
Improved Multi-Dimensional
Meet-in-the-Middle Cryptanalysis of KATAN

Shahram Rasoolzadeh and H̊avard Raddum

Simula Research Laboratory
{shahram,haavardr}@simula.no

Abstract. We study multidimensional meet-in-the-middle attacks on
the KATAN block cipher family. Several improvements to the basic at-
tacks are explained. The most noteworthy of these is the technique of
guessing only non-linearly involved key bits, which reduces the search
space by a significant factor. The optimizations decreases the complexity
of multidimensional meet-in-the-middle attacks, allowing more rounds of
KATAN to be efficiently attacked than previously reported.

Keywords: Lightweight, Block Cipher, KATAN, Meet-in-the-Middle, Reducing
Complexity

1 Introduction

The KATAN family of block ciphers was designed by Cannière et al., presented
at CHES 2009 [1], and has become a well-known instance of a lightweight block
cipher. All versions of the KATAN family have a structure based on non-linear
feedback shift registers (NLFSR). The simple round function, iterated a large
number of times, allows an efficient hardware implementation and simultaneously
meets the security requirements one would expect from this cipher.

KATAN has received a substantial amount of cryptanalysis since it was pre-
sented. Previous work on KATAN in the single key setting includes algebraic
and cube attacks [2], conditional differential [3], differential [5], all subkeys re-
covery (ASR) MITM [4,6], match-box MITM [7], multidimensional (MD) MITM
[8] and dynamic cube [9]. These are all summarized in Table 1, where we also
include the work of this paper.

We focus on the multidimensional (MD) meet-in-the-middle (MITM) attacks
on KATAN that were introduced in [8]. The main contribution of our work
is reduction in attack complexity through several optimizations. In particular,
we use a technique of removing key bits that are not used in any non-linear
operations, and show that under some mild conditions it is not necessary to
guess these bits in a MITM attack.

The paper is organized as follows: Section 2 gives a brief description of
KATAN, and Section 3 describes MD MITM attacks with focus on KATAN. In
Section 4 we explain the optimizations we can do, and report on the improved
results in Section 5. Finally Section 6 concludes the paper.

2 Shahram Rasoolzadeh and H̊avard Raddum

Table 1. Summary result of single-key attacks on KATAN family

Version Type Round Time Data Memory Ref.

KATAN32

Cube 60 239 230.3 CP – [2]
Cond. Differential 78 222 222 CP – [3]

Algebraic 79 14.7 min 20 CP – [2]
ASR MITM 110 277 138 KP 275.1 [4]
Differential 114 277 231.9 KP – [5]
ASR MITM 119 279.1 144 CP 279.1 [6]

Matchbox MITM 153 278.5 25 CP 276 [7]
Dynamic Cube 154 278.5 232 – 232 [9]

MD MITM 175 278.3 3 KP 279.6 [8]
MD MITM 201 278.1 3 KP 278.1 Tab. 5
MD MITM 206 279 3 KP 278.1 Tab. 5

KATAN48

Cube 40 249 225.9 CP – [2]
Algebraic 64 6.4 hour 5 CP – [2]

Cond. Differential 70 234 234 CP – [3]
ASR MITM 100 278 128 KP 278 [4]
MITM ASR 105 279.1 144 CP 279.1 [6]

Matchbox MITM 129 278.5 32 CP 276 [7]
MD MITM 130 279.5 2 KP 279 [8]
MD MITM 146 278.1 2 KP 277 Tab. 3
MD MITM 148 279 2 KP 277 Tab. 3

KATAN64

Cube 30 235 220.7 CP – [2]
Algebraic 60 3.2 hour 5 CP – [2]

Cond. Differential 68 235 235 CP – [3]
ASR MITM 94 277.7 116 KP 277.7 [4]
ASR MITM 99 279.1 142 CP 279.1 [6]
MD MITM 112 279.5 2 KP 279 [8]

Matchbox MITM 119 278.5 32 CP 274 [7]
MD MITM 126 278.1 2 KP 277 Tab. 4
MD MITM 129 279.0 2 KP 277 Tab. 4

2 Description of KATAN

KATAN is a NLFSR-based family of block ciphers with block sizes of 32, 48
and 64 bits. These will be referred to as KATAN32, KATAN48 and KATAN64,
respectively. All three versions have 254 rounds and use the same LFSR-type
key schedule, accepting an 80-bit user-selected key.

The plaintext is loaded into two registers L1 and L2. The least significant
bit (LSB) of each register, numbered 0, is the rightmost one, and the LSB of the
plaintext is loaded into the LSB of L2 while its most significant bit (MSB) is
loaded into the MSB of L1. To update the state registers, L1 and L2 are shifted
to the left by one bit, where the newly computed bits generated according to
the following equations, are loaded into the LSBs of L2 and L1.

Improved Multi-Dimensional Meet-in-the-Middle Cryptanalysis of KATAN 3

{
fa(L1) = L1[x1]⊕ L1[x2]⊕ (L1[x3] · L1[x4])⊕ (L1[x5] · IR)⊕ ka

fb(L2) = L2[y1]⊕ L2[y2]⊕ (L2[y3] · L2[y4])⊕ (L2[y5] · L2[y6])⊕ kb
(1)

Here ⊕ and · are bitwise xor and and operations, L[x] denotes the x-th bit
of L, IR is a round-dependent constant, and ka and kb are two subkey bits.
For round i, 0 ≤ i ≤ 253, ka and kb are equal to sk2i and sk2i+1, respectively
which are generated by the key schedule. Table 2 shows the parameters and tap
positions associated with the different versions of KATAN. Also, the structure
of KATAN32 is shown in Fig. ??.

Table 2. Parameters of KATAN family

size |L1| |L2| x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 y6
32 13 19 12 7 8 5 3 18 7 12 10 8 3
48 19 29 18 12 15 7 6 28 19 21 13 15 6
64 25 39 24 15 20 11 9 38 25 33 21 14 9

IR
kb

ka

L1 L2

Fig. 1. Structure of KATAN32

Applying this update procedure (i.e. shifting and loading) once is denoted
as a step in this paper. One round consists of one, two or three steps with the
same subkey bits, for KATAN32, KATAN48 and KATAN64, respectively. After
254 rounds the content of the registers is the ciphertext.

The key schedule of KATAN is a linear key schedule based on an 80-bit
LFSR defined by the polynomial x80 +x61 +x50 +x13 + 1. This LFSR generates
2× 254 = 508 subkey bits according to the following rule, where the ki’s are the
user-selected key bits:

ski =

{
ki 0 ≤ i < 80

ski−80 ⊕ ski−61 ⊕ ski−50 ⊕ ski−13 80 ≤ i < 508
(2)

3 Meet-in-the-Middle Attacks

In this section we will briefly recall meet-in-the-middle attacks, and introduce
the necessary notions for basic MITM and multidimensional MITM attacks.
Throughout the paper, the notation |x| means the bit-size of x.

4 Shahram Rasoolzadeh and H̊avard Raddum

3.1 Basic MITM

The basic MITM attack is a generic technique presented by Diffie and Hellman
to cryptanalyze DES [10]. Despite the fact that this technique is arguably less
common than differential or linear attacks on ciphers, there are some applications
to specific block ciphers (such as KATAN) where using MITM principles are more
successful than differential and linear attacks.

Let Ei,j(kf , S) denote the partial encryption of the cipher block S, beginning
from the start of round i and ending at the start of round j, where kf is a
particular sequence of subkeys corresponding to these j − i rounds. Similarly,
let Dj,i(kb, S) denote the partial decryption of S, beginning from the start of
round j and ending at the start of round i, where kb is the sequence of subkeys
corresponding to these j − i rounds. Let Kf and Kb be the total set of subkey
sequences that kf and kb, respectively, can be drawn from.

Assume we have a cipher with R rounds. The main idea of a MITM attack is
that the partial keys in both parts of the cipher can be guessed separately. First,
the attacker goes through all values of kf , computes E0,r(kf , P) for a plaintext
P and save the cipher states in a table. The part of the cipher from round 0 to
r is called the forward side. Next, the attacker goes through all values of kb and
computes DR,r(kb, C) for the corresponding ciphertext. The rounds from r to R
are called the backward side. If

E0,r(kf , P) = DR,r(kb, C), (3)

then kf and kb are candidates for representing the correct secret key, and can be
tested on other known plaintext/ciphertext pairs. We sum up the basic MITM
attack in the following algorithm.

Algorithm 1 Basic MITM attack

for kf ∈ Kf do
Compute v = E0,r(kf , P);
Store kf in table T indexed by v;

end for
for kb ∈ Kb do

Compute v′ = DR,r(kb, C);
Find the corresponding kf in T [v′] if it exists (then (3) holds for (kf , kb));
Check the candidate (kf , kb) on a few other known plaintext/ciphertext pairs;
if (kf , kb) fits all plaintext/ciphertext pairs then

Return (kf , kb) as the correct key;
end if

end for

3.2 Multidimensional MITM Attack

Multidimensional MITM attacks were first introduced in 2011 by Zhu and Gong
in [8]. In a two-dimensional (2D) MITM attack we guess a cipher block state

Improved Multi-Dimensional Meet-in-the-Middle Cryptanalysis of KATAN 5

S somewhere in the middle of the cipher, and assume for the rest of the attack
that the value of S is known. This breaks the encryption in two parts, called
dimensions in the context of MITM attacks. The idea is to combine two basic
MITM attacks for each dimension, where S serves as a ”ciphertext” in the first
dimension and a ”plaintext” in the second dimension.

Note that the total complexity of a 2D MITM attack is the complexity of
guessing S multiplied with some part of the complexity of the two MITM attacks.
To have a MD MITM attack that is faster than exhaustive key search it is
therefore necessary that the key size is significantly larger than the block size.
In the case of the KATAN family, the key size is 80 bits and the block sizes are
32, 48 or 64 bits.

In principle, the basic MITM attack can be extended into any number of
dimensions. For a d-dimensional MITM attack we guess d − 1 cipher states
in the encryption procedure, dividing the cipher into d dimensions. Then we
perform d basic MITM attacks in parallel in each dimension. To be faster than
exhaustive search it is a necessary condition that (d− 1)× |S| < |K|. Hence we
can implement 2D MITM attack to all 3 versions of KATAN and also 3D MITM
attack to KATAN32.

MD MITM matching when |v| < |Kf | In the basic MITM attack the
values to match are given as the value of the cipher block v = E0,r(kf , P) at
some point in the middle of the cipher. When |v| is smaller than |Kf | there will
be several kf -values giving the same cipher state v. As we will see, this is the
case for KATAN. When matching from the backward side we could get a large
number of (kf , kb) candidates to test.

In the first d− 1 dimensions of d-dimensional MITM attack we would prefer
to have a unique kf -value in each cell in the table built from the forward side, so
we get at most one (kf , kb) candidate to test for each kb-value in the backward
side. We can achieve this by extending v to (v, u), where u is some value that
can be computed both from kf and from kb. If |u| is large enough, the (v, u)-
value will uniquely identify kf in the forward side, and kb in the backward side.
Exactly how u is computed is not very important, the important thing is that
u is big enough to give uniqueness, and that it can be computed from both kf
and kb independently.

3.3 Implementing MD MITM on KATAN

We will use 2D MITM and 3D MITM attacks to cryptanalyze the KATAN
block ciphers. The 2D or 3D MITM attacks have the same structures, and we
summarize the attacks by giving their algorithms. Algorithm 2 for 2D MITM is
shown and explained below. Algorithm 3 for 3D MITM attack is similar, and
given in Appendix A.

In the algorithms we use r1, . . . , r5 as the specific rounds where either MITM
matching or the guessing of a full state takes place. The numbers r2 and r4
denote the states that break the full cipher into dimensions, and r1, r3 and r5

6 Shahram Rasoolzadeh and H̊avard Raddum

Algorithm 2 2D MITM attack to KATAN32/48/64

for kf1 ∈ Kf1 do
Compute full state of v1 = E0,r1(kf1, P) for a plaintext P ;
Compute u from kf1;
Store kf1 into table T1 indexed by v1 and u;

end for
for kb2 ∈ Kb2 do

Compute the n least significant bits of DR,r3(kb2, C) denoted by v2, for the ci-
phertext C corresponding to P ;

Store v2 in table T2 indexed by kb2;
end for
for s ∈ F|S|

2 do
for kf2 ∈ Kf2 do

Compute the n least significant bits of Er2,r3(kf2, s) denoted by v′2;
Store v′2 in table T ′

2 indexed by kf2;
end for
for kb1 ∈ Kb1 do

Compute full state of v′1 = Dr2,r1(kb1, s);
Compute u′ from kb1;
Find kf1 = T1[v′1, u

′];
Compute values of kf2 and kb2 using both kf1 and kb1;
if T ′

2 [kf2] = T2[kb2] then
Test the candidate key using this pair and a few other pairs of known

plaintext/ciphertext pairs;
if candidate key passes all tests then

Return candidate as correct key;
end if

end if
end for

end for

are the rounds where MITM matchings take place in the first, second and (in
case of 3D) third dimensions, respectively. The value of the state separating
dimensions 1 and 2 is denoted by s, and the value separating dimensions 2 and
3 is denoted by t.

The matching in the first dimension will always determine a candidate for the
full key, so the matchings in the other dimensions will just work like a filter to
eliminate wrong key candidates. For this reason we do not need to do matchings
in the value of the full state in dimensions 2 and 3, only a few bits are needed
to filter out a large fraction of key candidates from dimension 1. The number of
bits to match in the other dimension(s) is denoted by n.

3.4 Complexity

We evaluate the time and memory complexities of Algorithm 2.
The time complexity comes from all the partial encryptions we need to do for

all values of partial keys and all values of the guessed state in round r2. We also

Improved Multi-Dimensional Meet-in-the-Middle Cryptanalysis of KATAN 7

do memory accesses when creating and using tables, which are not part of the
encryption procedure. Also, computing kf2 and kb2 using kf1 and kb1 in the last
for loop can be implemented with a matrix multiplication. These operations are
few compared to the number of times we would have to iterate the shift registers
generating the round keys in a naive exhaustive key search on KATAN. Since
we guess on the values of the keys, and we never guess more than 80 bits of the
key, we do not clock the key registers in the attack. Hence we ignore the extra
operations from memory access and matrix multiplication, arguing they at least
cancel out with the saving from not clocking key registers that is done in a basic
exhaustive search.

We give the time complexity in terms of full R-round encryptions. The first
for-loop in Algorithm 2 iterates 2|Kf1| times, executing a r1/R encryption ev-
ery time. Similarly, the second for-loop costs 2|Kb2| × (R − r3)/R encryptions.
The complexity for the other two for-loops can be computed similarly, but these
must be done once for every guess of the state S in round r2, and hence must
be multiplied with 2|S|. Finally, the matching T ′2 [kf2] = T2[kb2] succeeds with
probability 2−n, which will invoke a full trial encryption on a second pair of plain-
text/ciphertext. This matching is done 2|s|+|kb1| times, so the time complexity
for the full 2D MITM attack can be given as

r1
R

2|Kf1| +
R− r3

R
2|Kb2| + 2|S|

(
r2 − r1

R
2|Kb1| +

r3 − r2
R

2|Kf2|
)

+ 2|s|+|kb1|−n

R-round KATAN encryptions.
The memory complexity comes from storing the tables T1, T2 and T ′2 . The

table T1 has 2|Kf1| cells, each holding one kf1 key. The storage needed for T1 is
then |kf1|2|Kf1| bits. The tables T2 and T ′2 has 2|kb2| and 2|kf2| cells respectively,
where each cell holds n bits. The total memory complexity for Algorithm 2 is
then be given as

|kf1|2|Kf1| + n(2|kf2| + 2|kb2|)

bits.

4 Reducing the Complexity of MITM Attacks

It is possible to apply several optimizations to the MITM attacks we have de-
scribed that helps speeding them up. Some of them are rather obvious or have
little impact on the total complexity, and will only be briefly mentioned in Sec-
tion 4.2. However, the first optimization described in Section 4.1 can make an
attack faster by a high factor. The technique is general and may be applicable
to other ciphers than KATAN. It is similar to a technique used in [7].

4.1 Only Guessing Non-Linearly Involved Key Bits

During a MITM attack we need to compute v = E0,r(kf , P), for some guess
of kf . It may happen (as in the case of KATAN) that v only depends linearly

8 Shahram Rasoolzadeh and H̊avard Raddum

on some of the bits in kf . Let these bits of kf be kf,l, and let the bits that
are involved non-linearly in computing v be kf,n. By the notion ”v depends
linearly on kf,l” we mean that v can be written as v = v′ ⊕ lf where v′ can be
computed only from kf,n, and lf is a bit-string that can be computed as a linear
transformation of kf,l. Another way of looking at it is that v′ = E′0,r(kf,n, P),
where E′ is the same as E, except that we simply ignore, or set to 0, the kf,l
bits.

We can do the same from the backward side and split kb into disjoint subsets
kb,l and kb,n, such that kb,l is only involved linearly when computing DR,r(kb, C).
Similarly to the forward side, we can define D′R,r(kb,n, C) to be equal to D,
except that we ignore the kb,l bits that go into the computation of D. Finally, if
v = DR,r(kb, C) and v′ = D′R,r(kb,n, C) we set v = v′⊕ lb where lb is some linear
transformation of kb,l.

Let lf be given as lf = kf,lMf where Mf is a |kf,l|× |v| matrix, and similarly
define lb = kb,lMb. Then (3) can be written as

E′0,r(kf,n, P)⊕ kf,lMf = D′R,r(kb,n, C)⊕ kb,lMb (4)

Assume that the key schedule of the cipher we are investigating is linear,
and that kf,n and kb,n together uniquely define the user selected key. Then it
is possible to find two matrices Nf and Nb such that kf,l = (kf,n, kb,n)Nf and
kb,l = (kf,n, kb,n)Nb. Moreover, we can split Nf and Nb into their top and bottom
parts N∗1 and N∗2 such that{

kf,l = (kf,n, kb,n)Nf = kf,nNf1 ⊕ kb,nNf2

kb,l = (kf,n, kb,n)Nb = kf,nNb1 ⊕ kb,nNb2

(5)

Inserting this into (4), rearranging terms and setting Af = Nf1Mf ⊕Nb1Mb

and Ab = Nb2Mb ⊕Nf2Mf we get

E′0,r(kf,n, P)⊕ kf,nAf = D′R,r(kb,n, C)⊕ kb,nAb (6)

The crucial observation is that kf,l and kb,l have disappeared from the equa-
tion used for matching, hence we do not need to guess these bits when computing
matching values for round r. Only bits that are involved in non-linear operations
need to be guessed. Also, we have rearranged the terms such that the left hand
side can be computed only from kf,n and the right hand side only from kb,n.

When the assumptions given here hold, we can use one side of (6) as the
values to put in the table for the MITM matchings. This technique may speed
up the attack by a factor 2|kf,l| and 2|kb,l| in the forward and backward sides,
allowing us to cryptanalyze more rounds of the cipher.

KATAN48 Example To clarify the technique, we will give the details of MITM
matching for the first dimension of a 2D MITM attack to KATAN48. Assume
that we know the whole 48-bit value of S60, and want to do a MITM matching
in all 48 bits of S42. In the forward side, for computing E′0,42 from the plaintext,

Improved Multi-Dimensional Meet-in-the-Middle Cryptanalysis of KATAN 9

instead of guessing all the subkey bits going into these rounds we only need to
guess the 77 non-linearly involved key bits. These bits are

kf1,n = {k0, . . . , k76}.

The other key bits used in this 42-round encryption are only involved linearly,
so we set kf1,l to be

kf1,l = {k77, . . . , sk83}.

The bits sk80, . . . , sk83 can be computed from kf1,n, so they would not need
to be guessed in any case, even if we did not use the technique described in
this section. The speed-up in reduced complexity comes only from not having
to guess k77, k78, k79, and the complexity in the forward side will therefore be
reduced by a factor 23.

In the backward side, instead of guessing all 36 subkey bits of {sk84, . . . ,
sk119} for computing D′60,42 from S60, we only need to guess the 32 non-linearly
involved subkey bits

kb1,n = {sk86, sk88, sk90, . . . , sk119}.

The other 4 bits only gets xored to the state bits, so

kb1,l = {sk84, sk85, sk87, sk89}.

None of the kb1,l bits can be computed from kb1,n, so the complexity in the
backward side gets reduced by a factor 24.

In this example, Mf will be a 7× 48 matrix and Mb will be a 4× 48 matrix.
The matrices Nf1 and Nf2 will be of sizes 77 × 7 and 32 × 7, respectively, and
Nb1 and Nb2 of sizes 77 × 4 and 32 × 4. We have computed these matrices and
verified the correctness of the technique described in this section. The actual
matrices for this example can be found in Appendix B.

4.2 Other Optimizations

To maximize the number of rounds that can be attacked we briefly mention a
few other optimizations that should be used in a MITM attack on KATAN.

First, we notice that after the plaintext has been loaded into the registers, in
the first few steps the key bits are only xored onto the state and are not involved
in the non-linear operations. We can therefore clock the registers up until the
first key-bits go into a non-linear operation, and treat the state at this point as
the (modified) plaintext. The first operation of the cipher is then to add the first
key bits onto their correct cells, before clocking continues as normal. This will
save us a few fa and fb steps in the beginning.

Secondly, if we do a MD MITM attack and only do partial matching in a
dimension, some of the fa and fb operations may not affect the bits used for
matching. This applies to fa and fb in the rounds close to the state used for
matching. Of course, we do not need to actually compute these instances of fa
and fb and so save a little in the complexity.

10 Shahram Rasoolzadeh and H̊avard Raddum

Third, when running through all values of kf,n or kb,n to compute matching
values, we do not need to start computing from the beginning of E′ or D′ for
each guess. Instead, for the first guess we will store the states after each round
up until the matching state. For the second guess, we will only backtrack to the
previous state, change the value of one of the key bits there, and recompute one
round from the stored state to get a new key guess and a new matching value.
In general, we will only backtrack to a state where we can make an untried key
guess, and compute forward from the state stored there.

In KATAN we must guess two key bits in each round, and do st steps. If we
compute r rounds, and naively start from the beginning for each key guess, we
must compute 4r × r × st steps to try all keys. When storing all intermediate
states and only do minimal backtracking, the expression for the number of steps
we must compute to run through all keys is

4(st + 4(st + 4(st + . . . 4(st) . . .), (7)

where there are r brackets. This expression can be written as 4st
∑r−1

i=0 4i. Using

the equality
∑r−1

i=0 xi = xr−1
x−1 we can simplify (7) to

4(st + 4(st + 4(st + . . . 4(st) . . .) = 4× st× 4r − 1

3
≈ 4r × 4

3
× st (8)

The speed-up of this technique compared to starting from the beginning for
each guess is approximately a factor 3r

4 . In addition to guessing only non-linearly
involved key bits, this acceleration contributes the most in reducing the attack
complexity.

All optimizations described in this section have been used to get the final
complexities for the MITM attacks on KATAN given in Section 5.

5 Results on KATAN

We have applied the optimization techniques from Section 4 to MD MITM at-
tacks on KATAN. The optimizations allow us to do the attacks in [8] with a
lower complexity, and to push the attacks for more rounds before meeting the
exhaustive search limit. In this section we give the details of the cryptanalysis
giving the best attacks on each of KATAN32/48/64.

5.1 2D MITM on KATAN48

In all our 2D MITM attacks to KATAN48, we guess S60 to break the cipher into
two dimensions. In the first dimension, P and S60 meet each other in S42 and
for this meeting we guess the 77 key bits kf1,n = {k0, . . . , k76} in the forward
side and the 32 subkey bits kb1,n = {sk86, sk88, sk90, . . . , sk119} in the backward
side. The used value for u that is computable from both kf1,n and kb1,n is equal
to

sk86, sk88, sk93, . . . , sk102, sk106, . . . , sk115, sk119, sk90 ⊕ sk103,
sk90 ⊕ sk116, sk91 ⊕ sk104, sk91 ⊕ sk117, sk92 ⊕ sk105, sk92 ⊕ sk118

Improved Multi-Dimensional Meet-in-the-Middle Cryptanalysis of KATAN 11

Table 3. Results for 2D MITM attack to KATAN48

R r3 |kf2,n| kf2,n indexes |kb2,n| kb2,n indexes n T M

148 85 31 120, . . . , 144, 146, 147, 148, 153, 154, 161 77 219, . . . , 295 1 279.04 276.96

146 84 31 120, . . . , 146, 150, 151, 152, 159 78 213, 215 . . . , 291 2 278.09 277.02

145 83 32 120, . . . , 145, 147, 148, 149, 150, 155, 157 78 211, . . . , 289 3 277.20 277.05

143 82 31 120, . . . , 148, 151, 153, 155 78 207, 209, . . . , 285 5 275.69 277.12

142 82 32 120, . . . , 148, 151, 153, 155 78 205, 207, . . . , 283 6 275.16 277.15

141 81 30 120, . . . , 147, 149, 151, 153 78 203, 205, . . . , 281 7 274.60 277.19

139 80 29 120, . . . , 145, 147, 149, 151 77 199, 201, 203, . . . , 277 7 274.24 277.07

We can adjust the values of R, r3 and n to tune the complexity of the attack.
The details for some of these values in the second dimension giving the best
attacks are given in Table 3, where T indicates time complexity and M indicates
memory complexity.

5.2 2D MITM on KATAN64

We break the cipher into two dimensions by guessing S51. In the first dimension,
P and S51 meet each other in round 42. For this matching we guess the 77 key
bits kf1,n = {k0, . . . , k76} in the forward side and the 16 subkey bits kb1,n =
{sk86, . . . , sk101} in the backward side. The used value for u is equal to

sk86, . . . , sk89, sk93, . . . , sk101

Again we can adjust the values of R, r3 and n to tune the complexity of the
attack. The details for some of these values in the second dimension giving the
best attacks are given in Table 4.

In the second dimension there is an extra twist. As all 64 bits of S51 do not
participate in the value of the n matching bits in r3, we do not need to guess
all of the 64 state bits. Algorithm 2 should then be modified so only part of s
is guessed in the for-loop s ∈ FS

2 , and the for-loop kb1 ∈ Kb1 is changed to also
include the remaining bits of s. This modification allows us to guess more subkey
bits in kf2,n.

Table 4. Results for 2D MITM attack to KATAN64

R r3 |s| |kf2,n| kf2,n indexes |kb2,n| kb2,n indexes n T M

129 69 59 20 102, . . . , 116, 118, 120, 122, 123, 129 78 179, 181, . . . , 257 1 279.03 276.98

127 67 60 16 102, . . . , 112, 114, 116, 118, 119, 125 78 175, 177, . . . , 253 2 278.06 277.02

126 67 64 16 102, . . . , 112, 114, 116, 118, 119, 125 78 173, 175, . . . , 251 3 277.14 277.05

124 65 64 14 102, . . . , 108, 110, 112, . . . , 115, 119, 121 78 169, 171, . . . , 247 5 275.46 277.12

123 65 64 14 102, . . . , 108, 110, 112, . . . , 115, 119, 121 78 167, 169, . . . , 245 6 274.81 277.15

123 65 64 16 102, . . . , 108, 110, . . . , 115, 117, 119, 121 78 167, 169, . . . , 245 7 274.45 277.19

12 Shahram Rasoolzadeh and H̊avard Raddum

Table 5. Results for 3D MITM attack to KATAN32

R r5 |kf3,n| kf3,n indexes |kb3,n| kb3,n indexes n T M

206 134 48
194, . . . , 233, 235, 236, 238,

78
317, 321, 333, 335, 337,

1 279.03 278.05

240, 242, 246, 249, 255 338, 339, 341, . . . , 411

201 130 47
194, . . . , 234, 236, 238,

78
307, 323, 325,

2 278.05 278.07

239, 241, 242, 245, 247 327, . . . , 401

199 129 48
194, . . . , 232, 234, . . . ,

78
303, 319, 321,

3 277.13 278.22

239, 241, 243, 245 323, . . . , 397

197 128 46
194, . . . , 228, 230, . . . , 235,

78
313, 315, 317,

4 276.17 278.10

237, 238, 239, 241, 243 319, . . . , 393

196 128 47 194, . . . , 235, 237, 238, 239, 241, 243 78 297, 313, 315, 317, . . . , 391 5 275.37 278.22

195 128 47 194, . . . , 235, 237, 238, 239, 241, 243 78 295, 311, 312, 315, . . . , 389 6 274.67 278.26

194 128 47 194, . . . , 235, 237, 238, 239, 241, 243 78 293, 309, 311, 313, . . . , 387 7 274.13 278.31

5.3 3D MITM on KATAN32

For KATAN 32, we found that a 3D MITM attack gives the highest number
of rounds that can be attacked. As in the 2D MITM attacks above, for the 3D
MITM attacks to KATAN32 we have the same details for full-state matching
dimensions. We guess S73 and S97 to break the cipher into three dimensions.
In the first dimension, P and S73 meet each other in S44. For this matching we
guess the 78 key bits kf1,n = {k0, . . . , k76, k78} in the forward side and the 48
subkey bits kb1,n = {sk96, sk98, sk100, . . . , sk145} in the backward side. The used
value for u that is computable from both kf1,n and kb1,n is equal to

sk96, sk98, sk100, sk101, sk102, sk104, sk106, . . . , sk115, sk117, sk119, . . . , sk126,
sk128, sk130, sk132, . . . , sk137, sk139, sk141, sk143, sk145, sk103 ⊕ sk116,

sk103 ⊕ sk127, sk103 ⊕ sk138, sk103 ⊕ sk142, sk105 ⊕ sk118, sk105 ⊕ sk131,
sk105 ⊕ sk140, sk105 ⊕ sk144, sk103 ⊕ sk105 ⊕ sk129

In the second dimension, S73 and S97 meet each other in S89, and for this
matching we guess 32 bits kf2 = {sk146, . . . , sk177} in the forward side and the
16 bits kb2 = {sk178, . . . , sk193} in the backward side. Varying R and r5, the
details of the attack are given in Table 5.

6 Conclusions

In this work we have introduced several optimizations for doing a MD MITM
attack. Applying these techniques on KATAN allows efficient attacks on more
rounds than published previously, before reaching the exhaustive search bound.
The tables in Section 5 give an idea of how the time and memory complexities
scale when adjusting the attack parameters. The conclusion is that there exist at-
tacks on 206-round KATAN32, 148-round KATAN48 and 129-round KATAN64
that are close to the exhaustive search bound.

Estimating the exact time complexities taking into account all minor opera-
tions done in the attacks is complicated, and it is difficult to say for sure exactly

Improved Multi-Dimensional Meet-in-the-Middle Cryptanalysis of KATAN 13

when the time complexity goes above the exhaustive search bound when the
number of rounds are increased. The time used for memory access to the big
tables will depend on the specific implementation. However, it is clear that the
optimizations presented here improve on the previous work.

References

1. C. De Cannière, O. Dunkelman, and M. Kneževic. “KATAN and KTANTAN - a
Family of Small and Efficient Hardware-oriented Block Ciphers”. Cryptographic
Hardware and Embedded Systems (CHES) 2009, LNCS, vol. 5747, pp. 272–288,
Springer, 2009.

2. G. V. Bard, N. T. Courtois, J. Nakahara, P. Sepehrdad, and B. Zhang. “Alge-
braic, Aida/Cube and Side Channel Analysis of KATAN Family of Block Ci-
phers”. Progress in Cryptology - INDOCRYPT 2010, LNCS, vol. 6498, pp. 176–196,
Springer, 2010.

3. S. Knellwolf, W. Meier, M. Naya-Plasencia. “Conditional Differential Cryptanalysis
of NLFSR-Based Cryptosystems”. Progress in Cryptology - INDOCRYPT 2010,
LNCS, vol. 6477, pp. 130–145, Springer, 2010.

4. T. Isobe and K. Shibutani. “All Subkeys Recovery Attack on Block Ciphers: Ex-
tending Meet-in-the-Middle Approach”. Selected Areas in Cryptography (SAC)
2012, LNCS, vol. 7707, pp. 202–221. Springer, 2012.

5. M. R. Albrecht and G. Leander. “An All-in-One Approach to Differential Crypt-
analysis for Small Block Ciphers”. Selected Areas in Cryptography (SAC) 2012,
LNCS, vol. 7707, pp. 1–15. Springer, 2012.

6. T. Isobe and K. Shibutani. “Improved All-Subkeys Recovery Attacks on FOX,
KATAN and SHACAL-2 Block Ciphers”. International Workshop on Fast Software
Encryption (FSE) 2014, LNCS, vol. 8540, pp. 104–126, Springer, 2015.

7. T. Fuhr and B. Minaud. “Match Box Meet-in-the-Middle Attack Against KATAN”.
International Workshop on Fast Software Encryption (FSE) 2014, LNCS, vol.
8540, pp. 61–81, Springer, 2015.

8. B. Zhu and G. Gong. “Multidimensional Meet-in-the-Middle Attack and Its Ap-
plications to KATAN32/48/64”. Cryptography and Communications, vol. 6, pp.
313–333, Springer 2014.

9. Z. Ahmadian, Sh. Rasoolzadeh, M. Salmasizadeh and M. R. Aref. “Automated
Dynamic Cube Attack on Block Ciphers: Cryptanalysis of SIMON and KATAN”.
Cryptology ePrint Archive, report 2015/040, 2015.

10. W. Diffie and M. Hellman. “Exhaustive Cryptanalysis of the NBS Data Encryption
Standard”. IEEE Computer Society Press, vol. 10(6), pp. 74–84, 1977.

A Algorithm for 3D MITM attack

A.1 Complexity

The complexity of Algorithm 3 can be computed similarly to the complexity of
Algorithm 2, except that we must guess two full internal states, s and t. The
time complexity can be given as

r1
R 2|kf1| + R−r5

R 2|kb3| + r5−r4
R 2|t|+|kf3|+

2|s|
(
r2−r1

R 2|kb1| + r3−r2
R 2|kf2| + r4−r3

R 2|t|+|kb2|
)

+ 2|s|+|t|+|kb2|−n

14 Shahram Rasoolzadeh and H̊avard Raddum

Algorithm 3 3D MITM attack to KATAN32

for kf1 ∈ Kf1 do
Compute v1 = E0,r1(kf1, P) for a plaintext P ;
Compute u;
Store kf1 in a table T1 indexed by v1 and u;

end for
for kb3 ∈ Kb3 do

Compute v3, the n least significant bits of DR,r5(kb3, C) for the ciphertext C
corresponding to P ;

Store v3 in a table T3 indexed by kb3;
end for
for t ∈ F32

2 and kf3 ∈ Kf3 do
Compute v′3, the n least significant bits of Er4,r5(kf3, t);
Store v′3 into a table T ′

3 indexed by (t, kf3);
end for
for s ∈ F32

2 do
for kb1 ∈ Kb1 do

Compute v′1 = Dr2,r1(kb1, s);
Compute u′;
Find kf1 = T1[(v′1, u

′)];
Compute 80-bit master key candidate K from kf1 and kb1;
Compute (kf2, kb2) from K;
Store K in table T ′

1 indexed by (kf2, kb2);
end for
for kf2 ∈ Kf2 do

Compute v2 = Er2,r3(kf2, s);
Store kf2 in table T2 indexed by v2;

end for
for t ∈ F32

2 and kb2 ∈ Kb2 do
Compute v′2 = Dr4,r3(kb2, t);
Find kf2 = T2[v′2];
Find K = T ′

1 [(kf2, kb2)];
Calculate values of kf3 and kb3 from K;
if T ′

3 [t, kf3] = T3[kb3] then
Test the candidate key using this pair and a few other pairs of known

plaintext/ciphertext;
if candidate key matches the plaintext/ciphertext pairs then

Return candidate key as the correct key
end if

end if
end for

end for

R-round encryptions of KATAN32. The memory complexity for storing the ta-
bles are

|kf1|2|kf1| + n(2|kb3| + 2|t|+|kf3|) + 80 · 2|kb1| + |kf2|2|kf2|

bits.

Improved Multi-Dimensional Meet-in-the-Middle Cryptanalysis of KATAN 15

B Matrices for KATAN48 Example

The values for Mf and Mb are given below, where Or×c denotes an all-zero
matrix of size of r × c.

Mf =


1 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 1 1 0 0 O7×23 0 0 0 0 0 0 0 0 O7×11
0 0 0 0 0 0 0 0 1 1 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0

 ,Mb =

[
O4×23

0 0 0 0 0 0

O4×17

1 1
0 0 0 0 1 1 0 0
0 0 1 1 0 0 0 0
1 1 0 0 0 0 0 0

]
.

The matrices Nf1, Nf2 and Nb1 are equal to:

Nf1 =



0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

O6×7
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

O6×7
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

O6×7
1 0 0 0 0 0 0
0 1 0 1 0 0 0
0 0 1 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

O6×7
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

O34×7



, Nf2 =

 0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

O27×7

 , Nb1 =



O4×4
1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 1

O13×4
1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 1

O5×4
1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 1

O31×4
1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 1



,

and Nb2 is equal to O32×4.

	Improved Multi-Dimensional Meet-in-the-Middle Cryptanalysis of KATAN

