings of
the 17th International Conference on Distributed Computing and Networking, page 13. ACM, 2016.

Christian Decker and Roger Wattenhofer. Information propagation in the bitcoin network. In /3th IEEE
International Conference on Peer-to-Peer Computing (P2P), Trento, Italy, September 2013.

Ittay Eyal, Adem Efe Gencer, Emin Giin Sirer, and Robbert Van Renesse. Bitcoin-ng: A scalable blockchain
protocol. In 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI 16), pages
45-59, 2016.

Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis and applications. In
Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages 281-310.
Springer, 2015.

Aggelos Kiayias and Giorgos Panagiotakos. On trees, chains and fast transactions in the blockchain. Cryptology
ePrint Archive, Report 2016/545, 2016.

Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus Gasser, and Bryan Ford.
Enhancing bitcoin security and performance with strong consistency via collective signing. In 25th USENIX
Security Symposium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016., pages 279-296, 2016.

Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. Inclusive block chain protocols. In International
Conference on Financial Cryptography and Data Security, pages 528-547. Springer, 2015.

Silvio Micali. Algorand: the efficient and democratic ledger. arXiv preprint arXiv:1607.01341, 2016.

Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger of bft protocols. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pages 31-42.
ACM, 2016.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchronous networks.
IACR Cryptology ePrint Archive, 2016:454, 2016.

Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchronous networks.
IACR Cryptology ePrint Archive, 2016:454, 2016.

Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permissionless model. Cryptology
ePrint Archive, Report 2016/917, 2016.

Meni Rosenfeld. Analysis of hashrate-based double spending. arXiv preprint arXiv:1402.2009, 2014.

Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing in bitcoin. In International
Conference on Financial Cryptography and Data Security, pages 507-527. Springer, 2015.

APPENDIX A
INTUITION AND EXAMPLES

In this section we provide some basic explanations and intuitions regarding the operation of
SPECTRE. We focus primarily on explaining the ideas underlying Alg. 1 that is at the core of
the protocol. We later go on to present examples for simple attacks that shed some light on how
resilience is achieved.

Intuition 1 (Vote in favour of visible blocks). If a block z is known by honest participants,
their blocks will include it in their past. Given that blocks vote in favour of blocks in their past

(over other unknown blocks), and given that honest nodes publish their blocks quickly, hidden
attacker blocks lose votes.

Intuition 2 (Majority amplification). Given blocks x, % that contain potential conflicts, blocks
that are generated by honest participants after their publication reference both of them in the
DAG. According to Alg. 1, these new blocks adopt the vote of the sub-DAG in their past with
regards to = and y. Thus, if block = precedes block ¥, additional votes that support this decision
are added, and the attacker will find it more difficult to reverse the vote.

Intuition 3 (Referencing recent blocks is beneficial). Blocks from the past vote according to
their future. Thus if an attacker creates a block that does not reference recent blocks, it is at
a disadvantage compared to other blocks that do (it loses votes from recent blocks it did not
reference and did not “convince”).

Intuition 4 (Votes from the past counter pre-mining attacks). Consider an attacker that creates a
block y, withholds it, and constructs many blocks on top of it over an extended period of time.
After a long while, a conflicting transaction is released to the network, and eventually ends up
in some block x. Block y has many blocks (built by the attacker) that reference it. Thus, if only
votes from the future are counted, block y would prevail even if x is allowed to accumulate
some votes. In SPECTRE, blocks that were created by honest nodes while y was withheld, look
to their future for their votes. These will usually vote in favour of x and will usually outnumber
the attacker blocks that were created when y was withheld (an example of pre-mining appears
in Fig. 3).

Atz

C,

9 10 1|, /OC:erg
S

Fig. 2: SPECTRE coincides with the longest-chain rule when it is applied to “simple” chains
of blocks. In the depicted DAG, the chain ending at block 8 is longer and would be selected
in the longest chain protocol. In SPECTRE each one of the blocks 5,6,7,8 precedes each of the
blocks in 9,10,11. Consider for instance blocks 6 and 10 and the pairwise vote that involves
them. Blocks 6-8 vote strongly 6 < 10, as they see block 6 in their past but not block 10. Block
5 is a weak voter, as it sees neither 6 nor 10 in its past, hence it votes as the majority of its
future (thus voting 6 < 10 as well). For similar reasons, blocks 9-11 all vote 10 < 6. Block
4, at the fork of the two chains, is a weak voters as well, as it sees neither 6 nor 10 in its
past; it therefore votes according to the majority of future blocks. As block 4 sees four votes in
favour of 6 < 10, and three votes in favour of 10 < 6, it will vote in favour of 6 < 10. Blocks
1-3 similarly vote according to their future, and see an increasing number of votes for 6 < 10,
adding their own vote to the result. Thus, the end result is that 6 precedes 10.

A. Equivalence to longest-chain

We now demonstrate how SPECTRE coincides with Bitcoin’s longest-chain rule, in the case
of a “simple” fork between two chains. Consider the DAG illustrated in Fig. 2. In Bitcoin, the
longer chain would be selected. Similarly, in the pairwise ordering of SPECTRE, each of the
blocks in the longest chain 5,6,7,8 would precede each of the blocks in the shorter one 9,10,11.
To see why this is true refer to the caption of the figure.

We now turn to examine two different attack scenarios, which we name double-spending,
and censorship. Recall the requirement from our miner protocol: each miner is required to (i)
reference recent blocks, and to (ii) publish his blocks immediately. Each attack is basically a
violation of one of these requirements. In the double-spending attack, the attacker delays the
publication of a set of blocks (that includes a conflicting transaction), and in the censorship
attack he publishes blocks but “ignores” a certain block and transactions inside it, hoping to
convince nodes that it did not secure enough votes, and thus cannot be accepted.

B. Example of a double-spending attack

Fig. 3 depicts an (unsuccessful) double-spending attack. The attack is composed of three main
phases:
Phase I: Pre-mining. In phase I, the attacker begins building blocks and withholding them from

the network. The first block that is constructed (named block ¥) contains a transaction that will
later conflict with the transaction sent to the honest nodes. Blocks built by the attacker ideally

Transaction X Attacker
is broadcast broadcasts blocks

2 6 8 10
(X<Y) ()@) < (X<Y) (X<Y) (X<Y)
4 12
(X<Y) (X<Y)

1 H 3 5 7 9 11
(X<Y) (X<Y) X" (X<Y) (X<Y) (X<Y) (X<Y)

o©
®
P~

- /

13 14 15 16 17 18
(YC?() (Y<X) H (Y<X) H (Y<X) (Y<X) (Y<X)J (Y<X)

Phase I: Phase Il: attack remains hidden Phase IlI:

pre-mining until merchant accepts race to overtake time

Fig. 3: An example of the voting procedure on a DAG in which a double-spending attack is
(unsuccessfully) attempted. Block x and blocks 6-8 vote strongly © < y as they only see x in
their past, and not y. Similarly, block y and blocks 13-19 vote strongly y < x. In the DAG which
is the past of block 11, each of the blocks 1-5 sees more x < y voters in its future than y < x
voters, hene each of them votes x < y. Block 11 votes (as the virtual block of its past votes),
according to the majority in its past, thus it too votes x < y. A similar argument goes for the
the vote of 11 and 12. Finally, aggregating the vote of all blocks in the DAG, x got more votes
hence x < y.

form a chain, and due to the voting rules in SPECTRE, will all vote y < x (blocks y,13,14).
Blocks built by the honest node are unaware of y (and also of x that is yet to be created), and
will eventually vote according to the majority of future votes. During this phase, attacker blocks
reference honest blocks that are built (in hopes of later convincing them to vote y < x). After
some time, the attacker transmits the transaction to the network, and proceeds to phase II.
Notice that at the exact time that phase I ends, the attacker has more blocks above block 4
than honest nodes have, so it starts at an advantage: it will more easily sway the vote of block
4 towards y < x (this advantage later disappears as honest nodes typically build blocks faster
than the attacker).
Phase II: Waiting for acceptance. The attacker now continues to build blocks in secret. If he
publishes his blocks, then his conflicting transaction will be visible to all, and the double-spend
will be detected. Instead, he waits for block x to receive sufficient weight (in the form of blocks
built on top of it) so that the recipient of the transaction in x accepts it, and provides the attacker
with some service or product. During this phase, attacker blocks that are created (blocks 15-17)
vote y < x, as the attacker is careful to have them reference only his secret chain, and never
indirectly reference block x. Honest blocks created during this phase will typically vote x < y

since y is hidden from them. Some small number of blocks (created before x propagated to the
whole network — block 5 in this example) do not reference x, and so will vote according to the
result of future votes.

Phase III: Race to overtake. Once x was e-accepted by the victim, the attacker wishes to
publish his secret blocks in hopes of causing his conflicting transaction in y to precede x. In
this case, the transaction in x will be considered rejected, and the payment will be canceled
(leaving the attacker with an item he did not pay for). He publishes his secret chain (which
from this point on is referenced by honest nodes), and continues to build upon it. Blocks that
he builds, again do not reference x, and so they vote y < x, supporting his goal. New honest
nodes are for the first time exposed to the conflicting transaction y, and thus vote according to
the result in the sub-DAG in their past.

Why the attack fails. First, notice that the attacker in the above example creates fewer blocks
in each phase than the honest nodes. This will usually be the case if attackers have less
computational power than all honest nodes. “Poisson bursts” in block creation by the attacker
are possible, and this will allow him to overtake the network, but these are less likely if the
attack lasts for a long period of time. The defender can control the length of phase II by waiting
a long while before accepting the transaction, which decreases the probability of such bursts.
If phase II is long enough, « will have more votes in this period than y. Weak blocks in the
past of x will then vote in favour of x, according to this majority. Such blocks that look at their
future begin a cascade: each block further in the past adds a vote that agrees with the majority
of future blocks and thus strengthens the decision. The greater the majority obtained in Phase
II, the less likely it is that the attacker will be able to catch up from behind in Phase III. The
attack therefore depends heavily on successfully swaying the votes of blocks that were created
just before x (e.g., block 4).

It is important to note that an attacker that creates more blocks in expectation than the honest
network will succeed in carrying out this attack. The blocks voting y < = would outnumber
those who vote to the contrary. Hence the 50% threshold in Theorem 3.

C. Example of a censorship attack

Fig. 4 depicts an (unsuccessful) censorship attack. The attack is composed of a single main
phase during which an attacker creates his own blocks, publishes them instantly, but also ignores
(and does not reference) recent blocks created by the honest network. The figure depicts (in stage
I on the left side) the current state of the blockchain (where all blocks are published at this point).
An honest participant that then observes the network and wishes to tell if a transaction in block
x is secure, can see a large number of blocks that do not reference x. These blocks are not
guaranteed to vote in favour of x. An attacker may later insert a conflicting transaction y and
add blocks atop it (this projected attack is depicted on the right-hand side of the figure). These
may potentially sway previously created attacker blocks to vote against x.

The main risk from the censorship attack is that merchants, upon seeing the attacker’s blocks,
will consider transactions in block z not sufficiently secure. This could potentially delay the

Present

3 5 7 L 9
X<V)N X< (X<Y) (X<Y)
2 11
(X<Y) 7 = = — (X<Y)

(X<Y) (X<Y) (X<Y) (X<Y)
7 P

A 4 4

12 13 14 15 16 17
(X<Y) (X<Y) H (X<Y) H (X<Y) H (Y<X) (Y<X) (Y<X)

Phase I: X gains confirmations, but attacker Projected Future attack.
blocks ignore X. (double spend Y appears)

Fig. 4: An example of the voting procedure on DAG in which an unsuccessful censorship attack
is depicted. The left side depicts the current state of the block DAG. The right-hand side depicts
its likely future development. Blocks 12-16 do not add strong votes to x. Can they be convinced
to vote for block y when it appears? Will they further sway other blocks in their past? The vote
of each block in this projected future are depicted: Blocks 2-9 vote strongly for x as they see it
in their past (but not y). Blocks 17-18 similarly vote strongly for y. Block 16 is indeed convinced
to vote for y as more blocks in its future vote for y than for x. Blocks 1, 12-15 vote for x. They
each see more votes in favour of x than votes in favour of y in their future. Blocks 10-11 see
more x < y voters in their past when they make a recursive call.

acceptance of transactions forever. Our analysis of SPECTRE shows that even in this case the
merchants accept transactions quickly (and securely).

APPENDIX B
SIMULATION RESULTS

We implemented the SPECTRE protocol in Python along with an event-driven simulator of
network dynamics. For each experiment we generated an Erd6s-Rényi random network topology
with 20 nodes. Each node forms 5 outgoing links, in expectation. The delay on each link was
uniformly distributed and later scaled linearly so that the diameter of the graph is D (for the
given D). Every point represents the average outcome over at least 500 experiments.

The main benefit of SPECTRE is fast transaction confirmation. The asymptotic waiting times

In(1/¢€) D
)\(1(—/2a) + 15

waiting times, we utilized the online acceptance policy derived by Alg. 7. Accordingly, we stress
that the merchant needs to wait additional D seconds in order to verify that no double-spend
has been released in the past D seconds, as explained at the end of Appendix C.

derived from our formal analysis are in O () In order to measure the actual

How does the delay diameter affect acceptance times? Given that block creation rate is high,
most of the waiting time for acceptance is dominated by the block propagation delay. Fig. 5
depicts the transaction acceptance times of SPECTRE, for various values of the delay diameter
D, and for different security thresholds e. Note that, unlike the Nakamoto Consensus, D affects
the acceptance time of transactions but not their security.

14

—5—¢=0.01
12+ —+—¢=0.001
—£&— ¢=0.000

=
o
T

waiting time (sec)

0 0.5 1 15 2 2.5 3 3.5 4 4.5 5

delay diameter (sec)

Fig. 5: The average time for a transaction to enter RobustTxzO, assuming there’s no visible
double-spend, for A = 10 blocks per second and a = 0.25.

How does the block creation rate affect acceptance times? Fig. 6 depicts the acceptance times
for various values of the block creation rate A, under a constant delay d = 5 seconds. The graph
reaffirms the role of A in our asymptotic bound: accelerating the block creation process allows for
faster acceptance times. For comparison, Bitcoin’s block creation rate of 1/600 implies waiting
times that are orders of magnitudes higher (not plotted).

70 T T T

—0—-¢=0.0001
601 %5 ¢=0.001 | 1
—0—¢=0.01

waiting time (sec)

0o 1 2 3 4 5 6 7 8 9 10
A (blocks per sec)

Fig. 6: The average time for a transaction to enter RobustT'xO, assuming there’s no visible
double-spend, for d = 5 seconds and a = 0.25.

Can an attacker delay acceptance? We now turn to demonstrate the effect of censorship
attacks in which some dishonest nodes publish blocks that do not reference other miners’ blocks.
Recall that the Weak Liveness property of SPECTRE (Proposition 3) guarantees fast acceptance
of transactions that are not visibly double-spent, even in the presence of a censorship attack.
However, such an attack still causes some delay in transaction acceptance, but this delay is
minor for small attackers. In Fig. 7 we quantify this effect, by comparing the acceptance times
in “peace days” to those under an active censorship attack. The parameters here are d = 5
seconds, A = 10 blocks per second, and ¢ = 0.01. The results display a modest effect of the
attack, and they show that in order to delay transaction acceptance by more than 5 to 10 seconds
an attacker must possess a significant share of the computational power in the network.

20

20k |~©-under no attack i
—%— under active attack

acceptance time (sec)

O L L L L L L
0 005 01 015 02 025 03 035 04 04

« (fraction of hashrate)

Fig. 7: The average time for a transaction to enter RobustT'xO, assuming there’s no visible
double-spend, for d = 5 seconds, A = 10 blocks per second, and € = 0.01, in the presence and
in the absence of a censorship attack.

How does ¢ decrease for various sizes of the attacker? Once an honest node e-accepts a
transaction, there’s still a small risk (¢) that it would eventually be rejected. We show that the
probability of this event vanishes quickly, even for an extremely capable attacker (e.g., with
a = 0.4 of the hashrate). This is illustrated in Fig. 8, assuming d = 5 seconds and A = 10
blocks per second (notice that the y-axis is in log scale).

How tight is our security analysis? The analysis on which Alg. 3 relies makes several
worst-case assumptions in order to bound the probability of a successful attack, e.g., that the
attacker can broadcast blocks to and receive blocks from all nodes without any delay (see
Appendix E, mainly Lemmas 14 and 20). Accordingly, the analysis is not tight, and in reality
attacks are in fact less likely to succeed. In Fig. 9, we depict the comparison between the
analytical bound and two different empirical simulations. In these simulations we explicitly
generate blocks for the attacker and simulate the optimal double-spending attack. We repeat the
experiment 10,000 times for each point in the graph, and measure the empirical success rate.
The simulations assume two types of attackers: a worst-case attacker that is able to transmit
and receive blocks with no delays, and a more realistic attacker that is connected to other nodes
with typical delays. We compared the fraction of successful attacks under these setups to the
analytical risk calculated by SPECTRE’s policy (Alg. 7).

The results show that the risk considered by SPECTRE’s RiskT xzAccept indeed upper bounds
the actual risk, and that transactions are even safer than we guarantee formally.

21

—%*—a=0.1

—%—=0.25|
—0—a=0.4

10-60
0 5 10 15 20 25 3(

waiting time (sec)
Fig. 8: The probability of a successful double-spending attack, as a function of the waiting time

before acceptance, under d = 5 seconds and A\ = 10 blocks per second, for o = 0.1, 0.25, and
0.4. The probability here is the result of the calculation performed by Alg.3.

—=-analytical bound
—~—empirical (worst case
—©—empirical (with delay)

0.67

waiting time (sec)

Fig. 9: The analytical vs. empirical probabilities of a successful double-spending attack, as a
function of the waiting time before acceptance, under d = 5 seconds, A = 10, and o = 0.25.

APPENDIX C
ADDITIONAL ALGORITHMS

In Sec. 4 we described the way SPECTRE pairwise orders blocks, and how this order is used
to construct the subset of accepted transactions. In this section we describe the procedures of

22

the second layer of SPECTRE, which allows users to measure the robustness of this order, and
to translate this into the robustness of accepted transactions.

A. Robustness of the block pairwise ordering

Assume that in the order of the current observable DAG the block x precedes y. We need a
method to measure how likely is it that this relation will persist forever. Algorithm 3 outputs an
upper bound on the probability that an attacker will be able to reverse the relation z < y. When
the argument y is unspecified, the interpretation of the algorithm’s output is x’s robustness
against an unseen block (withheld by an attacker or yet to be created). In the algorithm,
gap (b,G) denotes the size of the set {z € anticone (b,G) : vote,;, (virtual (G)) > 0}. The
notation (G, z, K') will be explained in the paragraphs that follow.

In the algorithms below, we omit for the sake of brevity the following parameters which the
user must set by himself: o« — maximal size of attacker, d — upper bound on D (the recent delay
diameter in the network), A — the block creation rate

Algorithm 3 Risk (offline)
Input: G =G} — some node v’s current block DAG, x — a block in G, y (optional) —

time_now
a block in anticone (z, G)
Output: risk — an upper bound on the probability that will not recede y in some point in
the future (Pr (Ju € honest,3s > time_now : vote, , (virtual (GY)) > 0))
1: if time_now < publication(z) + 2 - d then
2 return 1
3. K < [/|future (z,G)|]
4: if NULL = y then
5: g ‘future (z, G)‘
6
7
8

M+ 0
. else

g < Zz’efuture(a:,G) UOtey@ (Z,’ G)
M «+ Hz € future (z,G) : voteyy (2,G) = +1 A gap (2, (G, 2, K)) = 0}‘

N

10: ng < |future (z,G)| — M

11: j « gap(z,G)+ K

12: 1+ K

13: risk fpre_mine(l) + fpre_pub(K) + fpost_pub (M> + fpost_mine (n:m 9, ja l> M)
14: return risk

In line 13 the algorithm uses several functions whose precise definitions we defer to later
sections. An explicit formula for fy,.c_pup is given in (54), for fyost_pus 18 given in (50) and (52),
and for fpost mine 1S given in (5). Preceding Lemma 24, we provide a method to calculate
fpre_mine numerically.

23

Intuitively, the function fyrc_mine upper bounds the probability that the attacker has gained
an advantage larger than [during the pre-mining phase (i.e., up until the creation of z). The
function fpost_mine upper bounds the probability that the attacker will ever be able to create
enough blocks so as to reverse the relation x < y. In essence, fpost_mine 15 an adaptation of a
formula from [17]. According to our version of the formula, if during the interval [time(z), tacc]
(where t,.. represents the current time) honest nodes created n blocks, then (”_71;””) A" (1—a)™
is the probability that the attacker has created during this interval m blocks. If g aggregates all

the votes of blocks in future (z, G), then the probability that the attacker will be able to reverse
max{g—m,0}

the majority’s vote is roughly (ﬁ . The combined expressions produce an upper
bound on the success-probability of an attack.®

The main challenge here is to correctly measure n. This is a difficult task, as Algorithm 3
uses only structural information (with the exception of making sure that = has been published
for at least 2 - d seconds) and does not rely on measurements of blocks’ timings. Naively one
would use n =~ | future (x,G)| to upper bound blocks created after publication(x). However,

there are two main difficulties:

« The block = might have been created by a dishonest node and withheld by it. In this case,
there might have passed a long time between its creation and its publication, which implies
that | future (z,G)| alone may be well below n. To avoid underestimating n, we upper
bound the number of honest blocks in anticone (z, G), by the variable j, and add it to our
count (the addition is done inside fpost mine (N, g, J, 1, M)).

The function fp, ¢ pup upper bounds the probability that we have underestimated j.

« By publishing his attack blocks, the attacker can increase the size of future (z,G) and
cause us to overestimate n. This would result in an upper bound on the success-probability
of an attack that is not tight enough, which would allow an attacker with a large value of
« to delay acceptance indefinitely. Risk overcomes this problem, by recognizing attacker
blocks and excluding them from the count of n. This is done as follows.

Let G be a block DAG, b a block in G, and K a whole number. The DAG (G, b, K) is
obtained by creating a new chain zi, ..., zxg of K hypothetical blocks, connecting an edge
from z; to b and replacing every edge (z,b) € G with (z,zx) € G. Essentially, this adds
to the DAG K artificial voters which vote strongly = < y, against any y ¢ past (z,G).
In line 9, the algorithm checks whether gap (z, (G, z, K)) = 0, i.e., whether there exists
a block in anticone (z) that precedes z in the modified DAG (G, z, K). In the case of a
negative answer, z is counted into n (in line 10).

The following property explains why this procedure is useful: If we add K voters in favour
of an honest block, for some small K, then no other block will precede it in the pairwise
ordering (apart from its past set). This is restated formally and proven in Lemma 29.

The calculations we use are quite more involved, as will be detailed later on. The reason why we aggregate in
g votes from future (x,G) alone — rather than votes from the entire DAG — was discussed in Sec. 5. Essentially,
observe that counting all votes — including votes of blocks in past () — is not meaningful, as such voters might
reverse their vote as future events unfold. Rather, it is useful to measure how robustly voters in past (x) support
x <y, which is captured by our calculations.

24

The function f},s: pus upper bounds the probability that we have underestimated the number
of honest blocks in future (x,G).

B. Robustness of transaction acceptance

The next step is to translate robustness of blocks (calculated by Risk) to robustness of
transactions. This transition is implemented similarly to the transition from the (non-robust)
ordering of blocks (Alg. 1) to the (non-robust) accepted set of transactions (Alg. 2).

The RiskT xAccept procedure (Alg. 4) takes as input G and ¢z (and an additional argument)
and returns an upper bound on the probability that some honest node will not e-accept tx. The
main task of RiskTxAccept is to properly account and aggregate the error bounds that Risk
induces. As can be easily recognized, RiskTzAccept and RiskTxReject (Alg. 5) are mirror
images of each other. While RiskT x Accept upper bounds the probability that a given transaction
will ever be removed from the accepted transaction subset, RiskT'zReject upper bounds the
probability that a given transaction will ever be included in this subset. This is particularly
vital for the case where two conflicting transactions are related topologically, i.e., tz2 € y and
tz1 € x € future (y), but txy is not in the accepted set (due to some previous conflict). In this
case, although the block containing txs precedes that containing ¢z, we accept tx;. It can be
further e-accepted if the rejection-status of txo is robust, as calculated by RiskTxReject.

Algorithm 4 RiskTxAccept
Input: G =G} — a block DAG,

time_now
Output: risk — an upper bound on the probability that some honest node
in some future point in time will accept no transaction in [tz] N subG
(Pr (3u € honest,3s > time_now, [tx] N subG N RobustTxOGY = ()))
minrisk < 1
for all z; € Zg([tz]) N subG do
risk < Risk (G, z1,0)
for all tzo € G N conflict (tz) do
for all 2, € Zg(txe) Nanticone (z1,G) do
risk < risk + Risk (G, z1, 22)
risk < risk + RiskTzReject (G, [tza], past (z1))
for all [tz3] € inputs (tx) N past (z1) do
risk < risk + RiskTxAccept (G, [txs], past (z1))

10: minrisk < min {minrisk, risk}

R A A i > o

11: risk < minrisk
12: return risk

Building on these procedures, we now present the RobustTxO procedure of SPECTRE. The
user should provide as input the entire DAG that he currently observes (&, and the maximal error
probability he is willing to tolerate e. As mentioned above, the user should also set the o, d, A
parameters; these will be used in the auxiliary proceudres of RobustTxO described above.

25

Algorithm S RiskTxReject

Input: G - a block DAG, subG — a subDAG of GG which is the past of a (possibly virtual)
block, tx — a copy of the transaction to defend
QOutput: risk — an upper bound on the probability that some honest node in some future point
in time will accept a transaction in [tz] N subG.
1: risk <0
2: for all z; € Zg([tz]) N subG do
3: mainrisk < 1
4 for all tzo € G N conflict (tz) do
5 for all 2o € Zg(tx2) Nanticone (z,G) do
6: manrisk <— min {minrisk, Risk (G, z2,21) }
7
8
9

minrisk < min {minrisk, RiskTxzAccept (G, [tza], past (z1))}
for all [tzs3] € inputs (tz) do
minrisk < min {minrisk, RiskTxzReject (G, [txs], past (z1))}
10: risk < risk + minrisk
11: return risk

Algorithm 6 RobustTzO
Input: G = G} — a block DAG representing the current DAG observed by the node

running them;?g)r;(i)ﬁlm, € — the maximum risk the user is willing to tolerate, & — maximal
size of attacker, d — upper bound on network’s delay diameter, A — the block creation rate
Output: a set of transactions that are guaranteed to remain accepted, as defined by Property 2
1: RobustTx <+ ()
2: for all z € G do
3: for all tz € z do
if RiskT'zAccept (G, [tz] NG) < € then
add tz to RobustT'x

AN

C. Online policy

We now present an alternative implementation of Risk, which requires that the user be online
at the time when his block gains confirmations. This assumption is highly reasonable for many
practical scenarios, e.g., a cashier serving a continuous line of customers. The main benefit
of the online version is that it relies on a tighter analysis, and therefore accepts transactions
slightly faster. We now confine ourselves to the case where there is no visible double-spend
(i.e., y = NULL).

The fact that the user is online can be utilized in two ways: First, any block that the user
receives after received’(b) + 2 - d and does not belong to future (x) can be marked by him
as an attacker block.” Second, the user can estimate the number of hidden attacker blocks by

"received®b is the time at which node v received node b. Below, for all 7, GP*® is defined GP*® := Uyen GY.

26

measuring the time that passed since the creation of .
Below we describe the online version of Risk. The algorithm takes as input node v’s DAG
and the block = to defend, and returns an upper bound on the probability that some block

y € GE2\ GPY will ever precede it.

Algorithm 7 Risk (online)

Input: G} — the block DAG that v obesrves at time ¢, x — a block in G}
QOutput: risk — an upper bound on the probability of block x not preceding y at any point in
the future, for some y € GR*\ GP°
1: if time_now < publication(z) + d then
2 return 1
3: T « time_now — received’(x)
4: Gy +— G}fecewed,,(x)H.d U future (x,Gy)
51 g 4 My, commons o 6 | future (27, Go)|
6
7
8
9

. risk < risk_hidden(T, g)
. if risk < ¢ then
return ACCEPT
: else
10: return WAIT

The definition of risk_hidden appears in (45)-(46). In practice, as node v may have a partial
view of GEY \ GV b in order to use Alg. 7 the user must wait additional d seconds and verify
that con flict (tz)NGY, ; = 0, i.e., that the attacker did not publish a double-spend in the interval
[t — d,t]. The correctness of the online policy modification is proven in Corollary 27.

APPENDIX D
IMPLEMENTATION DETAILS

Minting. In SPECTRE, any block whose target meets the required value TARGET — as will
be defined below — receives the same minting reward. If its target is higher than TARGET (i.e.,
it is solved with an easier difficulty) by a factor of (1 4 §) at most, then its reward is reduced
by the same factor. The parameter § represents the protocol’s tolerance to blocks mined with an
outdated difficulty. Thus, if for instance ¢ is chosen to equal 2, then blocks with a target value
of 2-TARGET or 3-TARGET are valid, and their minting rewards are reduced by a factor
of 2 or 3, respectively; blocks with a target higher than 3- TARGFET are invalid and discarded.
We now explain how TARGET is defined and readjusted.

Retargeting. Similarly to Bitcoin and other PoW-based systems, the difficulty of block creation,
represented by TARGET (Subsection 4.1), must be occasionally adapted. Varying network
conditions, and changes in the amount of computational resources invested in the system, require
we limit the number of blocks created per second, to avoid network congestion. In Bitcoin this
is done as follows: Every 2016 blocks, the next block — which we call the reference block —
is mined according to an adjusted difficulty. The new difficulty is obtained by taking the time

27

that elapsed since the previous reference block (using the timestamps written inside each block)
and plugging it into the retargeting formula. The output of this formula is the new value of
TARGET that the new reference block should be mined with.

We adapt this scheme to SPECTRE: Let z,,_; be the previous reference block. Every new
block x, that has the property that ’past (xn) N future (J;n_l)’ = 2016, is a candidate
to become the new reference block. In case additional candidates exist, we choose the
one with the minimal dist_gap, with some arbitrary tie-breaking, where dist_gap(b,G) :=
mingey gap (b, (G, b, K)) = 0. The variable dist_gap(b,G) represents the minimal /X such
that adding K votes in favour of b makes its gap equal zero. This guarantees that among a set
of candidates to become z,, (satisfying the above property) one and only block would be chosen
as the reference block succeeding x,_;. In particular, as explained in Appendix A, an attacker
block that was withheld for a while will have a large dist_gap and will not be eligible as a
reference block. Furthermore, an attacker block that was mined before x,,_1 will not affect the
next retargeting, as it cannot belong to future (z,—_1).

The new difficulty, with which the new reference block should be mined, is given again
through the formula that uses the time that elapsed between x,,_; and z,, to update TARGET.
The formula should aim for a predefined A for which nodes are believed to have sufficient
bandwidth, e.g., 1 MB per second. This difficulty dictates the difficulty for every block in
antipast (xy,) \ anticone (xn4+1), where x,41 is the next reference block. Every block in this
set should be mined according to the same difficulty as x,.

If block b € antipast (z,,) \ anticone (x,41) was solved with an easier difficulty than that
dictated by the reference block x,, then b is still considered valid, provided that its outdated
target is at most (1 + J) of the target of x,, (i.e., a difficulty easier by at most (1 + 0)). The
parameter 0 is the protocol’s tolerance threshold. The minting reward of b is reduced by the
corresponding factor, as explained above. Blocks whose target exceeds the required one by a
factor higher of (1 + §) are ignored and discarded.

Block headers. In order to incorporate all blocks into the DAG, every block embeds in its header
pointers to the hash of previous blocks. No redundancies are permitted, hence only leaf-blocks
of past (b) should be pointed at by the header of b. The implication of this is that a block’s
header is of size =~ 50 + d - A - 32 Byte. Therefore, there is a limit to the extent at which block
size could be reduced and block creation rates increased — at extremely high rates, the overhead
of the block header becomes significant relative to the number of included transactions. We
note, additionally, that in case the current observable DAG has too many leaves (whether by a
rare burst in block creations or by an attacker releasing many outdated blocks), the next block
creator can cap the number of leaf-blocks it points at. Blocks left out by this block will later
integrate into the DAG, as future blocks will have available space in their headers and will be
able to point at these blocks and include them.

Efficient implementation. Our current implementation of SPECTRE uses naive calculations
which are usually inefficient, specifically, cascading the votes all the way to the genesis

8Some new notation is used in these paragraphs: future (x) := future (x) U {z}, and similarly for past (x) and
anticone (x). In addition, antipast (z) = future (x) U anticone (x), and similarly for antifuture (z).

28

block. Several efficient implementations are possible. Designing such an efficient implementation
requires attention to CPU attacks, in which the attacker exposes peculiar structures of outdated
blocks in order to cause other nodes to perform extensive computation. It can be shown that these
attacks are highly costly to the attacker. We have an implementation of SPECTRE’s procedures
that works in O(d - \) in expectation, compared to the naive implementation with O(|G|*). We
leave its full specification, and a proof of the cost of CPU attacks on it, to future work.

Transaction fees. The body of a transaction specifies the amount transferred from the payer to
the payee. The transaction-fee specifies the payment from the payer to the miner whose block
contains the transaction. We regard these two parts as separate transactions, in the following
sense. Assume that ¢tz € x, and denote by fee(tx, x) the transaction representing the fee-payment
of tx to the creator of block x. Assume now that two copies of tx appear in two different blocks
x,y. Then the body is considered simply as a copy of the same transaction (recall the notation
[tz] from Sec. 2), whereas the transactions fee(tx,x) and fee(tx,y) are considered a conflict,
i.e., a double-spend. Accordingly, as in the ordinary scheme of SPECTRE, the fee is granted to
(the creator of) block x iff tx € TxO(G) and x defeats all other blocks that contain ¢tz as well.

This rule can potentially harm miners, in the special case when the relation between z
and y does not become robust (SPECTRE does not guarantee robustness if these blocks were
published in time proximity and an active attack is taking place). We address this problem by
introducing settlement transactions. A settlement transaction is a voluntary transaction which
both the creators of = and y sign after they observe that their blocks conflict. We denote it
settlement(x,y). The interpretation of settlement(x,y) is that the fees from all of (or part of, if
the parties involved so choose) the transactions in 2Ny should be divided evenly between blocks x
and y. settlement(x,y) essentially overrides fee(tx,x) and fee(tx,y). When settlement(x,y)
appears in some block z in the DAG G, it is considered accepted (i.e., a member of TzO(G))
iff x,y € past (z) and z precedes every block that contains a transaction spending fee(tz,x)
or fee(tx,y). Therefore, once one party has spent its fee before it belonged to it robustly, it
won’t be able to settle later (w.h.p.). Miners are therefore advised to wait for their transaction-fee
rewards to become robust, or to initiate a settlement, before spending these rewards.

Note that this scheme can be used to settle conflicts between blocks of multiple parties
simultaneously. Furthermore, the settlement scheme need not be confined to conflicts regarding
fees, and can be applied to any double-spend.

APPENDIX E
THE COMPLETE PROOF OF THEOREM 3

Theorem 3. For any D - \, SPECTRE’s security threshold is 50%.

A. Additional notation

e While honest was defined as the set of honest nodes (Section 2), we here abuse notation
and use it also to denote the of blocks created by honest nodes. The context will make our
use of honest unambiguous.

29

o GYTocle .= U, nGY; this is the DAG as observed by a hypothetical oracle node. Similarly,
Gf“b = UychonestG7; this is the DAG as observed by a hypothetical node that has 0 delay
from and to honest nodes.

e node(b) € N — the node that created block b, time(b) — the time of its creation,
publication(b) — the time at which node(b) begun the transmission of b to some other
honest node, received’(b) — the time at which node v received b.

o future (x) := future (x) U{z}, and similarly for past (x) and anticone (x). In addition,
antipast (z) = future (z) U anticone (x), and similarly for antifuture (z)

o EY(x,y) = the event where vote, , (virtual (GY)) = +1.

o &¢(z,y,€) := the event where Risk (G, z,y) <e.

o AY(tz) := the event where tx € TzO(GY).

o Al (tz,e€) := the event where TzO € RobustTxO(GY,¢).

o M (x,y,€) := the event Nychonest Nse(t,o0) €5 (T, Y, €), and similarly for At‘ﬂoo(x,y),

A (ta,), and A% (tz).
e pasty (z,G) := past (z,G) N honest, and similarly for the future and anticone sets.
o Vasy(G) := {2z € G|z is a strong voter w.r.t. (z,y) and wvote,, (2) = —1} (Vy<y(G)
depends on z,y).
o Poiss(0,§) :=e 0 %
o If £ is a set or an event, its complement set or event is denoted £ C,
o If z is a real number, x is defined by max {0, z}.

B. Formal claims

We now take apart Theorem 3 and write a separate proposition for each of the security
properties Safety, Progress, and Weak Liveness, and for Consistency. In order to prove
Theorem 3, we need to prove the following propositions:

Proposition 4 (Consistency). The accepted set is consistent: For any history G,
1) if tx € TxO(G) and txs € inputs (tz) then tzy € TxO(G).
2) if tv € TxO(G) and txo € conflict (tx) then txa ¢ TxO(G).

Proposition 5 (Safety). For any v € honest and time t, if tx € RobustTzO (¢,G},d", o)
then, with probability of at least 1 — €, there exists a T > t such that Yu € honest,Ys > 7 :
RiskTxzAccept (tz, G¥,d", o) < €, and the expectation of T —t is finite.

Proposition 6 (Weak Liveness). Let t be the current time, and assume that tx € Gfuz). Let
1 >t be the earliest time after t at which an honest node e-accepts tx. Then, conditioned on
the event where con flict (tx)N fob = () and on the event where for all txzo € inputs (tz), tzy
remains e-accepted forever (by some honest node), the expectation of 1 —t is finite.

We add and prove another proposition, which states that after robustly accepting a transcation
for a certain ¢, it becomes (w.p. of at least 1 — €) robustly accepted for all € < ¢ as well:

30

Proposition 7 (Progress). For any v € honest and time t, if tv € RobustTxzO (e,G},d", a)
then, with probability of 1 — € at least, for any ¢ there exists a ¢ such that ¥s > ¢ :
RiskTxAccept (tx,GY,d", o) < €, and the expectation of ¢ — t is finite.

To each of the last three propositions we write a matching one which regards robustness of
blocks (rather than that of transactions).

Proposition 8 (Safety (blocks)). For any v € honest, if Risk(z,y,Gy) < € then, with
probability of 1—e at least, there exists a T such that Yu € honest,¥s > 7 : Risk (z,y,G¥) < ¢,
and E[T — t] < oo.

Proposition 9 (Progress (blocks)). For any v € honest, if Risk(x,y,G}) < € then, with
probability of 1—e at least, for any € < e there exists a ¢ such thatV's > ¢ : Risk (z,y,GY) < €,
and E[¢p — t] < oo

Proposition 10 (Weak Liveness (blocks)). Let t be the current time, and assume that x € GY ub
Let 1) be the first time s at which for some honest node v: Risk (x,y,G?) < €. Then, conditioned
on the event where y ¢ fob, the expectation of Y — t is finite.

We prove the correctness of these propositions in separate subsections below; Consistency
will be proven in a later subsection. But first, we begin with three simple lemmas.

C. Basic properties
The two following lemmas are immediate from lines 7-14 of Algorithm 1.

Lemma 11. Topological relations are unanimously agreed: If G = (C, E) is a block DAG, and
(y,x) € E, then ¥z € G : votey, (2,G) = —1.

Lemma 12. A block’s vote regarding block(s) in its past depends only on its past, hence remains
fixed forever: Let G1 and Go be two block DAGs, and assume z,y,z € G1 N Ga. If {z,y} N
past (z) # 0 then votey , (2, G1) = votey y (2, G2).

Accordingly, we say that z is a strong voter w.r.t the pair (x,y) if z € future (z)Ufuture (y),
and otherwise it is a weak voter.

The following Lemma shows that the vote of the genesis coincides with the vote of the virtual
block. Intuitively, the genesis votes according to the majority vote in the DAG excluding itself,
and amplifies this majority, which in turn dictates the virtual block’s vote.

Lemma 13. genesis’s vote is the final vote: vote (virtual (G)) = vote (genesis, G).

Proof. Suffice it show that if vote, , (genesis, G) > 0 then vote, , (virtual (G)) > 0. If (z,y)
are related topologically then by Lemma 11 all votes agree unanimously on their ordering, and

31

in particular vote, , (virtual (G)) = vote, , (genesis, G) > 0. Otherwise, it cannot be the case
that x or y are the genesis block, hence the genesis is a weak voter, and by line 14 we obtain

votey y (virtual (G)) = sgn (Z voteg y (2, G)) = (1)

zeG
sgn | voteg , (genesis, G) + Z voteyy (2,G) | > 2)
z€ future(genesis,G)
sgn Z votegy (2,G) | = votey ,y (genesis, G) > 0, 3)
z€ future(genesis,G)
hence vote, ,, (virtual (G)) > 0. O

D. Overview of the proof of Safety (blocks)

Proposition 8 claims essentially that all nodes will forever agree on the (robustness of) the
order x < y, provided that it was sufficiently robust in the DAG observed by some honest
node. This is the main and most involved part of the proof. The rest of the propositions follow
from it, and their proofs are rather self explanatory. Since its proof is involved and occasionally
technical, we begin with an overview of its structure.

In order to simplify the analysis, we need to make some worst case assumptions regarding the
behaviour of the attacker. Lemma 20 proves that these are indeed worst case assumptions, namely,
that they indeed represent the optimal attack. The vote of each block under our modification is
denoted p_vote (), a notion which we describe formally in Subsection E.6.

In the next central lemma we show that, provided that the aggregate vote in future (x) is
sufficiently biased in favour of x < y, the genesis block — hence the virtual block (by Lemma 13)
— will vote z < y. This proves that, roughly speaking, the vote of recent weak voters cascades
through the DAG and convinces older weak blocks, forming thus the genesis’s vote. The way we
prove this is by choosing a specific weak voter z;,..(in case x is an honest block, z;,¢ =), and
making sure that its vote is sufficiently robust so as to guarantee that (i) it will not be reversed,
and (ii) it will cascade all the way to the genesis. Consequently, a successful attack (namely,
a reversal of z < y in the DAG observed by some honest node) requires that the attacker add
more blocks to future (24) than the honest network adds (up to some additive term), in some
time interval.

The following lemma formalizes these observations. It uses some parameters (h, j, etc.) that
only an oracle can have full knowledge of. We will later show how in reality a node can infer
the robustness of block relations without having access to these parameters.

Lemma 14. Let t > publication(z) + 2 - d. Let zj4te be the latest block in pasty, (x). Denote:

o h:= ’anticoneh (zlate, Gf”’“de)’
o« ji= ‘futureh (zlate,GtOMde) \ futurep, (x,G?)‘

32

o m = !futurea (zlate, G;’T‘lde) \ future, (z, Gf)}
o ki := ‘Gﬁ’fﬁfa N honest)
o | :=max cgoracienponest { future, <z, sze(z,am)) ‘ _
)futureh (z, sze(zlaw» }
© 9= cTuture(x,Gy) VOtey.a (z2,GY)
Then,

g'fﬁoo(x,y)c - {33 > t,3u € honest s.t. ’Gﬁ’s] N malicious‘
>)Gﬁ’s}ﬂhonest‘+g—2-h—j—k1—l—m}.

Given the result of the previous lemma, we can upper bound the probability that the order
of x < y will be reversed. This result resembles the conventional analysis of Bitcoin’s security:
The greater number of blocks currently pointing at x (and in SPECTRE: voting for x < y),
the less likely it is that the attacker will be able to win the block-count race and reverse the
decision.

Lemma 15. Given the parameters of Lemma 14,

Pr <§tail>oo(x’ y)c) < i Poiss(d Ca)‘7 h,)
h’=0

a (9—2-h—j—k1—l—m—h")*"
j Y '

An ordinary node does not typically know for sure the values of the parameters assumed in
Lemma 14. The next corollary shows that the result of that lemma (and the one that follows)
applies when replacing these parameters with proper bounds thereof. We will later discuss how
a node can obtain such bounds.

Corollary 16. If
« j> }anticoneh (w,Gfmde)‘
o | > max,cqgoractenponest | |future, (z, Ggme(zlm)ﬂ -
)futureh (z, G}:Lime(zlm)> ’}
o Ny > futurey, (x, G?mde)
e 9= Zzefuture(z,G;’) votey,u (Z? G?)

33

Then
(55200(3379)8) <)
Z Poiss((Q - -d- A, k‘ ipozss 1 — a) A, h)
k=0 h=0
>

m=0

(nac +j+h+m_1> '(1_a)nm+j+h'am'
m

(07

(9—2-h—k—j—l—m)"
1— a)

We adjust the above results to the case where some blocks in future (z,G) are known to
belong to the attacker. Here we assume that this knowledge is granted to us by a hypothetical
oracle. Later on, we will see how attacker blocks are recognized by Algorithm 3, w.h.p.

Corollary 17. If in addition to the assumptions of Corollary 16 we assume that M <
| future, (z, GY)|,

(531500(:6 v | |futures (e, GF)| = M) <

Zpoiss((Q - -d- A k Zpozss 1 - 04) Av h) (5)
=0

1
0o .
h f—1 , /
(Z <nx +7 +m/+ m)) (1 . a)nm—l—]—l-h . am) .
m’'=M

oo .
Z (nx+]+h+m_1> '(1_a)nz+j+h‘am.

m
m=M
< N)<g—2-h—k—j—l—(m—M>>+

l—«o

We denote the RHS of this inequality by fpost mine (N, 9, 7,1, M).

So far, our analysis assumed that we are given some proper bounds over the parameters from
Lemma 14. Lemmas 24, 29, and 31 show how to appropriately bound these parameters. For each
of these parameters, a separate error function is defined, which upper bounds the probability
that it does not serve as a correct bound. These error functions deteriorate exponentially fast,
by Lemmas 25, 30, and 32. Algorithm 3 aggregates these error functions into the total risk that
it outputs.

The parameters are:

o [— the pre-mining lead that the attacker obtained before the publication of x, with error

function fpre_mine({(GY)), calculated numerically in Subsection E.6.1

e n, — the number of honest blocks in future(x,G}), with error function

fpost_pub (| future (x, G})|), defined in Corollary 29 (Inequality (52)), and

34

o j —the number of honest blocks created after time(x), with error function fy,re pup (7;(GY)),
defined in Lemma 31 (Inequality (54)).
While we have previously shown that n, properly counts all honest blocks, we now show that
it does successfully exclude almost all attack blocks. Without such a guarantee, weaker attackers
would have been able to publish their blocks and delay acceptance indefinitely.

Lemma 18. Conditioned on the event aaﬁoo(a:,y), there exists a time T € [t,00) such that
Vs > 7: M(oracle®,s) >)futurea (z, Ggrede™) N Gﬁf‘;}de \ Vz<y(G;’mczeu)’ — m*, for some
m* that remains fixed after T (and with Elm*] determined by the events up to time t).

The above analysis (particularly Lemma 14) has upper bounded the probability that the attacker
would be able to reverse the relation z < y. We now show that, conditioned on the order
remaining = < ¥, the error function fpost_mine (Which upper bounds the probability of this order
ever reversing) vanishes as well, which in turn implies that their order would be considered
robust by all honest nodes.

Lemma 19. There exists a i) € [t, 00) such that Pr (Sfﬁoo(L y, e8| £ (x, y, e)) < €. Moreover,
Ey—t] <e

We have thus shown that if the output of Algorithm 3, as run by some honest node, was
smaller than e then with probability of at least 1 — ¢, any honest node running Algorithm 3 (after
some time) will get a result smaller than €. This completes the proof of Safety w.r.t. blocks.

E. Proof of Consistency

Proof. Part I: We first prove that for any DAG G, and for any tz1,txe € T if txg € inputs (tz1)
and [tx1] N TxO(G) # 0 then [tzo] NTzO(G) # 0.

Assume tzy € inputs (tz1) and [tz1] N T2O(G,G) # 0 and let tzy € [tz1] N TzO(G, Q).
Consider the iteration of the second loop (line 4) over tx = tx1. As tx € TxO(G,G) it must
be the case that during this iteration the algorithm has reached line 14. This means that for any
[tzs] € inputs (txy) it hasn’t visited line 13; in particular for [tx3] = [tx2], the condition [tx2]N
Txz0 (G,past (z1)) = 0 has failed, ie., [txe] N TzO (G,past(z1)) # 0. To see that
TzO (G, past (z1)) € TzO (G, G) observe that (i) during the run of the algorithm no transaction
is ever removed from 7' X, and that (ii) for any 2z; € G N subG, the operations (in lines 4-14)
of TzO (G, subG) and TxO (G, G) are identical; thus any addition of a transaction in line 14
in TzO (G, subG) occurs in TzO (G, G) as well. In particular, [tzs] N Tz0 (G, G) # 0.

Part II: We now prove that for any DAG G, and for any tx,txe € T if txg € conflict (tx)
and [tx1] N TxO(G, G) # 0 then [taxe) N T2zO(G) = 0.

Assume that txo € conflict (tx1) and [tx1]) N T2O(G,G) # 0 and let tx; be an element in
the latter intersection. Assume by way of negation that there exists a tzo € [tzo]) NT2O(G, G).
Then during the iteration of the first loop (line 3) over some instantiation 2{ of z; such that

9 .
€ here simply represents a value greater than fpre_mine + fpre_pub + fpost_pub + fpost_mine-

35

tr, € z%, and of the second loop (line 4) over tx, the algorithm has reached line 14. In

particular, it did not reach line 10, hence 2% ¢ past (21). For the symmetrical argument, 2] ¢
past (2}), which implies that z§ € anticone (z{,G) (and z{ € anticone (z{,G)). Now, either
vote,: .2 (virtual (G)) > 0 or vote,: .1 (virtual (G)) > 0. Either way, line 8 was reached by
either the run on tx; or the run on tz9, which contradicts the assumption that both runs reached
line 14. O

E. Proof of Safety (blocks)

In order to simplify the analysis, we need to make some worst case assumptions regarding
the behaviour of the attacker, namely, that it publishes all of its blocks immediately after time ¢
(which represents the time at which some honest node accepted the transaction), and that before
time(x) its blocks point at all available blocks. These assumptions essentially modify the DAG
(in case the attacker does not carry out the optimal attack scheme). We need to prove that these
modifications indeed represent the worst case. To this end we use the notion of a pseudo-vote. A
pseudo-vote begins by first explicitly defining and fixing the pseudo-vote of some blocks, which
we call the initial pseudo-voters. Then we define the pseudo-vote of the rest of the blocks as
in Algorithm 1. In more detail, we replace in Algorithm 1 the vote () notation by the p_vote ()
notation, and whenever the algorithm references p_vote (¢) of an initial pseudo-voter ¢, we refer
to its fixed predetermined value. Thus, the pseudo-vote of an initial pseudo-voter might change
the pseudo-vote of other blocks.

Lemma 20. Let z,y € G = (C, E) such that G} C G. Let G' = (C, E') be the DAG resulting
from adding the following edges to E:
1) Vz1 € GNbefore(time(z)) Nmalicious, Vzo € GNbefore(time(z1))\{z1}: add (z1, z2)
to E.
2) Vz1 € G Nmalicious \ GY, Yzy € Goracle 00y N honest: add (z3,z1) to E.

[publication(z1),

Let p_vote () be defined by specifying the following initial pseudo-voters (and their votes):
3) Vz € (G Nmalicious \ G}) UG Nbefore(time(x)) N malicious: p_votey (2, G) = +1.

Then votey y (virtual (G) ,G) <
p_votey , (virtual (G'), G').1°

Importantly, we assume here that blocks in G N malicious break ties in favour of y < x.

Proof. Part I: Assume by way of negation that vote, , (virtual (G),G) = +1 yet nonetheless

p_votey , (virtual (G) ,G") = —1 (observe that this is the only case in which the claim can
fail, by definition, as a virtual vote cannot take the value of 0).
Let b be a block in future (z,G) U {virtual (G)} such that p_vote,, (b,G') = —1. b

cannot belong to G\ GY or to G N before(time(x)) N malicious, because blocks in these
sets have a pseudo-vote of +1. Let z be a block in past (b,G). Since b ¢ (G\ Gy) U
(G Nbefore(time(x)) N malicious), there exists in G a path from b to z that passes through

""Note that virtual (G) = virtual (G”), as they share the same vertex-set.

36

an edge (22, z1) satisfying the conditions of the second modification to GG, and through an edge
(21, #5) satisfying those of the first modification. In particular, time(z2) > publication(z1) >
t —d, and time(x) > time(z}) > time(z]). As b and z are the end-vertices of this path,
time(b) > time(z2) > t—d > publication(x)+d > time(x)+d > time(2])+d > time(z)+d.
Since z is honest, z € past (z2, G), hence z € past (b, G). Combined with E C E’ we obtain:
past (b, G") = past (b, Q).

Part II: Let b be the earliest block in future (z, G)U{virtual (G)} for which vote, , (b, G) =
+1 but p_votey, (b,G’) = —1, and let z be the latest block in antifuture (x, G") for which
votey y (2, past (b,G)) > p_votez, (z,past (b, G')). If such a z exists then, similarly to the
previous part, we know that past (z, G') = past (z, G); this proves that z is a weak voter both
in G and in G’, hence that its pseudo-vote is the sign of the sum of pseudo-votes in its future.'!

To see that such a 2z indeed exists, observe that the genesis satisfies these

conditions: By Lemma 13 wote,, (b,G) = woteg, (virtual (past (b,G))) = +1
implies vote, , (genesis,past (b,G)) > 0, and in a similar way p_voteg, (b,G') =
p_voteg , (virtual (past (b,G’))) = —1 implies that p_vote,, (genesis,past(b,G'))
=_1 12

Part III: By the choice of z, if 2/ € future(z,past(b,G')) is weak with respect to
(z,y) then wvote,, (#',past (b,G)) < p_votey, (2, past (b,G')). Moreover, by the choice
of b, if 2/ € past(b,G') is strong w.rt. (z,y) and vote,, (2',past (b,G)) = +1 then
p_votez (7', past (b, G")) = +1. All in all, we have that for all 2’ € future (z,past (b,G")),
votey y (2, past (b, G)) < p_votey,, (2', past (b, G")). Therefore:

Z voteg (z/,past (b, G)) < (6)
z' € future(z,past(b,G))
E p_voteg y (z',past (b, G')) < @)

z' € future(z,past(b,G))

(]

p_votey y (z',past (b, G’)) +
2’ € future(z,past(b,Q))

Z p_votey y (?/,past (b, G")) = (8)
z' € future(z,past(b,G")\past(b,G))

p_voteg y (z',past (b, G')) .)

(]

z' € future(z,past(b,G"))

The last equality follows from future (z,past (b, G)) C future (z,past (b, G")), which holds
because £ C E’. The inequality in (7) holds because if some 2’ has been added (by transforming

Ut cannot be the case that y € past (2,G"), because we know that 2 is not an initial pseudo-voter (as its
pseudo-vote is —1), and therefore the pseudo-vote procedure would have assigned its pseudo-vote to be +1, because
y is in its past but x is not in it past, in the same way the ordinary procedure does.

2The equality p_vote, , (b, G') = p_votes,, (virtual (past (b, G'))) holds because b is either a strong voter w.r.t.
(z,y) or the virtual voter.

37

G into G’) to the future of some honest block, then 2z’ must belong to the attacker, hence
p_votez (2, past (b,G")) = +1 > 0.
Part 1V: Consequently, since z is a weak voter with respect to (x,y), (6)-(9) imply that

voteg y (2, past (b,G)) < p_votey y (2, past (b, G')), which contradicts the choice of z. O
Lemma 14. Let t > publication(x) + 2 - d. Let zj41e be the latest block in pasty, (x). Denote:
o h:= ‘anticoneh (zlate,GOMCle

o« ji= ‘futureh (zlate,Go’"ade) \ futurep (x, G})‘
o m:= |futurea (Z1ate; Gerae) \ future, (m Gt)}

o = | GEests 0 honest|
o | :=max cgoracienponest { future, <z G;me(zlm)) ‘ -

)futureh (z Gtzme(zlm» }
* 9= Zzefuture(x,G',{”) ’UOtey,x (27 G%))
Then,

Et“ﬁoo(y)ﬂ C {Els > t,Ju € honest s.t. ’Gﬁ’s] N malicious‘ (10)

)G N honest

g2 h—j—k—1— }

Proof. Part I: In the proof below we make the following assumption: Any attacker-block z
created before time(x) always votes in favour of y < z (even if it is supposed to vote otherwise
according to Algorithm 1). We further assume that any such z satisfies past (z) = G?fgilé), ie.,
it points at all blocks available at the time of its creation. Finally, we assume that the attacker
releases all of his blocks to all nodes in honest\{v} precisely at time ¢ and onward. The previous
lemma implies that these are indeed worst case assumptions: Take G to be any G'%. Then, what the
lemma shows is that as long as p_vote, , (virtual (GY)) = —1, also vote, y (virtual (GY)) =
—1 (under the worst case assumption that ties are always broken in favour of y).!* The analysis
below applies, formally, to p_vote () as formalized in the prevoius lemma (specifically in (3)).
Nevertheless, now that the argument has been formally made, we omit this notation henceforth.
Part II: Let us look at the following chain of implications:

votey y (virtual (Gy)) > 0 = votey , (genesis, G¢) > 0 =

Z votey y (z', G;‘) >0 (11)

z' € future(genesis,G*)

BIn fact, we use the lemma with a slight modification: The second modification does not apply to all such
(22, 21) satisfying the specified conditions, rather to a subset thereof, since blocks created by node v between ¢
and t + d need not point at all attacker blocks in G \ G¥. It is easy to see, however, that the proof of the lemma
remains intact (and it remains so when applying the second modification to any subset of (G N malicious \ Gf) X
(G'O“wl6 N honest))

[publication(zy),00)

38

The first implication follows from Lemma 13. The second one follows from the definition of
genesis’s vote.'* Thus,

call C o C
o (T,y)” = UuEhonest,se[t,oo)gg(x7y) =
{3u € honest,3s >t : vote, , (virtual (GY)) > 0}
However, if there exists such an s as the latter event requires, then we can look at the

first such s. With respect to it, between ¢ and s all honest votes were in favour of x < y;
this is because for any honest block 2z’ with time(2') € [t,s), past (2') = G™%=) hence

time(z")
vote (2') = vote (vz’rtual (GZ?ZZE;;)), and by the choice of s as the earliest time for which an
honest node’s DAG’s virtual block votes in favour of y < x, we know that vote, , (2/, GY%) = —1.
Part III: Below, the notation Gy , .\ stands for G N be fore (t2) \ before (t1).

We claim that for all z € pasty, (z):

votegy (2,Gy) < sgn (‘Gﬁ78] N malicious‘ - ‘Gﬁ,s] N honest

+2-h+l+k+j+m—g).

We prove the claim by a complete induction on D(z) := ’ future (z,pasty, (z)) ! Assume we
have proved the claim for any z with D(z) < D. We now prove it for z with D(z) = D. If
z = x then vote, , (2, G¥) = —1 hence the above inequality is satisfied trivially. Otherwise, z
is a weak voter, and vote, , (2, GY) is given by the sign of the sum of votes in its future. We

decompose these voters into three subsets: members of future (z, GY (10)), members of

time
future (z, G?[ftz‘me(zlate),t]» and members of future (z, G”[Jt’s])

1) Members of future (z, G;‘ime(zl .)>: By the induction hypothesis we
know that all blocks in futurey (z,pasty (ziae)) vote in favour of
x < vy, and additionally we have futurey |z, G;me(s)) \ past (zjate) C

. u / U
anticoney, (zlate, Gtime(zlatg))' Thus, Zz’efutureh (ZvG?memam) votey y (2, GY) <

2 - ‘anticoneh (zlate, Gtuime(z,me)>‘ — ’futureh <z, G)‘ We obtain:

time(ziate)

Z votey y (z/, sz) <

z'€ future (Z,G“)

time(z]qte)
. u
2- ‘antzconeh (Zlate7 Gtime(zlate)) }

_ ‘futureh (z, G%me(zlm)) + ‘futurea <z, GU)‘ .

time(ziate)

“Here we implicitly assume that 2 and y are not related topologically, which rules out the option that 2 = genesis
or y = genesis, hence genesis is weak w.r.t. (z,y). If they are related topologically, the result is trivial, for all
votes are then forever unanimous in the same direction (Lemma 11).

2) Members of future <Z7Gﬁz‘me(zlam) ﬂ):

a) Honest blocks: By Part [we have that future, (z,G“

putnres (e Ghanone) =0
> D) future (z,G

anticoney, | zigte, G

u

This

[time(ziate) time(ziate) +d]

future (zjqte, Gi*). We obtain:

Z voteg y (z', GZ) <

z' € futurey, (z,G”)

[time(z)g4e)st]

Z votesy (2, GY) +

z' € futuren (Ziate,GY")
. u
anticonep, (Zlatea G[time(mm),time(zlate)‘*‘d})‘ =

Z votegy (2, GY) +

z'€ futurey, (zlate 7G;})

anticoneh <Zlate? Gﬁtime(zlate),time(zlate)+d}) ‘ +
Gﬁi‘lgfa N honest‘ <

Z voteg (z’, Gj;) +
z' € futurey (,GY)
anticoney, (Zlate; Gﬁime(zmm),time(zlate)—s—d}) ‘ +
Gﬁlagff] N honest| +
| futurey, (ziate, GY) \ futurep, (x, G})|.

implies

U
[time(ziate),t]

39

[nme(zlate),t]> \

that

)\

b) Attacker blocks: We utilize our worst case assumptions described in Part I to obtain:

Z votegy (2, GY) =

z'€ future, (z,G”)

[time(z)qte).t]

I
g votegy (7, GY) <
z'€ future, (zlate’GEfsime(zlatﬁ),t]>

Z votey y (z/, G?) +

z' € future, (x,GY)
| futureq (ziate, GY') \ futureq (x, GY)|.

40

c¢) All blocks: We combine the honest and attacker blocks in future (z, Gﬁime(zlate),to to
obtain:

Z votesy (7, GY) <

z’Gfuture(z,GE")

time(zpgte) t]

Z voteg,y (2, GY) +

2'€ futurep (z,G})
anticoney, <Zlateu Gﬁime(zlatc),tz‘me(zlatcHd]) ‘ -
’Gﬁgfg{a N honest‘ + | futuren (21ate, GY) \ futurey (z, GY)

+ Z voteg y (z', G;‘) +

z' € future, (x,GY)
| futureq (ziate, GY') \ future, (x,GY)| = (12)

g+

anticoney, (Zlatey Gﬁime(zlme),time(zmte)+d})) + (13)
’Gﬁ%{% N honest‘ + | futurep, (ziate, GY) \ futurep, (x, GY)|
+ | futureq (Ziate, GY) \ future, (z,GY)|.

3) Members of future (z, Gﬁ s]>: Finally, by the choice of s, all honest blocks created between
t and s vote in favour of z < y, hence

Z voley y (z/, G?) <

z’efuture(z,G’[Ltys])
_ ’futureh <Z7Gﬁ,s]>‘ +)futurea <z,GﬁﬂS]>’ <

- ’Gﬁ’s] N honest

)

+ ‘Gﬁs] N malicious

where we used again the fact that ¢ > publication(z) + d > publication(z) + d.

41

4) Combining all the above results we obtain:

Z voteg y (z', G?) < (14)

2’ € future(z,Gv)

. u
2 - ‘antzconeh (Zlate> Gm’me(zlate))’

‘futureh (Z Gtzme(zzate)>‘ + ’futurea (z folme(zl te))‘ (15)
anticoney, (zlate, Gﬁime(zlate)ﬁme(zlde}) +
‘Gfr“Clt] N honest| +
| futuren (ziate, GY) \ futurey (x, Gy)| +
| futurey (ziate, GY') \ futureq (x, GY)| + (16)
— ‘Gﬁﬁ] N honest‘ + ‘G&S] N malicious‘ < 7
(18)
2-h+1l+Fk —g+ ‘Gﬁs] N malicious| — ‘Gﬁ’s} N honest‘
+ | futuren, (zjate, GY) \ futurep, (x, GY)| +
| future, (zigte, GY') \ future, (z,GY)| <
2-h+1l4+k —g+ ‘G[t g N malzczous’ ‘G[t g N honest‘

’futureh (Zlatev Gomde) \ futurey, (z, Gt)‘ (19)
‘futurea (Zlate, Gomcze) \ future, (x, G%’)‘ = (20)
2-h—|—l+k:1—g+j+m+)Gﬁﬁ]ﬂmalicious (21)
- ’Gﬁ}s} N honest| .

As z is a weak voter, we conclude that wvote,, (2, GY) <

sgn <‘G[t g0 malz’cz’ous‘ — ’G“ N honest‘ +2-h+l+ki+g+j+m
Part IV: In particular, for z = genesis, the event vote, , (genesis, G“) > 0 is contained in
)G ﬂhonest’Jrng h—1l—k —j—m.By (1),

for all u € honest and s > ¢ this event contains also &3 o (x, y) hence it contains also their

union 52?200 (z,). O

the event where

Gﬁ J N malicious

42

Lemma 15. Given the parameters of Lemma 14,

(c‘/’?ﬁm(w y)) ZP (d- o\ 1) 22)
=0

o (g—2-h—j— kl—l —m—h')*
11—«)

Proof. Since all nodes u € honest receive honest blocks with a delay of d seconds at
‘fum”'ea (Zlat67 GOTdCl@) ‘ -

most, we have that ’G[t]ﬁmalzcwus‘ ‘Gt]ﬂhonest o]

futurey, ZlateaG[t mix{s_ a1)] ‘ We further upper bound futurea< Goracle by

[s'5]
future, | x G‘[’S”a‘ji}) , and observe that the latter follows a Poisson distribution with

parameter « - d - \; we denote this variable by h’/. For any given value of %/, the variable
| future, (z, GFoe\ Ggrade)| — | futurey, (z, G2\ Ggra<¢)| 4+ b’ can be modeled as a
random walk X; (where the ith step is the creation-time of the ith block after time t), with

Xo = I, and with a drift of o towards positive infinity. The probability that kX,-l wou}}d
9=2-h—j—ky—l—m—I’
ever reach the interval [-h — j — k1 — h' — 1 — m + g, +00) is (L) ,

e’
ifg>h+j+k +1+m+n, and 1 otherwise (see [18], [17]).
Corollary 16. If
o j> }anticoneh (m,G?mde)‘
ol > max,cqoraclenhonest A;me(m)
o ng > futurey (x, G?mde)

e 9= ZzEfuture(x,Gf) votey o (Z7 G%])

— HZ

time(z) }

Then

<Efil>oo(w,y)) < (23)
Z ,Poiss((2 - -d- /\ k Zpozss 1 - Oé))\7 h)
k= h=0

00 .
Z (nac +7 +h+m— 1) . (1 _a)nm-i-j-i-h ™.
m

m=0

o (9—2-h—k—j—l—m)"

11—«

Proof. We build on the results of previous lemmas. The proof of Lemma 14, which is
deterministic, remains intact when the corresponding parameters serve as bounds; see (14)-(21).

43

, and h' are the sum of

Zlate)vtime(zlate)+d])
independent Poisson processes; the parameter of the first two is d - (1 — «) - A, and the

parameter of A’ is d - o - \. Thus, their sum is a new Poisson variable k with parameter
(2-1—a)+a)-d-X=(2—a)-d-)\ The variable |anticoney, (zlate, G;me(zlm)
additional Poisson variable with parameter d - (1 — «) - \. We denote it by h (thereby overriding
its original meaning in Lemma 14).

Lemma 14 uses the variable m = |futureq (Ziate, G{"") \ futureq (x, GY)| which is
upper bounded by ’ future, (zlate,Gomde)‘ Provided that the honest network has created
precisely n blocks since the creation of 2,4, the number of blocks created by the attacker
at the same time follows a negative binomial distribution (see [17]), i.e., it takes the value
m with probability ("*7"7') . (1 — a)" - a™. In the worst case, all of these blocks belong
to future (zlate,Gfmde). Here, again, it is sufficient to upper bound n, since increasing
the parameter n results in a distribution over m that stochastically dominates (in first order)
the original one. The number of honest blocks created after time(ziqe) (up to time t) is
upper bounded by antipasty (zlate,Gomde), since blocks in pasty (zjqte). We thus have:
n < |anticoney, (ziate, GY)| + | futurep, (ziate, GY) \ futurep, (z,GY)| + | futurey (x, GY)| <

Finally, as [and j are upper bounds and g is a lower bound to the corresponding variables
from Lemma 14, one could simply turn all equalities in its proof (and in the proof of Lemma 15)
into “<” inequalities and the proof remains intact. O

The variables ki, ’antz’coneh <Zlat€’G[utime(

is an

Below we revisit previous results, regarding the case where x is known to be an honest block,
and to the case where one needs to defend a group of blocks rather than an individual block.

Lemma 21. Assume that node(x) € honest and that publication(y) > publication(x) +
d. Let zjq be the latest block in anticoney, (x,GY) and let Zeqry be the earliest block in
anticoney, (x, GY). Furthermore, assume:

o = max cgoracicnponest ‘futurea <z thme(zmrly)> ‘ —
’futureh (z G

e 7y > Max

time(zearty) ‘}
{’futureh (/ Goracle) ‘}

' Eanticoney, ()

° g < MAX, caniconer (z,G7) {z € future (', G}) : votey 5 (2,G}) = =1} —
MiN) conticoner (2,GY) {z € future (¢/,GY) : votey 5 (z,GY) = —i—l}.
Then,
Pr (&t (@, m)) < ZP (d- A h)- (24)
= Ng+m—1 n m
Z()'(1—06)”-04 : (25)
m
m=0
o (g—h—l-m)*
l—a '

44

Proof. Let k1 > ‘Gﬁ’f{j{f] N honest‘, and let m := ’futurea (zeaﬂy, Gfr‘lde) \
futureq (ziate, GY)|- We adjust the analysis from the proof of Lemma 14. We claim that for all
z € anticoney, (x, GY):

voteg y (2,Gy) < sgn (‘Gﬁ’s] N malicz’ous‘ — ’Gﬁ,s] N honest‘
l+k+m—g).

We prove the claim by a complete induction on D(z) := } future (z,anticoney, (x)) ‘ Assume
we have proved the claim for any z with D(z) < D. We now prove it for z with D(z) = D. If
z = x then vote, y (2, GY) = —1 hence the above inequality is satisfied trivially. Otherwise, z is
a weak voter, as y ¢ past (z) by the assumption on publication(y), therefore vote, , (z, G¥) is

given by the sign of the sum of votes in its future. We decom{ose these voters into three subsets:

u

time(ziase)) and members of

members of future (z,G members of future |z, G

future (z, G[ut,s})'
1) Members of future (z, G): By the induction hypothesis we know that all blocks

time(ziate)

i
[time(ziate),t])

in futurep (z,cmticoneh (Zlate>) vote in favour of x < y, hence We obtain:

Z votey y (z', GZ) <

z'€ future <Z,G”)

time(zigte)

— ‘futureh (27 foime(zlate))‘ + ‘futurea (z, G}fime(zlm)) ‘ .

2) Members of future (z, Gt): Every 2’ in this set belongs to future (x’) for some

[time(ziate),t]

x' € anticoney, (z, GY), therefore, by the definition of g:

Z votey y (z', Gg) <

z'€ future (z,G“)

[time(zjgte)st]

— g+ |future, (Zearlgp G?mde) \ future, (zigte, Gf)‘ +

| futurep, (z, G}) \ futurey (z,GY)| < (26)
—g+ ‘futurea (zemly, Gf”‘de> \ futures (ziate, Gf)‘ + ‘Gﬁ’fgff] N honest| =
—g+m+ k.

3) Members of future (z, Gﬁ S]): By the choice of s, all honest blocks created between ¢ and

45

s vote in favour of z < y, hence

Z votey y (z', Gls‘) <

z'€ future(z,G,)
_ ’futureh (z, Gﬁ,ﬂ)‘ +)futurea (z, Gﬁ751>’ <

— ’Gﬁﬁ] N honest‘ + ‘Gﬁ,s] N malicious

)

where we used the fact that ¢ > publication(z) + d > publication(z) + d.
4) All in all,

> wotery (4,GY) < @7)
2’ € future(z,G¥)
l+ki+m—g— ‘Gﬁ,s] N honest| + ‘GE’S] N malicious| < (28)
l+ki+m—g-— ‘futureh (Zlate, Gﬁ’:ﬁféi{s_d’t}]) ‘ +
[Futureq (21ae GEE™) (29)

Therefore, the event where for some s and some u, vote, ,, (virtual (GY)) > 0 is contained in

the event where (29) is non-negative. As in the proof of Lemma 15, the probability of the latter
o (I+k1+h +m—g)* W
. We

event is upper bounded by (m , where 1/ equals | future, (x, G‘[’;“ﬁe)
then combine k7 and A’ into one Poisson variable h with parameter a-d- A4 (1—a)-d-A = d-),
to obtain:

Pr ((S/‘\taﬁoo(x, y)C) < Z Poiss(d - A, h)- (30)
h=0

3 <n$+m—1> (1= a) - am. 31)

m=0 m

o\ ghml=m)t
1—a '

O]
Corollary 22. If in addition to Lemma 21’s assumptions we know that publication(y) > t, then
Pr (€t (@, 1)%) <3 Poissld- - A, h): (32)
h=0
oo - o 1
> (n o)'U—a)”z-am- (33)
m=0 m

o (g—h—l-m)*
1—a '

46

Proof. Given that y wasn’t published until time ¢, we know that all honest blocks in
future (CL‘, G[Otrfglf}) vote in favour of z, hence the reduction of k1 = ’Gﬁmfllf} N honest| in (26)
is superfluous, and we thus only need to reduce h’, the Poisson variable with parameter d - o - A

from Lemma 15. O

Corollary 23. Let X C GY Nhonest and Y C G§™%¢\ GY. Assume further that elements in X
do not relate topologically to one another (i.e., Yx1,x2 € X,x1 € anticone (x2, GY)). Let zjgte
be the latest block in X, let zeuriy be the earliest block in X.

Then,

(531500()G) < i%ss((‘&— 2-q)-d-\h):
h=0

N (e +m—1 W m o O\ (Pe—hml-m)”
2 (") e (755)

m=0

Proof. We adjust the result of Lemma 21. The main modification is that now g must relate
to all pairs (z,y). Define: g := max,, z,ex {7 € future (z1,G}) : votey a, (2,G}) = —1} —
ming, ,ex {z € future (v1,GY) : votey 4, (2,G}) = +1}. Observe that in the interval
[time(Zearty) + 2 - d, t] all honest blocks belong to Myex future (x,GY). In particular, if we
denote I/ := n, — g we have that h’ is upper bounded by a Poisson variable with parameter
2-d- \. We then apply the analysis done in the proof of Lemma 21, with s being the first time
at which for some (z,y) € X x Y, vote,, (virtual (G%)) > 0. Combining the result of that
lemma with the probability distribution over A’ we conclude that the probability of the event

call :
Uley)exxy€ihos (@, y) is at most

Pr (&t (2, 9)°) < ZPM 2.d-(1—a)-\h)- ZPOZSS (d-\)
h'= h=0

© Ny +m — 1 o (ng—h'—h—l—m)™
.1_ nm.m. =
3 O AR (=)

m=0

> Poiss((3—2-a)-d- A h)-
h=0
0 . (ng—h—I—m)*
Z(nx+m 1>‘(1—a)nz-am.< « >
m -«

m=0

47

Corollary 17. If in addition to the assumptions of Corollary 16 we assume that M <

| future, (z, GY)|, then
Pr (& () | | future (2,G})| = M) < (34)
S Poiss((2—a) - d- A k)Y Poiss(d- (1—a)- A h)- (35)
k=0 h=0

o] . -1
Z ng+j+h+m —1 , ,
(< ' m/ (11— Oé)nﬁ_ﬁ_h ~a™ :
m/'=M

(0] .
Z (nx+]+h+m_1> '(1_a)nm+j+h‘am.

m
m=M

(N >(g—2-h—k—j—z—<m—M>>+

11—«
We denote the RHS of this inequality by fpost_mine (702, 9,7,1, M). We note that from

Lemmas 25, 32, and 30 it follows that, in order to compute fyost_mine, ON€ can truncate these
sums and suffer an exponentially low error.

Proof. Under the assumption on M we have ‘ future, (zlate,G;’mCle) \ future, (x,Gf)‘
= ‘futurea (zlate, Gf"‘wle)} — | future, (z,G})| > ‘futurea (zlate, Gtmade)‘ — M.
We then adjust the result of Corollary 16 and adjust (4) to account for the above

updated definition of m. Thus, in the exponent, we substitute m — M for m and write:
(9—2-h—j—k—l—(m—M))*

T . Next, the updated probability distribution over m — M can
be obtained by conditioning the negative binomial distribution (described in the proof of
Corollary 16) on its being larger than or equal to M; indeed, the M blocks of future, (x,GY)
were created after zq (and before time t), and future, (z,GY) C futureq (ziate, GF™°).

Consequently, the probability distribution over m — M is given by

—1
0 .
h f—1 . ,
Pr(m—M):(E (77@"‘!‘,74‘ /+m),(1_a)nm+]+h,am> .
m'=M m
<n$+j+h+m_1) '(1_a)nz+j+h‘am
m >

and we arrive at the desired term. The rest of the arguments in the proof of Corollary 16 remain
unaffected. O

1) Numerical method to calculate fyre mine:
e Put 6 := - X\ - d. Pick some N > 1," and define a matrix 7" € Ry« as follows. For all
1<I<N-1,T1;=1-a,Tis1y=a,andfor (=N —-1.T;_1;=1—-0a,T); = .

N—
By Lemma 25, to achieve an error of at most € it suffices to choose N such that (ﬁ) < €/2 and

N
em A, % < €/2. In particular, N is logarithmic in €.

48

The first column of the matrix is defined by: Tpo := (1 —«) - e 9, Ty = e . ate 0.4,
forl<lI<N-—1: Tw:e_‘s-‘ls—; and for [= N — 1: 1}70:1—25\;626_5'%.
« Find the eigenvector of 7' corresponding to the eigenvalue 1, and denote it 7. Define
(1) := Sh_y w(l'), and, finally, define fyre mine(l) := 1 — IT((1 — 1)%).
The matrix 7" is the transition probability matrix of a special reflecting random walk (X}) over the
nonnegative integers: 7; j := Pr (X1 =i | X}, = j). At every position (apart from the edges
0 and N — 1) the walk takes a step towards negative infinity w.p.(1 — «) and towards positive
infinity w.p.c.. Whenever it reaches the origin, it jumps to its next position in {0,1,...,N — 1}
according to a (modified) Poisson distribution. It is easy to see that this random walk induces
an ergodic Markov chain, hence it has a unique stationary distribution, which we denoted ; II
is the cumulative probability function of 7.

Lemma 24. For all + > r and for all For all | € N:
Pr (max {’futurea <z, G?T“Ck) -
z€G2r e Nhonest
‘futureh (z, G,‘fmde> } > l) <
fpre_mine (l) . (36)

Proof. Part I: We prove the result assuming the maximum is taken over all z € G2 *!®Nhonest;
taking then the maximum over all z € G;Z,Mde N honest does not change the result, because
the variable {] future, (z, G?mde)l — ‘ futurey, (z, G?mde) ‘} is nonnegative (as will be shown
below), and its value for z € G¢rle \ Goracle; jg zero.

We show that the variable max,egorecernonest {|futureq (z, GI)| —
| futurey, (z,G2*"¢)|} can be modeled as a reflecting random walk (with some special
behaviour when the walk visits the origin, due to the honest network’s inner delay d).

time

increases by 1 for all z’s in its past. For b itself, the value of this variable is 0. Thus, the value
of max,cqoracierponest { futureq (z, G) — futurey, (z,GS*®) } is lower bounded by 0.
On the other hand, whenever a new attack block is created, the value of future, (z, G‘s”"ade)
increases by 1 for all honest blocks available to it at the time (following the worst case
assumptions specified in Lemma 14, Part I). Therefore, the attacker’s maximal advance
over the honest network can be modeled as a reflecting random walk. Note that, since the
creation of an honest block b increases futurey (z,Ggmde) only for blocks in pasty, (b),
which might be a proper subset of before(time(b)) (when d > 0), there are certain
situations where honest blocks do not “work against” attack blocks to decrease the value of
max{‘ future, (z, Ggmcl@)\ — ‘ Sfuturey, (z, Ggmcle)\}. We take this into account by skewing
the behviour of the walk whenever the origin is visited (and proving that in all other states the
honest network’s inner delay has no effect).

In the following analysis, we assume the worst case scenario, namely, that if z; and zo
are honest blocks such that |time(z;1) — time(z2)| < d then z; € anticone (z2). That this is
a worst case follows simply from the fact that omitting some edges between honest blocks

Intuitively, observe that whenever a new honest block b is created, futurep <Z,G°’"“Cl(eb)>

49

can only decrease futurey (z,Ggmcle) hence increase the value of ’ future, (z,Ggmde)\ -
‘futureh (z, Ggmcle) ‘

If the attacker is creating blocks in secret, it needs to decide upon a strategy regarding which
blocks should its new block point at, for every new block it creates. Consider the following
strategy: The attacker’s new block b, created at time(b), points at G?Z?;ffel(eb) (except itself, of
course). While we have already argued why this is a worst case assumption (Lemma 14, Part I),
it is here easy to see that this strategy maximizes max,egoracichonest {’ future, (z, Ggmcle)\
— ‘futureh (z, Gg”le)\}.

Part II: Denote by t; the creation time of the ith block in G9 €, Denote by z,
the variable arg max,egorectcnponest { | futureq (z, GS°)| — | futurey, (z, GSr¢)|}. Define
further AZ := |futureq (2, G°*)|, and H? := |futurey, (z,GI')|. Abbreviate A, :=
‘futurea (zs, Ggmde) ‘, and H, := ﬁfutureh (zs, Ggmcle) ‘

We define a subseries (sx) C (t;) recursively: sop = 0, and for all k£ > 0: sx1 = min; {¢; :
t; > time (zs,) + d}. We claim that (A;, — Hs,) has the same probability distribution as Xj.
Assume this claim holds true, and let s; be the earliest s; with s > r. Then (4, — H,) <
1+ (As, — Hg,).'® Consequently,

Pr < max {|future, (z,Gy)| —

2€G¥Nhonest
| futurey, (z,G2)|} > 1) =
Pr(A, —H, >1) <Pr(4,, —Hs;, >1—1) =
Pr(X,>1—1)=1-T(1-1)").

Part III: To complete the proof we prove our claim, by induction on k. For & = 0, sp =
0. At time 0, following the creation of the genesis block, the value of (A9 — Hp) is 0, as
future (genesis) N GZrale = (), and likewise X = 0. Assume we have proved this for k, and
we now prove it for k£ + 1. Assume first that (As, — Hs,) > 0. Assume by way of negation
that s < time (zs,) + d. Then, by the construction of (si), sx = time (zs,). This implies that
the honest network created zs, in time s. Thus (A5, — Hs,) = 0, because z;, was created at
time si. As z, is supposed to be in arg max;cgorecicnponest {As, — Hs, }» this contradicts our
assumption that Ay, — H,, > 0. Thus, (AZ — HZ) > 0 implies s > time (z,,) + d.

Consequently, if (As, — Hs,) > 0, we are guaranteed that the entire honest network has learnt
about the block zs, . Thence, the honest network adds blocks to future (zs,) at a rate of (1—a-\),
while the attacker adds them at a rate of «. Every block of the honest network then contributes
1 to | futurey (2, G"*¢)|, whereas an attacker block contributes 1 to | future, (z, GI"*)|.
Thus, (As, — Hs,) increases by 1 by the addition of an attacker’s block, that is, w.p.c;, and
decreases by 1 w.p.(1 — «). Indeed, conditioned on X} > 0, Xj1’s distribution behaves the
same: Pr (X1 =Xp+1| X >0)=1—-Pr(Xpp1 =X — 1| X3 >0) =a.

"Indeed, if r = s then this holds trivially. Otherwise, in the interval (r,sy) the honest network could have
contributed at most one block to future (zs k—l)’ because (X;) can decrease by at most 1 at every step, according
to its transition matrix, thus in the interval (7, si) C (skx—1, sx) the honest network created at most 1 block.

50

Assume now that (As, — H;,) = 0. It cannot be the case that the block that was created in
time s; belongs to the attacker, since that would imply that the attacker has an advantage of at
least 1 over the last block that was created by the honest network (up to time si). Therefore, it
belongs to the honest network. By the definition of z,,, it is precisely the block that was created
in time si. Consequently, in the interval (sg, sx + d), the honest network does not add blocks to
future (zs,) (recall we are assuming that the worst case scenario is realized, i.e., a propagation
time of d seconds per honest block). During this interval, the attacker creates blocks at following
a Poisson process with parameter a- . Thus, (Aj:ld — H;id) =i W.p. Poiss(a-A-d,i). Upon
which, the next block in the system, created after s;+d, is the attacker’s w.p.a, in case which the

total gap increases by j + 1, i.e., <Azsk+1 _ stk“) = (AZS’“ H*) + 1; alternatively, the

Sk+1 Sk+41 sp+d ~ tsp+d
next block after si +d is the honest network’s, w.p.(1 —), in case which (Azk’f;l - H jkf:l) =
max { (A;’;_d — H;id) —1,0}. By comparing this to Pr (Xj41 | Xj = 0), we see that also in
this case the variable X1 behaves the same as (A;’jfll - H ;fjl) O

Lemma 25. fp.c_mine(l) < C- e Brfutured(.GY) for some positive constants By, C.

To get the intuition of this result, notice that when d = 0 the stationary distribution of the

l
reflecting random walk is known to be proportionate to (%) , and if d > 0, this relation still

holds for I > d - \.

Proof. For n > 1, the stationary distribution 7 satisfies the relation 7(n) = (1 —«a)-7w(n+1) +
n . n
a-m(n—1)+e . (;T! -7(0). Let us write w(n) = C,, - <ﬁ> for n > 0. We have:

o n o n+1
o (722) = (1) -

11—« 1l—«
« n-t o
o-Ch_y - +e 0 — . 71(0) = (38)
l—« n!
o)
Ch=Chp1-a+Cpq-(1—a)t4e > 27 . 70). (39)

n!

For large enough n’s, the last summand in the above expression is negligible. Thus, when we
write Vn : C), = C, the above relation will be satisfied for large n’sn(up to the negligible error

of the last summand). Thus, for some constant C, w(n) < C'- (ﬁ) ,hence 1 -TI((n—1)*) =

Yoo w(k) < By -e”©", for some large enough n, and some constants By, C; > 0. O]

The following Corollary is immediate from Lemma 24.

51

Corollary 26. In Lemma 21, if | is not known, then

Pr (aail)m(m’y)ﬂ) < Zﬂ'(l)) ZpoiSS(d' A h)- (40)
=0 h=0

> ("m*m‘ 1) (1= a)™ o™ 41)

m=0 m

o (g—h—l-m)*
1—a« '

Similarly, in Corollary 22,

Pr (@aﬁw(x,y)0> <3 w(l) Y Poiss(d - ad, h)- 42)
=0 h=0
> <n”m 1) (1 —a)™-am (43)
m=0 m
(g—h—1-m)*
< -) . (44)
11—«

Finally, in Corollary 23,

call C < S ,OO . _9. . .
Pr (& o (e,y)®) < > =) ;Omss((s 2-a)-d-\h)

) . (ng—h—l—m)™
Z(mﬁ-m 1>~(1—a)”m-am~< o) .
m l—«

m=0

Using this corollary we can prove the bound that is used by the online policy described in
Algorithm 7. Denote:

risk_hidden(T, g) :== Y 7(1)- > Poiss(T+2-d) - - \)- (45)
= m=0
) i

a (g—l-m
<1 — a) (46)

Corollary 27. If Algorithm 7 returns a value less than € then Pr <Uy€Gggb\G?ub(§\taﬁ>oo (z, y)E> <
€.

Proof. First, observe that the variable g used in Corollary 22 could be replaced (here and in that
corollary) with min,, conrrone(2.ay) | future (2', GY)|, because all blocks in future (x,G}) vote
in favour of z, by the assumption on y. The value assigned to g, in line 5 of Algorithm 7, is upper
bounded by min,,czrzone 2.6 | future (2, Gy)|, because G includes all honest blocks in Gy.
Next, T" is assigned the value time_now — received’(z) = t — received®(zx), in line 3. Observe

52

that m is distributed according to Py;ss(m, (t—time(x))-a-\).1 As time(x) > received®(x)+d,
we can upper bound this by a Poisson variable with parameter (7' +d) - - \. We then adjust the
result of the second term in Corollary 26; we combine the distrbituions over A and m (where h
is taken from (42), to conclude that

Pr <Uy€G€3b\G¢“b§taﬁ>oo (x, y)C> < (47)
00 0o N (g—lmm)*

=0 m=0

risk_hidden(T, g). 49)

Note that we do not need to apply here a union bound over the different y’s in GEY \ GV ub,
because our analysis assumes that in the worst case all of the attacker blocks vote strongly in
favour of y < =z, for all y in this set, and, additionally, all honest blocks in G} will always
vote strongly in favour of z < y, for all y’s in this set (as they do not see y in their past).
Thus, under our worst case analysis, the event where for some y in G%;Zjb \ Gfub the attacker
manages to reverse the relation x < y is equivalent to the event where it manages to do
so for a given y. In conclusion, if Algorithm 7 returned a value less than e, we know that

Pr <UyeG;ggb\Gfub fﬁoo(x,y)[J) < e O
Denote by dist_gap(b, G) the minimal & for which gap (b, (G, b, K)) = 0.
Lemma 28. Let b be an honest block. Then,

Pr (Uuehonest,se[time(b),oo)diSt_gap (ba G?) > K) < (50)
> (1)) Poiss(d- A h)-
=0 h=0

m

o\ (E—h—l-m)*
1—a '

We denote the RHS of (50) by faistgap(K)-

Proof. By its definition, the event where dist_gap (b, G¥) > K is equivalent to the event where
some block in anticone (b, GZ‘;ZZEZ; U(G¥\ GZ?ZZEZ; precedes b (or achieves a tie with it)
according to vote (virtual ((G¥,b, K))). In (G¥,b, K), b has additional K blocks by, ..., bx that
vote in favour of it against any other y ¢ past (b); indeed, for any y ¢ past (b), y ¢ past (b;).
Consequently, at GZ‘;SEEZ;, K blocks in future (b) vote in its favour against any block in its

anticone. We can thus apply the first part of Corollary 26 with n, = K, X = {b}, and Y =

Qur previous analysis measured m using n., as it was structure-based and had no access to 7.

53

Goracle \ past (b) to conclude that (50) is an upper bound on the probability that a block in

anticone (b, GZ‘;SZEZ;) will ever precede b (or obtain a tie with it) in the pairwise order of

(G¥,b, k) for any s > time(b) in the future. O
Lemma 29. For all n, € N,
Pr (| futuren (2, G})| > na) < (52)
| future (2, G| - faistgap (V1 Future (. GP)]) (53)
The RHS of the last inequality is denoted fyost pub (| future (z, G7)l).

Proof. If y = NULL there is nothing to prove, since then n, = future(z,G}) >
futurep, (x,GY). Assume y # NULL.

Denote K := +/|future(z,GY)|. n, is obtained in Algorithm 3 by subtracting M, the
number of blocks with dist_gap > K, from future(z,G}). Let b be an honest block in
future (x,G). By Lemma 28, the probability that dist_gap (b, G}) will be larger than K is at
most fgistgap (/). By the union bound, the probability that for some b in future, (z,G}),
dist_gap (b,GY) > K, is at most |futurey (x,GY)| - faistgap (]) < |future (z, GY)| -
fdistgap (K) = fpost_pub (|future (:Ea G:‘))D O

The RHS of Inequality (50) implies:

Lemma 30. fyo5 pu (|future (z,GY)|) < C, - e~ Befuturea @G for some positive constants
B, C..

Lemma 31. For nj € N put j := gap (z,G) + n;.

Pr ({‘anticoneh <x,G§mCle) > j}) < (54)

Jore_mine (\/TT]) + Z Poiss((1 —a) - A-d, h/) (55)
h'=0

fpost_mine (nja n; — W +]-a \/@) (56)

We denote the RHS of this inequality by f,re pus(7;). To understand the intuition behind this
resul recall that w.h.p. a block defeats only blocks that were published close to its publication
or after it.

Proof. Part I: Let t, := publication(x). Define L, := {z € anticoney (z,GY):
futurey, (2, anticoney (z,G})) > n}. (Note the use of ¢, in this definition). Denote
by A, the event {3z € L, : 2 € Xyin (z,G})}. Finally, let z. be the earliest block in
LE, N anticoney, (z,Ggree¢) and put n/ = n; — }anticoneh (ze,Gfmde)‘ + 1 for n; =

54

V| future (x,GY)|. Denote by Xy (z,G) the set of blocks that = precedes (or obtains a
tie with) in the pairwise order of G’s virtual vote, and by X, (x,G) the rest of blocks. Then:

{ anticoney, (ZE, G?mcze)

> gap (z,G) +nj} -
{ Xuwin (CU, Gbe) N anticoney, (g;, Gg”“de) +

‘Xlose (x, Gfub) N anticoney, (:L‘, G;’“‘Cle)

> gap (z,G) + nj} =
Xuwin (:L’, Gbe> N anticoney, (:B, Ggmde> + gap (z,GY) > gap (z,G) + nj} =

{
{ Xwin (ac, Gf“b> N anticoney, (l‘, Gf““de) > nj} =
(
(

‘XlUin <x’ Gfub) N anticoneh (Jj’ G?NICZ@) > nj} N An/)

U
> } AC)C
n; e MNAL | C

{‘szn <$, Gfub) N anticoneh (1‘7 G?Tacle>

Ay U { LEL, N anticonep, <x, G?Tacle)

>nj}:

Ay U { LE, N anticoney, <x, G?Tacle) Nanticoney, (Ze, G?Tacle> "

LEL, N anticoney, <a:, Gtm"ade) N futurey, (ze, Gf“‘de>

>7‘Lj}:

Ay U { LEﬂ N anticoney, (x, Ggmcle) N futurey, <Ze, Ggracle)

>

}c

n; — ‘LEL, N anticonep, (x, G?Tacle) Nanticoney, (Ze, GgTacle>

Ay U { anticonep, (x, Gtmade) N futurey, (ze, Gfmde>

b

As 2. € L, and by the definition of n’, it cannot be the case that anticoney, (m, Gf”ade) N
futurep (ze,GfT“Cle) contains more than n; — ‘anticoneh (ze,Gfmde)‘ blocks. Thus,
the event {‘anticoneh (;U, G,?Tade) N futurep (ze, Gf”ade) > nj — |cmticoneh (ze, Gf’”ade)‘}
occurs w.p. 0, and we obtain: Pr ({‘anticoneh (z, Gt"mde)’ > gap (z,G) +n;}) < Pr(Ay).

Observe that all blocks in future (z,anticone, (x,G}.)) vote strongly in favour of
z against x, for any z € L,, and that by definition there are at least n’ such
votes at time t,. Consequently, we can apply the result of Corollary 23 with respect
to the following parameters: v = pub, t = t,, X = the leaf-blocks of L,,
Y = {z}, g == 0/, np := nj, and I! = maxzeG?;aczemhonest{|futurea (2, Ggracte)|
— | futurey, (z, G|}, to obtain:

Pr (An’) = Pr (32 € Ly : 2z € Xyin (l'aGf)) <
Pr (38 >ty,32 € Ly : 2 € Xyin (vag)) <

fpost_mine (nj7 n/, l/) .

>

nj — |anticonen (z, Gy

55

As the value of [’ is unknown to us, we use Lemma 24 to conclude that with probability
> 1~ fpre_mine(l) its value is at most [. Fix [= , /n;. Similarly, the value of n' is unknown to us.
However, blocks in anticoney, (z., G{"“'¢) are created in the time interval [time(z.), time(ze)+
d] (by its choice), hence |anticoneh (ze, GgmclE)\ is a Poisson variable with parameter (1 —«)-
A - d. We thus conclude that:

Pr ({ ‘ anticoney, (93, Gomde)

> gap (z,G) +nj}) <

fpre_mine Z Pozss — - A d, h/)
h/_

fpost_mine (nj7nj - h/ + 17 V j) =
fpre_pub (nj) .

O]

It is easy to verify that fyost_mine (nj, n; — n+1,, /nj) decreases exponentially (we do this
in fact in subsequent lemmas). Therefore:

Lemma 32. fy.c pup(nj) < Cj - e~ Bim for some positive constants B;,C;.

In the lemma below, oracle is a (hypothetical) node such that G2°““ .= G* U
(GOT“CZE N malicious)
Lemma 18. Conditioned on the event Et“ﬁoo(x y), there exists a time T € [t,00) such that

Vs > 7: M(oracle®,s) >)futurea (z, Ggracte”) ﬂGﬁT‘;de \ Visy (GOracte”)’ — m*, for some

m* that remains fixed after T (and with E[m*| determined by the events up to time t).

Proof. Part I: 1f y ¢ GO then M(oracle®,s) = 0 (line 6), Vi<, (Goode") =
future (z, GI""), and the required inequality follows trivially. Assume y € GSrocie”,

Let G be any block DAG that equals the past-set of some (possibly virtual) block.
Observe that conditioned on ¥ _ (z,y), for some constant C; determined at time ¢, if

‘G[tas]ﬂmalicious’ — ’G‘[’trg}de Nhonest| < —C; then wvotey, (virtual (G)) = —1.'8
This follows from the proof of Lemma 14: We take the LHS of (17), replace g¢

bY > . e future(x,G,) VOtesy (2, G), and observe that the value of the remaining term
2. ‘antzconeh (Zlate, Goracle”) ’ - ‘futureh (z Goracle®) ‘ + ‘futurea (z Goracle*) ‘ +

time(ziate) time(ziate time(ziate)

- oracle™ oracle
anticonep, (zlate, G[tz’me(zlate),time(zlatE)er} + G[t a5 N honest +

| futurey, (ziate, GY) \ futurey, (x,GY)| + ‘futurea (zlate, Ggracte”) \ future, (x, Gf)‘ is
determined by time ¢, hence we can denote it Cy.
Let z € future (z,G{7*!¢). By the conditioning on gl (x,y), 2 € malicious. Fix the

t—00

DAG G* := past (z). The above argument holds in particular for G*: If ‘G it N malzczous‘

‘Gft 5 Mhonest| < —C; then voteg (2) = wvoteg,y (virtual (past (z))) = —1 (since z is a

8We write here G, s for G* Nbefore(s) \ before(t).

56

strong voter we do not need to specify the context of its vote). Consequently, if z € Gg’gcle \
! ;o 19
Visy (Ggrac e) then ’G[Zt,time(z)] N malicious > —C4.

We arrive at the following important implication: If z € future (:z, Ggmde“) \Vazy (GgTaclE“)
then:

— ‘G[Zt,tz‘me(z)] N honest

anticone (z, Gé’“b)‘ > |anticone (z, GZ%E(Z))’ > (57)
anticone (z, G?gze(z)) \ Goracle| = (58)
Gg;ze(z) \ Ggracle .)m (Z) \ Ggracle > (59)
b
Gfﬁne(z) N honest \ Gfrade - G@time(z)] N honest > (60)
Gﬁ?tbime(z)] N honest’ — G[Zt,time(z)} N malicious — C4. 61)
Part II: Let z1, 29, ... the order of creation of blocks in future, (m,Ggmde” \ Gfmde) \
Vaxy (Ggmde“). Fix Zms and let bm, be the earliest block in
anticoney, (zm, future (x, Ggmcle”)). With probability Puiss(d - (1 — «) - \1R),
anticonep, (bm, Gggb = I/. By the choice of b, together with (57) we obtain:

futurey, (bm, GPub)‘ =

time(zm)

anticonep, (zm, GPub) \ anticoney, (bm, GPw)‘ >

time(zm) time(zm) .

anticoney, (zm, GPub)’ — ‘anticoneh (bm, Greb)} >

[t,time(zm)]

time(zm) time(zm) =
Gﬁutl;me(zm)} N honest‘ - ‘Gﬁ"}ime(zm)] N maliCiOus‘ —C,— K =
Grb N honest‘ -—m—-Cy — 1, (62)

where we used the fact that past (by,) N anticoney, (z,,) = 0, by the choice of b,,, and that
anticoney, (zm, GPw) = antipasty (zm, GPub

time(zm) time(zm)) °
Part III: Given m, Gﬁugme(z il N honest| is distributed according to a negative binomial
distribution: Pr <‘Gﬁ1ftbime(zm)} N honest‘ =n) = (") (1-a)" a™ We claim that

the probability that the honest block b,, will ever be preceded by z, in the order of
virtual ((G*" z,,,, K)) is at most

S wl) > Poiss(5d- (L—a) A k) > Poiss(d- (1 —a) A h)-

=0 k=0 h=0

00 . (n—m—f(—Q-h—C’t—k:—l)Jr

Z(“+m 1>.(1—a)”~o/"-< a > . (63)
o m 11—«

Note that G* contains only blocks created up to time(z).

57

This follows from a similar analysis to that made in the proof of Lemma 14 and of Corollary 23.
Indeed, at time(z,,) there were at least n—m —h' —C} blocks in future (by,)\ future (z,), by

the above lower bound on ’ futurey, (bm, Gf;ge(zm)) ‘; and while future, (by, f;ge(zm) =
0, as by, ¢ past(zy), there are additional K hypothetical blocks that vote y < z, by the
construction of (G2r2¢" . K). Instead of reducing A’ in the exponent (as in the bound given
in Corollary 23), we added 2-d - (1 — «) - A to the variable k&, as the sum of Poisson variables
is a Poisson variable. Finally, we use the result of Lemma 24 to ensure that 7(l) upper bounds
the distribution over [,2°

As dist_gap(Gorele” z,,) < K requires z, to precede b, in the order of
virtual ((GS ", zp,, K)), (63) serves as an upper bound also to the probability that
dist_gap(GIode” z,) < K.

Part 1V: Using Lemma 25 it is easy to verify the existence of constants a, b, and W such that
Pr(k4+14+2-h>W)<e @W+b,

Put K (oracle,s) = /| future (x, Goracle*)|. The block z,, is counted into M (oracle®, s)
in line 9 of Algorithm 3 whenever dist_gap(Go®“®" | z,,) > K(oracle®,s). From (63) we
conclude that the probability that z,, does nor increment by 1 the value of M (oracle,s) is
upper bounded by

Pr (dist_gap(Ggmdeu,zm) < K(oracle“,s)) < (64)
° nd+m-—1 . . o (n—m—K (oracle*,s)—W—C,)"
Z (l—a)" a™- <
n=0 m l -«
—-W-C,—K(oracle*,s) o0 (n—m)*

« n+m-—1 noom a -
= D G R O

a —W-Cy—K(oracle*,s)

: p P <

<1 — Oé) (nNZ(mr,l—a) (n > m) + nNZ(fn,a) (n - m)> ’ (66)

where Z(n,p) denotes a negative binomial random variable.

We now aim at showing that the last term is upper bounded by some e~?. The proof is
very similar to that given in Lemma 19 below.

Part V: For large enough m’s, a variable distributed according to Z(1 — o, m) converges to a

normal variable with mean m - {2~ and variance m - ﬁ.m The second multiplicand in (66)

l-a
07 here represents max fut aeracte” V| — | futur Goracte®
pres s zeG;’%’:lil(%)ﬁhonest Utureq | 2, time(bm,) uturen \ 2, time(bm,) .
ime (b

2'We rely here on the assumption specified in the proof of Lemma 14 according to which, in the worst case, after
time ¢ the attacker publishes all his blocks to all nodes immediately after their creation.

58

thus converges, as m grows, to

Pr 2 < —2—-— |+ Pr 2> —a | = (67)
2~N(0,1) 1072a -m z2~N(0,1) ﬁ -m
-« «
=2 . m—-m m— -——-m
Pr z>-4%— |+ Pr p> 1l | (68)
2~N(0,1) 1;720! .m 2~N(0,1) ﬁ .m
The following inequality is due to Komatu (1955). Let 2z > 0 and let z ~ N(0,1). Then:
1 2.e—2"/2 e o EEm :
Pr(z>uz) < eyt Put 21 := We==m and z9 = Ne==xt We obtain an upper
bound on (68):
1 9. T1/2 1 9. T5/2
L ce _+ A _ < (69)
V2-m x1+\/2+m1 V2. T2+ /2 + x5
Cl . e_z%/Q + 02 . e—x%/Q = 01 . €_D1.m + 02 . €_D2'm < 03 . €_D3'm (70)

for some positive constants C;, D; that depend on « (a property which applies to the constants
below as well).

—W—-C,—K(oracle*,s)
When this term is multiplied by (ﬁ) we obtain
o —W—-C,—K(oracle*,s)
< > (Cy-em < (71)
11—«
Cy - e—Dg,-m+D4~K(oracle“,s) =Cy- e—D3.m+D4-\/|futu7‘e(ac7G’gmczeu)‘. (72)

There exists therefore an M; such that if m > |future (z, G"*")| > M, then the last
expression is upper bounded by Cs - e~"5™ for some C5, Ds.

Part VI: After some v (with expected value M;/)), the condition ’ future (:17, Ggmde“)
M, is satisfied. Put s, := time(z,,) and assume s,, >).

As S C5-e~Ps™ < 50, Fatou’s lemma implies that there exists (a.s.
Zm:\/’fUture(tc,G;’;f“leu)’-I—l ° P (@)

an m* > \/‘future (z, Ggracte™) | such that for all m > m*, dist_gap(zy) > K (oracle, sp,).
The expected waiting time for z,,- is finite.?? Define 7 = max {1, time(zp-)}. Then, for any

>

2We have Pr(m* > r) < r-1 Cs - e~ P5"™_ Therefore,
m:\/|future(z,GgraCleu)|+l
S r—1
E [m*} S Z 05 . e*Ds'm _

T':\/|futu7'e(w,Gg:;;lCle“') |+1 7rL:\/|futu'r'e(z‘,Gg:;ilCle“') |+1

oo oo

> i Cs e = > Co-e P <

m:\/lfuture(z,Gg::Cleu)‘+1 r=m+1 m:\/|future(z,Gg;f‘-'leu) |+1

C? . e—DT\/‘future(z,cg;ilcle“) ‘ .

59

s > 1: M(oracle®, s) > ‘futurea (z,Grecde™) N Gﬁ’:‘;]de \ Visy (GOracte™)| —m*23 O

Lemma 19. There exists a ¢ € [t,00) such that Pr <Efil>oo(x, v, e)c | £ (2, y, 6)) < €. Moreover
E[y—t] <e

Proof. Part I: We show that if all honest blocks vote in favour of x then all error
functions converge to zero. Indeed, the event &/(z,y,e) implies that fyre mine(l (GY)) +
Sore_pub (15 (GY)) + fpost_pub (| future (z, GY)[) + fpost_mine (N2 (GY) , 9 (GY) , 1 (G})) < e. By
the union bound, and by Lemmas 24, 29, and 31 respectively, the following relations hold with
probability > 1 — e:

o maX.cqprocenonest { | Futurea (2 GEace)| — | futurey (=, Goracte)|} < 1(Gp)
o |futurep (x,GY)| < ng
o |anticoney, (z, G*de)| < gap (z,G) +nj =: j

Conditioned on these relations, by Corollary 17 the event EM__(x,y) occurs w.p. > 1—

Foost_mine (nz (GY) , g (G¥),1(GY)). All in all, conditioned on &} (z,y, €), the event EXL__(z,y)

occurs w.p. > 1 —e.

Part II: We proceed to show that, conditioned on At“ﬁoo(x, y) and on the above relations, the
value of Risk (G, x,y) goes (almost surely) to O as time develops, for all u € honest.?*

That fpre_mine(l (G¥))+ fore_pub (05 (G2)) + fpost_pub (| future (x, GY)|) goes to 0 as s grows
follows immediately from Lemmas 25, 32, and 30. Let ¢y > 0. We now prove that after some
7 of finite expectation, fpost_mine (nz (GY), 9 (GY),1(GY)) < €.

We claim that

M (oracle®, s) + g(oracle®, s) — ny(oracle”,s) > —2 - ’Gft%fée(x),t]’ —m* (73)

where m* is the variable described in Lemma 18. Assume first that malicious N Ggmle -
Goracle” Let us decompose future (z, GI") as follows:

« Blocks in Gﬁgf}fﬁ?x),t]. Clearly, the number of blocks in this set does not grow with s. Their
contribution s lower bounded by ~2 - |Ggzacle |

o Blocks in V4, (Gorede™) \ Gyracle: Bvery z in this set adds (+1) to g(oracle,s). As
z cannot decrement the value of M (oracle®,s) — ny(oracle”,s) by more than 1, the
contribution of this set is at least 0.

The expected waiting time for z,, is the last term divided by a - A.
“Note that E[m*] is determined by the events up to time ¢: take the expected value of the expression in the
previous proof, where the distribution over the values of ‘ Sfuture (ac, Gg;‘“le”)‘ (and of the s,,’s themselves) is

conditioned on ’ future (x, G;’T“Cle")‘ (for the oracle® which maximizes the expected value).

*In fact, we need to show that max {Risk (G¥,x,y)} goes to 0. However, since our analysis below takes the
worst case regarding u, namely, that messages from it and to it arrive at a delay of precisely d, these events are
equivalent in the worst case, and thus we will relate to w as a fixed honest node.

®In fact, by the conditioning on the relation |futurep, (z,GY)| < na, we know that all honest blocks belong
to this category, hence we can arrive at a tighter bound: M (oracle,s) + g(oracle”,s) — ny(oracle®,s) >

— | ft’;‘:,fé?z%t] N malicious| —m*.

60

o Blocks in GZme" \ (V4 (G791) U G§™o°'¢): Lemma 18 guarantees that, conditioned

on the event £ (x,y), at least ‘ future, (z, GSree") N G‘[’trg}de — m* of the blocks

that are published after some 7 and that do not belong to Vi, (G9"%!*") — hence that
add (—1) to g(oracle*,s)* — add (+1) to the value of M (oracle?,s). In other words, at
most m* blocks from the set future, (z, GI*") N G[Otfg}de \ Vi<y (GOo<te") add (—1) to
g(oracle®, s) and are not canceled out by a (41) increment to the value of M (oracle®, s).

The contribution of this set is therefore lower bounded by —m*.
Part III: We now claim that

M (G2) + g (G2) = na (GF) = =2 |Gl | = mo* (74)
Indeed, let C'(z) be the contribution of z to (73) and let ¢(z) be its contribution to (74). First,
C(z) > —2, hence the contribution of all z € Gﬁ?%éix),t] is at least —2 - ‘Gﬁ’;%ﬁ?x),t]}, as
previously.

Assume that z € Goracle” \ G¢racle and that it votes © < y. Then z is not counted into
M (oracle®, s), hence its contribution to M (oracle®, s) + g(oracle®, s) — ny(oracle®, s) is 0+
1—-1=0,1ie., ¢(z) =0. And for the same argument C(z) = 0.

Assume that z € G9r¢" \ G9r® and that it votes y < x. Then z € malicious (by the

~

conditioning on £ __(x,y)). In the analysis of Lemma 18 we assumed the following worst case:

that for any three blocks v, z,w € GgraclE“, such that v, z € malicious and w € honest, v votes

strongly for z < w.?” Under this worst case assumption regarding the votes of attacker blocks,

dist_gap(z, Gorole") < dist_gap(z, GY), as G"%!*" \ G¥ contains only attacker blocks. Thus,

if z was counted in M (oracle®, s) then it is counted also in M (G¥); in particular, C(z) > ¢(z).
Consequently, using the analysis from Lemma 18,

—m* < Z c(z) <

cle™ oracle
2EGoTacle™ \ G

Z c(z) =

ZeGgracle“ \(Gfo/Tucler_E_«/ (ngzcleu))

Z c(z) + Z c(z) <

2EGE\(GE etV <, (Ggreete™) 2EGEeele\(GEUV; <, (GEoele))
> o(z) < 3 C(2).
SEGA\ (G 1LV, <, (Ggrocte™)) 2€GE\(GEret UV <, (Gerocte™))
All in all, M (G¥) + ¢ (G¥) — ng (G¥) > —2.-)Gﬁ’;%‘zz)ﬂ‘ —m,

Part IV: In the remainder of the proof we occasionally abbreviate n, (GY¥) and write simply
ny, and similarly for the rest of the variables, for convenience. Lemmas 25 and 32 imply further

%They cannot add O since only strong voters are counted into these variables.
ndeed, therein we only counted honest voters in favour of honest blocks. This could be formalized using
pseudo-votes, as in Lemma 20.

61

that there exist constants a, b, and W such that Pr(k +1+2-h+j > W) < e *W+b (as in
the proof of the previous lemma, but not necessarily with the same constants). Take W such
that e=¢"W+b < ¢y /4. Thus, with probability > 1 — ¢ /4:

fpost_mine (n:p (Gg) g (Gg) N/ (G?)) =

Zpoiss(3 d- (1 - a) ')‘7 k) ’ ZPOiSS(d ' (1 - Oé) ’)‘7 h) (75)
k=0 h=0
0 . I -
(Z <nx +7+ h,+ m 1) (1— a)nm-&-j—l-h . am’) . (76)
m/'=M m
o0 , B , (9=2-h—k—j—l—(m—M))*
Z <nx+3+:b+m 1).(1_a)nw+a+h.am.<lfa> . (D

m=M

For large enough n,’s, this term is at most ¢y/4 away from

g+M—n,—W % - -1
<1fa> ‘(Z (n+$ 1>-<1—a>“1'am’) : (78)

m/'=M
ot —_m)t
-1 (ng—m)
z<n“+m)-(1—04)"“-ozm-< a) . (79)
m 1-a

m=M
Part V: As for the first multiplicand of (78), by Part Il of this proof, after some 7 of finite
expectation: M (GY¥) 4+ g (G¥) —n, (GY¥) > — ‘Gm%ée(m),t]‘ —m* =: Dy (a constant determined

(67

by time 7). Assume s > 7. We conclude that the term (fa is upper bounded by

i
ePsPs (with Dy = In (1=2)). Thus, in order to show that (78) vanishes suffice it to show that

00 ’ -1

m’'=M

>g+M7nsz

+

0 . (ne—m)
Z <nx+ﬂ7;1 1),(1_a)n1.am.<1i‘a> (81)
m=M

vanishes.
The last term equals

< Pr (m>M)>_1-< Pr (m<ng)+ Pr (m>n$)>. (82)

m~Z(l—an,) o m~Z(o,ng) m~Z(l—ang)

62

For large enough n,’s, a variable distributed according to Z(1 — «, n,) converges to a normal
variable with mean n, - &, and variance n - ﬁ The last term is therefore at most €y /4
away from

-1

pr 2> M- 25 e . (83)
2~N(0,1) T
11—« (6]
Ng — —%.n Ng — 79— 1N
Pr < ——a ") 4 Pr p> L lza ¥ — (84)
2~N(0,1) 1;204 Mg 2~N(0,1) /ﬁ TNy
M _ o n -
Pr P . (85)
2~N(0,1) (1_aa)2 g
11—« @
19 n,—n Ng — 72 -n
Pr (2>« 2 "*)4 pr |z>-t 1= ° (86)

2~N(0,1) o 1;75 N 2~N(0,1) o /ﬁ SNy

We use the following inequalities due to Komatu (1955), for > 0, and a standard normal

2 2
: . 1 2.e=%°/2 < < 1 2-e*°/2
~Y - — e i —
variable z ~ N(0, 1): s e S Pr (z>2) < VT Aray -t
T =% Ny Ny Ne— 75— Ny
Put Xr = —F—m——, T = aliia, and T3 i— —F————.
n A/ (lfa)Q'nm

T2 T 3 Nz
We obtain an(upi)er bound on (86):

2 -y 3/
m-<x1+\/4+x12)-6x1/g-< L ¢ + L e >= (87)

w/2 X2 T/2 x3

. —a3/2 wi/2
(:1:1 + \/4+x12) e/ (e + <) (88)

i) I3

We further observe that, for large n,’s: o > Cy - /n; and z3 > C5 - /ng, for some
.. . . VaATz,?
positive constants C; (this applies to all constants below as well). Therefore, %;xl) <

2,363}

C1/max {C2,C3} =: D;y. The above term is therefore upper bounded, up to a multiplicative
factor of Dy, by

eacf/Q—;L’g/Q + eacf/Q—;rg/Q _

2 1 2 2 2
M—%— ng —2 g —n, M—=% .ng ng— 7%= ng
—a . I—a [E———— [
e \/(17@2 \/QQ x —|—€ (1—)? (1—a)? <

Q5 (G (Mg)P 05225 n,) | 05 (G2l (Mg,)= 05222 n). (89)

Conditioned on the relation ‘ futurey, (z, G?mde)‘ < ng, M < future, (z,GY), hence its
expected value is at most 1~ - n,. For any § > 0, by the Strong Law of Large Numbers, after
some 7 (of finite expectation), Vs > 7: M < (1+6) -E[M] < (1+49) - 1% - na.

63

Consequently, (89) is upper bounded by

e“"%'(M*ﬁ'”z)gf()ﬁ'%'”z + 60-5'%'(1‘4*&'”1)2*0-5'%'”1 < (90)
=0? (s o V25 (1=220)? =0? (s o o V25 (1=220)?
05 T (72 e) 0.5 U2 ne | 05 (672,) —0.5- U220, < 1)

for some positive constants I;, where the last inequality holds for large enough n,’s, and the
preceding inequality holds for small enough §’s (6 < 1/ny).

Taking n, to be greater than n, > In (4 - D;/€p) /Rs we conclude that for some large enough
Ng:

fpost_mine (nx (G?) y 9 (G?) o1 (GZ:)) <4 60/4 = €0- (93)

(Note that the expected waiting time for the first 7 such that Vj € honest : ng(u,v) is at
least some ng is at most ng - (1 —) - A\)~' +d: it is 1/((1 — a) - A) for the creation of every
honest block, and d for the last one to arrive at all nodes.)]

The same technique used in the proof of Lemma 19 is used below to prove the Progress
property (Proposition 9); indeed, in the proof we see that the term that aggregates all the error
functions vanishes as time develops, w.h.p., in the perspective of all honest nodes. In particular,
for v (the node that originally e-accepted the transaction), it becomes smaller than ¢’ w.h.p. A yet
similar usage of this argument is used below to prove Weak Liveness (Proposition 10); indeed,
in the latter we only need to regard the case where y = NULL. In this case, all published
blocks are strong voters in favour of x, and so we can guarantee the convergence of the error
functions without going through Lemma 14 and the analysis that follows.

G. Proof of Weak Liveness (blocks)

We’ve seen that the error functions fpre_mine(l (GY)), fore_pub (nj (GY)), and
Foost_pup (| future (z,G¥)|) go to zero as s grows. For any s < v, y ¢ G, hence by
line 5 of Algorithm 3, ¢ (GY) = |future (z,G)| = n, (G¥), and M (GY) = 0. In particular,
the relation (73) is satisfied trivially, and the analysis in the proof of Lemma 19 applies,
proving that the term fpost_mine vanishes as time grows. In particular, since these functions
decrease exponentially, it becomes smaller than € after a number of honest blocks in the order
of O(In(1/e)) are created, and the expected waiting time for this is obtained by dividing this
number by (1 — «) - A (and adding d for all honest blocks to receive these blocks).

H. Proof of Progress (blocks)

This follows immediately from the proof of Lemma 19, in which it was shown that, conditioned
on the event gg’lf)ot(wa y)> fp?"e_mine(l (Gg)) + fpre_pub (nj (G?)) + fpost_pub (|future (.’IJ, G?) ’) +
fpost_mine (N2 (G¥), g (GY),l(GY)) vanishes as s grows indefinitely. In Lemma 14 it was shown
that, up to a probability of ¢, the event £/ (x,y, €) is contained in E% _t(x,y) (i.e., when the
former is intersected with an event of probability > 1 —).

64

1. Proof of Safety

Part I: Denote by riskq..(GY,tx, subG) (riskye;) the output of Algorithm 4 (respectively,
Algorithm 5) when given the inputs G (for some honest u), tx, and subG (such that subG is the
past of some (possibly virtual) block). For any z € [tz]NsubG, denote by riskZ..(GY, tx, subG)
the value of the risk variable as the loop in line 2 of RiskTxzAccept terminates its run over z.
Denote similarly minrisk;, (G, tx, subG) w.rt. the variable minrisk in RiskTxReject.

We claim that, with probability > 1 — riska..(GY,tx, subG), there exists a T4, of finite
expectation such that for all s > 7,4, for all u € honest, and for all subG’ D subG:

ri8kace(GY, tx, subG) > riskecc(GY, tx, subG') (94)

Similarly, we claim that, with probability > 1 — risk,.;(G7,tz, subG), there exists a 7,.; of
finite expectation such that for all s > 7,.;, for all u € honest:

ri5krej(GY, ta, subG) > riskye;(Gy, tr, subG). 95)

Assume we have proved this for all subG of size < k. We now prove this for subGy, of size
k.

By the definition of 7iskge, there exists a 2z € subGp N [tz] such that
TiSkace(GY, tx, subG') = riskZz(GY, tz, subG').

Part II: Denote by Zs the set of instantiations of the third-loop-variable zo, inside
the iteration of the first-loop with 2; = 2z4. By Propositions 8 and 9, Vzo € Zs,
with probability > 1 — Risk (GY, (vote (), ccr,21,22), for any €, after some 7 (of
finite expectation), V25 € (GY\G}) U {2} : Risk(GY, (vote(2)),cc,2tz,25) < €.
Moreover, in the proof of Proposition 19 it was shown that the minimal ¢ for which this
property holds at time s decreases exponentially with n (which grows linearly with s).
Thus, for all s greater than some 7, >, cGu\gyyuz, © Risk (GY, (vote (2)) ,ec » 2tas 25) <
> ez, Risk (GY, (vote (2)) e s 2tas 7).

Part III: Similarly, by Proposition 8, with probability of at least
Risk (G}, (vote (2)) ,ec » #tas 0), after some T (of finite expectation),
Risk (GY, (vote (2)) ,ec » 2ta,0) < Risk (GY, (vote (2)) e s 2tz 0).

Part IV: Let ¢;(GY, tz, subG) be the series of values returned by the call to RiskTzAccept in
line 7 of RiskTxzAccept (when given the inputs (GY, tz, subG)) and to RiskTzReject in line 9
of RiskTxzAccept (with these inputs). By the induction hypothesis, with probability > 1 — ¢;,
after some time 7, ;(GY, tz, past (2,)) < €;(GY, tx, past (z)).*

Part V: The above arguments show that, with probability > 1 — riskZ(GY,tz, subG),

acc

the sum of increments to the value of riskZ:(GY, tx,subG") is upper bounded by the

BTechnically, the indexes i on both hand-sides of this inequality should be described more carefully. To save
cumbersome notation, we rely on the understanding of the reader. Informally, every instantiation of the loop-variables
inside RiskTxzAccept (when given the inputs (GY,tx, subQG)) is also realized by future calls of RiskTzAccept
(when given the inputs (G¥,tx, subG")). We thus compare the results of the increments in the former to those in the
latter. This is also true vice versa (for z1 = 2¢5): Inside the first-loop’s iteration over z1 = 2¢,, the exact same calls
to RiskTxzAccept and RiskTxReject are made, because past (z:z) does not evolve with time.

65

the sum of increments to the value of riskZ:(Gy,tx,subG), for all s > 7, where

7 is of finite expectation. As riskee.(GY,tx,subG’) < riskZ:=(GY, tx,subG’), and as

TiSkacc(GY, tx, subG) = riskZie(GY,tx, subG), this proves that, with probability > 1 —

acc
riskZz(GY, tx, subG) the inequality riskgec(GY,tx, subG') < riskqc.(GY, tx, subG) holds.

Part VI: Similar arguments prove the induction step w.r.t. RiskTxReject. The difference in
the proof is that, since riskféj is not a sum, rather a minimum, hence we can ignore the fact
that anticone (z1, G¥) may grow in time and add loop-iterations that might further reduce the
value of riskféj. Note further that the induction claim, w.r.t. RiskTxReject, is restricted to the
case subG’ = subG. Hence, the fact that the set Zg([tz]) possibly grows with time is of no
consequence, since the first loop-variable is chosen from Zg([tz]) N subG. We thus conclude
that, with probability > 1 — risk,.;j(GY,tx, subG},), there exists a 7 of finite expectation such
that for all s > 7 and all u € honest: risk,.;(GY,tx, subGy) < risk,.;(Gy,tz, subGy).

This completes the proof of the induction claim.

Part VII: Algorithm 6 returns a set that contains ¢z if and only if RiskTzAccept returned a
value smaller than e. The above claim implies that, if riskq..(G},tx, G}) < €, with probability
> 1—e¢, for all s > 7, for some 7 of finite expectation, for all u € honest: riskqe.(GY, tx, G¥) <
€. In other words, conditioned on Aj (tx, €), the event Nyecponest,se(r(t),00)As (7, €) occurs with
probability > 1 —e.

J. Proof of Liveness

Fix some 23 € Zg(tz]) for G = G}. The condition that until (t):
conflict (tz) N GE** = (), implies that lines 6 and 7 of RiskTzAccept
do not contribute to the value of riske.(GY, tx,subG). The assumption
D[t cinputs(tz) LiskTz Accept (GY, (vote (2)) ,ec s [ti],GY) < €/2 implies that, with
probability > 1 — €/2, the overall contribution of the fourth loop to the value of
riskZL.(GY, [tz], G¥) is at most €/2 (after some 7). Finally, by Proposition 10, the contribution
of line 3 to riskZ.. is less than €/2, after some 7 of finite expectation. We conclude
that after some 7 of finite expectation, the value of riskZ..(GY,[tx],GY) is smaller than
€/2+€/2 = ¢, for all s > 7 and u > s, hence riskq..(GY, [tz], G¥) < €, which implies the
event ﬁuehonest,se(7'(t),<><>)“41;(&”? €).

K. Proof of Progress

The proof of this proposition is similar in structure to that of Proposition 2. Therein we have
already argued that the contributions to the value of riskZ:z (and similarly for m’skfé’;) of lines 3
and of 6 go to zero; and the increments of lines 7 and 9 go to zero by the induction hypothesis.
Thus, riskac.(GY,tx, GY) goes to 0 as time develops, with probability > 1—riskyc.(G}, tz, G}).
As € > riskqec(GY,tx, GY), we conclude that, with probability > 1 — ¢, for all G¥ with s > 7

and u € honest, Algorithm 6 returns a set that contains tx.

