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Abstract. The LWE problem has been widely used in many constructions for post-quantum
cryptography due to its strong security reduction from the worst-case of lattice hard problems
and its lightweight operations. The PKE schemes based on the LWE problem have a simple
and fast decryption, but the encryption phase is rather slow due to large parameter size for
the leftover hash lemma or expensive Gaussian samplings.
In this paper, we propose a novel PKE scheme, called Lizard, without relying on either of
them. The encryption procedure of Lizard first combines several LWE samples as in the
previous LWE-based PKEs, but the following step to re-randomize this combination before
adding a plaintext is different: it removes several least significant bits of each component of
the computed vector rather than adding an auxiliary error vector. Lizard is IND-CPA secure
under the hardness assumptions of the LWE and LWR problems, and its variant achieves
IND-CCA security in the quantum random oracle model.
Our approach accelerates encryption speed to a large extent and also reduces the size of
ciphertexts, and Lizard is very competitive for applications requiring fast encryption and
decryption phases. In our single-core implementation on a laptop, the encryption and de-
cryption of IND-CCA Lizard with 256-bit plaintext space under 128-bit quantum security
take 0.014 and 0.027 milliseconds, which are comparable to those of NTRU. To achieve these
results, we further take some advantages of sparse small secrets.
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1 Introduction

Since the National Institute of Standards and Technology (NIST) launched a project to develop new
quantum-resistant cryptography standards [1], post-quantum cryptography has gained a growing
attention at this moment. Lattice-based cryptography, one of the most attractive areas of the
post-quantum cryptography, has been studied actively over the last decade due to its distinctive
advantages on the strong security, fast implementations, and versatility in many applications. In
particular, the Learning with Errors (LWE) problem [35] has very attractive features for many
usages due to its rigorous reduction from the worst-case of the lattice problems that are regarded
to be hard to solve even after the advance of quantum computers.

The LWE problem was first introduced to construct a Public-Key Encryption (PKE) by Regev [35]
in 2005. Some well-known variants of Regev’s scheme [21, 33] had a drawback requiring too large
parameters to be used in practice. It was improved by Lindner and Peikert [27] using a method
to insert noises to a combination of LWE samples in the encryption stage. Recently, several post-
quantum key exchanges [4, 10, 9, 17, 32] and one more efficient PKE [14] with sparse small secrets
have been proposed on the hardness assumptions of the LWE problem and its ring variant. They



enjoy fast performances in practice as well as quantum-resistant security, but the noise sampling
caused some inefficiency since the distribution of noises has to be close to the discrete Gaussian
distribution.

The learning with rounding (LWR) problem, introduced by Banerjee, Peikert and Rosen [6], is
a de-randomized version of the LWE problem, which generates an instance using the deterministic
rounding process into a smaller modulus instead of adding auxiliary errors. Since the sampling
of LWR instances does not contain the Gaussian sampling process, it is rather simpler than that
of LWE instances. Up to recently, there have been several researches on the hardness of the LWR
problem, which address that the LWR problem is at least as hard as the LWE problem when the
number of samples is bounded [5, 6, 8].

Our Contributions. We propose a novel PKE scheme, called Lizard, based on LWE and LWR.
Lizard has a conceptually simple encryption procedure consisting of subset sum and rounding oper-
ations without Gaussian samplings. Through our delicate cryptanalysis against the LWR problem,
we show that the parameters of Lizard can be set as tight as those of the Lindner and Peikert’s PKE
scheme [27], and so our scheme enjoys two advantages of smaller ciphertext and faster encryption
speed compared to their scheme.

Taking some advantages of sparse binary secrets, we further show that our PKE scheme Lizard
is very practical. We implement Lizard and achieve a comparable performance result to that of
NTRU [18, 22, 23] in spite of the better security grounds. We remark that our scheme has stronger
security guarantee than NTRU in the sense that our scheme has a provable security from the LWE
and LWR problems which have reductions from the standard lattice problems (GapSVP, SIVP),
but NTRU does not.1

Technical Details. Our PKE scheme consists of Lizard.Setup, Lizard.KeyGen, Lizard.Enc, and
Lizard.Dec. In the key generation Lizard.KeyGen, we choose a private key s and use it to generate
several samples of the LWE problem in modulo q. The public key is (A, b = As+e) ∈ Zm×nq ×Zmq ,
where the error term e is sampled from the discrete Gaussian distribution. To encrypt a plaintext
M ∈ Zt, we first generate an ephemeral secret vector r and calculate (AT r, 〈b, r〉 + (q/t) ·M).
Then, we rescale the vector into a lower modulus p < q using the rounding function defined by

Zn+1
q → Zn+1

p , x 7→ b(p/q) · xe ,

for the ciphertext dimension n+1. The function b·e denotes the component-wise rounding of entries
to the closest integers.

For the concrete instantiation of our PKE scheme, we take private keys and ephemeral se-
crets used in encryption procedure from certain small distributions for efficiency. In particular,
ephemeral secrets for the encryption procedure are chosen to be binary vectors in {0,±1}m with
small Hamming weights. The Hamming weight of ephemeral secret vectors has an effect on the
error size after subset sum of the public data, while the secret key size is related to the error caused
by rounding into a smaller modulus p. Therefore, the smallness of private keys and ephemeral se-
crets takes an important role in efficiency of our scheme including encryption speed and ciphertext
size.

Cryptanalysis of LWR and Parameter Selection. While various attacks on the LWE problem
were proposed, the cryptanalytic hardness of the LWR problem has not been well-understood so
far. Considering all known attacks on LWE and LWR, the best attack on the LWR problem is a
dual attack combined with Albrecht’s combinatorial attack for the sparse secrets [2] in our setup.
1 The provably secure variant of NTRU [39] is secure with the hardness assumption of ring-LWE, but
the ring-LWE problem only has a reduction from a lattice problem with ring structure, not from the
standard lattice problems.
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Combining the concrete analyses of the correctness condition and the LWR problem, we conclude
that the parameters of Lizard, and Lindner and Peikert’s PKE are comparable under the same setup
of distributions, security level, and decryption failure probability. Consequently, Lizard achieves a
better efficiency in ciphertext size and encryption speed compared to Lindner and Peikert’s PKE.

We also present our parameter sets for three different security levels based on the best known at-
tacks against LWE and LWR, and the correctness condition, following the methodology of NewHope [4]
and Frodo [9]. In particular, we provide the recommended parameter set for the long-term security,
which remains secure against all known quantum attacks.

Variants of Lizard. Additionally, we describe some useful variants of Lizard: a ring variant
RLizard, and an additive homomorphic encryption derived from Lizard. The security of RLizard
is based on the hardness of ring-LWE and ring-LWR. Since we use a polynomial instead of a matrix
in RLizard, the public key size of RLizard is considerably small compared to that of Lizard. Lizard
could also be a post-quantum alternative for additive homomorphic encryptions. The previous
schemes [15, 29, 30] appeared to require large parameters [19], or are insecure under the attacks
using a quantum computer [37].

Implementation and Comparison. The proposed PKE schemes were implemented in C lan-
guage and we measured their performances on a Macbook Pro with an Intel core i5 running at 2.9
GHz processor. With 128-bit quantum security, the encryption and decryption of CCA version of
Lizard take about 0.014 and 0.027 milliseconds, respectively. The source code of our schemes will
be uploaded at https://github.com/LizardOpenSource/Lizard_c.

We compare the IND-CCA version of Lizard with NTRU [22, 23] and the recently proposed
LWE-based PKE scheme [14] for 128-bit quantum security, which shows comparable results to
NTRU in terms of both enc/dec speed and ciphertext size. Moreover, we present implementation
results of our IND-CPA scheme Lizard with small plaintext space, and the additive homomorphic
encryption derived from Lizard.

Organization. The rest of the paper is organized as follows. In Section 2, we summarize some
notations used in this paper, and introduce LWE and LWR. We describe our public-key encryption
scheme Lizard based on both LWE and LWR in Section 3, and provide the concrete analysis and
parameters of our scheme in Section 4. In Section 5, we propose some variants of Lizard. Finally, we
provide implementation results, and compare the performance of our schemes with other lattice-
based schemes in Section 6.

2 Preliminaries

2.1 Notation

All logarithms are base 2 unless otherwise indicated. For a positive integer q, we use Z∩(−q/2, q/2]
as a representative of Zq. For a real number r, bre denotes the nearest integer to r, rounding
upwards in case of a tie. We denote vectors in bold, e.g., a, and every vector in this paper is a
column vector. The norm ‖·‖ is always 2-norm in this paper. We denote by 〈·, ·〉 the usual dot
product of two vectors. We use x← D to denote the sampling x according to the distribution D.
It denotes the uniform sampling when D is a finite set. For an integer n ≥ 1, Dn denotes the
product of i.i.d. random variables Di ∼ D. We let λ denote the security parameter throughout the
paper: all known valid attacks against the cryptographic scheme under scope should take Ω(2λ)
bit operations. A function negl : N → R+ is negligible if for every positive polynomial p(λ) there
exists λ0 ∈ N such that negl(λ) < 1/p(λ) for all λ > λ0. For two matrices A and B with the same
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number of rows, (A‖B) denotes their row concatenation, i.e., for A ∈ Zm×n1 and B ∈ Zm×n2 , the

m× (n1 + n2) matrix C = (A ‖ B) is defined as cij =

{
ai,j 1 ≤ j ≤ n1
bi,(j−n1) n1 < j ≤ n1 + n2

.

2.2 Distributions

For a positive integer q, we define Uq by the uniform distribution over Zq. For a real σ > 0, the
discrete Gaussian distribution of parameter σ, denoted by DGσ, is a probability distribution with
support Z that assigns a probability proportional to exp(−πx2/σ2) to each x ∈ Z. Note that the
variance of DGσ is very close to σ2/2π unless σ is very small.

For an integer 0 ≤ h ≤ n, the distribution HWTn(h) samples a vector uniformly from {0,±1}n,
under the condition that it has exactly h nonzero entries.

For a real number 0 < ρ < 1, the distribution ZOn(ρ) samples a vector v from {0,±1}n where
each component vi of the vector v is chosen satisfying Pr[vi = 0] = 1− ρ and Pr[vi = 1] = ρ/2 =
Pr[vi = −1].

2.3 Learning with Errors

Since Regev [35] introduced the learning with errors (LWE) problem, a lot of cryptosystems based
on this problem have been proposed relying on its versatility. For an n-dimensional vector s ∈ Zn
and an error distribution χ over Z, the LWE distribution ALWE

n,q,χ(s) over Znq × Zq is obtained by
choosing a vector a uniformly and randomly from Znq and an error e from χ, and outputting

(a, b = 〈a, s〉+ e) ∈ Znq × Zq.

The search LWE problem is to find s ∈ Zq for given arbitrarily many independent samples (ai, bi)
from ALWE

n,q,χ(s). The decision LWE, denoted by LWEn,q,χ(D), aims to distinguish the distribution
ALWE
n,q,χ(s) from the uniform distribution over Znq × Zq with non-negligible advantage, for a fixed

s← D. When the number of samples are limited by m, we denote the problem by LWEn,m,q,χ(D).
In this paper, we only consider the discrete Gaussian χ = DGαq as an error distribution where

α is the error rate in (0, 1), so α will substitute the distribution χ in description of LWE problem,
say LWEn,m,q,a(D). The LWE problem is self-reducible, so we usually omit the key distribution D
when it is a uniform distribution over Znq .

The hardness of the decision LWE problem is guaranteed by the worst case hardness of the
standard lattice problems: the decision version of the shortest vector problem (GapSVP), and the
shortest independent vectors problem (SIVP). After Regev [35] presented the quantum reduction
from those lattice problems to the LWE problem, Peikert et al. [12, 31] improved the reduction to
a classical version for significantly worse parameter; the dimension should be the size of n log q. In
this case, note that the reduction holds only for the GapSVP, not SIVP.

After the works on the connection between the LWE problem and some lattice problems, some
variants of LWE, of which the secret distributions are modified from the uniform distribution, were
proposed. In [12], Brakerski et al. proved that the LWE problem with binary secret is at least as
hard as the original LWE problem. Following the approach of [12], Cheon et al. [14] proved the
hardness of the LWE problem with sparse secret, i.e., the number of non-zero components of the
secret vector is a constant.

As results of Theorem 4 in [14], the hardness of the LWE problems with (sparse) small secret,
LWEn,m,q,β(HWTn(h)) and LWEn,m,q,β(ZOn(ρ)), are guaranteed by the following theorem.

Theorem 1. (Informal) For positive integers m,n, k, q, h, 0 < α, β < 1 and 0 < ρ < 1, following
statements hold:
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1. If log(nCh) + h > k log q and β > α
√
10h, then the LWEn,m,q,β(HWTn(h)) problem is at least

as hard as the LWEk,m,q,α problem.
2. If

(
(1− ρ) log

(
1

1−ρ

)
+ ρ log 2

ρ

)
n > k log q and β > α

√
10n, the LWEn,m,q,β(ZOn(ρ)) problem

is at least as hard as the LWEk,m,q,α problem.

In [11, 33, 34], to pack a string of plaintexts in a ciphertext, LWE with single secret was general-
ized to LWE with multiple secrets. An instance of multi-secret LWE is (a, 〈a, s1〉+e1, ..., 〈a, sk〉+ek)
where s1, ..., sk are secret vectors and e1, ..., ek are independently chosen error vectors. Using the
hybrid argument, multi-secret LWE is proved to be at least as hard as LWE with single secret.

2.4 Learning with Rounding

The LWR problem was firstly introduced by Banerjee et al. [6] to improve the efficiency of pseu-
dorandom generator (PRG) based on the LWE problem. Unlikely to the LWE problem, errors in
the LWR problem are deterministic so that the problem is so-called a “derandomized” version of
the LWE problem. To hide secret information, the LWR problem uses a rounding by a modulus p
instead of inserting errors. Then, the deterministic error is created by scaling down from Zq to Zp.

For an n-dimensional vector s over Zq, the LWR distribution ALWR
n,q,p(s) over Znq ×Zp is obtained

by choosing a vector a from Znq uniform randomly, and returning(
a,

⌊
p

q
· (〈a, s〉 mod q)

⌉)
∈ Znq × Zp.

As in the LWE problem, ALWR
n,m,q,p(s) denotes the distribution of m samples from ALWR

n,q,p(s); that is
contained in Zm×nq ×Zmp . The search LWR problem are defined respectively as finding secret s just
as same as the search version of LWE problem. In contrary, the decision LWRn,m,q,p(D) problem
aims to distinguish the distribution ALWR

n,q,p(s) from the uniform distribution over Znq × Zp with m
instances for a fixed s← D.

In [6], Banerjee et al. proved that there is an efficient reduction from the LWE problem to the
LWR problem for a modulus q of super-polynomial size. Later, the follow-up works by Alwen et
al. [5] and Bogdanov et al. [8] improved the reduction by eliminating the restriction on modulus
size and adding a condition of the bound of the number of samples. In particular, the reduction
by Bogdanov et al. works when 2mBp/q is a constant, where B is a bound of errors in the
LWE problem, m is the number of samples in both problems, and p is the rounding modulus in
the LWR problem. That is, the rounding modulus p is proportional to 1/m for fixed q and B.
Since the reduction from LWE to LWR is independent of the secret distribution, the hardness of
LWRn,m,q,p(HWTn(h)) and LWRn,m,q,p(ZOn(ρ)) is obtained from that of the LWE problems with
corresponding secret distributions.

2.5 Ring variants of LWE and LWR

In [28], Lyubashevsky et al. deal with the LWE problem over rings, namely ring-LWE. For positive
integers n and q, and an irreducible polynomial g(x) ∈ Z[x] of degree n, we define the ring
R = Z[x]/(g(x)) and its quotient ring modulo q, Rq = Zq[x]/(g(x)). The ring-LWE problem is to
distinguish between the uniform distribution and the distribution of (a, a · s + e) ∈ R2

q where a
is uniform randomly chosen polynomial, e is chosen from a error distribution, and s is a secret
polynomial.

Due to the efficiency and compactness of ring-LWE, many lattice-based cryptosystems are con-
structed as ring-LWE based, rather than LWE-based. Similarly to LWE, the ring-LWE problem over
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the ring R is at least as hard as the search version of approximate SVP over the ideal lattices of
R, in the sense of quantum reduction.

The ring variant of LWR is introduced in [6, 8] as an analogue of LWR. In the ring-LWR problem,
the vectors chosen from Znq are substituted by polynomials in Rq, i.e., the ring-LWR instance for
a secret polynomial s ∈ Rq is (

a,

⌊
p

q
· a · s

⌉)
∈ Rq ×Rp.

where b(p/q) · a · se is obtained by applying the rounding function to each coefficient of (p/q) ·a ·s.
The search and decision ring-LWR problems are defined the same way as the LWR problem, but
over rings.

In [6], Banerjee et al. proved that decision ring-LWR is at least as hard as decision ring-LWE
for sufficiently large modulus. Later, reduction from search ring-LWE to search ring-LWR was
constructed in overall scope of the modulus [6] when the number of samples is bounded.

3 (LWE+LWR)-based Public-key Encryption Scheme

In this section, we present a (probabilistic) public-key encryption scheme Lizard based on both
the LWE and LWR problems with provable security. Our construction has several advantages: one
is that we could compress the ciphertext size by scaling it down from Zq to Zp where p is the
rounding modulus, and the other is that we speed up the encryption algorithm by eliminating the
Gaussian sampling process.

3.1 The Construction of Lizard

We now describe our public-key encryption scheme based on both the LWE and LWR problems.
The public key consists of m number of n dimensional LWE samples, and encryptions of zero form
(n+ `) samples of m dimensional LWR where ` is the dimension of plaintext vectors. The scheme
is described as follows:

• Lizard.Setup(1λ): Choose positive integers m,n, q, p, t and `. Choose private key distribution
Ds over Zn, ephemeral secret distribution Dr over Zm, and parameter σ for discrete Gaussian
distribution DGσ. Output params← (m,n, q, p, t, `,Ds,Dr, σ).

• Lizard.KeyGen(params): Generate a random matrix A ← Zm×nq . Choose a secret matrix S =
(s1‖ · · · ‖s`) by sampling column vectors si ∈ Zn independently from the distribution Ds.
Generate an error matrix E = (e1‖ · · · ‖e`) from DGm×`σ and let B ← AS + E ∈ Zm×`q where
the operations are held in modular q. Output the public key pk← (A‖B) ∈ Zm×(n+`)q and the
secret key sk← S ∈ Zn×`.

• Lizard.Encpk(m): For a plaintext m = (mi)1≤i≤` ∈ Z`t, choose an m dimensional vector r ∈ Zm
from the distribution Dr. Compute the vectors c′1 ← AT r and c′2 ← BT r over Zq, and output
the vector

c← (c1, c2) ∈ Zn+`p

where c1 ← b(p/q) · c′1e ∈ Znp and c2 ← b(p/t) ·m+ (p/q) · c′2e ∈ Z`p.
• Lizard.Decsk(c): For a ciphertext c = (c1, c2) ∈ Zn+`p , compute and output the vector

m′ ←
⌊
t

p
(c2 − ST c1)

⌉
(mod t).

We will assume that t | p | q in the rest of paper. This restriction simplifies the encryption
procedure (e.g., (p/t) ·m is a vector of integers) and makes the implementation of the rounding
procedure x 7→ b(p/q) · xe faster. However, our scheme still works correctly for parameters not
satisfying this condition.
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3.2 Correctness and Security

The following lemma shows a required condition of parameter setup to ensure the correctness of
our PKE scheme.

Lemma 1 (Correctness). The PKE scheme Lizard works correctly as long as the following in-
equality holds for the security parameter λ:

Pr

[
|〈e, r〉+ 〈s, f〉| ≥ q

2t
− q

2p
: e← DGmσ , r← Dr, s← Ds, f ← Znq/p

]
< negl(λ).

Proof. Let r ∈ Zm be a vector sampled fromDr in our encryption procedure, and let c′ = (c′1, c
′
2)←

(AT r, BT r) ∈ Zn+`q . The output ciphertext is c← (c1 = b(p/q) · c′1e , c2 = b(p/t) ·m+ (p/q) · c′2e).
Let f1 ← c′1 (mod q/p) ∈ Znq/p and f2 ← c′2 (mod q/p) ∈ Z`q/p be the vectors satisfying

(q/p) ·c1 = c′1− f1 and (q/p) ·(c2−(p/t) ·m) = c′2− f2. Note that f1 = AT r (mod q/p) is uniformly
and randomly distributed over Znq/p independently from the choice of r, e, and s. Then for any
1 ≤ i ≤ `, the i-th component of c2 − ST c1 ∈ Z`q is

(c2 − ST c1)[i] = (p/t) ·mi + (p/q) · (c′2 − ST c′1)[i]− (p/q) · (f2[i]− 〈si, f1〉)
= (p/t) ·mi + (p/q) · (〈ei, r〉+ 〈si, f1〉)− (p/q) · f2[i]
= (p/t) ·mi + b(p/q) · (〈ei, r〉+ 〈si, f1〉)e

since f2 = (AS + E)T r = ST f1 + ET r (mod q/p). Therefore, the correctness of our scheme is
guaranteed if the encryption error is bounded by p/2t, or equivalently, |〈ei, r〉+〈si, f1〉| < q/2t−q/2p
with an overwhelming probability. ut

We argue that the proposed encryption scheme is IND-CPA secure under the hardness assump-
tions of the LWE problem and the LWR problem. The following theorem gives an explicit proof of
our argument on security.

Theorem 2 (Security). The PKE scheme Lizard is IND-CPA secure under the hardness as-
sumption of LWEn,m,q,DGσ (Ds) and LWRm,n+`,q,p(Dr).

Proof. An encryption of m can be generated by adding (p/t) ·m to an encryption of zero. Hence,
it is enough to show that the pair of public information pk = (A‖B) ← Lizard.KeyGen(params)
and encryption of zero c← Lizard.Encpk(0) is computationally indistinguishable from the uniform
distribution over Zm×(n+`)q × Zn+`q for a parameter set params← Lizard.Setup(1λ).

• D0 = {(pk, c) : pk← Lizard.KeyGen(params), c← Lizard.Encpk(0)}.
• D1 = {(pk, c) : pk← Zm×(n+`)q , c← Lizard.Encpk(0)}.
• D2 = {(pk, c) : pk← Zm×(n+`)q , c← Zn+`p }.

The public key pk = (A‖B) ← Lizard.KeyGen(params) is generated by sampling m instances
of LWE problem with ` independent secret vectors s1, . . . , s` ← Ds. In addition, the multi-secret
LWE problem is no easier than ordinary LWE problem as noted in Section 2.3. Hence, distributions
D0 and D1 are computationally indistinguishable under the LWEn,m,q,DGσ (Ds) assumption.

Now assume that pk is uniform random over Zm×(n+`)q . Then pk and c ← Lizard.Encpk(0)
together form (n + `) instances of the m dimensional LWR problem with secret r ← Dr. There-
fore, distributions D1 and D2 are computationally indistinguishable under the LWRm,n+`,q,p(Dr)
assumption.

As a result, distributions D0 and D2 are computationally indistinguishable under the hardness
assumption of LWEn,m,q,DGσ (Ds) and LWRm,n+`,q,p(Dr), which denotes the IND-CPA security of
the PKE scheme. ut
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Remark 1. Our IND-CPA PKE scheme Lizard can be naturally converted into two IND-CCA
versions: one in the random oracle model using the Fujisaki-Okamoto conversion [20], and the
other in the quantum random oracle model using the Targhi-Unruh conversion [40]. In the rest of
paper, we denote the CCA version of Lizard by CCALizard. The scheme description of CCALizard
is in Appendix A.

3.3 Advantages of (LWE+LWR)-based PKE scheme

In this subsection, we compare Lizard with the previous LWE-based PKE schemes, Regev’s scheme
(Regev) [35] and Lindner-Peikert’s scheme (LP) [27], and show that our scheme has some ad-
vantages in performance under a reasonable cryptanalytic assumption about the LWR problem.
Instead of the specific descriptions of previous schemes, we will consider a generalized version of
the Regev and LP schemes with undetermined small distributions Ds of secret vector and Dr of
ephemeral vector for encryption.

All three schemes assume the hardness of the LWE problem to guarantee the computational
randomness of public information

pk← (A‖B = AS + E) ∈ Zm×nq × Zm×`q ,

where A is a matrix uniformly and randomly chosen from Zm×nq , S = (s1‖ · · · ‖s`) is a secret matrix
sampled from D`s, and E is an error matrix sampled from DGm×`σ . This matrix is computationally
indistinguishable from a uniform matrix over Zm×nq × Zm×`q under LWEn,q,DGσ (Ds) assumption.
The main difference of these schemes is shown in the encryption procedure of plaintext m ∈ Z`t.

• Regev.Encpk(m): Choose an m dimensional vector r ∈ Zm from the distribution Dr. Output
the vector c← (c1, c2) ∈ Zn+`q where c1 ← AT r and c2 ← BT r+ (q/t) ·m.

• LP.Encpk(m): Choose an m dimensional vector r ∈ Zm from the distribution Dr and error
vectors f1 ← DGnσ′ and f2 ← DG`σ′ . Output the vector c← (c1, c2) ∈ Zn+`q where c1 ← AT r−f1
and c2 ← BT r+ (q/t) ·m+ f2.

• Lizard.Encpk(m): Choose an m dimensional vector r ∈ Zm from the distribution Dr. Compute
the vectors c′1 ← AT r and c′2 ← BT r over Zq, and output the vector c ← (c1, c2) ∈ Zn+`p

where c1 ← b(p/q) · c′1e ∈ Znp and c2 ← b(p/q) · c′2 + (p/t) ·me ∈ Z`p.

The Regev scheme applies the leftover hash lemma (LHL) to guarantee the randomness of
(pk, Lizard.Encpk(m)). However, this information-theoretic approach requires huge parameter m =
Ω((n+ `) log q)+ω(log λ) for sufficiently large entropy of r, so the Regev scheme is far less efficient
than other two schemes in public key size and encryption speed. In the case of the LP scheme, an
encryption of zero forms (n + `)-number of LWE samples with public information pk. Hence, the
conditional distribution of LP.Encpk(m) for given pk is computationally indistinguishable from the
uniform distribution Zn+`q under the LWEm,n+`,q,DGσ′ (Dr) assumption. As described in the previ-
ous subsection, Lizard has a similar security proof with LP, but the LWRm,n+`,q,p(Dr) assumption
is used instead of LWEm,n+`,q,DGσ′ (Dr). In summary, Lizard can be viewed as a (LWE + LWR)-
based scheme while Regev and LP are represented as (LWE+LHL)-based and (LWE+LWE)-based
schemes, respectively.

Now let us consider the required conditions for correctness of schemes. All three schemes has the
same decryption structure: for a ciphertext c = (c1, c2), compute c2 − ST c1 and extract its most
significant bits. In our scheme, an encryption error can be represented as b(p/q) · (〈ei, r〉+ 〈si, f1〉)e
where si is i-th secret vector, ei is an error vector sampled from the discrete Gaussian distribution,
r is a randomly chosen small vector for encryption, and f1 is a random vector in Znq/p defined
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in the proof of Lemma 1. This error term should be bounded by p/2t for the correctness of the
scheme. Meanwhile, an error term of the Regev scheme can be simply described by 〈ei, r〉 since
an encryption of zero is generated by multiplying a small vector r to public key; however, this
value is comparably larger than other two PKE schemes because of its huge dimension. Finally,
in the case of the LP scheme, an encryption c = (c1, c2) ∈ Zn+`q of m satisfies (c2 − ST c1)[i] =
(q/t) ·mi + 〈ei, r〉 + 〈si, f1〉 + f2[i], so its encryption error is expressed as 〈ei, r〉 + 〈si, f1〉 + f2[i].
This encryption error should be bounded by q/2t for the correctness of the scheme. The hardness
assumption problems and correctness conditions are summarized as follows.

Scheme Security Correctness Condition

Regev
LWEn,m,q,DGσ (Ds) +
Leftover hash lemma

|〈ei, r〉| < q/2t:
ei ← DGmσ , r← Dr

LP
LWEn,m,q,DGσ (Ds) +
LWEm,n+`,q,DGσ′ (Dr)

|〈ei, r〉+ 〈si, f1〉+ f2[i]| < q/2t:
ei ← DGmσ , r← Dr,

si ← Ds, f1 ← DGnσ′ , f2[i]← DGσ′

Lizard
LWEn,m,q,DGσ (Ds) +
LWRm,n+`,q,p(Dr)

|〈ei, r〉+ 〈si, f1〉| < q/2t− q/2p:
ei ← DGmσ , r← Dr,
si ← Ds, fi ← Znq/p

We mainly compare the performances of LP and Lizard that are clearly more efficient than
the Regev scheme. Both schemes share the first error term 〈ei, r〉 of encryption noise. In the next
section, we will show that this value is a summation of many independent and identically dis-
tributed random variables for various candidate distributions Dr so that its distribution is close
to a normal distribution by the central limit theorem. In the remaining terms, Lizard samples
f1 from uniform distribution Znq/p and has a slightly tighter bound q/2t − q/2p, while LP sam-
ples f1 from the discrete Gaussian distribution and has an additional error term f2[i]. Similar
to the first term, 〈si, f1〉 is close to a normal distribution for various candidate distributions of
Ds, whose variance depends on Ds and the variance of entries of f1. Specifically, if the variance
q2/12p2 of uniform distribution of Zq/p coincides with the variance σ′2/2π of DGσ′ , then dis-
tributions 〈si, f1〉 in Lizard and LP will be statistically close. In this case, the common term
〈ei, r〉 + 〈si, f1〉 of two schemes will be close to a normal distribution of the same variance σ2

enc.
Therefore, the failure probabilities of Lizard and LP are approximately measured by the com-
plementary error function Pr[|〈ei, r〉 + 〈si, f1〉| < q/2t − q/2p] ≈ erfc((q/2t − q/2p)/

√
2σenc) and

Pr[|〈ei, r〉 + 〈si, f1〉 + f2[i]| < q/2t] ≈ erfc((q/2t)/
√
2(σ2

enc + σ′2)), respectively. Since q/2t − q/2p
is close to q/2t and σ′ is very small compared to σenc in parameter setting, two PKE schemes will
have almost the same failure probability. For instance in the case of our recommended parameter
set (t = 2, q = 1024, p = 256, n = 608,Ds = ZOn(1/2),Dr = HWTm(128)), the failure proba-
bility of Lizard and LP is approximately measured by erfc((q/2t − q/2p)/

√
2σenc) ≈ 2−47.6 and

erfc((q/2t)/
√
2(σ2

enc + σ′2)) ≈ 2−48.3, respectively.
Moreover, in Section 4.2 about cryptanalytic hardness of the LWR problem, we show that the

best known attack complexity against the LWR problem of the moduli q and p is no less than that
of the LWE problem with the same dimension, modulus q, and the error distribution DGσ′ of the
variance σ′2/2π = q2/12p2.
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Combining these two results about functionality and security, we derive our conclusion that
Lizard achieves a better efficiency compared to LWE-based PKE scheme while guaranteeing the
same hardness in cryptanalysis. More precisely, if we set the parameter satisfying σ′2/2π = q2/12p2,
then Lizard has simpler and faster encryption phase (rounding instead of Gaussian sampling)
and smaller ciphertexts size (n + `) log p than (n + `) log q of the LP scheme while preserving its
cryptanalytic security level and decryption failure probability.

Ciphertext bitsize
Gaussian Sampling
in Encryption Phase

LP (n+ `) log q Yes
Lizard (n+ `) log p No

4 Concrete Instantiation and Parameter Selection

4.1 Correctness Conditions for various Distribution Setups

We specify some candidate distributions of Ds and Dr, and analyze the distribution of encryption
noise in this subsection. Recall the following correctness condition of Lemma 1:

Pr

[
|〈e, r〉+ 〈s, f〉| ≥ q

2t
− q

2p
: e← DGmσ , r← Dr, s← Ds, f ← Znq/p

]
< negl(λ).

First, we suggest three specific candidates distributions of Dr and analyze the behavior of the
first error term 〈e, r〉. In every case, this random variable is very close to a symmetric normal
distribution of variance σ2

1 for some σ1 > 0.

1. Dr = DGmσr : Entries of r are independently sampled from discrete Gaussian distribution DGσr
of parameter σr. Since 〈e, r〉 =

∑m
i=1 eiri is the summation of m-number of i.i.d. symmetric

random variables of variance (σ2/2π)(σ2
r/2π), it looks like a symmetric normal distribution of

variance σ2
1 = m(σ2/2π)(σ2

r/2π) by the central limit theorem.
2. Dr = ZOm(ρr): Entries of r are independently sampled from signed binary random variable
ZO(ρr) of parameter ρr ∈ (0, 1) of which variance is ρr. Similar to the first case, 〈e, r〉 is close
to a symmetric normal distribution of variance σ2

1 = mρr(σ
2/2π).

3. Dr = HWTm(hr): A vector r ∈ {0,±1}m is a random binary vector of Hamming weight hr.
In this case, 〈e, r〉 is the summation of hr-number of i.i.d. discrete Gaussian distribution of
parameter σ. This random variable is close to the discrete Gaussian distribution of parameter√
hrσ, or equivalently, a symmetric normal distribution of variance σ2

1 = hr(σ
2/2π).

We also give three candidates for Ds and analyze the behavior of second error term 〈s, f〉 =∑n
i=1 s[i] · f [i] similarly. It will follow a normal distribution of variance σ2

2 for some σ2 > 0.

1. Ds = DGnσs : Entries of s are independently sampled from the discrete Gaussian distribution
DGσs of parameter σs. Since

∑n
i=1 s[i] · f [i] is a summation of n-number of i.i.d. symmetric

random variables of variance (σ2
s/2π)(q

2/12p2), it looks like a normal distribution of variance
σ2
2 = n(σ2

s/2π)(q
2/12p2) by the central limit theorem.
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2. Ds = ZOn(ρs): Entries of s are independently sampled from signed binary random variable
ZO(ρs) of parameter ρs ∈ (0, 1) of which variance is ρs. Then

∑n
i=1 s[i] · f [i] is close to the

symmetric normal distribution of variance σ2
2 = nρs(q

2/12p2) by the central limit theorem.
3. Ds = HWTn(hs): A vector s is chosen uniformly and randomly from the set of vectors {0,±1}n

of Hamming weight hs. In this case,
∑n
i=1 s[i] · f [i] is the summation of hs-number of i.i.d.

uniform random variables on Zq/p, so is close to the symmetric normal distribution of variance
σ2
2 = hs(q

2/12p2).

Thus, putting these analysis together, the encryption noise of our scheme behaves as symmetric
normal distribution of variance σ2

enc = σ2
1 + σ2

2 . The correctness of our scheme holds if (q/2t −
q/2p)/σenc = Ω(

√
λ), i.e. the symmetric normal distribution of variance σ2

enc is bounded by q/2t−
q/2p with an overwhelming probability.

4.2 Concrete Hardness of LWR

In this subsection, we analyze the attack complexity for an LWR instance using lattice basis re-
duction algorithms, e.g. the BKZ algorithm [13, 36]. We will propose the parameter sets of our
CPA-secure encryption scheme according to our analysis on LWR and the state-of-the-art of the
LWE attacks at the end of the section. We remark that the attack strategy we describe here to
analyze the LWR problem is partly shared in the community working on the lattice cryptography,
and independently studied in the recent papers [2, 14] while it has never been applied to analyze
the LWR problem.

Assume that we are given (A,b) ∈ Zk×mq ×Zkp either from LWRm,k,q,p(Dr) or Uk×mq ×Ukp , and
want to distinguish whether it is an LWR instance or not. Let us denote an m-dimensional LWR
instance of k samples with the secret r ∈ Zmq as(

A, b =

⌊
p

q
·Ar

⌉)
∈ Zk×mq × Zkp.

We first consider the case that p | q for simplicity. Letting f = −Ar (mod q/p), we have (q/p) ·b =
Ar+ f over Zq. For input (A, b), construct the lattice

Λ = {(x,y) ∈ Zk × Zm : ATx = y (mod q)}.

Assume that v = (x,y) is a short vector in the lattice. Then we have

〈x, (q/p) · b〉 = 〈y, r〉+ 〈x, f〉 (mod q),

which can be reduced to

〈x,b〉 = (p/q) · (〈y, r〉+ 〈x, f〉) (mod p). (1)

If (A,b) is an LWR instance with secret r and the vector v is sufficiently short, then (1) is smaller
than p so that it is detectable for an adversary, while 〈x,b〉 is uniformly distributed over Zp for the
case that the input (A,b) is chosen from uniform. Hence, one can distinguish the LWR instance
from uniform by determining 〈x,b〉 mod p is small or not.

In order to derive a sharper bound for this attack, it is better to consider the balanced lattice
Λ′ = {v′ = (x, w−1y) ∈ Zk× (w−1 ·Z)m : (x,y) ∈ Λ} using a scaling factor w > 0 and find a short
vector v′ ∈ Λ′. Since each entry of f behaves as a uniform random variable on Zq/p of variance
σ2 = q2/12p2, an adversary might choose w ∈ R by

w2 =
q2

12p2 · σ2
r

,
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to balance the entries of two terms 〈y, r〉 and 〈x, f〉 in (1) where σ2
r denotes the variance of each

component of r. For example, the optimal scaling factor for attack is w = q
p ·
√

m
12hr

when the secret

r is chosen from the distribution HWTm(hr). By the central limit theorem, the value (1) follows
the Gaussian distribution of standard deviation ‖v′‖/

√
12. Applying the lemmas in [3, 27], the

value 〈x,b〉 can be distinguished from the uniform distribution modulo p with advantage ≈ 1/23
if the inequality

√
π/6 · ‖v′‖ < p holds.

Now, let us see how short the BKZ output as its input Λ′ is. Let q̂ = w−1q. The lattice Λ′
has the dimension (m + k) and the volume q̂m. Running the BKZ algorithm for the lattice Λ′, it
outputs a short vector v′ = (x, w−1y) of the size ‖v′‖ ≈ δm+k · q̂

m
m+k which can be reduced down

to 22
√
m log q̂·log δ when m+ k =

√
m log q̂/ log δ. To sum up, the LWRm,k,q,p(Dr) problem is secure

only if
m log q̂

log2 p̂
≥ 1

4 log δ

for p̂ =
√
6/π · p and q̂ =

√
12σrp, where σ2

r is the variance of component of secret vector r.

Example 1. In case that r is drawn from the distribution HWTm(hr), q̂ = p ·
√

12hr
m . If r is from

the distribution ZOn(1/2), then q̂ =
√
6 · p. Albrecht’s combinatorial attack [2] for the small or

sparse secret can be also applied in these cases so that we propose our parameters according to
our attack combined with the combinatorial strategy.

Remark 2. To conclude, the attack complexity of the LWR problem of dimension m, modulus q,
and the rounding modulus p is the same with that of the LWE problem of the same dimension m,
the same modulus q, and an error rate α = p−1 ·

√
π/6.

This agrees with the view that an LWR sample (a, b = b(p/q) · 〈a, r〉e) ∈ Zmq × Zp can be
naturally seen as a kind of an LWE sample by sending back the value b to an element of Zq,
i.e., b′ = (q/p) · b ∈ Zq satisfies b′ = 〈a, r〉 + f (mod q) for a small error f = −〈a, r〉 (mod q/p).
Note that, in this view, the inserted error is deterministically chosen by random part a and secret
r, but it does not affect on the attack complexity.

4.3 The BKZ complexity

In this subsection, we explain how to set the root Hermite factor δ such that the attack complexities
for given δ exceed 2λ, where λ is the security parameter. We follow the strategies to measure the
BKZ complexity in NewHope [4] and Frodo [9]. From the perspective in [4, 9], we review the
relations among the root Hermite factor δ, the block size b, and the time complexity T for the
BKZ algorithm as follows.

– (pessimistic) T can be estimated as 2cb (about b2cb CPU cycles) in our scheme, where c is some
constant. This is an approximate lower bound of the complexity for a single SVP calculation
using the sieve algorithm [7, 24–26].

– δ = ((πb)1/b · b/2πe)1/2(b−1).

From this, if we fix the constant c, we can calculate T from a given δ.
According to the constant c, we consider the three cases, c = cC for classical security, c = cQ

for quantum security, and c = cP for very pessimistic view, following the definitions in [4, 9]. We
would explain how to set these constants briefly for self-containedness. On the classical view, the
constant c has been studied for a long time, reaching cC = 0.292 (See in [7, 25]). Quantum attacks
make the constant c decline. The best known constant is achieved by applying Grover’s quantum
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search algorithm to those sieve algorithms [24, 26], resulting in decrease of c to cQ = 0.265. Since
all the algorithms require building lists of (4/3)b/2 = 20.2075b vectors, we set cP = 0.2075 as a
pessimistic lower bound of the constant c.

Hence, in the each point of view, to make the attack using the BKZ algorithm as in Section 4.2
infeasible for security parameter λ = 128, we should set the parameters such that the attack is
successful only when δC ≤ 1.003922, δQ ≤ 1.00367, and δP ≤ 1.00309, respectively. This can be
shown in simple calculations visualized in Table 1.

Table 1. Our views in BKZ complexity; estimated root Hermite factor δ for BKZ running time 2128 (in
cycles).

View c b δ

Classical 0.292 409 1.003922

Quantum 0.265 450 1.00367

Paranoid 0.2075 573 1.00309

4.4 Proposed Parameters

In this subsection, we propose our parameter sets adjusted to be secure against the LWR attack in
Section 4.2 and the state-of-the-art of the LWE attacks: so far, the best known attack of the LWE
problem when the secrets are small and the number of samples is limited is given in the recent
proposal [2] which applies the BKW style combinatorial approach to the dual attack on LWE. We
remark that one can find a guideline for attacking the LWE problem in [3] as well.

Nowadays, many cryptosystems are threatened not only by developments of the classical attack
algorithms on the hard problems, but also by the quantum attacks. We suggest parameter options
following the criteria in [4, 9] so that we have two sets called Classical and Recommended according
to the security estimates against classical and quantum attacks respectively, and one more set called
Paranoid for the pessimistic view. We review the criteria briefly for a self-containedness.

Classical Parameters. This parameter set supplies 128-bit security against the classical attacks,
but not enough against quantum attacks.

Recommended Parameters. It provides 128-bit security against all known quantum attacks.
We recommend to use this parameter for the long-term security.

Paranoid Parameters. This parameter set would remain secure and have 128-bit security against
quantum attacks even if a remarkable improvement towards solving SVP arises.

We present the parameter sets for the case that Ds = ZOn(1/2) and Dr = HWTm(128) in
Table 2. To satisfy the correctness condition in Lemma 1, we fix the plaintext modulus t = 2 and
hr = 128.

The Table 3 shows the time complexity for solving LWEn,m,q,α(ZOn(1/2)) and LWRm,n+`,q,p(HWTm(128))
considering the best known attacks. In the table, the column labeled b denotes the required block
size of the BKZ algorithm to achieve a root Hermite factor which draws the best known attack
successful against LWEn,m,q,α(ZOn(1/2)) and LWRm,n+`,q,p(HWTm(128)) respectively, and the
values in the columns labeled C, Q, and P shows the bit size of required time complexity in CPU
cycles measured with the constants cC , cQ, and cP , respectively.

13



Table 2. Suggested parameter sets for 128-bit security; m and n are dimensions of LWR and LWE, respec-
tively. q is a large modulus in LWE and LWR, and p is a rounding modulus in LWR. α is an error rate in
LWE.

m n log q log p α−1

Classical 840 544 10 8 171

Recommended 960 608 10 8 182

Paranoid 1450 736 10 8 160

Table 3. Attack complexity of LWE and LWR for the best attack on the suggested parameter sets according
to our analysis. Numbers in bold type point to the security claim for the particular parameter set. For
example, the recommended set provides 128-bit post-quantum security.

Parameter Problem b C Q P

Classical
LWE 409 128 117 94

LWR 421 132 120 96

Recommended
LWE 450 140 128 102

LWR 456 142 130 103

Paranoid
LWE 575 177 162 128
LWR 577 178 162 129

5 Variants of Lizard

In this section, we propose some variants of Lizard : its ring variant and (bounded) additive
homomorphic encryption scheme.

5.1 Ring variant of Lizard

Our scheme Lizard has a natural analogue based on the harness of Ring-LWE and Ring-LWR
problems. Although the security ground of the ring variant of Lizard, which we call RLizard, is
weaker than that of Lizard based on LWE and LWR, the ring variant exploits better key sizes,
plaintext expansion rate, and Enc/Dec speed.

We bring some notations for the description of our ring-based encryption scheme. For an integer
d, let Φd(X) be the d-th cyclotomic polynomial of degree n = φ(d). We write the cyclotomic ring and
its residue ring modulo an integer q by R = Z[X]/(Φd(X)) and Rq = Zq[X]/(Φd(X)). We identify
the vectors of Znq with the elements of Rq by (a0, ..., an−1) 7→

∑n−1
i=0 aiX

i. For any distribution D
over Zq, sampling a polynomial

∑n−1
i=0 aiX

i ∈ Rq from Dn denotes sampling the coefficient vector
(a0, ..., an−1) from the distribution. For the simplicity of ring operations, we choose a power-of-two
degree in the following description.

– RLizard.Setup(1λ) : Choose positive integers t, p, and q. Let n ∈ Z be a power of 2 and Φ(X) =
Xn + 1 be the 2n-th cyclotomic polynomial. Choose hs, hr less than or equal to n, a private
key distribution Ds over Rn, an ephemeral secret distribution Dr over Rn, and a parameter σ
for the discrete Gaussian distribution DGσ. Output params← (n, t, p, q,Ds,Dr, σ).

– RLizard.KeyGen(params) : Generate a random polynomial a← Rq. Sample a secret polynomial
s ← Ds, and an error polynomial e ← DGnσ. Let b = a · s + e ∈ Rq. Output the public key
pk← (a, b) ∈ R2

q and the secret key sk← s ∈ R.
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– RLizard.Encpk(m) : For a plaintext m ∈ Rt = R/tR, choose r ← Dr and compute c′1 ← a · r
and c′2 ← b · r. Output the vector

c← (c1, c2) ∈ R2
p,

where c1 ← b(p/q) · c′1e ∈ Rp and c2 ← b(p/t) ·m+ (p/q) · c′2e ∈ Rp.
– RLizard.Decsk(c) : For a ciphertext c = (c1, c2), compute and output the polynomial

m′ ←
⌊
t

p
(c2 − c1 · s)

⌉
∈ Rt.

Note that all the polynomial multiplications with s or r required in key generation, encryption,
and decryption phases can be done very efficiently by shifting and adding vectors.

Parameter Consideration. Since the best known attacks do not utilize the ring structure so far,
we analyze the hardness of Ring-LWE as the LWE problem without ring structure as in the previous
section. Setting Ds = Dr = HWTn(128), we can achieve our parameter set: we recommend to use
the parameter

n = 1024, log q = 10, p = 256, α−1 = 154 (2)

to resist all known quantum attacks for the security parameter λ = 128. For the Challenge and
Classical parameter sets, since n should be a power of two, just use the same set as in the condition
(2).

Hardness of Ring-LWR. There have been a lot of progress in studying the hardness of the
ring-LWR problem. Banerjee et al. [6] proved that the decision version of the ring-LWR problem
is harder than that of the ring-LWE problem for large modulus. Bogdanov et al. [8] extended the
scope of the modulus, but the extension holds only for the search version of the ring-LWR problem.
They stated that the search version of the ring-LWR problem is not easier than that of the ring-LWE
problem when the number of samples is bounded with a flexible upper bound [8].

5.2 Additive Homomorphic Encryption Scheme

Our IND-CPA scheme Lizard can be naturally seen as an additive homomorphic encryption sup-
porting the bounded number of additions together with the following addition procedure:

• Lizard.Add(c1, · · · , ck): Output
∑k
i=1 ci through componentwise modular p addition.

Corollary 1 (Correctness). The Additive homomorphic encryption described above works cor-
rectly for k number of homomorphic additions as long as the following inequality holds for security
parameter λ:

Pr

[
|〈e, r〉+ 〈s, f〉| ≥ q

2tk
− q

2pk
: e← DGmσ , r← Dr, s← Ds, f ← Znq/p

]
< negl(λ).

Proof. This is easily proved by Lemma 1 and the triangle inequality.
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6 Implementation

In this section, we present the implementation result and compare it to other lattice-based schemes.
We set our counterparts to be the most competitive schemes: NTRU [22, 23], Frodo [9], and one
more efficient LWE-based PKE scheme [14], say CHK+. The recently proposed CHK+ scheme [14]
was inspired from the Peikert’s key encapsulation mechanism (KEM) [32], and they adapt sparse
small secrets for LWE to achieve the better performance as in our case. We also measure and present
the performance of Lizard for the small plaintext space, and that as an additive homomorphic
encryption scheme which allows bounded number of additions.

All the implementations of our schemes, NTRU and the key exchange (KE) scheme Frodo here
were written in C, and performed on Macbook Pro containing Intel(R) Core(TM) i5-5287U CPU
running at 2.90GHz with Turbo Boost and Multithreading disabled. The version of gcc compiler
is 7.1.0, and we compiled our C reference implementation with flags -O3 -fomit-frame-pointer
-mavx2 -march=native -std=c99. Note that we used AVX2 vector instructions for optimizing
the implementation results of our schemes as in [4]. The performances of our schemes in Table 4, 5,
and 6 were reported as a mean value across 1000 measurements. We measured the performance of
NTRU and Frodo with their open sources uploaded on the github [18] and [38], respectively. The
implementation result of IND-CCA version of CHK+ is taken from [14].2

Optimization Techniques for Key Generation. In the key generation phase, we need to
sample Gaussian errors to make an LWE instance. We follow the approach of Frodo to do it,
that is, we sample the errors by reading a precomputed look-up table of its cumulative density
function (CDF). This approach for the sampling procedure is faster than previous and gives us
error distributions which are very close to discrete Gaussian distributions with respect to the Rényi
divergence.

We also adapt the idea of [16]: we can compress our public key by substituting the random
matrix A of public key with a random seed. Our scheme with compressed public key is still
semantically secure in the random oracle model. This replacement of matrix A to a random seed
reduces down the bitsize of public key from m(n+`) log q to λ+m` log q for the security parameter
λ.

Hash functions in CCALizard. We use SHA-3 for hash functions used in the encryption/decryption
phases of CCALizard and public key compression. Since the SHA-3 algorithm takes only about a
microsecond, it hardly affect the performance of whole procedure.

6.1 Comparison to Other Lattice-based Schemes

In this subsection, we compare our implementation results to those of NTRU, CHK+, and Frodo
for the 128-bit quantum security. To make a fair comparison, we present the implementation of
the CCALizard, the IND-CCA version of our scheme in the quantum random oracle model, with
the recommended parameters in Table 2. For completeness, we also present the precise description
of CCALizard in Appendix A.

CCALizard vs PKEs. As suggested in Table 4, the encryption and decryption speeds of
CCALizard are comparable to those of NTRU. Even the ciphertext size of Lizard is only about 1.3
times larger than that of NTRU, which is sufficiently small. Compared to CCA version of CHK+,
the encryption and decryption of CCALizard are about 20 times and 8 times faster, respectively.
2 The experiment of CHK+ was performed on Macbook Pro with an Intel core i5 running at 2.6 GHz
processor without parallelization.
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Table 4. Comparison of CCALizard, NTRU, and CCA version of CHK+

IND-CCA Enc Dec Ciphertext
Encryption (ms) (ms) (bytes)
NTRU 0.029 0.025 816

CCA-CHK+ 0.313 0.302 804
CCALizard 0.014 0.027 1072

CCALizard vs Frodo. Frodo [9] is an LWE-based KE with fairly nice performance. This protocol
is a Diffie-Hellman style KE on lattices, so one can think of PKE scheme from Frodo as an analogue
of the ElGamal encryption. Roughly speaking, Alice’s first phase, Bob’s phase, and Alice’s second
phase after receiving the protocol message correspond to key generation, encryption, and decryption
procedures, respectively. For example, Bob may mask a plaintext with the computed shared key by
XORing and then send the protocol message with the masked message. In this sense, PKE variant
of Frodo takes 0.726, 0.909, and 0.157 milliseconds for key generation, encryption, and decryption,
respectively. Compared to this PKE, Lizard takes more time for key generation, but its encryption
and decryption procedures are much faster.

6.2 Performances of Lizard for special applications

Lizard for small devices. We implement our IND-CPA scheme Lizard with 32-bit plaintext space
under 128-bit classical security, which is expected to be utilized on small-device environments.

Table 5. The Performance of Lizard with a 32-bit plaintext space under 128-bit classical IND-CPA security

Ciphertext Public Key Private Key KeyGen Enc Dec
(bytes) (bytes) (bytes) (ms) (ms) (ms)

576 268,816 4,352 5.221 0.013 0.001

Additive Homomorphic Encryption. Our Lizard can be used as a post-quantum additive
homomorphic encryption scheme which support the bounded number of additions. We present the
sample result of this case for 256-bit plaintexts and 128-bit quantum security in Table 6.

Table 6. The Performance of the additive homomorphic encryption which supports 100 number of addi-
tions

Ciphertext Public Key Private Key KeyGen Enc Dec HomAdd
(bytes) (bytes) (bytes) (ms) (ms) (ms) (ms)
2,123 745,296 56,064 20.26 0.013 0.009 0.0005
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A IND-CCA Secure Version of Lizard

In this section, following the hybrid conversion technique Fujisaki-Okamoto conversion [20] (resp.
Targhi-Unruh conversion [40]), we convert our IND-CPA PKE Lizard into an encryption scheme
that is IND-CCA secure in the Random Oracle Model (ROM) (resp. Quantum Random oracle
Model (QROM)), so-called CCALizard. Since Targhi-Unruh (TU) conversion includes Fujisaki-
Okamoto (FO) conversion as a subroutine, we describe our IND-CCA encryption scheme applying
TU conversion. We define three hash functions G : Z`t → {0, 1}d, H : {0, 1}∗ → Zmq and H ′ : Z`t →
Z`t, where {0, 1}d is a plaintext space of the IND-CCA secure encryption scheme. CCALizard is a
hybrid encryption scheme of Lizard in Section 3.1 and the One-Time pad as a symmetric encryption
scheme required for the conversion.

• CCALizard.Setup(1λ): Take params = (m,n, q, p, t, `,Ds,Dr, σ) as same as Lizard.Setup(1λ).
Choose hash functions G : Z`t → {0, 1}d, H : {0, 1}∗ → Zmq and H ′ : Z`t → Z`t.

• CCALizard.KeyGen(params): Run and output the secret and public keys sk = S, pk = (B‖A)←
Lizard.KeyGen(params).

• CCALizard.Encpk(m): For a plaintext m ∈ {0, 1}d, choose δ ← Z`t and compute

c1 ← G(δ)⊕m,

v← H(δ‖c1),
c2 ← (

⌊
(p/q) ·ATv

⌉
,
⌊
(p/t) · δ + (p/q) ·BTv

⌉
),

c3 ← H ′(δ).

Then, output the ciphertext c = (c1, c2, c3) ∈ {0, 1}d × Zn+`p × Z`t.
• CCALizard.Decsk(c): Compute δ′ ← Decsk(c2) and v′ ← H(δ′‖c1). If c2 = Encpk(δ′;v′) and

c3 = H ′(δ′), compute and output m′ ← G(δ′)⊕ c1. Else, abort and output ⊥.

Here, Lizard.Encpk(δ′;v′) denotes the encryption of δ′ with random vector v′, i.e., Lizard.Encpk(δ′;v′) =
(
⌊
(p/q) ·ATv′

⌉
,
⌊
(p/t) · δ′ + (p/q) ·BTv′

⌉
).

Remark 3. When deleting the hash function H ′ and all procedures in Enc and Dec related to H ′
anc c3, then the scheme is exactly the FO conversion of our IND-CPA encryption scheme.

Remark 4. Assuming the hardness of LWE and LWR, CCALizard is IND-CCA secure in QROM
by the Theorem 4 in [40] since Lizard satisfies that the min-entropy of Lizard.Encpk(0) is bounded
by ω(log λ) for every pk with overwhelming probability.
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