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Abstract

Perfect encryption of quantum states using the Quantum One-Time Pad (QOTP) requires 2
classical key bits per qubit. Almost-perfect encryption, with information-theoretic security,
requires only slightly more than 1. We slightly improve lower bounds on the key length. We
show that key length n+2 log 1

ε
suffices to encrypt n qubits in such a way that the cipherstate’s

L1-distance from uniformity is upperbounded by ε. For a stricter security definition involving
the ∞-norm, we prove sufficient key length n+ logn+ 2 log 1

ε
+ 1 + 1

n
log 1

δ
+ log ln 2

1−ε , where δ
is a small probability of failure. Our proof uses Pauli operators, whereas previous results on
the ∞-norm needed Haar measure sampling.
We show how to QOTP-encrypt classical plaintext in a nontrivial way: we encode a plaintext
bit as the vector ±(1, 1, 1)/

√
3 on the Bloch sphere. Applying the Pauli encryption operators

results in eight possible cipherstates which are equally spread out on the Bloch sphere. This
encoding, especially when combined with the half-keylength option of QOTP, has advantages
over 4-state and 6-state encoding in applications such as Quantum Key Recycling and Unclon-
able Encryption. We propose a key recycling scheme that is more efficient and can tolerate
more noise than a recent scheme by Fehr and Salvail.
For 8-state QOTP encryption with pseudorandom keys we do a statistical analysis of the
cipherstate eigenvalues. We present numerics up to 9 qubits.

1 Introduction

1.1 Quantum encryption and key recycling

Quantum physics is markedly different from classical physics regarding information processing.
For instance, performing a measurement on an unknown quantum state typically destroys state
information. Furthermore, it is impossible to clone an unknown state by unitary evolution [1].
These two properties are very interesting for security applications, since they provide a certain
amount of inherent confidentiality, unclonability and tampering detection. Quantum physics also
has entanglement of subsystems, which allows for feats like teleportation [2, 3] that have no classical
analogue. The laws of quantum physics have been exploited in numerous security schemes, such as
Quantum Key Distribution [4, 5, 6], quantum anti-counterfeiting [7], quantum Oblivious Transfer
[8, 9], authentication and encryption of quantum states [10, 11, 12], unclonable encryption [13],
quantum authentication of PUFs [14, 15], and quantum-secured imaging [16], to name a few. A
recent overview of quantum-cryptographic schemes is given in [17].
In this paper we focus on two features that distinguish quantum channels from classical channels:
(i) The possibility of achieving almost-perfect encryption of quantum states, with information-
theoretic security guarantees, using a key length that is slightly more than half of the length re-
quired for perfect encryption. Perfect encryption, e.g. using the Quantum One Time Pad (QOTP),
requires a key of length 2n to encrypt n qubits. Dickinson and Nayak [18] showed that key length
n + 2 log 1

ε + 4 suffices if one only requires that the cipherstate is at most ε away from the fully
mixed state, in terms of the L1-norm. Aubrun [19] showed that, for a more strict security notion
based on the ∞-norm, key length n+ 2 log 1

ε + log 150 suffices.
(ii) The possibility of re-using encryption keys when a quantum channel is used to transmit classical
messages. In Gottesman’s unclonable encryption [13] half of the key material can be re-used if a
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transmission is successful. Damg̊ard, Pedersen and Salvail [20, 21] introduced a scheme in which
the entire key can be re-used. However, encryption and decryption require a quantum computer
with circuit depth O(n2) [22]. Fehr and Salvail [23] recently proposed a scheme which re-uses the
entire key and which does not need a quantum computer.

1.2 Contributions and outline

We present a number of new results regarding the use of the QOTP.

• We introduce a new way of encoding a classical bit as a qubit state. The ‘0’ is encoded as the
vector (1, 1, 1)T/

√
3 on the Bloch sphere, and the ‘1’ as the opposite vector (−1,−1,−1)T/

√
3.

By acting with the four QOTP encryption operators on our two plaintext states we obtain
eight cipherstates that are equally spread out on the Bloch sphere. We refer to this encoding
as ‘8-state encoding’.

• We propose a key recycling scheme inspired by [23], but using 8-state encoding. Our scheme is
more compact by virtue of the fact that 8-state encoding is a proper encryption, while 4-state
and 6-state encoding are leaky. Furthermore our scheme tolerates more noise.

• We study the use of the QOTP with a pseudorandom key, for general states. We model the
pseudorandomness as the output of a random function. For n qubits and key length q, we
construct a random table T of size 2q×n, where the j’th row is the key corresponding to seed j.
The adversary knows T but not the row index j.
Using this model we show that key length n+ 2 log 1

ε suffices to encrypt n qubits in such a way
that the cipherstate’s L1-distance from uniformity is upperbounded by ε. Our bound is slightly
tighter than Dickinson and Nayak’s result [18]. For a more strict security property based on
the ∞-norm we prove sufficient key length n + log n + 2 log 1

ε + 1 + 1
n log 1

δ + log ln 2
1−ε , where δ

is the failure probability. Similar expressions are known in the literature [27, 19] (even without
the log n term). However, those results needed the encryption operators to be drawn from the
Haar measure.

• We study the pseudorandom-keyed QOTP in the case of 8-state encoding of classical plaintexts.
We derive bounds on the moments of the cipherstate eigenvalues; these bounds are sharper than
for arbitrary states. We present numerics that show a ‘phase transition’ as the key length crosses
over from q < n to q > n.

The outline is as follows. In Section 2 we briefly review the QOTP and security definitions
for quantum ciphers. In Section 3 we introduce 8-state encoding and examine its properties. A
comparison is given with 4-state and 6-state encoding, regarding conditional entropies of plaintexts
and keys. In Section 4 we present our Key Recycling scheme and discuss its security properties.
In Section 5 we briefly mention two other possible applications of 8-state encoding: Unclonable
Encryption with shorter keys, and the three-pass keyless protocol.
The pseudorandom-keyed QOTP results for general states are given in Section 6. In Section 7 we
restrict the states to 8-state encoding.

2 Preliminaries

2.1 Notation and terminology

Classical Random Variables (RVs) are denoted with capital letters, and their realisations with
lowercase letters. The probability that a RV X takes value x is written as Pr[X = x]. The
expectation with respect to RV X is denoted as Exf(x) =

∑
x∈X Pr[X = x]f(x). Sets are denoted

in calligraphic font. The notation ‘log’ stands for the logarithm with base 2. The min-entropy of
X ∈ X is Hmin(X) = − log maxx∈X Pr[X = x], and the conditional min-entropy is Hmin(X|Y ) =
− log Ey maxx∈X Pr[X = x|Y = y]. The notation h stands for the binary entropy function h(p) =
p log 1

p + (1− p) log 1
1−p . Bitwise XOR of binary strings is written as ‘⊕’. The Kronecker delta is

denoted as δab. The inverse of a bit b ∈ {0, 1} is written as b̄ = 1− b.
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For quantum states we use Dirac notation, with the standard qubit basis states |0〉 and |1〉 rep-
resented as

(
1
0

)
and

(
0
1

)
respectively. The Pauli matrices are denoted as σx, σy, σz, and we write

σ = (σx, σy, σz). The standard basis is the eigenbasis of σz, with |0〉 in the positive z-direction.
We write 1d for the d × d identity matrix. The fully mixed state in d-dimensional Hilbert space
is denoted as τd = 1

d1d, or simply τ if the dimension is clear from the context. The space of
mixed state operators acting on Hilbert space H is written as S(H). The 1-norm of an operator
A with eigenvalues λi is defined as |A|1 = tr |L| = ∑i |λi|. The notation ‘tr’ stands for trace. The
statistical distance (trace distance) between two mixed states is defined as D(ρ, ρ′) = 1

2 tr |ρ− ρ′|.
The ∞-norm |A|∞ is maxi |λi|.
We will use the Positive Operator Valued Measure (POVM) formalism. Consider a bipartite
system ‘AB’ where the ‘A’ part is classical, i.e. the state is of the form ρAB = Ex∈X |x〉〈x| ⊗ ρBx
with the |x〉 forming an orthonormal basis. The min-entropy of the classical RV X given part ‘B’
of the system is [24]

Hmin(X|ρBX) = − log max
M

Ex∈X trMxρ
B
x . (1)

Here M denotes a POVM, i.e. M = (Mx)x∈X where the operators Mx are positive semidefinite

and satisfy
∑
x∈X Mx = 1. Let Λ

def
=
∑
x ρ

B
xMx. The POVM which achieves the maximum in (1)

satisfies the necessary and sufficient conditions Λ† = Λ and ∀x : Λ− ρBx ≥ 0.

2.2 The Quantum One Time Pad

An arbitrary unknown qubit state can be perfectly encrypted using a classical two-bit key [12, 25,
26]. The simplest way of doing this is using the Quantum One-Time Pad (QOTP). Consider a
pure state |ψ〉 and let the key be (u,w) ∈ {0, 1}2. The encrypted state is |ψuw〉 = Euw|ψ〉, with
Euw the unitary encryption operator, Euw = |w〉〈0| + (−1)u|1 ⊕ w〉〈1|. In terms of Pauli spin
matrices: E00 = 1, E01 = σx, E10 = σz, E11 = σxσz.

Euw = σwx σ
u
z . (2)

For notational brevity we will often write the key as b = 2u + w, b ∈ {0, 1, 2, 3} and accordingly
encryption operator Eb and cipherstate |ψb〉 = Eb|ψ〉. From the point of view of an attacker Eve
who does not know u,w, the qubit is in the fully mixed state: 1

4

∑
b |ψb〉〈ψb| = 1

212. In other
words, from Eve’s point of view the cipherstate carries no information at all about ψ. For a mixed
qubit state ρ the cipherstate is EbρE

†
b and it holds that 1

4

∑
bEbρE

†
b = 1

212. Any Hilbert space
Hd of dimension d = 2n can be interpreted as an n-qubit system. QOTP encryption on Hd works
by encrypting every qubit individually. The key is b ∈ {0, 1, 2, 3}n. The encryption operator
factorises as Eb =

⊗n
i=1Ebi . From Eve’s point of view the encryption of a state ρ ∈ S(Hd) is

fully mixed,

∀ρ∈S(H2n )
1

4n

∑

b∈{0,1,2,3}n
EbρE

†
b = (τ2)⊗n = τ2n . (3)

2.3 Security definitions for quantum ciphers

The performance of a quantum cipher can be quantified in several ways. We first consider encryp-
tion of generic mixed states.

Definition 2.1 (From [27]) A completely positive, trace-preserving map R : S(Hd)→ S(Hd) is
called ε-randomising if

∀ϕ∈S(Hd) : |R(ϕ)− τd|∞ ≤
ε

d
. (4)

Next we consider quantum-encryption of classical data. Let k ∈ K be a key and x ∈ X a plaintext.
Encryption of x using key k results in a (pure or mixed) state ρk,x in a Hilbert space of dimension d.
From Eve’s point of view the total system, including the plaintext and the key, is a tripartite system
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in the state Ek∈KEx∈X |k〉〈k| ⊗ |x〉〈x| ⊗ ρk,x. Eve has access only to the third part, and her main
interest is in the second part. Tracing out the first subsystem gives the bipartite state

ρ = Ex∈X |x〉〈x| ⊗ ρx, ρx = Ek∈Kρk,x. (5)

We introduce the notation
ξ

def
= Ex∈Xρx. (6)

Typically ξ = τd. Eve’s knowledge about the plaintext is related to the statistical distance between
X and the uniform distribution, given the quantum state ρX for unknown X. This is written as

d(X|ρX)
def
= D(ρ, τX ⊗ ξ) = Ex∈XD(ρx, ξ). (7)

If the encryption depends on some public randomness Y ∈ Y, then we write ρx(y), and (7)
generalises to

d(X|Y, ρX(Y )) = Ex∈XEy∈YD(ρx(y), ξ). (8)

Definition 2.2 A symmetric quantum cipher is called “statistically ε-private” [20] or “a scheme
with error ε” [13] if

∀x,x′∈X : D(ρx, ρx′) < ε. (9)

We introduce a security definition inspired by the conditional statistical distance (8).

Definition 2.3 Let Ry : S(Hd) → S(Hd) be a completely positive trace-preserving map, with
y ∈ Y public. The map is called “ε-uniform” if it satisfies

∀ϕ∈S(Hd) : Ey∈YD(Ry(ϕ), τd) ≤ ε. (10)

A symmetric quantum cipher for classical messages which makes use of public randomness Y ∈ Y
is called “ε-uniform” if it satisfies

∀x∈X : Ey∈YD(ρx(y), ξ) ≤ ε. (11)

We introduce Def. 2.3 because the properties (10,11) appear in the literature (without the condi-
tioning on Y ) but receive either no name or a confusing name. We will use Def. 2.3 in Section 6.
Being ε-randomising (Def. 2.1) implies being ε

2 -uniform (Def. 2.3 with deterministic y). Similarly,
a cipher satisfying Def. 2.2 also satisfies Def. 2.3. Note that (11) implies d(X|ρX) ≤ ε.
When the key is chosen completely at random, the QOTP has parameter ε = 0 in all the above
definitions.
Below we list a number of results on almost-perfect quantum encryption that can be found in the
literature. The cipherstate is denoted as ρ ∈ S(H2n).

Security property Key length Comment
[27] Thm. II.2 |ρ− τ |∞ ≤ ε

2n n+ log n+ 2 log 1
ε + log 134 Haar

[19] Thm. 1 |ρ− τ |∞ ≤ ε
2n with nonzero prob. n+ 2 log 1

ε + log 150 Haar
[27] Thm. A.3 |ρ− τ |1 ≤ ε n+ log n+ 2 log 1

ε Pauli
[18] Thm. 1.2 |ρ− τ |1 ≤ ε n+ 2 log 1

ε + 4 Pauli

‘Haar’ indicates that the encryption operators are drawn according to the Haar measure (which
is considered to be difficult). ‘Pauli’ means that Pauli operators are used.
Other security definitions exist [28, 29, 30], more in line with entropies and cryptographic treatment
of indistinguishability. We will use the definitions detailed above because the related literature
uses them, and they make it easy to reason about Universal Composability [31, 32, 33, 34].
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3 Eight-state encoding

It has been remarked in the literature that applying the Quantum One Time Pad to classical data
is not very exciting: Acting with any encryption operator Euw on |0〉 or |1〉 yields either |0〉 or |1〉,
and hence the QOTP does the same as the classical OTP except it needs twice the key material.
Furthermore, the quantum encryption yields no protection against copying of the cipherstates.
This is the case only when the basis for representing a classical bit is chosen badly.
We propose a basis such that QOTP encryption of a classical bit is nontrivial, resulting in 8 dif-
ferent cipherstates which are equally spread out over the Bloch sphere. Although 8-state encoding
is very simple and has interesting properties, we are not aware that it has ever been used.

3.1 Equally separated cipherstates

We define cosα
def
= 1/

√
3, α ≈ 0.96.1 We write

√
i = eiπ/4. We encode the classical ‘0’ and ‘1’ as

qubit states ψ0, ψ1,

|ψ0〉 def=

(
cos α2√
i sin α

2

)
|ψ1〉 def=

(
sin α

2

−
√
i cos α2

)
〈ψ1|ψ0〉 = 0 (12)

which on the Bloch sphere corresponds to the normal vectors (1, 1, 1)T/
√

3 and (−1,−1,−1)T/
√

3
respectively. In spherical coordinates (θ, ϕ) this corresponds to (θ, ϕ) = (α, π4 ) and (θ, ϕ) =
(π − α,− 3

4π). Compactly written in terms of the standard basis |0〉, |1〉,

|ψg〉 = (−
√
i)g cos α2 |g〉+ (

√
i)1−g sin α

2 |1− g〉 g ∈ {0, 1}. (13)

We act on these two states with the four encryption operators Euw and obtain eight different
cipherstates,

|ψuwg〉 def= Euw|ψg〉 = (−1)gu
[
(−
√
i)g cos α2 |g ⊕ w〉+ (−1)u(

√
i)1−g sin α

2 |g ⊕ w〉
]
. (14)

On the Bloch sphere these correspond to unit-length vectors nuwg as follows (see Fig. 1),

nuwg =
(−1)g√

3




(−1)u

(−1)u+w

(−1)w


 . (15)

The relation between the Bloch sphere angles θ, ϕ and the elliptic polarisation parameters β (angle
from the x-axis to the major axis) and tan ζ (ratio minor/major, with ζ < 0 left rotating) is given
by

cos θ = cos 2ζ cos 2β ; sinϕ = sin 2ζ/
√

1− (cos 2ζ cos 2β)2

tan 2β = cosϕ tan θ ; sin 2ζ = sin θ sinϕ. (16)

Our eight cipherstates have β ∈ {±π8 ,± 3π
8 }, ζ = ±(π4 − α

2 ) ≈ ±0.308. We will often write
b = 2u+ w, b ∈ {0, 1, 2, 3} as a basis index, with corresponding notation Eb, |ψbg〉, nbg.
u w g x y z θ ϕ β ζ cipherstate |ψuwg〉
0 0 0 + + + α π/4 π/8 + cos α2 |0〉+

√
i sin α

2 |1〉
0 1 0 + − − π − α −π/4 3π/8 − cos α2 |1〉+

√
i sin α

2 |0〉
1 0 0 − − + α −3π/4 −π/8 − cos α2 |0〉 −

√
i sin α

2 |1〉
1 1 0 − + − π − α 3π/4 −3π/8 + cos α2 |1〉 −

√
i sin α

2 |0〉
0 0 1 − − − π − α −3π/4 −3π/8 − sin α

2 |0〉 −
√
i cos α2 |1〉

0 1 1 − + + α 3π/4 −π/8 + sin α
2 |1〉 −

√
i cos α2 |0〉

1 0 1 + + − π − α π/4 3π/8 + sin α
2 |0〉+

√
i cos α2 |1〉

1 1 1 + − + α −π/4 π/8 − sin α
2 |1〉+

√
i cos α2 |0〉

1sinα =
√

2/3; tanα =
√

2; cos α
2

=
√

1
2

+ 1
2
√
3

; sin α
2

=
√

1
2
− 1

2
√
3

; tan α
2

=
√
3−1√
2

.
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E00| 0i

E11| 0i
E01| 0i

E10| 0i

Fig. 2. Relation between the codes C and D? ⇢ C..

We thank Christian Scha↵ner, Serge Fehr and Andreas Hülsing for useful discussions.
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Figure 1: The eight cipherstates |ψuwg〉 = Euw|ψg〉 shown (left) on the Bloch sphere, forming the
corner points (±1,±1,±1)/

√
3 of a cube; and (right) as elliptic polarisation states. ‘R’ stands for

righthanded, ‘L’ for lefthanded.

3.2 Some properties of eight-state encoding

It holds that 〈ψb0|ψb1〉 = 0, i.e. opposite bit values encrypted with the same key lead to orthogonal
cipherstates. This trivially follows from the unitarity of the encryption operators, 〈ψb0|ψb1〉 =

〈ψ0|E†bEb|ψ1〉 = 〈ψ0|ψ1〉 = 0.
More generally, we can readily compute the inner products between all the various cipherstates
from the general rule |〈ψb′g′ |ψbg〉|2 = 1

2 + 1
2nb′g′ · nbg,

|〈ψb′g′ |ψbg〉|2 = δbb′ · δgg′ + (1− δbb′)
[
δgg′

1

3
+ (1− δgg′)

2

3

]
. (17)

In words: When g gets encrypted with two different keys the two cipherstates have (squared)
inner product 1/3; any encryption of g, g′, g′ 6= g, with unequal keys yields cipherstates that
have (squared) inner product 2/3. The squared inner product determines the probability that one
cipherstate gets projected onto another when a projective measurement is performed. Eq. (17) tells
us that the nontrivial encryptions of |ψ1−g〉 look more like |ψg〉 than the nontrivial encryptions of
|ψg〉 itself.
The phases of the inner products 〈ψu′w′g′ |ψuwg〉 are given by

〈ψu′w′g′ |ψuwg〉
i(u′−u)(w′+w)(−1)δ3,u′+u+w′+w

= δgg′δuu′δww′ + δgg′(1− δuu′δww′)
(−1)g√

3

+δgg′

√
2

3

{
δww′δuu′ − δww′ exp

[
(g − g′)(−1)u+u

′
i
π

3

]}
. (18)

Table 1 gives a comparison of four-, six-, and eight-state encoding regarding the entropy of the
classical variables G and B given that an attacker Eve holds the qubit (‘E’). Table 2 contains the
same information but lists entropy losses.
The states in 4-state encoding are the eigenstates of σz and σx. In 6-state encoding one uses the
eigenstates of σz, σx and σy. Let the random variable M denote the outcome of a measurement
(possibly POVM) on the qubit E. In the 4-state case, the measurement that minimises H(G|M)
and Hmin(G|M) is the projective measurement σx + σz; the H(B|GM) and Hmin(B|GM) are
minimised by measuring σx − σz.
In the 6-state case, H(G|M) and Hmin(G|M) are minimised by measuring σx + σy + σz; the

H(B|GM) by the POVM {M (g)
b }3b=1, Mb = 1

31 + 1
3 (−1)gnb · σ, n1 = (−2, 1, 1)T/

√
6, n2 =

(1,−2, 1)T/
√

6, n3 = (1, 1,−2)T/
√

6; the Hmin(B|GM) is minimized by the POVM ‘opposite’ to
the one above, i.e. with nb → −nb.
In the 8-state case, the H(B|GM) is minimised by the POVM M

(g)
b = 1

2 |ψbg〉〈ψbg| and the

Hmin(B|GM) by the ‘opposite’ POVM M
(g)
b = 1

2 |ψbg〉〈ψbg|.
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Table 1: Conditional Shannon entropies and min-entropies

4-state 6-state 8-state

H B|E 1 log 3 ≈ 1.585 2

G|E h(cos2 π
8

) ≈ 0.601 h(cos2 α
2

) ≈ 0.744 1

B|GE h(cos2 π
8

) ≈ 0.601 H( 1−2/
√
6

3
, 1+1/

√
6

3
, 1+1/

√
6

3
) ≈ 1.271 log 3

G|BE 0 0 0

BG|E 3
2

log 3 + 2
3
≈ 2.252 3

2
+ 3

4
log 3 ≈ 2.689

Hmin B|E 1 log 3 2

G|E − log cos2 π
8
≈ 0.228 − log cos2 α

2
≈ 0.342 1

B|GE − log cos2 π
8
≈ 0.228 − log( 1

3
+ 2

3
√
6
) ≈ 0.724 1

G|BE 0 0 0

BG|E 1 log 3 2

Table 2: Entropy losses

4-state 6-state 8-state

H(G)− H(G|E) 0.399 0.256 0

H(B)− H(B|GE) 0.399 0.314 0.415

H(BG)− H(BG|E) 1
2

1
3 0.311

Hmin(G)− Hmin(G|E) 0.772 0.658 0

Hmin(B)− Hmin(B|GE) 0.772 0.861 1

In all encodings (4,6,8) the H(BG|M) and Hmin(BG|M) are minimised by the POVM {Mbg}bg
with Mbg = 1

#bases |ϕbg〉〈ϕbg|, where |ϕbg〉 denotes the encoding of bit value g in basis b. In all

encodings we find that Hmin(G|BE) = 0; Hmin(B|E) = Hmin(B); Hmin(BG|E) = Hmin(B).
Another important property is the intercept-resend disturbance probability. Let Alice send |ϕbg〉
for random b, g. Eve does a projective measurement in any basis and forwards the outcome |χ〉 to
Bob. Bob measures |χ〉 in basis b. Averaged over b and g, Bob’s probability of getting the wrong
outcome (g) is 1/4 in the case of 4-state encoding and 1/3 for 6-state and 8-state.
In Section 4 we will be interested in (i) hiding G and (ii) hiding B when the plaintext G is
known. In Table 2 we see that 8-state encoding does a better job of ensuring these two things
simultaneously than 4-state and 6-state.

4 Key Recycling

When Alice and Bob have a (one-way) quantum channel at their disposal and an authenticated two-
way classical channel, they can achieve unconditionally secure communication by using Quantum
Key Distribution (QKD) and then applying a classical One Time Pad (OTP). This has been well
known since the first work on quantum cryptography.
A less known advantage of quantum channels is the possibility of re-using key material [35] when
Alice and Bob detect no eavesdropping: the fact that Bob receives an ‘intact’ message means that
Eve has learned at most a negligible amount of information about the key(s). It is possible to
construct Key Recycling schemes that have the same unconditional security as QKD+OTP but
better efficiency, i.e. less data has to be communicated.
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4.1 Requirements for Key Recycling; state of the art

Consider an m-bit message encoded in n qubits (with n > m), using a key k. A Quantum Key
Recycling (QKR) scheme typically needs to refresh n bits of key material if Bob detects tampering
(“reject”), and a much smaller amount t, t� n, possibly t = 0, if Bob does not detect tampering
(“accept”). Loosely speaking a QKR scheme has to satisfy the following requirements.

R1 If Eve steals the entire cipherstate, the message must remain secret.

R2 If Eve knows the entire plaintext and Bob accepts, Eve does not learn more than t+ ε bits
of information about the key, where ε is negligible.

If Bob accepts, the key update mechanism computes a new key k′ from the old key k and t bits of
fresh key material unknown to Eve. This makes sure that Eve has negligible knowledge about the
new key k′. If Bob rejects, the worst case assumption is that Eve has stolen the entire cipherstate
and already knew the plaintext. Eve then could in principle learn up to n key bits. Hence Alice
and Bob have to introduce n fresh key bits in the next encryption.
Damg̊ard et al. [20, 21] introduced a QKR scheme with t = 0, for a noiseless quantum channel. A
classical authentication tag is first attached to the message; this is then classically on-time-padded;
finally quantum encryption is performed by selecting a basis from a set of 2n Mutually Unbiased
Bases (MUBs). The scheme is elegant but has the drawback that it needs a quantum computer
with circuit depth O(n2) [22] for the encryption and decryption.
Fehr and Salvail [23] recently proposed a QKR scheme that works with individual BB84 qubits,
without needing a quantum computer. It has t = 0. However, it tolerates very little noise.

4.2 Proposed QKR scheme #1

We first propose a QKR scheme which is essentially a copy of [23] but using QOTP encryption.2

The message is µ ∈ {0, 1}`. The scheme makes use of an extractor Ext : {0, 1}n → {0, 1}` and
a keyed hash function (MAC) M that produces an authentication tag of length λ. The security
parameter is λ. The hash function must have the special property of being message-independent,
i.e. the distribution of M(K,µ) does not depend on the message µ. Furthermore the hash function
must have key privacy, i.e. an attacker with limited information about µ learns almost nothing
about the key. (These notions are explained in [23], and it turns out that implementation is
straightforward.)
The scheme needs a second keyed hash SS which too is message-independent and key-private; it
is used as a Secure Sketch. A Secure Sketch is a secure form of error correction. Given a sketch
SS(k, x) of a message x, and a noisy version x′, it is possible to recover x. Secure Sketches with
message independence and key privacy were discussed in [36]. Though constructions exist, they
do not tolerate much noise.
The key material consists of three parts: KMAC for MAC-ing; KSS for the secure sketch; and
b ∈ {0, 1, 2, 3}n being QOTP bases.
Encryption
Generate random x ∈ {0, 1}n. Compute s = SS(KSS, x) and z = Extx. Compute the ciphertext
c = µ ⊕ z and authentication tag T = M(KMAC, x||c||s). Prepare the quantum state |Ψ〉 =⊗n

i=1 |ψbixi
〉. Send |Ψ〉, s, c, T .

Decryption
(The recipient gets |Ψ′〉, s′, c′, T ′.)
Measure |Ψ′〉 in the b-basis. This yields x′ ∈ {0, 1}n. From x′, s, KSS recover x̂, an estimator
for x. Compute ẑ = Ext x̂ and µ̂ = c′ ⊕ ẑ. Accept the message µ̂ if the x-recovery succeeded and
T ′ = M(KMAC, x̂||c′||s′).
Key update
In case of Accept, re-use the entire key. In case of Reject, compute the updated key b′ as a function
of b and n fresh secret bits.

2To keep things simple, we omit the optimisation of the key refreshment procedure in case Bob rejects.
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4.3 Analysis of QKR scheme #1

The modification w.r.t. the scheme of Fehr and Salvail is small but has a significant effect. In the
original scheme [23], the 4-state encoding causes leakage about x; this necessitates a large amount
of compression3 by Ext in order to keep µ secure (Requirement R1). In the case of 8-state encoding
much less compression is needed. Compression is needed primarily because of the channel noise.
It is prudent to assume that all noise is caused by Eve. Eve may steal whole qubits from |Ψ〉 or
extract information into ancillas. This gives her nf(β)+a bits of information about x, where f(β)
is an increasing function4 of the bit error rate β, with f(0) = 0, f( 1

2 ) = 1, and a is a constant
independent of n. Eve’s uncertainty about x given z is n− ` bits; this has to cover the nf(β) + a.
Hence we have to set ` ≤ n[1− f(β)]− a.
Note that asymptotically (n → ∞) the constant a becomes negligible. In the case β � 1 we see
that asymptotically the number of qubits n needed to send the `-bit message is just slightly larger
than `.

4.4 Proposed QKR scheme #2

Scheme #1 has very limited noise tolerance due to the fact that it needs a special Secure Sketch
with message independence and key privacy. We will now loosen this restriction and work with an
ordinary Secure Sketch S, for instance a syndrome of an error-correcting code. The price to pay
is that the sketch S(x), if sent in plaintext, leaks about x. If the sketch is sent encrypted with key
KSS and Eve knows µ, then the sketch leaks information about KSS. We choose the second option
and accept that KSS has to be updated even if Bob accepts. We set the length of KSS equal to
the length of S(x), which asymptotically approaches nh(β).
Encryption
Generate random x ∈ {0, 1}n. Compute s = KSS ⊕ S(x) and z = Extx. Compute the ciphertext
c = µ ⊕ z and authentication tag T = M(KMAC, x||c||s). Prepare the quantum state |Ψ〉 =⊗n

i=1 |ψbixi〉. Send |Ψ〉, s, c, T .
Decryption
(The recipient gets |Ψ′〉, s′, c′, T ′.)
Measure |Ψ′〉 in the b-basis. This yields x′ ∈ {0, 1}n. Recover x̂ from x′ and KSS ⊕ s′. Compute
ẑ = Ext x̂ and µ̂ = c′ ⊕ ẑ. Accept the message µ̂ if the syndrome decoding succeeded and
T ′ = M(KMAC, x̂||c′||s′).
Key update
If Bob accepts, replace KSS. If Bob rejects, replace KSS and compute the updated key b′ as a
function of b and n fresh secret bits.

4.5 Analysis of QKR scheme #2

The security of scheme #2 is the same as for #1. The one-time-padded sketch reveals no informa-
tion about x; this is the same situation as with the special function SS. We now have a primitive
with the following asymptotics:

• It securely sends an `-bit classical message while using up only nh(β) = ` h(β)
1−f(β) bits of key

material.

• It works as long as f(β) < 1.

• It uses up less key material than a classical OTP as long as h(β)
1−f(β) < 1, i.e. 1−f(β)−h(β) > 0.

The condition 1− f(β)−h(β) > 0 is similar to the noise condition under which qubit-based QKD
is possible. Whenever qubit-based QKD is possible, scheme #2 works and is a better alternative
than repeated use of QKD and classical OTP.

3n ≈ (1− 0.772)−1` ≈ 4.3` (see line 4 of Table 2) to compensate the min-entropy loss.
4If Eve steals and stores 2β qubits from |Ψ〉, she causes bit error rate β. By repeatedly stealing qubits which

have been encrypted with the same key bi, Eve would essentially learn the plaintext values xi. From the existence
of this simple attack we obtain a bound f(β) ≥ 2β. More sophisticated attacks exist.

9



4.6 Proposed QKR scheme #3

We apply the above discussed primitive to itself: Instead of sending the OTP’ed sketch s =
KSS ⊕ S(x) as an ordinary classical message, we send s as a payload using scheme #2.
We denote quantities in the original primitive with label ‘0’ and in the additional part with ‘1’. We
have µ1 = s0. The additional keys and classical/quantum transmissions required for this action
(asymptotically) are listed below.

• A basis key b1 ∈ {0, 1, 2, 3}n1 . A key K
(1)
SS ∈ {0, 1}n1h(β).

• Transmission of a quantum state |Ψ1〉 ∈ H2n1 , with n1(1−f(β)) = `1. This |Ψ1〉 is an encryption
of x1 using bases b1.

• Transmission of a classical ciphertext c1 = µ1 ⊕ Ext(x1) of length `1 = |s0| = n0h(β).

• Transmission of a classical ciphertext s1 = K
(1)
SS ⊕ S(x1).

• Transmission of a tag Ttot = M(KMAC, x0||c0||s0||x1||c1||s1) instead of the original T .

If Bob accepts, only K
(1)
SS needs to be refreshed. This key has length |K(1)

SS | = n1h(β) = `1
h(β)

1−f(β) =

`0[ h(β)
1−f(β) ]

2, which is shorter than the original key K
(0)
SS by a factor h(β)

1−f(β) .

Repetition
The insertion trick can be applied repeatedly. r ‘recursive’ applications of scheme #2 result in a

scheme that (asymptotically for `0 → ∞) needs to refresh only `0[ h(β)
1−f(β) ]

r bits of key when Bob

accepts. The total length of the keys and transmissions increases, but stays manageable.

• The number of qubits transmitted is ntot
def
= n0 +n1 + · · ·+nr <

`0
1−f(β)−h(β) . Note that in the

last expression the factor 1− f(β)− h(β) is similar to the efficiency factor in QKD due to the
error correction and privacy amplification. Hence ntot is not much different from the number
of qubits needed to transmit a QKD secret of length `0.

• The number of transmitted classical bits is ntot(1 − f(β)), plus the size of the r’th sketch,

namely nrh(β) = `0[ h(β)
1−f(β) ]

r+1, plus the size of the tag (λ).

5 Other uses of 8-state encoding

5.1 Unclonable encryption

The concept of Unclonable Encryption (UE) was introduced by Gottesman in 2003 [13]. Alice
sends a quantum-encrypted classical message to Bob. If Bob accepts then the message remains
confidential even if Eve learns the full encryption key afterward. UE can be useful for primitives like
revocable time-release encryption [38], for communication-efficient QKD, and in attacker models
where the storage of keys suffers particular vulnerabilities.
Gottesman identified the chain of implications: quantum authentication =⇒ UE =⇒ QKD. He
constructed an UE scheme using BB84 states. Replacing those BB84 states by 8-state encoding
will improve the performance. However, we do not expect that the improvement will go far beyond
what would be achieved with 6-state encoding. The security analysis of UE is almost exactly the
same as for QKD (which also has the basis key revealed after the quantum transmission). For
qubit-based QKD it is known [37] that 6-state encoding is essentially optimal; going to more bases
does not improve noise tolerance.
An interesting option is to use 8-state encoding with a pseudorandom key, achieving almost-perfect
security while using slightly more than one bit of key material per qubit (see Sections 6 and 7).
This would result in a UE scheme using shorter keys than in the case of 6-state encoding.

5.2 The three-pass ‘key-less’ protocol

If a bidirectional authenticated channel is available, and a commuting encryption scheme, then
a peculiar protocol becomes possible [39, 40] which does not require Alice and Bob to share an
encryption key.
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Let EK denote the operation ‘encrypt with key K’. For a commuting encryption scheme it holds
that EKEQx = EQEKx for all x. The three-pass protocol, also known as key-less protocol, works
as follows.

1. Alice has a plaintext message x. She chooses a random key A. She computes c1 = EAx and
sends c1.

2. Bob chooses a random key B. He computes c2 = EBc1 and sends c2.

3. Alice computes c3 = E−1A c2 and sends c3. Bob computes x = E−1B c3.

The protocol is called key-less because the keys A and B never have to be known at the other
side.
It has been noted [40] that QOTP encryption of general quantum states, which is (anti)commuting,
is perfectly suited for this protocol. We observe that the special case of QOTP, 8-state encoding
of classical data, allows us to apply the three-pass protocol to classical data.
It remains to be seen how useful the three-pass protocol is compared to QKD+OTP or QKD+QKR.
An obvious drawback is the amount of communication. Sending an n-bit message requires com-
municating n qubits three times, versus n qubits plus n bits for QKD+OTP, versus n qubits for
QKD+QKR under optimal conditions (indefinite re-use of keys). These numbers are approximate
and do not take into account the error-correction overhead. The three-pass protocol might become
an interesting alternative in the case of very noisy quantum channels, where qubit-based QKD and
QKR do not work and the error-correction overheads for QKD [41] are large due to the increased
dimension of the employed Hilbert space.

6 QOTP with a pseudorandom key; general states

The main results of this section are sufficient key lengths, specified in Theorems 6.3 (ε-uniformity),
6.5 (almost-certain ε-randomisation) and 6.8 (ε-randomisation).

6.1 Modelling the pseudorandom key

We model a pseudorandom key for QOTP of an n-qubit system as follows. The length of the seed
is q bits. We introduce the notation Q = 2q. (The seed is the actual key that is used.) We define
a uniformly random table B of size Q×n, with Bji ∈ {0, 1, 2, 3}. All entries are independent RVs.
The entry bji is the encryption key for qubit i given the j’th possible value of the seed. The table
B is known to the adversary, but not j.
For given table B = b and row index j, the encryption operator is given by

Fbj =

n⊗

i=1

Ebji . (19)

The encryption of a state ρ, as seen by the adversary, is

ρ′(b)
def
=

1

Q

Q∑

j=1

FbjρF
†
bj . (20)

6.2 Results on ε-uniformity

Lemma 6.1 Let d = 2n. For any state ρ ∈ S(Hd) it holds that

Ebtr [ρ′(b)]2 = 1
Q (tr ρ2 − 1

d ) + 1
d ; Ebtr [ρ′(b)− τ ]2 = 1

Q (tr ρ2 − 1
d ). (21)

Proof: We write Ebtr [ρ′(b)]2 = 1
Q2

∑Q
j,k=1 tr EbFbjρF

†
bjFbkρF

†
bk. There are Q terms with j = k;

here the F † and F cancel each other and the summand reduces to tr ρ2. In the other Q2 − Q
terms of the summation we have j 6= k and the summand factorises to

tr [EbjFbjρF
†
bj ][EbkFbkρF

†
bk].
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(Here bj stands for the j’th row of b). The rows are mutually independent; hence the Ebj does

not act on the expression containing k. Now we use EbjFbjρF
†
bj = τ due to the general QOTP

property (3), yielding tr τ2 = 1
d . Adding the contributions gives 1

Q2 [Qtr ρ2 + (Q2 −Q) 1
d ], which is

the first part of (21). Next we write tr (ρ′− τ)2 = tr (ρ′)2 + tr τ2− 2tr τρ′ = tr (ρ′)2− 1
d , where we

have used τ = 1
d1 and tr ρ′ = 1. The second part of (21) follows. �

Theorem 6.2 Let d = 2n. For any state ρ ∈ S(Hd) it holds that

Eb|ρ′(b)− τ |1 ≤
√

2n

Q
(tr ρ2 − 2−n). (22)

Proof: We denote the eigenvalues of ρ′(b)− τ as (λa)da=1. We have Eb|ρ′(b)− τ |1 = Eb
∑
a |λa| = d ·

Eb 1d
∑
a

√
λ2a. Using Jensen’s inequality we get Eb|ρ′(b)−τ |1 ≤ d

√
Eb 1d

∑
a λ

2
a =

√
dEbtr [ρ′(b)− τ ]2.

Finally we use Lemma 6.1. �

Theorem 6.3 The Quantum One Time Pad operated with a pseudorandom key of length

q ≥ n− 2 + 2 log
1

ε
(23)

is ε-uniform (see Def. 2.3).

Proof: Follows directly from Theorem 6.2, using tr ρ2 ≤ 1 and q = logQ. The table B plays the
role of the public randomness Y in Def. 2.3. �
Our key length is a slight improvement on the literature.5

6.3 Results on ε-randomisation

Lemma 6.4 (Matrix version of Bennett inequality [42]) Let (Xj)
Q
j=1 be a sequence of in-

dependent Hermitean random matrices with dimension d satisfying EXj = 0 and λmax(Xj) ≤ R

for all j. Let σ2 def
= λmax(

∑
j EX2

j ). Let A(u)
def
= (1 + u) ln(1 + u)− u. Then

Pr[λmax(
∑

j

Xj) ≥ t] ≤ d · exp

[
− σ

2

R2
A(
Rt

σ2
)

]
. (24)

Theorem 6.5 Let |ψ〉 ∈ H2n be an arbitrary pure state, and let ρ′(b) be the QOTP-encryption of
|ψ〉〈ψ| using a pseudorandom key. Let ε ∈ (2−n, 1). For key length

q ≥ n+ log n+ 2 log
1

ε
+ 1 +

1

n
log

1

δ
+ log

ln 2

1− ε (25)

the scheme is ε-randomising (Def 2.1) except with some small probability less than 2δ. Here the
probability is with respect to the random table B.

Proof: We write d = 2n. We define the projection operator Pj
def
= Fbj |ψ〉〈ψ|F †bj . We want to

reduce the probability mass in both tails to δ. We first study the right tail. We write ρ′ =∑
j Xj with Xj

def
= 1

Q (Pj − τ). We have EbXj = 0, R = λmax(Xj) = 1
Q (1 − 1

d ) and σ2 =

λmax(
∑
j EbX2

j ) = 1
Qd (1− 1

d ). Substitution of Xj , R, σ2 into the Bennett inequality, with t = ε/d,

gives Pr[λmax(ρ′ − τ) ≥ ε/d] ≤ d exp[− Q
d−1A(ε)] < d exp[−Qd A(ε)]. The latter expression is

smaller than δ if Q ≥ d
A(ε) ln d

δ . We use A(ε) ≥ ε2

2 (1 − ε). With small loss of tightness we make

the condition on Q more strict: Q > 2d
ε2(1−ε) ln d

δ .

5The term ‘−2’ appears because the statistical distance D is half the L1-norm. The difference between our result
and [18] is a constant term ‘4’.
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Next we study the left tail. We have λmin(ρ′ − τ) = λmax(τ − ρ′). We write τ − ρ′ =
∑
j X
′
j with

X ′j
def
= 1

Q (τ − Pj). We have EbX ′j = 0, R′ = λmax(X ′j) = 1
Qd and σ2 = 1

Qd (1− 1
d ). Substitution of

X ′j , R
′ and σ2 into Bennett’s inequality, with t = ε/d, gives Pr[λmin(ρ′−τ) ≤ − ε

d ] ≤ d exp[−Q(d−
1)A( ε

d−1 )] < d exp[−Q(d−1)A( εd )]. The latter expression is smaller than δ if Q ≥ 1
(d−1)A(ε/d) ln d

δ .

We use A(ε/d) ≥ 1
2 ( εd )2(1 − ε

d ). With small loss of tightness we make the condition on Q more

strict: Q > 2d

ε2(1− 1
d )(1−

ε
d )

ln d
δ .

As ε > 1/d, the condition on the right tail is slightly more difficult to satisfy. It is readily seen
that Q = 2q with q as specified in (25) satisfies the condition Q > 2d

ε2(1−ε) ln d
δ . �

Theorem 6.5 is a probabilistic statement about the ε-randomising property. We can get rid of
the nonzero probability δ by employing another proof technique, based on high moments of ρ′.
Below we show how to bound the expectation (over random B) of the maximum eigenvalue of
ρ′− τ . This approach does not provide a full proof about |ρ′− τ |∞, since nothing is proven about
the left tail. However, in the approach with the Bennett inequality we have seen that the left
tail is slightly ‘better behaved’ than the right tail. This gives us confidence that the result below
(Theorem 6.8) is ‘almost’ a proper proof for |ρ′ − τ |∞.
We introduce the following notation. Let

{
t
k

}
be the Stirling number of the second kind, which

counts in how many ways we can partition a set of t elements into k non-empty subsets. By
convention

{
t
0

}
= 0 for t ≥ 1 and

{
0
0

}
= 1. The notation (Q)k stands for the falling factorial

Q!
(Q−k)! .

Theorem 6.6 Let t ∈ N. For any pure state ρ ∈ S(H2n) it holds that

Ebtr [ρ′(b)]t ≤ 1

Qt

t∑

k=0

{
t

k

}
(Q)k( 1

2 )(k−1)n. (26)

For t = 0, 1, 2, 3 the equality holds.

Proof: See Appendix A.

Corollary 6.7 For any pure state ρ ∈ S(H2n) it holds that

Ebtr [ρ′(b)− τ ]3 =
1

Q2
(1− 1

2n
)(1− 2

2n
) (27)

Ebtr [ρ′(b)− τ ]4 <
1

Q3
[1 +

3Q

2n
]. (28)

Proof: tr (ρ′−τ)3 = tr (ρ′)3−3tr τ(ρ′)2 +3tr τ2ρ′− tr τ3 = tr (ρ′)3−3( 1
2 )ntr (ρ′)2 +3(1

2 )2n− ( 1
2 )2n.

Using (21) and (26) we get (27).
Similarly, tr (ρ′−τ)4 = tr (ρ′)4−4tr τ(ρ′)3+6tr τ2(ρ′)2−4tr τ3ρ′+tr τ4 = tr (ρ′)4−4( 1

2 )ntr (ρ′)3+

6( 1
2 )2ntr (ρ′)2 − 4( 1

2 )3n + ( 1
2 )3n. Using (21) and (26) gives Ebtr (ρ′ − τ)4 ≤ 1

Q3 [1 + 3Q
2n ]− 1

2nQ3 [7 +

3Q−22n (2− 2−n)]. �

Theorem 6.8 Let ε ∈ (0, 1). Let ρ′(b) the the pseudorandom-keyed QOTP encryption of any
pure state in H2n . Then the following key length,

q ≥ n+ log n+ 2 log
1

ε
+ 4, (29)

suffices to ensure that Ebλmax(ρ′(b)− τ) < ε
2n .

Proof: Let Λ be the maximum eigenvalue of ρ′(b). We have EbΛ = Eb(Λt)1/t ≤ Eb[tr (ρ′)t]1/t.

We use Jensen’s inequality to write EbΛ ≤ [Ebtr (ρ′)t]1/t. We apply Theorem 6.6 to bound the
expectation value, and we make use of (Q)k ≤ Qk. We switch from summation variable k to

a
def
= t − k. This allows us to write EbΛ ≤ [( 1

2 )nt2n
∑t
a=0

{
t

t−a

}
(2n/Q)a]1/t. Next we use
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{
t

t−a

}
< t2a

2a! for a ≥ 1. This yields EbΛ < 2n/t

2n [1+ 1
2

∑t
a=1

1
a! (t

22n/Q)a]1/t < 2n/t

2n [exp(t22n/Q)]1/t

= 2n/t

2n exp(t2n/Q). We set t = n 2 ln 2
ln(1+ε) . We have Q = 2q = 2nn 1

ε2 16 > 2nn 4 ln 2
[ln(1+ε)]2 . (The

inequality holds for ε < 1.) Substitution of this t and this bound on Q gives 2n/t

2n exp(t2n/Q) <
(1 + ε)/2n. It follows that Ebλmax(ρ′ − τ) < ε/2n. �

7 Pseudorandom-keyed QOTP encryption of classical data

From Section 6 we already have general results on ε-uniformity and ε-randomisation, which apply
to 8-state encoding as a special case. What else do we want?

• In Section 7.2 we briefly discuss the min-entropy of the plaintext conditioned on the fact that
Eve has possession of the cipherstate.

• In Theorem 7.2 below we will show that the moments of ρ′ − τ are smaller than those in
Theorem 6.6. This gives an indication that it might be possible to prove tighter bounds for
8-state encoding than for general quantum states.

• The results in Section 6 are bounds, the tightness of which we do not know. In Sections 7.4–7.6
we numerically study the eigenvalues of the cipherstates.

• Def. 2.2 defines ε-privacy as a security property in terms of ρx − ρx′ instead of ρ′ − τ . In
Section 7.7 we discuss ε-privacy.

7.1 The cipherstate

We use the method described in Section 6 to model a pseudorandom QOTP key for encrypting
an n-qubit state. The adversary knows the table B.
We consider a quantum system consisting of three parts: the classical random variable J ∈
{1, . . . , Q} in the Hilbert space labeled ‘K’ (‘key’), the classical random variable G ∈ {0, 1}n in
space ‘D’ (‘data’), and Eve’s quantum state in space ‘E’. A cipherstate is prepared by choosing a
message G at random and encrypting it with the J ’th row of B, for random J . For given B = b
we have

ρKDE(b) =
1

Q

Q∑

j=1

1

2n

∑

g∈{0,1}n
|j〉〈j| ⊗ |g〉〈g| ⊗ ρEjg(b) (30)

ρEjg(b) =

n⊗

i=1

|ψbjigi〉〈ψbjigi |. (31)

We want to study Eve’s knowledge about the data G given subsystem E. To this end we need only
the D and E subspaces. Tracing out the K subspace gives

ρDE(b) =
1

2n

∑

g∈{0,1}n
|g〉〈g| ⊗ ρEg (b) with ρEg (b) =

1

Q

Q∑

j=1

n⊗

i=1

|ψbjigi〉〈ψbjigi |. (32)

Eve’s object of study is ρEg (b); from this state she wants to learn g.

7.2 Min-entropy of the plaintext given the cipherstate

Below we give a simple bound on the min-entropy of one message bit given the cipherstate.
Unfortunately this does not allow us to draw conclusions about the whole plaintext G.

Theorem 7.1 Eve’s knowledge about a single data bit gi, i ∈ {1, . . . , n}, can be bounded as

Hmin(Gi|B, ρEGi
) ≥ 1− log(1 +

1√
Q

) > 1− log e√
Q
. (33)

Proof: See Appendix B.
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Table 3: Moments of ρEg (b)

t Qt · Ebtr (ρEg (b))t

2 Q+ (Q)2
2n

3 Q+ 3 (Q)2
2n + (Q)3

22n

4 Q+ 6 (Q)2
2n + (Q)2

3n + 6 (Q)3
22n + (Q)4

23n

5 Q+ 10 (Q)2
2n + 5 (Q)2

3n + 20 (Q)3
22n + 5 (Q)3

2n3n + 10 (Q)4
23n + (Q)5

24n

6 Q+ (Q)2
{

15
2n + ( 5

18 )n + 15
3n2n

}
+ (Q)3

{
50
22n + 36

3n2n + 3( 5
36 )n + 1

9n

}

+(Q)4
{

50
23n + 15

3n22n

}
+ 15 (Q)5

24n + (Q)6
25n

Table 4: Moments of ρEg (b)− τ

t Qt−1 · Ebtr (ρEg (b)− τ)t

2 1− 1
2n

3 (1− 1
2n )(1− 2

2n )

4 1 + 2 Q
2n + Q−1

3n −
{

6
2n + 3(Q−2)

22n (2− 1
2n )
}

5 1 + 5 Q
2n + 5(Q−1)

3n −
{

10
2n + 30Q−40

22n − 50Q−60
23n + 10(Q−1)

2n3n + 20Q−24
24n

}

6 1 + 9 Q
2n + 5 Q

2

22n + 3(Q−1)(2Q−19)
2n3n + Q−1

(18/5)n + 3(Q−1)(Q−2)
(36/5)n

−
{

15
2n + 18Q−4

22n + 10 3Q2−31Q+3
23n − 15 3Q2−26Q+2

24n + 5 3Q2−26Q+2
25n − (Q−1)(Q−2)

9n + 15(Q−1)(Q−6)
3n22n

}

7.3 Sharper bounds on the moments

Theorem 7.2 The moments of ρEg (b) and ρEg (b) − τ , averaged over b, are as given in Tables 3
and 4 respectively.

Proof: See Appendix C.
In Table 4 the contributions {· · · } are negligible (at large n and Q � 3n) w.r.t. the preceding
terms; hence the expressions can be simplified substantially if one wants to know upper bounds
only. Furthermore, for Q = O(2n) the terms of order Q/3n, Q/( 18

5 )n and Q2/( 36
5 )n are negligible

as well.
It is interesting to look at the quantity ct

def
= 1

2n Ebtr (ρEg − τ)t. In some sense it represents the

t’th moment of the eigenvalues of ρEg − τ . If one imagines that there is a probability density µ

on [− 1
2n , 1 − 1

2n ] governing the value of the i’th eigenvalue for random i, b, g, then ct is the t’th
moment of µ. At Q ≈ 2n we have

c1 = 0, c2 ≈ (
1

2n
)2

def
= σ2, c3 ≈ σ3, c4 ≈ 3σ4, c5 ≈ 6σ5, c6 ≈ 15σ6. (34)

Note that c4 and c6 are exactly as in a Gaussian distribution. The odd central moments are
positive because the interval [− 1

2n , 1− 1
2n ] extends only a little distance into the negative side.

We note that, at Q ≈ 2nn, n � 2n, the parameters in Table 3 are smaller than the Stirling
numbers in Theorem 6.6. This hints to the possibility to prove tighter bounds for 8-state encoding
than for general states when the moments based approach is used as in the proof of Theorem 6.8.
This question is left for future work.
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Figure 2: Numerical results for Ebtr |ρEg − τ |, at n = 9 qubits, for various values of Q. The Eb was
approximated by taking 100 random tables b.

Figure 3: Numerical results for EbD(ρEg , τ), at n = 7, 8, 9 qubits, for various values of Q. For
larger n fewer random tables b were taken to estimate the Eb.

7.4 The L1-norm of ρE
g − τ

Fig. 2 shows the numerics for Ebtr |ρEg − τ | as a function of Q, for n = 9, and the upper bound√
2n/Q. In Fig. 3 we have plotted results for n = 7, 8, 9 together. In spite of the small number of

qubits we tentatively identify some trends.
With increasing n the slope of EbD(ρEg , τ) for Q > 2n increases. This could indicate that for

large n and Q > 2n the trace distance decreases faster than the bound ∝ 1/
√
Q. Furthermore, at

Q = 2n there seems to be a constant factor ≈ 0.83 between the bound and the empirical value.
More work is needed to see if these trends persist at large n.
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7.5 Eigenvalues of ρE
g

Fig. 4 shows eigenvalue histograms. We see a qualitative change as Q increases. At small Q, there
are distinct bunches of large and small eigenvalues. At Q = 2n we see something resembling an
exponential or power law distribution. At Q� 2n the distribution becomes more peaked around
λ = 2−n.
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n = 9; Eigenvalues of ⇢E
g (b); 100 runs

log Q = n
3

log Q = 2n
3

log Q = n

log Q = 7n
6

log Q = 4n
3

log Q = 5n
3

2n� 2n� 2n�

2n� 2n� 2n�

Figure 4: Bladiebla.

Corollary 6.4 Let 2n � n and Q � 2n. Let ⌘ < 1 be a constant. Pseudorandom-keyed 8-state

encryption is "-randomising, " =
q

2n

Q (2n ln 2 + 2 ln 1
⌘ ), except with probability ⇡ ⌘.

Proof: In (33) we set the left-hand side to ⌘ and we write z = "
p

Q/2n =
q

2n ln 2 + 2 ln 1
⌘ . Using

2n � n and Q � 2n we can approximate the ‘exp’ in (33) by exp(· · · ) ⇡ exp(�z2/2) = 2�n⌘. ⇤
Note that the " in Corollary 6.4 becomes small for Q larger than 2nn·constant; this is consistent
with the q > n+log n result of Hayden et al [18]. Also note that Corollary 6.4 is only a probabilistic
statement, with probability ⌘ that the statement does not hold.

14

Figure 4: Histogram of the eigenvalues of ρEg (b), plotted for various values of Q. The eigenvalues
from 100 runs are combined. The horizontal axis is scaled by a factor 2n so that ‘1’ corresponds
to the eigenvalues of the fully mixed state τ .
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7.6 Maximum eigenvalue of ρE
g − τ

Fig. 5 shows empirical data on maxi |λi(ρEg −τ)| = |ρEg −τ |∞. The plots are rather noisy due to the

limited number of runs. We observe that the empirical |ρEg − τ |∞ is orders of magnitude smaller
than the Bennett bound, for the values of n that we studied.

Max. absolute eigenvalue of ⇢E
g (b) � ⌧ ; n = 9; 100 runs

log Q = n
3

log Q = 2n
3

log Q = n

log Q = 7n
6

log Q = 4n
3

log Q = 5n
3

2n max |�| 2n max |�|

2n max |�| 2n max |�|

Figure 5: Bladiebla.

Table 3: Moments of ⇢E
g (b)

t Qt · Ebtr (⇢E
g (b))t

2 Q + (Q)2
2n

3 Q + 3 (Q)2
2n + (Q)3

22n

4 Q + 6 (Q)2
2n + (Q)2

3n + 6 (Q)3
22n + (Q)4

23n

5 Q + 10 (Q)2
2n + 5 (Q)2

3n + 20 (Q)3
22n + 5 (Q)3

2n3n + 10 (Q)4
23n + (Q)5

24n

6 Q + (Q)2
�

15
2n + ( 5

18 )n + 15
3n2n

 
+ (Q)3

�
50
22n + 36

3n2n + 3( 5
36 )n + 1

9n

 

+(Q)4
�

50
23n + 15

3n22n

 
+ 15 (Q)5

24n + (Q)6
25n

@@ de motivatie om naar de momenten te kijken

Theorem 6.5 The moments of ⇢E
g (b) and ⇢E

g (b) � ⌧ , averaged over b, are as given in Tables 3
and 4 respectively.

Proof: See Appendix C.
In Table 4 the contributions {· · · } are negligible (at large n and Q ⌧ 3n) w.r.t. the preceding
terms; hence the expressions can be simplified substantially if one wants to know upper bounds
only. Furthermore, for Q = O(2n) the terms of order Q/3n, Q/( 18

5 )n and Q2/( 36
5 )n are negligible

as well.
It is interesting to look at the quantity ct

def
= 1

2n Ebtr (⇢E
g � ⌧)t. In some sense it represents the

t’th moment of the eigenvalues of ⇢E
g � ⌧ . If one imagines that there is a probability density µ

on [� 1
2n , 1 � 1

2n ] governing the value of the i’th eigenvalue for random i, b, g, then ct is the t’th
moment of µ. At Q ⇡ 2n we have

c1 = 0, c2 ⇡ (
1

2n
)2

def
= �2, c3 ⇡ �3, c4 ⇡ 3�4, c5 ⇡ 6�5, c6 ⇡ 15�6. (34)

Note that c4 and c6 are exactly as in a Gaussian distribution. The odd central moments are
positive because the interval [� 1

2n , 1 � 1
2n ] extends only a little distance into the negative side.
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Figure 5: Histogram of the maximum absolute eigenvalue of ρEg (b) − τ , plotted for various values
of Q. The horizontal axis is scaled by a factor 2n.

7.7 Statistical properties of ρE
g − ρE

g′

For completeness we also present theoretical and empirical results on ρEg − ρEg′ . This is motivated
by Def. 2.2.

Theorem 7.3 For any g, g′ ∈ {0, 1}n with g′ 6= g it holds that

Ebtr
(
ρEg (b)− ρEg′(b)

)2
=

2

Q
(35)

Ebtr
(
ρEg (b)− ρEg′(b)

)3
= 0 (36)

Q3Ebtr
(
ρEg (b)− ρEg′(b)

)4
= 2 + 8 Q

2n + 4Q
3n + 4(Q−1)

3n (− 1
2 )|g⊕g

′| − { 8
2n + 4

3n }. (37)

Here |g ⊕ g′| stands for the Hamming weight of g ⊕ g′.

Proof: see Appendix D.

Furthermore we have ∀b : Egg′tr
(
ρEg (b)− ρEg′(b)

)t
= 0 for odd t due to symmetry.

Corollary 7.4 Pseudorandom-keyed QOTP encryption of classical data using the 8-state encoding
is on average (w.r.t. b) statistically ε-private (Def. 2.2) with ε =

√
2n−1/Q.

Proof. We follow the same steps as in the proof of Theorem 6.2. Let d = 2n and let {λa}da=1 be

eigenvalues of ρEg − ρEg′ . We have EbD(ρEg , ρ
E
g′) = 1

2dEb 1d
∑
a

√
λ2a ≤ 1

2d
√

1
dEbtr (ρEg − ρEg′)2. In the

last step we used Jensen’s inequality. Substituting (35) gives EbD(ρEg , ρ
E
g′) ≤

√
d
2Q . �

Again we investigate the moments of the eigenvalues in the case Q ≈ 2n. Theorem 7.3 gives s2
def
=

1
2n Ebtr (ρEg − ρEg′)2 ≈ (

√
2

2n )2 and 1
2n Ebtr (ρEg − ρEg′)4 ≈ 10 · 2−4n ≈ 5

2s
4. Note that the number 5

2 is
smaller than the ‘3’ that would hold in the case of a Gaussian distribution.
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Fig. 6 shows eigenvalues of ρEg −ρEg′ . As a function of Q the same trends are visible as in Fig. 4, but

now with symmetry around zero. Fig. 7 shows empirical values of |ρEg − ρEg′ |∞. Again there is a
large gap between the actual numbers and the bound obtained from the matrix Bennett inequality
(see below).

Eigenvalues of ⇢E
g � ⇢E

g0 ; n = 9; 100 runs

log Q = n
3

log Q = 2n
3

log Q = n

log Q = 7n
6

log Q = 4n
3

log Q = 5n
3

2n� 2n� 2n�

2n� 2n� 2n�

Figure 6: Bladiebla.

We can derive a bound similar to Theorem 6.3.

Theorem 6.8 For any g, g0 2 {0, 1}n the mixed states ⇢E
g , ⇢E

g0 satisfy the following (Bennett and
Bernstein) inequalities

Pr
h
�max(⇢

E
g � ⇢E

g0) � z

2n

i
 2n exp


�2Q

2n
A(

z

2
)

�
(38)

Pr

"
�max(⇢

E
g � ⇢E

g0) � z

p
2p

Q2n

#
 2n exp

"
�z2/2

1 + 1
3
p

2
z
p

2n/Q

#
. (39)

Proof: We proceed as in the proof of Theorem 6.3, but now with Xj = 1
Q (Pj � P 0

j), where P 0
j =Nn

i=1 | bjig0
i
ih bjig0

i
| We have EbXj = 0 and

P
j Xj = ⇢E

g �⇢E
g0 . Furthermore R = �max(Xj) = 1/Q

and �2 = �max(
P

j EbX
2
j ) = �max(

2
Q⌧) = 2

Qd . Here we have used Theorem 6.6. Substitution into

(31) and setting t = z/d in the Bennett inequality, and t = z
p

2p
Q2n in the Bernstein inequality,

yields the result. ⇤.

Again we investigate the moments of the eigenvalues in the case Q ⇡ 2n. Theorem 6.6 gives s2 def
=

1
2n Ebtr (⇢E

g � ⇢E
g0)2 ⇡ (

p
2

2n )2 and 1
2n Ebtr (⇢E

g � ⇢E
g0)4 ⇡ 10 · 2�4n ⇡ 5

2s4. Note that the number 5
2 is

smaller than the ‘3’ that would hold in the case of a Gaussian distribution. Hence the distribution
is narrower than Gaussian.
@ Numerics. Checken of het klopt, dmv Gaussian met zelfde variantie.
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Figure 6: Histogram of the eigenvalues of ρEg −ρEg′ , plotted for various values of Q. The horizontal
axis is scaled by a factor 2n.

Max. absolute eigenvalue of ⇢E
g (b) � ⇢E

g0(b); n = 9; 100 runs
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Figure 7: Bladiebla.

7 Discussion

We briefly discuss the physical implementation of 8-state encoding. The eight photon polarisation
states as depicted in Fig. 1 are not necessarily the most practical implementation. Most single-
photon sources produce linearly polarised states; hence elliptic polarisation may be more di�cult
to handle than linear. We note that it is possible to rotate the cube in Fig. 1 in such a way that
four cipherstates lie in the xz-plane [40], corresponding to linear polarisation. Another physical
implementation of qubits is to use pulse trains as in Di↵erential Phase Shift QKD [38], but with
di↵erent amplitudes and phases.
As topics for future work we mention (i) security proof for the proposed key recycling scheme; (ii)
using the moments listed in Table 4 to derive a sharper bound on |⇢g � ⌧ |1 and �max(⇢g � ⌧).
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A Proof of Theorem 5.4

We write ⇢ = | ih |. We introduce short notation Pj = Fbj | ih |F †
bj . The Pj is a projection

operator satisfying Ebj
Pj = ⌧ . We have

Ebtr [⇢0(b)]t =
1

Qt

QX

j1=1

· · ·
QX

jt=1

tr EbPj1 · · · Pjt . (40)

If for some a 2 {1, . . . , Q} a projection Pa occurs only once in the product Pj1 · · · Pjt
then the

Eb reduces it to ⌧ . However, in the t-fold summation many di↵erent collisions can occur between
the summation variables j1, j2, . . . , jt. In any of the Qt terms we denote the number of distinct
values as k, with k 2 {1, . . . , t}. There are

�
t
k

 
(Q)k terms with a given value of k. At given k,

there are k distinct projectors in the product Pj1 · · · Pjt ; they occur multiple times spread out over
the product. If the identical projections are direct neighbours then we can immediately use the
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Figure 7: Histogram of the maximum absolute eigenvalue of ρEg − ρEg′ , plotted for various values
of Q. The horizontal axis is scaled by a factor 2n.

Theorem 7.5 For any g, g′ ∈ {0, 1}n the mixed states ρEg , ρEg′ satisfy

Pr
[
λmax(ρEg − ρEg′) ≥

ε

2n

]
≤ 2n exp

[
−2Q

2n
A(
ε

2
)

]
. (38)

Proof: We proceed as in the proof of Theorem 6.5, but now with Xj = 1
Q (Pj − P ′j), where P ′j =⊗n

i=1 |ψbjig′i〉〈ψbjig′i |. We have EbXj = 0 and
∑
j Xj = ρEg − ρEg′ . Furthermore R = λmax(Xj) =
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1/Q and σ2 = λmax(
∑
j EbX2

j ) = λmax( 2
Qτ) = 2

Qd . Here we have used Theorem 7.3. Substitution

into (24) and setting t = ε/d in the Bennett inequality yields the result. �.

From (38) we can derive an expression like Theorem 6.5 for the sufficient key length to obtain a
∞-norm version of ε-privacy; only the constant terms are different.

8 Summary and discussion

The most important results of this paper are: the introduction of the basis states |ψ000〉, |ψ001〉 to
represent a classical bit, leading to 8-state encoding when the QOTP is applied; the key recycling
scheme ‘#3’ presented in Section 4.6, which has improved noise tolerance and efficiency compared
to previous proposals; bounds on the sufficient key length for pseudorandom-keyed QOTP encryp-
tion of arbitrary quantum states (Theorems 6.3, 6.5 and 6.8); statistical analysis of the cipherstate
eigenvalues (for classical plaintext) up to 6th order.
We briefly comment on the physical implementation of 8-state encoding. The eight photon polar-
isation states as depicted in Fig. 1 are not necessarily the most practical implementation. Most
single-photon sources produce linearly polarised states; hence elliptic polarisation may be more
difficult to handle than linear. We note that it is possible to rotate the cube in Fig. 1 in such a way
that four of the eight cipherstates lie in the xz-plane [43], corresponding to linear polarisation.
Another physical implementation of qubits is to use pulse trains as in Differential Phase Shift
QKD [41], but with different amplitudes and phases.
As topics for future work we mention (i) detailed security proofs for the proposed key recycling
scheme; (ii) obtain sharp bounds on high moments of the ρEg eigenvalues, in order to derive tighter
bounds on the sufficient key length; (iii) establish how far the actual distances |ρg− τ |1, |ρg− τ |∞
lie below the provable bounds.
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A Proof of Theorem 6.6

We write ρ = |ψ〉〈ψ|. We introduce short notation Pj = Fbj |ψ〉〈ψ|F †bj . The Pj is a projection
operator satisfying EbjPj = τ . We have

Ebtr [ρ′(b)]t =
1

Qt

Q∑

j1=1

· · ·
Q∑

jt=1

tr EbPj1 · · ·Pjt . (39)

If for some a ∈ {1, . . . , Q} a projection Pa occurs only once in the product Pj1 · · ·Pjt then the
Eb reduces it to τ . However, in the t-fold summation many different collisions can occur between
the summation variables j1, j2, . . . , jt. In any of the Qt terms we denote the number of distinct
values as k, with k ∈ {1, . . . , t}. There are

{
t
k

}
(Q)k terms with a given value of k. At given k,

there are k distinct projectors in the product Pj1 · · ·Pjt ; they occur multiple times spread out over
the product. If the identical projections are direct neighbours then we can immediately use the
reduction Pma = Pa (m ≥ 1). For t ≤ 3 there are only direct neighbours. (This follows from the
circular property of the trace, trABC = trCAB). Then the expression tr EbPj1 · · ·Pjt reduces to
tr τk = ( 1

2n )k−1, which immediately yields (26). For t ≥ 4, however, there are sub-expressions like
PαPβPαPβ , PαPβPγPβPαPγ , etcetera.
We define an inner product on the space of 2n×2n complex matrices as 〈M,N〉 = EbtrM†(b)N(b).
We now use Cauchy-Schwartz, |〈M,N〉|2 ≤ 〈M,M〉〈N,N〉 to bound our product expressions for
t ≥ 4. For example, at t = 4, k = 2 we have EbtrPαPβPαPβ = |EbtrPαPβPαPβ | = |〈PβPα, PαPβ〉|
≤
√
〈PβPα, PβPα〉〈PαPβ , PαPβ〉 =

√
(EbtrPαPβ)(EbtrPβPα) = tr τ2. At t = 6, k = 2 we have

Ebtr (PαPβ)3 = |〈PαPβPα, PβPαPβ〉| ≤
√

[Ebtr (PαPβ)2][Ebtr (PβPα)2] = tr τ2. At t = 6, k = 3
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we have Ebtr (PαPβPγ)2 = |〈PγPβPα, PαPβPγ〉| ≤
√
〈PγPβPα, PγPβPα〉〈PαPβPγ , PαPβPγ〉 =√

[EbtrPαPβPγPβ ][EbtrPγPβPαPβ ] = tr τ3. With every use of Cauchy-Schwartz we remove du-
plications of projectors, until only single occurrences remain.

B Proof of Theorem 7.1

The D subsystem consists of n qubit systems D1, . . . , Dn. We take i = n without loss of generality.
Since we concentrate on gn, only the subsystem Dn is of interest. Tracing out D1, . . . , Dn−1 gives

ρDnE(b) =
1

2

1∑

gn=0

|gn〉〈gn| ⊗ ρEGn=gn(b) ρEGn=gn(b) = τ
⊗(n−1)
2 ⊗ 1

Q

Q∑

j=1

|ψbjngn〉〈ψbjngn |. (40)

Eve’s first n − 1 qubits give no information about gi. We compute the min-entropy of Gn given
Eve’s subsystem En using (1).

Hmin(Gn|B, ρEn

Gn
(B)) = − log Eb max

M0,M1

Egn∈{0,1}trMgnρ
En

Gn=gn
(b). (41)

Here we have inserted the Eb in the logarithm because of the conditioning on the classical vari-
able B. As the POVM has to satisfy M0 + M1 = 1 we eliminate M1 as a degree of freedom and
are left with

Hmin(Gn|B, ρEn

Gn
(B)) = 1− log

[
1 + Eb max

M0

trM0(ρEn

Gn=0 − ρEn

Gn=1)

]

= 1− log[1 + Eb λmax(ρEn

Gn=0 − ρEn

Gn=1)]. (42)

Here we have used that the optimal M0 is a projection operator in the direction of the positive
eigenvector of ρEn

Gn=0 − ρEn

Gn=1. The notation λmax(A) stands for the maximum eigenvalue of A.
We introduce tallies Qβ , β ∈ {0, 1, 2, 3}, which count how many times key β occurs in the n’th
column of b. The tallies are multinomial-distributed with parameters Q and ( 1

4 ,
1
4 ,

1
4 ,

1
4 ). We have

ρEn

Gn=0 − ρEn

Gn=1 =
1

Q

Q∑

j=1

(
|ψbjn0〉〈ψbjn0| − |ψbjn1〉〈ψbjn1|

)

=
1

Q

3∑

β=0

Qβ

(
|ψβ0〉〈ψβ0| − |ψβ1〉〈ψβ1|

)
. (43)

We define vx = Q0 + Q1 −Q2 −Q3, vy = Q0 −Q1 −Q2 + Q3, vz = Q0 −Q1 + Q2 −Q3. Using
|ψβ0〉〈ψβ0| − |ψβ1〉〈ψβ1| = nβ0 · σ we find, after some algebra,

ρEn

Gn=0 − ρEn

Gn=1 =
vxσx + vyσy + vzσz

Q
√

3
. (44)

This expression can be written as a spin operator in some direction times a scalar factor which is
exactly λmax. We have

v2 = v2x + v2y + v2z = 3(Q2
0 +Q2

1 +Q2
2 +Q2

3)− 2
∑

β 6=β′

QβQβ′ . (45)

Using the multinomial property EbQ2
β = (Q4 )2 +Q · 14 · 34 for the four square terms and EbQβQβ′ =

(Q4 )2 −Q · 14 · 14 for the six crossterms we finally get Ebv2 = 3Q and

Ebλmax =
Eb
√
v2

Q
√

3
≤
√

Ebv2

Q
√

3
=

1√
Q
. (46)
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C Proof of Theorem 7.2

The results for t = 2 follow from Theorem 6.6. The results for t = 3 are copied from Theorem 6.6
and Corollary 6.7.
For t = 4 we closely follow the proof of Corollary 6.7. The only difference lies in one type of
summation term in the computation of Ebtr (ρ′)4, namely tr EbPjP`PjP` with j, ` ∈ {1, . . . , Q},
` 6= j. In Corollary 6.7 this was upperbounded as tr EbPjP`PjP` ≤ tr EbPjP` = tr τ2 = 2−n. For
states restricted to the 8-state system we can do the computation exactly. We have Pj = ρEjg(b)
as defined in (31) for some arbitrary g ∈ {0, 1}n, which gives

tr EbPjP`PjP` =

n∏

i=1

EbjiEb`i
∣∣〈ψbjigi |ψb`igi〉

∣∣4 =

n∏

i=1

1

3
= (

1

3
)n. (47)

Here we have used that bji 6= b`i occurs with probability 3/4 (and yields | · · · |4 = ( 1
3 )2) while

bji = b`i occurs with probability 1/4 (and yields | · · · |4 = 1). The upshot is that a contribution
1
Q4

Q(Q−1)
2n in the proof of Corollary 6.7 has to be replaced by 1

Q4

Q(Q−1)
3n .

For t = 5 we follow the same procedure. At k = 2 there are 5 terms of the form PjP`PjP`Pj (or
rotations thereof), which each yield a contribution (47).
For t = 6 the procedure is the same but with more complicated combinations. At k = 2 there
is one term of the form (PjP`)

3 which yields6 ( 5
18 )n, and 15 terms that reduce to (PjP`)

2 by
idempotency, yielding (47). At k = 3 there is one term (PjP`Pm)2 yielding ( 1

9 )n, three terms
of the form PjP`PjPmP`Pm yielding ( 5

36 )n, and 36 terms that reduce to τ(PjP`)
2 yielding 1

2n3n .
Careful bookkeeping results in the expressions listed in Table 3.
Table 4 follows by applying the binomial expansion Ebtr (ρ − τ)t =

∑t
a=0

(
t
a

)
Ebtr ρa(−τ)t−a =∑t

a=0

(
t
a

)
(− 1

2n )t−aEbtr ρa and then using Table 3.

D Proof of Theorem 7.3

2nd power. Since Ebtr ρ2g does not depend on g we can write Ebtr (ρg−ρg′)2 = 2Ebtr ρ2g−2Ebtr ρgρg′ .
The first term follows from Lemma 6.1 using tr ρ2 = 1 (the plaintext is a pure state). We define

Pj as in the proof of Theorem 6.6, and R` =
⊗n

i=1 |ψb`ig′i〉〈ψb`ig′i |, and ρg′ = 1
Q

∑Q
`=1R`. It holds

that EbR` = τ and PjRj = 0. We write Ebtr ρgρg′ = 1
Q2

∑Q
j=1

∑
`:` 6=j tr EbPjR` = Q2−Q

Q2 tr τ2.

4th power. We note that Ebtr ρ3gρg′ does not depend on g and g′ as long as g′ 6= g. This allows us

to write Ebtr (ρg − ρg′)4 = 2Ebtr ρ4g − 8Ebtr ρ3gρg′ + 2Ebtr (ρgρg′)
2 + 4Ebtr ρ2gρ

2
g′ . The first term is

given in Table 3. We write Q4Ebtr ρ3gρg′ =
∑
j`m

∑
s:s6=j`m tr EbPjP`PmRs. The Rs reduces to τ

and we get Q4Ebtr ρ3gρg′ =
∑
j`m(

∑
s:s6=j`m)tr EbPjP`Pmτ = (Q)2tr τ2 + 3(Q)3tr τ3 + (Q)4tr τ4.

Next we have Q4Ebtr (ρgρg′)
2 =

∑
js

∑
`: 6̀=js

∑
m:m6=js tr EbPjR`PsRm As earlier we use the no-

tation k for the number of different table rows present in a summation term. At k = 1 we get
zero contribution since a P and R projector must collide. At k = 2 we have to set j = s, ` = m
yielding a contribution (Q)2( 1

3 )n. At k = 3 we have the combinations PjR`PjRm and PjR`PmR`
which both yield (Q)3tr τ3. At k = 4 there is the unsurprising contribution (Q)4tr τ4. Together

this yields Q4Ebtr (ρgρg′)
2 = (Q)2

3n + 2 (Q)3
22n + (Q)4

23n .
Finally we have Q4Ebtr ρ2gρ

2
g′ =

∑
j`

∑
m:m6=j

∑
s:s6=` tr EbPjP`RsRm. At k = 1 there is again zero

contribution because of the collisions between P and R. At k = 4 we have the usual (Q)4tr τ4. At
k = 3 the only nonzero contributions come from the combinations P 2

j RsRm and PjP`R
2
m, which

both yield (Q)3tr τ3. The case k = 2 is the most complicated. The combination P 2
j R

2
m yields

(Q)2tr τ2. For the combination PjP`RjR` we get a factorised expression
∏n
i=1 EbtrPjiP`iRjiR`i,

where Eb refers to the i’th column of b. It turns out that EbtrPjiP`iRjiR`i depends on gi ⊕ g′i.
For g′i = gi we get 1

3 , while for g′i 6= gi the outcome is − 1
6 = 1

3 · (− 1
2 ). The product over i yields

( 1
3 )n(− 1

2 )|g⊕g
′|. Adding up the pieces gives Q4Ebtr ρ2gρ

2
g′ = (Q)2

2n + (Q)2
3n (− 1

2 )|g⊕g
′| + 2 (Q)3

22n + (Q)4
23n .

6With probability 3
4

it occurs that bji 6= b`i, yielding |〈ψbjigi |ψb`igi 〉|6 = ( 1
3

)3. With probability 1
4

it occurs

that bji = b`i, yielding 1. The expectation is 3
4
· ( 1

3
)3 + 1

4
= 5

18
.
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Taking Ebtr (ρg−ρg′)4 = 2Ebtr ρ4g−8Ebtr ρ3gρg′ +2Ebtr (ρgρg′)
2 +4Ebtr ρ2gρ

2
g′ yields the final result.
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