
Automated key setup and recovery from key
exposure for power networks

Abstract—

Power networks are built with inherent redundancy, including
in the communication channels. In this work, we show that this
redundancy can increase the cyber security resiliency to key
exposure. Specifically, we present CrypTop, a novel protocol for
the key setup and refresh problem in power networks. CrypTop
uses multipath communication and already-keyed devices, to
setup keys in other devices, and to recover from key exposures.

We evaluate CrypTop in realistic power network topologies.
Our results show a significant to dramatic improvement com-
pared to previous works, in both recovery from key exposure
and ability to setup keys automatically. For example, in IEEE
300 network, and for a single corruption, CrypTop can recover
security in 100% of the devices compared to 1% for previous
works.

I. INTRODUCTION

Power networks are usually distributed over large geo-
graphical areas, with devices placed at remote unmanned sites.
Communication between the remote sites is prone to cyber
threats, such as man-in-the-middle (MiTM), eavesdropping and
data manipulation.

Cryptography is the primary tool used to protect commu-
nication against eavesdropping and MitM adversaries. Using
cryptography means that a party must have a key for each
peer, obtained and authenticated directly or with the help of
a trusted third-party such as a certification-authority or key
distribution center. Bellare et al. [4] present formal analysis of
cryptogrpahic-based protocols. Those protocols typically rely
on initialization assumptions, such as pre-shared keys, and on
computational assumptions, such as poly-time attackers.

Using cryptographic protocols requires that each device
will be manually initialized with keys, such as shared keys
with specific peers, public keys of peers and a private key (for
itself). Those initial keys are initialized in a secure environment
(e.g., installed manually on each device, via secure channel
[3] or in a ‘secure zone’ [1]), and may later be used to setup
additional keys (e.g., use public keys to exchange shared keys).

In power networks, devices are often located at remote
unmanned sites, which makes initialization a challenge. Fur-
thermore, keys of devices in power networks are vulnerable to
exposure by physical break-in, due to the remote location and
to often insufficient physical security [16]. This is in addition
to private-key exposure due to weak cryptography [16] and
software vulnerabilities [1], problems which exist in other
environments and applications too.

When key exposure is suspected, keys need to be re-
initialized. Due to the large number of remote unmanned
sites, and the geographically distance between sites, manual

key recovery is difficult and undesirable. One alternative to
manual key recovery is to distribute new keys using safely-
stored private-public key pairs, however, this is inapplicable
when even the private keys may be exposed (as due to physical
break-in).

An alternative to manual key setup and recovery, first
proposed in the seminal work of Dolev et al. [8], is to secure
communication using knowledge of the network topology;
most significantly, this eliminates the need for initialization of
pre-shared keys. This approach relies on assumptions regarding
the network topology; namely, the topology is known and is
sufficiently redundant to prevent an attacker from controlling
‘too many’ links or nodes. Under such topology conditions, a
pair of devices can set up a shared secret key, without assuming
any pre-shared keys.

Protocols for sharing a secret key by using the topology,
require a large number of disjoint paths that are not under
the control of an attacker [8]. In addition, they require
that communicating devices will control the route of the
messages between them. However, controlling the message
route is impractical in real networks, which are mostly based
on shortest-path routing. Moreover, in shortest-path networks
there is usually only one route between every two device,
which is not enough for a secure secret sharing.

In this work, we present CrypTop, a protocol which com-
bines cryptographic assumptions, together with topological
assumptions. This protocol aim to solve the problem of ‘plug-
and-play’ key setup and refresh. The main goals of this
problem are (1) to ease deployment of cryptographic security
using automated key establishment and (2) to recover from key-
exposure through periodic, automated, key refresh. We focus
on the variant of the problem with a trusted, non-compromised
authentication server device, whose public key is known; this
assumption can be weakened using known results [6].

Previously suggested protocols, require disjoint routes
merely between the client and the server. In contrast, CrypTop
execution is based on disjoint routes between a client device
and other devices that already have registered keys; we refer
to these devices as helpers (Figure 1). The client sends a
challenge to each helper, and collects the helper’s signed
response. The authentication server registers the client’s key,
only if the client provides enough authentication responses that
came from disjoint paths. In that way, CrypTop is available to
more network topologies than previous protocols.

We present CrypTop for both source-routing networks and
shortest-path networks. For shortest-path routing, we present a
novel approach to increase the number of shortest-path routes
between helpers and client. We do this by allowing the helpers
to send packets to their neighbors, even if this neighbor is not

on the shortest path between the helper and the client.

We evaluate the usage of CrypTop in power network. Those
networks have a large number of routers, distributed over a
large area, with low physical security. The concern of key
exposure, caused by unauthorized physical access to a remote
site, is a major concern. At the same time, manual recovery
of the key requires significant efforts, e.g. reaching the remote
sites. Our evaluation shows that using CrypTop, it is possible
to set keys remotely and to proactively recover keys of more
than 80% of the devices. In addition, the evaluation shows
a significant improvement compared to previously suggested
protocols.

CONTRIBUTIONS

We make the following contributions:

● We present CrypTop, a plug-and-play key setup and
refresh protocol, which allows the setup of cryptographic
keys (Section IV).

● We extend the model of Bellare et al. [4] to support the
network topology and different routing models, including
source and shortest path routing (Section A-E).

● We prove that CrypTop satisfy the security requirements
for secrecy and for the correctness of the key (Section
A-E).

● We evaluate CrypTop for power networks, and show its
applicability to key setup and recovery (Section VI).

II. RELATED WORKS

A formal cryptographic model for message-driven key-
exchange protocols was presented in the seminal paper of
Bellare et al. [4]. The secure key-exchange protocols in their
work, as in most of the works on key-exchange protocols,
require that the parties pre-share some secret (e.g., message-
authentication-code (MAC) key, signature key, or a verification
key of a third trusted party). This pre-shared secret is assumed
to be installed manually at each party or delivered via secure
channel.

Our work extends the model developed by Bellare et al. [4]
to account for the corruption of the pre-shared key. We assume
that the key shared by the parties was exposed, and all of its
bits are known to the adversary. To formally support that, we
add a definition of exposed devices. These are devices that are
not under the control of the attacker, but the attacker knows
(and even set) their internal state.

Instead of using a pre-shared key, we use multi-path
disjoint routes in the network to authenticate parties. This
allows our model to provide keys without manual procedures in
cases of key setup and key exposure. To formulate this benefit,
we extend the execution model of Bellare et al. [4] to consider
the topology of the network and the method by which messages
are routed. This allowed us to formally analyze protocols that
use cryptography and topology as part of their execution.

Using multi-path disjoint routes for secure transmission of
message was first presented by Dolev et al. [20]. Their work
deal with sending a secure message between parties, in case a
man-in-the-middle attacker is presence in the network. Their
work prove a fundamental requirement: in order to share a
secret, the parties should send the message through nA + 1

disjoint routes, where nA is the number of routes that under
the attacker control.

Following Dolev et al. [20] there was a wide range of re-
search on using disjoint multi-path for sharing a cryptographic
key [9], [10], [20], [22]. Recent work of Costea et al. [7]
presents a Secure Multipath Key Exchange (SMKEX) protocol
which allows key exchange between parties based on diffie-
helman, on disjoint routes. Comparing to Costea et al. [7], our
work ensures that the key exchange session is done between
two trusted parties. This allows our work to be applicable for
the case of recovery from key exposure; an application which
non of the previous works support.

In similar to our work, several previous works suggest
using multi-path disjoint routes for authenticating devices. This
authentication method was evaluated for wireless networks
[14] and for the internet routing [7], [21]. However, our work
is the first done on using disjoint routes for authenticating
devices in power networks.

In addition, previous works [7], [14], [21] achieved dis-
joint routes by sending information using different types of
networks (e.g. cellular and wifi) or taking advantage of the
large and dynamic connectivity of the Internet. However, in
power networks, the parties use a single type of communication
network and usually a non dynamic communication routes.
Those properties of the network degrade the applicability of
methods suggested by previous works [2], [7], [9], [10], [14],
[20]–[22].

For enabling multi-path routes in power networks, our
work presents a protocol that takes advantage of devices
which already have a registered key, called helpers. Previous
works [2], [7], [9], [10], [14], [20]–[22] uses multi-path routes
between a client and an authentication server. In contrast, our
work uses multi-path routes between the client and the helpers.
This increases resiliency and applicability allowing CrypTop
to operate in the presence of a larger number of compromised
devices, and in power networks.

III. MODEL

In this section we present a model which formulates the
terms we use, including the network routing and the adversary
capabilities.

A. Network Model

We model the communication network as an undirected
graph, G = (V,E), where V represents the devices (nodes) and
E is a set of edges, representing point-to-point communication
between devices.

In this work, we focus on IP [19] networks and the router
devices. We model every device v ∈ V in the network as a
router. Every router has an address v that uniquely represents
it (e.g. its management IP address), and it can send (initiate) a
message and it can forward messages initiated by other device.
The algorithm that devices use to forward messages initiated
by other devices, is called the routing method. For the routing
method, we explore both source-routing and shortest-path. In
source routing [12], each message contains the list of the de-
vices on the route. In shortest-path [17], each message contains

2

(a) (b) (c)

Figure 1: CrypTop Example: (a) Compromised device 9 tries to register key as device 5. CrypTop requires to receive a signed
response from a helper, in this example, device 2. Device 2 signs on the challenges from device 9 and device 5 and sends them
back. (b) Because of the network routing, both signed responses will be routed only to the real device 5. (c) Only the real device
5 will be able to send helper’s signed response to the authentication server, located at device 1.

the destination device, and the router needs to calculate the
next hop device.

Devices in the network must forward messages according
to routing method. There are two exceptions to this rule: the
first, are devices that initiate a message. Those devices allowed
to pass their message to a neighbor device, not according to
the routing method. The second exception are compromised
devices, as will discuss in the next subsection.

In addition to initiating and routing messages, devices con-
tain a computationally-efficient unit for processing messages
and a clock that is proceeding at the same rate. Devices also
contains a cryptographic signature scheme [13] module; the
same scheme for all of the devices. We denote by S the
signature scheme used by the devices.

For completeness, we provide informal definition of sig-
nature scheme, based on Katz et al. [13] definition. We
refer the reader to their work for the formal definition. A
Signature scheme S is a tuple of probabilistic polynomial-time
algorithms S = (KeyGen,Sign,Verify), where:

● The key generation algorithm KeyGen receives as input a
security parameter 1l, and returns a pair of signing and
verification keys, (σ, ν).

● The signing algorithm Sign receives as input a message
m and a signing key, σ, and returns the signature of that
message, Signσ(m) .

● The verification algorithm Verify receives as input a
public verification key, ν, a message m, and a candidate
signature sig. It returns Accepted if the signature of msg
is sig, and returns Rejected otherwise.

B. Adversary Model

We consider an attacker A that can control devices. When
controlling a device, the attacker receives all messages sent to
this device, whether it is the final destination or still needs to
be forwarded to its destination. The attacker determines which
messages the device will send to its neighbors. Namely, it can
delay, block and manipulate messages that a controlled device
received for forwarding.

The attacker is also allowed to forward messages not
according to the routing method. However, the attacker is not

allowed to change the routing method of devices that are not
under its control.

In addition, when controlling a device, the attacker has
access to its storage, including its secret keys. The exposed
information remains known to the attacker, even after it stops
controlling the device. The main goal of our protocol is to
recover those exposed devices, by setting new secret keys,
which are unknown to the attacker.

Formally, the devices in the network are divided into three
groups, with respect to the level controlled by the adversary:

● Honest - devices that are not under the control of the
attacker and their internal state (e.g., private keys) is not
known to the attacker.

● Exposed - devices that are not under the control of the
attacker, but their internal state is known to the attacker,
including private keys. We will show that under several
conditions, exposed devices become honest (namely, can
recover), during a single execution of the protocol.

● Compromised - devices that are under the control of the
attacker, as described earlier.

Note, the groups Honest, Exposed, and Compromised are
disjoint separations of V . We denote the number of exposed
and compromised devices by nA.

The attacker may have an arbitrary, ‘byzantine’ strategy.
The main threat we consider is an attacker that tries to
authenticate a compromised device as an honest device. In
other words, an attacker that tries to ’spoof’ the identity of an
honest device.

IV. CRYPTOP PROTOCOL

In this section, we introduce CrypTop, a key setup
and refresh protocol. CrypTop protocol is a message-driven-
protocol [4] involving an authentication server s, a client
device and helpers, as we explain in the next sections.

A. Keys registration and Helpers

CrypTop protocol aim to register a signature-verification
keys. We focus on registering signature-verification keys, since
these can be used to establish keys for encryption and other
goals, using known key-exchange protocols (e.g., [4]).

3

In typical use, CrypTop protocol would be invoked re-
peatedly, periodically, or on demand. However, for simplicity,
our definitions and analyses are for a single execution of the
protocol, from its activation until its termination.

At the beginning of the protocol execution, some devices
may already have a registered key; due to manual installation
or due to a previous CrypTop executions. we denote by
c.σold, c.νold, c

s.σold the keys that were already registered at
the beginning of the protocol execution. Those keys will need
to be refreshed during the protocol execution.

We define a group of devices, called helpers, H ⊂ V
as devices whose public keys were already registered by the
server (or known otherwise, e.g., manually):

H = {h ∈ V s.t. hs.νold ≠ �}.

At the evaluation section (Section VI), we show that the
size of the helpers group can be very small (about 5 helpers)
in order to set keys for most of the devices in the network.

Upon activation of the protocol, client devices generate
new signing and verification keys. By using CrypTop, clients
request to register the new keys they generated. We denote
by c.σ, c.ν the signing and verification keys that device c
generated at the beginning of the execution.

We denote the signing key that the server registers at the
end of the execution by cs.σ. The execution may terminate
without succeeding to register a new key, e.g., due to insuffi-
cient connectivity; in case of such failure, we set cs.σ to the
special value �. Details of the cases where the registration fails
are described at Section A-E.

B. Initialization.

The server s is initialized with a security parameter 1l,
the network topology G = (V,E), the verification keys of
the helpers ,{h.νold ∣ h ∈ H}, and a pair of public-private
keys for signatures s.ν, s.σ. As in other works dealing with
multiple compromised systems [6], we assume a known bound
nA on the total number of possible compromised and exposed
devices.

Every client c ∈ V is initialized with the server’s public
verification key s.ν and a security parameter 1l. Both the server
and the clients are using the same signature scheme S.

C. Protocol Messages

A successful session between a single client c and the
server s can be seen in Algorithm 1. All the messages in the
protocol are signed and includes timestamp. Parties discard
messages with an invalid timestamp or signature. The protocol
has three phases of operation:

a) ACTIVATION: To initiate the protocol, the server
sends a START message to a client c. Upon receiving the
START message, the client generates a (new) random pair of
private and public keys (c.ν, c.σ) ←KeyGen(1l). The client
then sends the new public key c.ν, signed with its already-
registered key c.σold (Message 3, at Algorithm 1).

In key setup and recovery, the client c does not have a
previous registered key. In those cases, c.νold = � and the
client sends merely c.σ, without signing it.

Notations:
c.ν, c.σ The verification and signing keys that client c re-

quested to register.
c.νold, c.σold The verification and signing preset keys of device c.
[m]c.σ The message m and its signature, using key c.σ.

h
R
; c h sends a message to c through the route R.

Protocol Messages:
ACTIVATION

[1] s; c [START , timestamp, c,]s.σ
[2] c (c.σ, c.ν) ←KeyGen(1l)
[3] c; s [timestamp, c, c.ν]c.σold

COLLECTING SIGNED RESPONSES

[4] s: Chooses a group of helpers Hc, with nA + 1
vertex-disjoint routes from c to h ∈ Hc. Termi-
nates if no such group of helpers.

[5] For each helper h ∈ Hc:

[5.1] s; c [timestamp,h, Rh , c.ν, h.νold]s.σ

[5.2] c; h [timestamp,h, Rh , c.ν, h.νold]s.σ

[5.3] h
Rh
; c [timestamp, c,h,Rh, c.ν]h.σold

[5.4] c; s [timestamp, c,h,Rh, c.ν]h.σold

VALIDATION

[6] s If there are nA + 1 authenticated responses:

[6.1] s; c [timestamp, ACK, c, c.ν]s.σ
[6.2] c Outputs c.ν.

[6.3] c
R̂
; s [timestamp, FINAL]c.σ

[6.4] c Outputs c.ν
[6.5] s Outputs cs.ν

Algorithm 1: CrypTop session with a client c

It is important to note that the last message we described
does not ensure that indeed device c sent it (even if the message
is signed). The reason is that device c may be exposed. In
that case, attacker can use device c old key, to signed on
a new key generated by the attacker. Therefore, the server
must authenticate that indeed device c sent the message. This
authentication is done by using the helpers, in the second phase
of the protocol.

b) COLLECTING SIGNED RESPONSES: In order to au-
thenticate device c (e.g. the attacker did not spoofed device c
identity), the server s sends to c challenges. Those challenges
must be sent to and signed by a subgroup of helpers, Hc ⊂ H.
The mandatory requirement from Hc is that there are nA + 1
disjoint routes between the helpers and the client c. If there
is not such a group of helpers, namely, the network topology
does not provide enough redundancy, the server terminates the
protocol, and does not register any key, i.e., sets cs.σ to the
special value �.

Every challenge is built from the addresses of the chosen
helper, h ∈ Hc, the helpers’ verification key h.νold and the
route the helper should use in order to send its signed response
to the client c.

The server is the only device that knows the network
topology. Therefore, for ensuring disjoint routes, the server
must embed in the challenges the route by which the helper

4

h should use for sending back the signed response. Formally,
for each helper h ∈ Hc, the server defines the route Rh as the
list of devices, from the helper h to the client c, that the helper
should use.

For every helper h ∈ Hc, the client sends the challenge it
received from the server, to the helper h. Every helper h, upon
receiving a challenge, verifies that the server signed on it. If
the verification passes, the helper responds with signing on the
challenge, using its already-registered signing key, h.σold. The
helper routes the signed response according to the route Rh it
received in the challenge message.

Note that in source routing, the helper is able to send the
response through the exact route defined in Rh. However, in
the common case of shortest-path routing, the route cannot
be chosen by the helper. We explain how CrypTop overcome
this limitation in the next subsection.

When the client receives a signed response from the helper,
it verifies the response signature and forwards it to the server.

c) VALIDATION : If the server receives nA +1 correct
and properly-signed responses, then it sends a signed ACK
message to the client. At section V-C we prove that if there are
nA+1 such responses, than the client and the server registered
the same key.

In some cases, there may not be enough signed responses
- whether it is due to the topology that does not allow enough
redundant disjoint paths, or due to an adversary that block
some responses. In that case, the server will not register a key
for the device, and if there was a key, the server will un-register
it (setting c.σ = �).

This ACK message contains the client address and the
public key received from the client, signed by the server
[c, cs.ν]s.σ . When the client receives this message, it responds
by sending a FINAL message, signed by its private key to the
server. In addition, the client outputs its new registered key c.ν,
c.ν ≠ �. The server validates the signature, registers the key
cs.ν for c, and outputs cs.ν ≠ �. If the client does not receive
an ACK message within Tmax time, it will output c.ν = �.
If the server does not receive a FINAL message within Tmax
time, it will output cs.ν = �.

When all goes well, the key c.ν is secret (e.g. an attacker
can no use it to sign on messages) and it is equal to the
key registered by the server cs.ν. In the next section, we
formally define those properties and prove that upon validation,
CrypTop ensures them.

D. Key Recovery

Let c be an exposed device. By definition, the secret key
c.σold ≠ bot is known to the attacker. While device c is ex-
posed, the attacker is able to imitate (spoof) device c messages
and to read its secret encrypted information. However, as we
will explain, after one CrypTop session, the attacker is no
longer knows the device secret key, and device c changed its
state from exposed to hones. We define this process as key
recovery, and it includes two phases: at first, the client needs
to register a new key. Second, the new key must be secret from
an attacker who knows the old key.

At the first phase of the recovery, device c must generate
a new secret key and to register that new key c.σ. Following
CrypTop session, the key will be register only if c provides
nA+1 correct and properly-signed responses. Second, we need
to prove that the new key is secret and unknown to the attacker.
Intuitively, the new key is secret since it was sent encrypted by
the server public encryption key. Messages encrypted with the
server public key can be decrypted only by the authentication
server. Formally, we will prove this secrecy property at the
next section.

E. CrypTop for shortest-path routing

In shortest-path routing, each device chooses to pass the
message to its neighbor which is located between the device
and the recipient of the message. Therefore, without inner-
vation in the routing method, between every two devices in
the network there is only one possible route. This single-path
creates a challenge for multi-path protocols in shortest-path
networks.

To overcome this challenge, the helpers in CrypTop are
sending their signed responses through their neighbor that was
defined in the route Rh; this, even if the neighbor is not on
the shortest-path between the helper and the client. Note that
this is not violating the routing-method, since the helpers are
the initiators of the signed response message. The helper’s
neighbor that received the signed response must forward the
message, through the shortest-path to the client device.

Note that this method to enrich the number of disjoint
routes may not always increase the number of those routes.
Some of the helpers neighbors may return the message to the
sender helper, for example if the shortest path between the
neighbor and the client goes through the helper. Surprisingly,
as we will show in the evaluation section VI, in many cases,
the path v; c does not pass through h.

V. PROTOCOL ANALYSIS

In this section we analyze the security and correctness
of CrypTop. Those properties depends on the security of the
signature scheme S . We denote by πS a CrypTop execution
were the devices are using S as their signature scheme.

SEC({c.ν, cs.ν ∣ c ∈ V },Compromised ⊂ V)

// The test fails if an attacker with access to signing
oracle OS, was able to create a new pair of message
msgA and signature sigA for device c, s.t.
S.V erify(c.ν,msgA, sigA) =Accepted.

msgA, sigA, c←A
O
S

if c ∉ Compromised then
if S.V erify(c.ν,msgA, sigA) =Accepted AND msgA was never

given to S.Sign then
Return FAIL

end
end
Return SUCCESS

Algorithm 2: Secure signing test

A. Protocol Execution

To facilitate provable security, we adopted a precise execu-
tion model. The protocol execution we present is an extension
to Bellare et al. [4] model for message-driven-protocols. Due to
page limitations, we describe informally mainly our extension

5

COR({c.ν, cs.ν ∣ c ∈ V },G = (V,E), s,H,Compromised ⊂ V)

// The test Fails if there exists device c, with nA + 1
disjoint routes from the helpers, and its keys that
were registered in the server are not the identical
to the one the device c registered.

foreach c ∈ V − {s} s.t. PnA+1(H, c) = 1 AND c ∉ Compromised do
if cs.ν ∉ {�, c.ν} then

Return FAIL
end

end
Return SUCCESS

Algorithm 3: Correctness test

to Bellare et at. [4] model. Further details and extended formal
analysis can be found at Appendix A.

The execution is a process EXECTEST (A, πS ,1l) that
receives as input: a probabilistic polynomial time (PPT) al-
gorithm as the adversary A; CrypTop protocol that uses the
signature scheme S, πS ; and a security parameter 1l. At
the beginning of the execution, the adversary A chooses
the network topology G = (V,E), an honest device as an
authentication server s and up to nA devices as compromised
or exposed.

Devices in the execution are initialized in the following
way: internal state of compromised devices is initialized by
the adversary; exposed and honest devices are initialized by
the protocol. Exposed devices provide their private keys to the
adversary.

After initialization, devices are activated by the adversary.
Upon activation, the device generates a message and adds it to
a shared message pool. During the execution, the adversary is
able to choose which devices to activate, and which message
to send and on which order.

In contrast to Bellare et al. [4] model, we limit the
adversary to modify and observe only messages that pass
through its devices. For messages that do not pass through its
device, the adversary knows only the sender device identity and
the desired destination device. This limitation extends Bellare
et al. [4] model to compromise also the network topology and
the routing method.

During the protocol execution, the server and clients output
the key they registered (as explained at Section IV). The global
output (as defined at [4]) of running the execution is the
concatenation of the cumulative outputs of all the devices,
together with the output of the adversary. In our case, the
global output is {c.ν, cs.ν ∣ c ∈ V } .

In order to formally define and to prove the properties of
the protocol, we use test algorithms. Each test, receives as an
input the global output of the execution. Test algorithms may
receive additional inputs, according to the property they check.
The test algorithms returns FAIL or SUCCESS.

We denote by EXECTEST (A, πS ,1l) a protocol execution
were the execution’s global output is given as an input to
the algorithm TEST. For simplicity of notation, we omit the
TEST’s inputs from the notation.

We next describe the properties of CrypTop, by presenting
the corresponding test algorithms. We present at this paper
two fundamental properties: secure signing and correctness.
At Appendix B, we present additional properties: Bounded

Termination, Guaranteed key setup and Correctness resiliency
to Man-in-the-Middle.

B. Secure Signing

A fundamental requirement from a key setup protocol is to
preserve the secrecy of the registered keys. The formal test for
this property can be seen in Algorithm 2. We now formally
define this property and prove that CrypTop ensures secure
signing if S is a chosen-message-attack secure (CMA-Secure)
signature scheme [13].

Theorem 1. [Secure Signing]: For every CMA-secure signa-
ture scheme [13] S = (KeyGen,Sign,Verify) and for all PPT
attackers A, γ > 0, ∃l0 s.t. ∀l > l0:

Pr(EXECSEC(A, πS ,1
l)=FAIL) < l−γ ,

where the probability is taken over the random coins used
by A and EXECSEC(A, πS ,1

l).

Proof:

The proof is based on the well known chosen-message-
attack secure signature game; due to page limitation, we refer
the reader to [13] for details on this game.

Let S be a CMA-secure signature scheme [13]. Assume
to the contrary that exists a PPT attacker Aπ on CrypTop and
probability ε > 0 s.t.:

Pr(EXECSEC(Aπ, πS ,1
l) =FAIL) ≥ ε.

At the beginning of the CMA-secure game, the game
randomly chooses a pair of private and public keys. Let
PR,PK be the private and public keys generated by the
CMA-secure experiment [13], and let OS be a signing oracle,
which receives as input a message and returns the signature on
it. We will build an attacker AOS (PK) for S in the following
way.

For any given public key PK, AOS executes
EXECSEC(Aπ, πS ,1

l). At the beginning of the execution,
AOS randomly chooses an honest device c∗; Whenever c∗
calls KeyGen, AOS will return PK as the public key, and �

as the private key. Whenever device c calls Sign(PK,msg),
AOS will use the oracle OS to sign the message msg.

Let msgA and signA be the output of Aπ that failed SEC
test. These pair of message and signature can be a pair for c∗
or for other devices in the network. In both cases, AOS will
return msgA and signA to the CMA-secure game.

The CMA-secure game uses the private key PR to verify
whether signA is the signature of a message that has not seen
before by the oracle, msgA. This verification will succeed (and
the attacker will ‘win’ the game) only if Aπ provided a pair
for device c∗.

We now calculate the probability that the pair msgA and
signA are for device c∗. Since the keys in EXECSEC were
chosen randomly, the distribution for SEC test to fail does not
change; it is ε. Since the device c∗ is chosen randomly from all
of the devices, the probability of SEC test failing with device
c∗ is ε

∣V ∣
.

Following the above discussion, SEC test fails because of a
pair relevant to device c∗ with a probability of ε

∣V ∣
. Therefore,

6

the CMA-secure game will fails with the probability of ε
∣V ∣

.
And this is a contradiction to the assumption the S is a CMA-
secure signature scheme. Therefore, the claim holds.

C. Correctness

In the correctness property, we require that if the server
registered a key (cs.ν ≠ �), then the client registered the exact
same key (cs.ν = c.ν).

This property of the protocol depends on the client’s loca-
tion within the network topology. To formulate the topological
dependency, we define a topology predicate PnA+1(H, c) that
returns 1 if there are nA + 1 disjoint routes from the group
of device H to c. The formal test algorithm for correctness is
described in Algorithm 3).

Theorem 2. [Correctness]: For every CMA-secure signature
scheme [13] S and for all PPT attackers A, γ > 0, ∃l0 s.t. ∀l >
l0:

Pr(EXECCOR(A, πS ,1l)=FAIL) < l−γ ,

where the probability is taken over the random coins used
by A and EXECCOR(A, πS ,1l).

Proof:

Assume to the contrary that there exists a PPT attacker Aπ
on CrypTop with probability ε > 0 s.t.:

Pr(EXECCOR(Aπ, πS ,1l) =FAIL) ≥ ε.

COR fails if there is a non-compromised device c, s.t.
cS .ν ≠ � and c.ν ≠ cS .ν.

If cS .ν ≠ �, then the server registered a key for c.
According to the protocol design, the registration is done when
there are at least nA + 1 disjoint routes between the group
of helpers and the client c. In such topology, it is clear that
an attacker with nA devices will not be able to receive all
the responses. Therefore, the attacker will need to do one of
the following: (1) to change the routes sent by the server in
the START message; or (2) to create a ‘fake’ response from
an honest helper. Formally, we now show that if the attacker
Aπ was able to perform one of the above actions, then Aπ
contradicts the CMA-secure assumption of S.

Let PK be the public key generated by the CMA-secure
experiment [13] and let OS be a signing oracle, which receives
as input a message and returns the signature on it. We will
build an attacker AOS (PK) for S in the following way.

For any given public key PK, AOS executes
EXECCOR(Aπ, πS ,1l) twice. The first time, AOS sets
the public key of the server to be PK, and whenever s calls
for Sign, AOS will call the oracle to sign the message. In
the second execution, AOS chooses at random an honest
upgraded device c∗. Whenever c∗ calls KeyGen, AOS will
return PK as the public key, and � as the private. Whenever
c∗ calls Sign, AOS will use the oracle to sign the message.

We did not change the execution process and the distri-
bution for FAIL did not change. If Aπ changes the START
message, the probability of AOS winning the CMA-secure
experiment is ε. If Aπ creates a new signed response of an

honest helper, the probability of AOS winning the CMA-
secure experiment is ε

∣V ∣
. In both cases, we receive a non

negligible probability for failing the CMA-secure game, and
therefore, a contradiction to the assumption that S is CMA-
secure. Therefore, the theorem holds.

VI. EXPERIMENTAL EVALUATION

In this section we evaluate the applicability of using
CrypTop in power networks. For the evaluation, we use power
networks architectures from different sizes: IEEE 300, IEEE
118, IEEE 57 and IEEE 30 bus systems [18]. The topology
properties of the networks are presented at Table I.

Devices Edges % Devices with number of neighbors
> 1 > 2 > 3 > 4

IEEE 300 [18] 300 409 77% 51% 23% 9%
IEEE 118 [18] 118 179 94% 46% 30% 17%
IEEE 56 [18] 57 78 98% 42% 21% 8%
IEEE 30 [18] 30 41 90% 40% 23% 10%

Table I: Evaluated Networks

A. Incremental Deployment

CrypTop key refresh and setup is based on using devices
that already have keys, ‘helpers’. Those helpers may need to
be registered manually with a key. Using a group of initial
helpers, the protocol ‘bootstraps’ to set keys to more devices,
and to increase the number of helpers.

We simulated the bootstrapping process, measuring the
number of devices that CrypTop can set them keys (‘registered
devices’), assuming few pre-set devices (manual installations).
The simulation executed CrypTop sequentially. At the first
execution of the protocol, we choose one device as the
authentication server. At the end of the first execution, the
simulation provides all the registered devices, that can receive
key using the server only. At the next protocol execution, the
simulation uses all the registered devices from the previous
execution as helpers, and finds new registered devices. In that
way, the simulation continues until no more devices can be
added. Namely, the simulation reaches the maximal number of
devices that can set their keys using CrypTop, in the presence
of a single helper.

At this point, the simulation chooses an unregistered-
device, adds it to the registered device group (namely, simu-
lating manual key installation on this device), and performing
another protocol execution. In that way, we simulate manual
installation of devices, at cases where CrypTop can no longer
increase the number of registered devices.

For choosing device for manual installation, we used the
highest degree heuristic method. Namely, we first choose
the server to be the device with the highest edge-degree in
the network. Later, whenever the simulation chooses another
device for manual installation, it would pick the unregistered
device with the highest degree. At Appendix C we show that
the highest-degree heuristic provides results which are very
close to the optimal choice, in a more computational efficient
way.

The number of registered devices depends on the topology,
and it is limited by the number of devices with degree higher

7

0 1 2 3 4 5
0

20

40

60

80

100

% Manual Installations

%
D

ev
ic

es

Source routing

0 1 2 3 4 5
0

20

40

60

80

100

% Manual Installations

%
D

ev
ic

es

Shortest-path

nA=1 nA=2 nA=3 nA=4

(a) IEEE 118

0 1 2 3 4 5
0

20

40

60

80

100

% Manual Installations

%
D

ev
ic

es

Source routing

0 1 2 3 4 5
0

20

40

60

80

100

% Manual Installations

%
D

ev
ic

es

Shortest-path

nA=1 nA=2 nA=3 nA=4

(b) IEEE 300

Figure 2: Percentage of devices that securely receive their keys using CrypTop, for different amount of manual installations, for
different number of corrupted devices nA and routing methods. Networks IEEE 56 and IEEE 30 reached the maximal availability
(presented at Figure 3) after 2 manual installations, and due to page limitation, we omit their graphs.

than nA. To allow meaningful comparison between the results
for different topologies and different nA, we present the
percentage of registered devices, as a fraction of the total
number of devices with degree higher than nA. The results
for incremental deployment are shown at Figure 7.

The results show that with few manual installations - e.g.,
less than 4% of the network - the number of registered devices
increases significantly. Those results emphasize the importance
of using helpers, and that CrypTop is very effective even with
only a small fraction of ‘manual’ key setups in the network.

B. Key Recovery

In this part of the evaluation we measured the maximal
number of devices, that will be able to recover their keys using
CrypTop. To evaluate that, we started the simulation at the
state where all the devices with degree higher the nA have
a registered key (and therefore, helpers). For each device, the
simulation assumed that the device the was compromised in the
previous execution, and therefore, its key need to be recovered.
Using the helpers, the protocol tries to recover the device key.

After the first protocol execution, some of the devices may
not be able to recover their key, because they do not fulfill the
topology requirements. Those devices will not be part of the
helpers group at the following protocol execution. We continue
the simulation to more executions, until the number of devices
with registered keys does not decrease, i.e., stabilizes. We
refer to the percentage of the devices that remain with fresh
registered keys, in the stable state, as the maximal availability
of the protocol to recover devices.

The results are shown in Figure 3. In source-routing,
CrypTop is able to recover keys to significantly more devices

than previous works, in most of the evaluated network. Those
results show the significant impact of the helpers, in increasing
the maximal number of registered devices.

Comparing between the routing methods, we find that in
shortest-path routing, the number of devices that can recover
their keys is, in most cases, significantly less than in source-
routing. This is not surprising, as routes in shortest-path
networks are more limited. However, the results show that,
even with this (much more restrictive) routing mechanism,
CrypTop achieves high fraction of registered devices, e.g., over
80% for nA = 1. Notice that previous works does not support
shortest-path routing at all.

VII. CONCLUSIONS AND FUTURE WORK

This work introduced CrypTop, a multi-path protocol for
key setup and recovery. The protocol uses both cryptography
and topology for achieving secure and correct signing on
crytpographic keys. For the protocol analysis, the work extends
Bellare et al. [4] model with support of the topology and the
routing of the network. This extension allows, in the future, to
analyze further protocols that uses cryptography and topology.

For a correct and secure key setup and recovery, multi-path
protocols require nA + 1 disjoint routes between the commu-
nicating parties. In contrast, CrypTop requires nA + 1 disjoint
routes from a group of helpers to the client. This requirement
allows CrypTop to operate in shortest-path networks, such as
power networks. However, for CrypTop to operate the client
must have at least nA+1 neighbors (for having disjoint routes).
This limitation can be solved by previously suggested methods,
such as opportunistic tunnels [11]. We leave for future work
evaluating such methods for CrypTop.

8

nA = 1 nA = 2 nA = 3 nA = 4
0

20

40

60

80

100

%
D

ev
ic

es

SR-Previous Works SR-CrypTop SP-CrypTop

(a) IEEE 300

nA = 1 nA = 2 nA = 3 nA = 4
0

20

40

60

80

100

%
D

ev
ic

es

SR-Previous Works SR-CrypTop SP-CrypTop

(b) IEEE 118

nA = 1 nA = 2 nA = 3 nA = 4
0

20

40

60

80

100

%
D

ev
ic

es

SR-Previous Works SR-CrypTop SP-CrypTop

(c) IEEE 56

nA = 1 nA = 2 nA = 3 nA = 4
0

20

40

60

80

100

%
D

ev
ic

es
SR-Previous Works SR-CrypTop SP-CrypTop

(d) IEEE 30

Figure 3: Comparison of the fraction of devices that can recover from key exposure, for different number of corrupted devices
nA and routing methods: source-routing (SR) and shortest-path (SP). Previous works do not support shortest-path routing at all.

Deploying a new protocol is challenging. The benefit the
operator should have must be significant greater than the
efforts. We evaluate CrypTop for power networks, and we
show that we a small effort of less than 5 manual installations,
more than 80% of the device can use CrypTop for key setup
and recovery; this, even in shortest-path network, where no
previous works support. We leave for future works exploring
CrypTop for other networks (e.g. internet) and other routing
methods.

REFERENCES

[1] AGA report no. 12. cryptographic protection of SCADA communica-
tions: General recommendations, 2006. V.

[2] Paolo Barsocchi, Stefano Chessa, Ivan Martinovic, and Gabriele Oligeri.
A cyber-physical approach to secret key generation in smart environ-
ments. J. Ambient Intelligence and Humanized Computing, 4(1):1–16,
2013.

[3] Cheryl Beaver, Donald Gallup, William Neumann, and Mark Torgerson.
Key management for scada. Cryptog. Information Sys. Security Dept.,
Sandia Nat. Labs, Tech. Rep. SAND2001-3252, 2002.

[4] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. A modular approach
to the design and analysis of authentication and key exchange protocols.
In Proceedings of the thirtieth annual ACM symposium on Theory of
computing, pages 419–428. ACM, 1998.

[5] Mihir Bellare and Phillip Rogaway. Introduction to modern cryptogra-
phy. Ucsd Cse, 207:207, 2005.

[6] Ran Canetti, Shai Halevi, and Amir Herzberg. Maintaining authen-
ticated communication in the presence of break-ins. J. Cryptology,
13(1):61–105, 2000.

[7] Sergiu Costea, Marios O Choudary, Doru Gucea, Björn Tackmann,
and Costin Raiciu. Secure opportunistic multipath key exchange. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 2077–2094. ACM, 2018.

[8] Danny Dolev, Cynthia Dwork, Orli Waarts, and Moti Yung. Perfectly
secure message transmission. Journal of the ACM (JACM), 40(1):17–
47, 1993.

[9] Matthias Fitzi, Matthew Franklin, Juan Garay, and S Harsha Vardhan.
Towards optimal and efficient perfectly secure message transmission.
In Theory of Cryptography, pages 311–322. Springer, 2007.

[10] Jokin Garay, Clint Givens, and Rafail Ostrovsky. Secure message
transmission with small public discussion. Information Theory, IEEE
Transactions on, 60(4):2373–2390, 2014.

[11] Yossi Gilad and Amir Herzberg. Lightweight opportunistic tunneling
(lot). In European Symposium on Research in Computer Security, pages
104–119. Springer, 2009.

[12] Bob Hinden and Dr. Steve E. Deering. Internet Protocol, Version 6
(IPv6) Specification. RFC 2460, December 1998.

[13] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptogra-
phy, Second Edition. CRC Press, 2014.

[14] K Vinoth Kumar and S Bhavani. Trust based multipath authentication
protocol for mobile ad-hoc network. Journal of Computational and
Theoretical Nanoscience, 12(12):5479–5485, 2015.

[15] Kaoru Kurosawa and Kazuhiro Suzuki. Almost secure (1-round, n-
channel) message transmission scheme. IEICE TRANSACTIONS on
Fundamentals of Electronics, Communications and Computer Sciences,
92(1):105–112, 2009.

[16] Rasel Mahmud, Ranganath Vallakati, Anupam Mukherjee, Prakash
Ranganathan, and Arash Nejadpak. A survey on smart grid metering
infrastructures: Threats and solutions. In 2015 IEEE International

9

Conference on Electro/Information Technology (EIT), pages 386–391.
IEEE, 2015.

[17] John Moy. OSPF Version 2. RFC 2328, April 1998.
[18] University of Washington. Power systems test case archive.
[19] Jon Postel. Rfc 791: Internet protocol, september 1981. Darpa Internet

Protocol Specification, 1990.
[20] K Srinathan, Arvind Narayanan, and C Pandu Rangan. Optimal

perfectly secure message transmission. In Advances in Cryptology–
CRYPTO 2004, pages 545–561. Springer, 2004.

[21] Dan Wendlandt, David G Andersen, and Adrian Perrig. Perspectives:
Improving ssh-style host authentication with multi-path probing. In
USENIX Annual Technical Conference, volume 8, pages 321–334, 2008.

[22] Matthias Wilhelm, Ivan Martinovic, and Jens B Schmitt. Secure key
generation in sensor networks based on frequency-selective channels.
Selected Areas in Communications, IEEE Journal on, 31(9):1779–1790,
2013.

[23] Sencun Zhu, Shouhuai Xu, Sanjeev Setia, and Sushil Jajodia. Estab-
lishing pairwise keys for secure communication in ad hoc networks: a
probabilistic approach. In Network Protocols, 2003. Proceedings. 11th
IEEE International Conference on, pages 326–335. IEEE, 2003.

APPENDIX A
THE CRYPTOPOLOGY MODEL

A. Network Model

We model the communication network as an undirected
hypergraph, G = (V,E), where V represents the devices
(nodes) and E is a set of hyper-edges representing the con-
nections between devices. Some edges are simple edges rep-
resenting point-to-point communication, and some are hyper-
edges representing a connection to multiple devices on the
same interface.

Every device v ∈ V in the network also acts as a router; it
has an address v that uniquely represents it, and it can send
and route messages.

B. Legacy Devices and the Routing Model

To support incremental deployment, we consider that de-
vices V fall into two categories: upgraded devices that support
the CrypTopology protocol and legacy devices that do not
support it. Legacy devices are assumed to route only messages
that pass through them, following the routing model.

We focus on two important routing models: source routing,
where senders can choose arbitrary routes to each destination,
and shortest path routing, where packets are always sent along
the shortest route. Previous works generally considered source
routing, while most IP networks use shortest-path routing.

We find it convenient to use common notation for both rout-
ing methods. Specifically, routing is formulated as a function
R ∶ V × {0,1}∗ → V , which receives the current device and a
value called destination-route carried in the message; it returns
a neighbor of the current device, to which the message is
forwarded. The destination-route value depends on the routing
method; there can be multiple routing methods. We consider
the following ρ ∈ { source,shortest-path }:

● Source routing: the destination-route is the sequence of
devices along the route, from source till destination.
To prevent loops, a device cannot appear twice in the
route. The routing function returns the next entry in the
destination-route field, after the current device.

● Shortest-path routing: the destination-route only identifies
the destination device. Messages are sent on the shortest-
path between the current device and the destination de-
vice.

C. Adversary Model

We consider an attacker A that can control nA devices.
When controlling a device, the attacker receives all messages
sent to this device, whether it is the final destination or still
needs to be forwarded to its destination. The attacker deter-
mines which messages the device will send to its neighbors.
Namely, it can delay, block, and manipulate messages that a
controlled device received for forwarding. In addition, when
controlling a device, the attacker has access to its storage,
including its secret keys. The leaked information remains
known to the attacker, even after it stops controlling the device.

The devices in the network are divided into three groups,
with respect to the level controlled by the adversary:

● Honest - devices that are not under the control of the
attacker and their internal state (e.g., private keys) is not
known to the attacker.

● Exposed - upgraded devices that are not under the control
of the attacker, but their internal state is known to
the attacker, including private keys. We will show that
under several conditions, exposed devices become honest
(namely, can recover), during a single execution of the
protocol.

● Compromised - devices that are under the control of the
attacker.

Note, the groups Honest, Exposed, and Compromised are
disjoint separations of V , and nA is the total number of
exposed and compromised devices.

The attacker may have an arbitrary, ‘byzantine’ strategy.
The main threats we consider are (1) an attacker that disrupts
the key setup process for some (upgraded) devices, and (2) an
attacker that learns, or even sets, the key for some upgraded
(non-compromised) devices.

D. Time and Synchronization

The goal of the CrypTopology protocol is to establish keys
in newly-upgraded devices, and to refresh keys in devices that
are already (upgraded and) keyed. The purpose of these keys
is to recover, maintain, or improve security. In typical use,
the protocol would be invoked repeatedly, periodically, or on
demand. However, for simplicity, our definitions and analyses
are for a single execution of the protocol, from its activation
until its termination. Each single execution takes into account
the initial state of the devices at the beginning of the single
execution. All our definitions and analyses will be based on
the relation between the initial and final state of the devices,
in that single execution period.

We assume a bound of Tdelay on the communication delay
for each edge in the network, and ignore the processing time.
We later demonstrate that this makes sure every execution
completes by at most Tmax ≤ 8∣V ∣Tdelay.

For simplicity, we further assume that all devices have
perfectly synchronized clocks; it appears straightforward but

10

is somewhat tricky to extend for bounded bias. Practically,
the time between two executions of the protocol will be
much larger than the bounded bias, and therefore, there is
no significant limitation in the model assumption of perfectly
synchronized clocks.

E. Protocol Execution

EXECTEST,ρ(A,π,1l):

// Attacker Choices:
{G = (V,E), φ ∶ V → {Legacy,Upgraded}, s ∈ V,ΣA} ← A(1l)
Separation of V to {Honest,Exposed,Compromised} ← A(ΣA)

// Key Generation Phase:
foreach c s.t. φ[v] = Upgraded do

if c ∈Honest then
// The attacker chooses whether the honest

device already has a registered key or not.
b←A(c,ΣA)

if b=1 then
c.σold, c.νold ←KeyGen(1l)

else
c.σold, c.νold ← �

end
cS .νold ← c.νold

end
if c ∈ Exposed then

c.σold, c.νold ←KeyGen(1l)
ΣA ← c.σold
cS .νold ← c.νold

end
if c ∈ Compromised then

c.σ, c.ν, c.σold, c.νold, c
S .νold ←A(c)

end
ΣA ← c.νold

end
// Initializing the message pool
M = ∅

repeat forever
Activated devices insert messages in the message pool M .

Attacker chooses the next message to handle m ∈M .

Message m forwarding, according to the touring method ρ (see
Subsection A-E)

RESULT = TESTP (G,φ,{c.ν}c∈V ,{c
S .ν}c∈V)

if RESULT ≠ CONTINUE then
Return RESULT

end
end

Algorithm 4: Execution Overview

a) Initialization and helpers.: A CrypTopology protocol
π is a message-driven-protocol [4], involving a server s and
other devices. The server s is initialized with security parame-
ter 1l and a pair of public-private keys for signatures s.ν, s.σ;
the public key and 1l are given to all upgraded devices. The
server is also initialized with the network topology G = (V,E)

and the mapping φ ∶ V → {Legacy,Upgraded} of legacy vs.
upgraded devices.

The server is further initialized with preset public verifi-
cation keys denoted cS .νold, for a set H ⊂ V of upgraded
devices; we refer to these as helper devices.

Formally, we define the group of helpers H as upgraded
devices whose public keys are already validated by the server
(or known otherwise, e.g., manually):

H = {h ∈ V s.t. φ[h] = Upgraded AND hS .νold ≠ �}.

The use of helpers is the main difference between Cryp-
Topology and previous topology-based key setup works [2],
[9], [10], [15], [20], [22], [23], which require disjoint routes

between the client and the server. In contrast, the CrypTopol-
ogy model also uses routes between the client and the helpers.
This increases resiliency, allowing the use of more compro-
mised devices for source routing and facilitating shortest-path
routing.

Each client c ∈ V is an upgraded device. During the
protocol execution, the client c creates a pair of public (verifi-
cation) and private (signature) keys, c.ν, c.σ; it then attempts to
register the public key c.ν with the server. The client terminates
an execution period with an output of its registered key c.ν.
We denote c.ν = � if the client terminates without registering
a key.

The server terminates an execution period, with value cS .ν
for every device c ∈ V , where cS .ν = � if no key was set for
device c. When all goes well, the key cS .ν output by the server
for client c is the same as c.ν output by c.

b) Signature scheme: The CrypTopology protocol π
uses a secure Chosen-Message-Attack (CMA-Secure) signa-
ture scheme S = (KeyGen,Sign,Verify) [5]. It uses this scheme
to sign and validate messages. In the general case, and specif-
ically in the protocols we present, the signing and verification
functions provided by π are not necessarily identical to the
ones S provides. We denote the signing π functions by π.Sign
and by π.Verify. π uses the same keys to provide secure signing
for arbitrary client messages.

The signing functions receive as input a message and a
signing key c.σ, and return the signature of that message.
We also consider an oracle Oπ.Sign, which receives as input
a message, and returns the signature on it. The verification
functions receive as input a public-key for verification c.ν,
a message msg, and a candidate signature sig. They return
Accepted if the signature of msg is sig, and return Rejected
otherwise.

We focus on registering signature-verification keys, since
these can be used to establish keys for encryption and other
goals, using known key-exchange protocols (e.g., [4]).

c) Topology predicates.: The properties that the pro-
tocol ensures for a client c, depend on the client’s location
within the network topology, status (corrupted or not, upgraded
or legacy), and initial state. To formulate the topological
dependencies of properties, we define for each property a
topology predicate Ps,G,φ(c) that returns 1 if the necessary
conditions are met for client c ∈ V . The predicate may depend
on the network graph G, on the position of the server s ∈ V ,
and on the device mapping function φ.

For example, for the k-connectivity predicate,
P k−conns,G,φ (c) = 1 when c has at least k vertex-disjoint
paths to the server s in the graph G. For simplicity of
notation, we use P kG(c) as the result of P k−conns,G,φ (c) , where
s,G,φ are constants and known. Using these notations,
previous works [2], [9], [10], [15], [20], [22], [23] ensure key
establishment in the presence of nA compromised devices,
for devices c s.t. P 2nA+1

G (c) = 1.

d) Protocol execution.: To facilitate provable security,
we adopted a precise execution model; (see also Algorithm 4).
The execution is a process EXECTEST (A, πS ,1l)that receives
as input: the protocol π, a security parameter 1l, a probabilistic

11

polynomial time (PPT) algorithm as the adversary A, and
a routing method ρ. The execution initializes every device.
Compromised devices are initialized by the adversary and
exposed, and honest devices are initialized by the protocol.
Exposed devices, however, provide their private keys to the
attacker.

The execution activates π on each upgraded and honest
device. In addition, the execution activates the attacker A on
corrupted devices. Here, the attacker determines the order of
relayed messages.

A final input to the execution is an efficient algorithm
denoted TEST. The execution activates TEST after handling
every message, to test whether the specified requirements were
satisfied. We define different TEST algorithms for different
protocol requirements.

A TEST algorithm receives as input the network properties
G,φ and for all of the devices, the registered verification
keys at the client and at the server {c.ν}c∈V ,{c

S .ν}c∈V ,
and the preset keys {c.νold}c∈V ,{c

S .νold}c∈V . In addition,
the TEST receives a topology predicate P , and verifies that
the tested property holds for every device c s.t. P (c) = 1.
We often abuse the notation and write TESTP to refer to
TESTP (G,φ,{c.ν}c∈V ,{c

S .ν}c∈V).

The TEST checks the output and state of different devices,
and has three possible outcomes: Continue, Success, and Fail.
When the TEST outputs Continue, the execution continues; it
is not yet a success or a failure.

The execution process is adversarial in the sense that the
attacker A can choose most parameters, including the topology
G = (V,E) s.t. ∣V ∣ = n, the weight function w in shortest-path
routing, the server device s ∈ V , and, for each device c ∈ V −

{s}, the legacy/upgrade state φ(c). The adversary assigns each
device c ∈ V to be one of the following: {Honest, Exposed,
Compromised}. For Compromised devices, the attacker also
chooses the internal state (e.g., the private keys).

For each of the upgraded devices u, the attacker A chooses
whether the device already has a shared key with the server or
not. If the device has a shared key, the execution will choose
u.ν and u.σ, and provide u.ν to the server. In addition, the
attacker chooses s to be an honest upgraded device.

Every message that is sent or relayed by the protocol
includes the sender address as the message source, the recipient
address as the message destination , the message payload, and
the destination-route field. The sender sets the destination-
route according to the routing method, as described in Section
A-B.

Whenever a device sends or relays a message, the execution
inserts the message to a shared global message pool, and
attaches the sending time to the message. In addition, the
execution attaches the address of the next hop device that is
on the route of the message, according to the routing method
and to the sending/relaying device.

During the execution process, the attacker is able to see
(only) the source, destination, and insertion time fields of all
the messages in the message pool; it can also choose which
message the execution process will handle next. We limit the

attacker to delaying messages no more than Tdelay time, and
to delivering at most one message at each time.

APPENDIX B
ADDITIONAL PROPERTIES

BOUND(Tmax,{c.ν, c
s.ν ∣ c ∈ V },Compromised ⊂ V)

// The test shows Success if after Tmax time all the
devices present their output. Without loss of
generality, we assume that the current_time at the
beginning of the execution is 0.

if current_time() ≥ Tmax then
foreach c ∈ V − {s} s.t φ[c] = Upgraded do

if c did not terminate then
Return FAIL

end
end
Return SUCCESS

else
Return CONTINUE

end

Algorithm 5: Termination within Tmax test

GKS({c.ν, cs.ν ∣ c ∈ V },Compromised ⊂ V)

// The test Fails if after all non-compromised devices
terminated, there is a device that fulfills the
topology predicate and did not register its key

Return CONTINUE until all the upgraded devices terminated.
// Check that all the keys were set correctly.
foreach c ∈ V s.t. P (c) = 1 AND φ[c] = Upgraded AND c ∈
Honest ∪Exposed AND cs.νold = c.νold do

if c.ν = � OR c.ν ≠ cs.ν then
Return FAIL

end
end
// If all the devices have a key, and the key is

correct, the Test succeeded
Return SUCCESS

Algorithm 6: Guarantee key setup test

COR-M({c.ν, cs.ν ∣ c ∈ V },Compromised ⊂ V)

// The test Fails if the attacker was able to set
different keys in the server and in the client, for
an honest device that already had a signed key
c.νold ≠ � .

foreach c ∈ V − {s} φ[c] = Upgraded AND c ∈Honest do
if c.νold ≠ � then

if c.ν ≠ cs.ν then
Return FAIL

end
end

end
Return CONTINUE

Algorithm 7: Correctness resiliency to MitM test

In this section we prove some more advanced properties
of the protocols. The properties include Bounded Termination,
Guaranteed key setup and Correctness resiliency to Man-in-
the-Middle.

We say that Protocol π ensures requirement TEST, with
respect to predicate P and routing method ρ, if for all PPT
attackers A, γ > 0, ∃l0 s.t. ∀l > l0:

Pr(EXECTEST (A, πS ,1l)=FAIL) < l−γ ,

where the probability is taken over the random coins used
by A and EXECTEST,ρ(A, π,1l).

12

a) Secure signing (Algorithm 2).: Protocol π ensures
secure signing, if for every attacker A, the attacker cannot
generate a pair of message msgA and signature signA for
a non-compromised device c, without knowing the private
key of c, c.σ. The TEST is based on the forgery test of
the chosen-message-attack secure signature scheme [13]; the
key generation is done internally in the client and not by the
experiment.

The signing requirement is related to the secrecy of c.s,
the key generated by the client; if this key is exposed, surely
signing cannot hold. The remaining requirements deal with the
public key cSv that the server (should) learn for client c.

We next present the complementary correctness require-
ment: the server should learn the correct public key c.v chosen
by the client. Note, correctness and secure signing together
achieve a non-trivial requirement that the registered key at the
server is secret and allows secure signing and verification.

b) Correctness (Algorithm 3).: Protocol π ensures
correctness, with respect to predicate P , if for every non-
compromised device c s.t. P (c) = 1, whenever the server
outputs a key cS .ν ≠ � for specific client c, then the client
c outputs the same key c.ν.

c) Guaranteed key setup (Algorithm 6).: Protocol π
guarantees key setup, with respect to predicate P , if every
non-compromised upgraded device c, s.t. P (c) = 1 and
cS .νold = c.νold, the server registers a key c.ν ≠ �, which
is the same key as the server registered cS .ν = c.ν.

d) Correctness resiliency to Man-in-the-Middle (Algo-
rithm 7).: Protocol π is MitM-resilient, if for every honest
device s.t. cS .νold = c.νold ≠ �, the new keys that will be
registered at the server and at the client will be identical
cS .ν = c.ν. This property is based on the use of cryptography
and secret keys, and not on the topology. Therefore, it holds
even for a MitM attacker that controls all the routes between
the client and the server.

A. Analysis

Termination within time Tmax = 8∣V∣Tdelay. We show
that CrypTop execution is bounded. Specifically, we show
that after Tmax = 8∣V ∣Tdelay, all the devices and the server
terminate and present their output.

Theorem 3. [Termination within time Tmax]: Protocol
CrypTop ensures termination within time Tmax, for every
Tmax > 8∣V ∣Tdelay.

Proof: Every message of the protocol can be sent through
a maximal route that includes all the devices in the network, n.
Therefore, the maximal delay of a single message is ∣V ∣Tdelay,
where Tdelay is the maximal delay on an edge.

The protocol has eight sequential messages, which there-
fore bounds the maximal execution time of the protocol to
8∣V ∣Tdelay.

Theorem 4. [Guaranteed Key-Setup]: Protocol CrypTopS
ensures guaranteed key-setup for every CMA-secure signature
scheme S, with respect to predicate P 2nA+1

AUG ∧ PnA+1
G .

Proof: For every non-compromised device c s.t.
P 2nA+1
AUG (c) = 1, the correctness property holds, namely if
cS .ν ≠ � then cS .ν = c.ν. It is left to prove that cS .ν ≠ �.

First, we will show that c can receive nA + 1 signed
responses. From the topology conditions of P 2nA+1

AUG (c) = 1 , c
has at least 2nA + 1 disjoint routes to helpers. In the presence
of nA compromised devices, the attacker will be able to block
nA signed responses, which allows nA + 1 responses to reach
c. Therefore, c can provide nA + 1 signed responses.

Second, we will show that c and s can communicate with
CrypTop, which is necessary for the key registration. The
topology condition PnA+1

G (c) = 1 ensures that there will be at
least one route between s and c without a compromised device.
Therefore, the attacker will not be able to block CrypTop
communication between c and s.

Correctness resiliency to Man-in-the-Middle. We show
that for any honest device c that has a preset key c.νold ≠ �,
no attacker will be able to cause the server to sign an incorrect
key for c, namely, cS .ν ≠ c.ν.

Theorem 5. [Correctness Resiliency to Man-in-the-Middle]:
Protocol CrypTopS ensures correctness resiliency to Man-
in-the-Middle, for every CMA-secure signature scheme S .

Proof:

We need to prove that for any CMA-secure signature
scheme S = (KeyGen,Sign,Verify), and for all PPT attackers
A, γ > 0, ∃l0 s.t. ∀l > l0:

Pr(EXECCOR−M,ρ
(A,CrypTop,1l)=FAIL) < l−γ ,

where the probability is taken over the random coins used
by A and EXECCOR−M,ρ

(A,CrypTop,1l).

Let S be a CMA-secure signature scheme [5].

For every honest device c (including the server), the secrecy
property holds. Therefore, the attacker will not be able to
provide a signed message with a probability greater than ε.
It is left to show that since the secrecy property holds, for
every honest device c s.t. cS .νold = c.νold then cS .ν = c.ν.
This is derived from the CrypTop design since without valid
signatures of the server and the client, the protocol stops and
does not register a new key. Therefore, in case of not-verified
signatures, cS .ν = c.ν = � and the preset keys will not change,
cS .νold = c.νold.

APPENDIX C
CHOOSING THE SERVER

The results of CrypTopology protocols depend on the
specific choices of the relevant devices: the server and the
helpers. In the previous section, we measured the maximal
number of available devices, while choosing the device with
the highest degree as the server. In this section, we compare
this highest-degree method to two other methods: random and
best-choice. In the random strategy, the simulation chooses
the server randomly. In the best choice method, the simulation

13

1 2 3 4
0

20

40

60

80

100

nA

%
D

ev
ic

es

Highest Degree Best Choice Random

(a) Source routing

1 2 3 4
0

20

40

60

80

100

nA

%
D

ev
ic

es

(b) Shortest-path

Figure 4: Recovery ratios, using different methods for choosing
the server. Results are shown as a function of the number
of corrupted devices nA, and for ISP 4755 network. For the
random method we also show the (wide) range of results.

1 2 3 4
0

20

40

60

80

100

nA

%
D

ev
ic

es

Highest Degree Best Choice Random

(a) Source routing

1 2 3 4
0

20

40

60

80

100

nA

%
D

ev
ic

es

(b) Shortest-path

Figure 5: Recovery ratios, using different methods for choosing
the server. Results are shown as a function of the number of
corrupted devices nA, and for the IEEE 118 network. For the
random method we also show the (wide) range of results.

1 2 3 4
0

20

40

60

80

100

nA

%
D

ev
ic

es

Highest Degree Best Choice Random

(a) Source routing

1 2 3 4
0

20

40

60

80

100

nA

%
D

ev
ic

es

(b) Shortest-path

Figure 6: Recovery ratios, using different methods for choosing
the server. Results are shown as a function of the number of
corrupted devices nA, and for the IEEE 300 network. For the
random method we also show the (wide) range of results.

iterates over all the devices, and chooses the server to be the
device that results in the maximal number of available devices.

We evaluated the impact of the selection method on the
recovery ratio. This is impacted only by the choice of the
server, since the recovery ratio measurement assumes that
all the devices already have a key in the first round of the
simulation.

The results comparing the different methods are shown
in Figures 5,4 for IEEE 118 and ISP 4755, respectively.
On each graph for the random method, the circle points
represent the average maximal availability. The blue and the
red line represent the maximal and minimal results over five
simulations of randomly choosing the server. In addition, each
graph presents the results received using the highest degree
and best choice strategies.

The best-choice method chooses the optimal server based
on the maximal availability. If we compare the best-choice
strategy to the highest degree method, we see that in most cases
the highest degree gives very close, even identical, results. In
contrast, the random strategy is significantly and consistently
inferior, especially for nA > 1.

What can we learn from these results? Our main conclusion
is the impact of the choice of the server, which has a substantial
influence on the results. We compared the highest degree and
the best choice strategies to the random strategy. Observing the
results, it is clear that the first two strategies present a much
better recovery ratio. Hence, having a strategy for choosing
the server is important for a higher ratio.

We also compared the highest degree strategy to the

14

optimal, inefficient, best-choice strategy. We found that the
highest degree strategy, even though it may not be optimal,
presents results that are very close to the optimal strategy. A
further study is required to determine an efficient, yet optimal,
method.

15

0 1 2 3 4 5
0

20

40

60

80

100

% Manual Installations

%
D

ev
ic

es

Source routing

0 1 2 3 4 5
0

20

40

60

80

100

% Manual Installations

%
D

ev
ic

es

Shortest-path

nA=1 nA=2 nA=3 nA=4

(a) IEEE 118

0 1 2 3 4 5
0

20

40

60

80

100

% Manual Installations

%
D

ev
ic

es

Source routing

0 1 2 3 4 5
0

20

40

60

80

100

% Manual Installations

%
D

ev
ic

es

Shortest-path

nA=1 nA=2 nA=3 nA=4

(b) IEEE 300

Figure 7: Power Networks: Incremental deployment ratios for different amounts of manual installations, using CrypTop and
SP-CrypTop.

0 2 4 6 8 10
0

20

40

60

80

100

% Manual Installations

%
D

ev
ic

es

Source routing

0 2 4 6 8 10
0

20

40

60

80

100

% Manual Installations

%
D

ev
ic

es

Shortest-path

nA=1 nA=2 nA=3 nA=4

(a) ISP 4755

0 1 2 3 4 5
0

20

40

60

80

100

% Manual Installations

%
D

ev
ic

es

Source routing

0 1 2 3 4 5
0

20

40

60

80

100

∣H∣

%
D

ev
ic

es

Shortest-path

nA=1 nA=2 nA=3 nA=4

(b) ISP 1755

Figure 8: Internet Service Providers (ISP): Incremental deployment ratios for different amount of manual installations, using
CrypTop and SP-CrypTop.

16

