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Abstract

Deniable encryption (Canetti et al. CRYPTO ’97) is an intriguing primitive that provides a secu-
rity guarantee against not only eavesdropping attacks as required by semantic security, but also stronger
coercion attacks performed after the fact. The concept of deniability has later demonstrated useful and
powerful in many other contexts, such as leakage resilience, adaptive security of protocols, and se-
curity against selective opening attacks. Despite its conceptual usefulness, our understanding of how
to construct deniable primitives under standard assumptions is restricted. In particular, from standard
assumptions such as Learning with Errors (LWE), we have only multi-distributional or non-negligible
advantage deniable encryption schemes, whereas with the much stronger assumption of indistinguish-
able obfuscation, we can obtain at least fully-secure sender-deniable PKE and computation. How to
achieve deniability for other more advanced encryption schemes under standard assumptions remains an
interesting open question.

In this work, we construct a bi-deniable inner product encryption (IPE) in the multi-distributional
model without relying on obfuscation as a black box. Our techniques involve new ways of manipulating
Gaussian noise, and lead to a significantly tighter analysis of noise growth in Dual Regev type encryption
schemes. We hope these ideas can give insight into achieving deniability and related properties for
further, advanced cryptographic constructions under standard assumptions.

1 Introduction

Deniable encryption, introduced by Canetti et al. [CDNO97] at CRYPTO 1997, is an intriguing primitive
that allows Alice to privately communicate with Bob in a way that resists not only eavesdropping attacks as
required by semantic security, but also stronger coercion attacks performed after the fact. An eavesdropper
Eve stages a cocercion attack by additionally approaching Alice (or Bob, or both) after a ciphertext is
transmitted and demanding to see all secret information: the plaintext, the random coins used by Alice
for encryption, and any private keys held by Bob (or Alice) related to the ciphertext. In particular, Eve
can use this information to “fully unroll” the exact transcript of some deterministic decryption procedure
purportedly computed by Bob, as well as verify that the exact coins and decrypted plaintext in fact produce
the coerced ciphertext. A secure deniable encryption scheme should maintain privacy of the sensitive data
originally communicated between Alice and Bob under the coerced ciphertext (instead substituting a benign
yet convincing plaintext in the view of Eve), even in the face of such a revealing attack and even if Alice and
Bob may not interact during the coercion phase.

Historically, deniable encryption schemes have been challenging to construct. Under standard assump-
tions, Canetti et al. [CDNO97] constructed a sender-deniable’ PKE where the distinguishing advantage
between real and fake openings is an inverse polynomial depending on the public key size. But it was not
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until 2011 that O’Neill, Peikert, and Waters [OPW11] proposed the first constructions of bi-deniable PKE
with negligible deniability distinguishing advantage: from simulatable PKE generically, as well as from
Learning with Errors (LWE [Reg05]) directly.

Concurrently, Bendlin et al. [BNNO11] showed an inherent limitation: any non-interactive public-key
encryption scheme may be receiver-deniable (resp. bi-deniable) only with non-negligible (1 /size(pk))
distinguishing advantage in the deniability experiment. Indeed, O’Neill et al. bypass the impossibility result
of [BNNOI11] by working in the so-called multi-distributional model. In the multi-distributional model of
deniability, private keys sk are distributed by a central key authority. In the event that Bob is coerced to
reveal a key sk that decrypts chosen ciphertext c*, the key authority distributes a faking key fk to Bob, which
Bob can use to generate a fake key sk* (designed to behave identically to sk except on ciphertext ¢*). If
this step is allowed, then O’Neill et al. demonstrate that for their constructions, Eve has at most negligible
advantage in distinguishing whether Bob revealed an honest sk or fake sk*.

A major breakthrough in deniable encryption arrived with the work of Sahai and Waters [SW14], who
proposed the first sender-deniable PKE with negligible distinguishing advantage from indistinguishability
obfuscation (iO) for P/poly [GGH"13]. The concept of deniability has been demonstrated useful in the
contexts of leakage resilience [DLZ15], adaptive security for protocols, and as well as deniable computation
(or algorithms) [CGP15, DKR15, GP15]. In addition to coercion resistance, a bi-deniable encryption scheme
is a non-committing encryption scheme [CFGNO96], as well as a scheme secure under selective opening
(SOA) attacks [BHY09], which are of independent theoretical interest.

Despite the apparent theoretical utility in understanding the extent to which cryptographic construc-
tions are deniable, our current knowledge of constructing such a scheme is still limited. From standard
assumptions such as LWE, we have only multi-distributional or non-negligible advantage deniable encryp-
tion schemes, whereas with the much more powerful assumption of O, we can obtain at least fully-secure
sender-deniable PKE and computation [CGP15, DKR15, GP15]. A significant gap persists between known
feasibility results from standard assumptions and the powerful possibilities from stronger assumptions.

In this work, we further narrow this gap by investigating a richer primitive, inner product encryption
(IPE) [KSWO08, AFV11, BRS13], without the use of obfuscation as a black box primitive. We hope that
the techniques developed in this work can further shed light on deniability for even richer schemes such as
functional encryption [BSW11, GGH' 13, BGG' 14, GVW15] under standard assumptions.

1.1 Our Results

e Our main contribution is the construction of a (multi-distributional) bi-deniable IPE from the standard
Learning with Errors assumption.

Theorem 1.1 (Informal). Under the standard L\WE assumption, there exists a payload-hiding public-key
inner product encryption scheme, which is also bi-deniable in the multi-distributional model.

Recall that in an inner product encryption (IPE) scheme, every secret key sk,, is associated with a predi-
cate vector v € Zf;, and every ciphertext ct,, is associated with an attribute vector w € Zg. A ciphertext ct,,
can be decrypted by a given secret key sk, to its payload message m only when (v, w) = 0. Informally, the
security notion for an IPE scheme is collusion resistance, which means no collection of keys can provide
information on a ciphertext’s message, if the individual keys are not authorized to decrypt the ciphertext in
the first place. Intuitively, a bi-deniable IPE must provide both collusion and coercion resistance. We also
provide the first formal security definition for bi-deniable inner product encryption.

e QOur second contribution is a new form of the Extended Learning with Errors (eLWE) assumption [OPW11,
ASP12, BLP™13], which is convenient in the context of Dual Regev type functional encryption
schemes, such as the IPE of Agrawal, Freeman, and Vaikuntanathan [AFV11].



The eLWE assumption is roughly the LWE assumption, but where the distinguisher also receives “hints”
on the LWE sample’s noise vector x in the form of (perhaps noisy) inner products, i.e. distributions of
the form {A, b=ATs+x, 2z, :13>} where (intuitively) z is a decryption key. Our main result here is a
reduction from the standard LWE assumption to our new form of the extended-LWE assumption, eLWE™,
in the case of a prime polynomial-size modulus even if there is no noise on the hints. We show this by
extending the LWE to eLWE reduction of Alperin-Sheriff and Peikert [ASP12] to our particular setting.

e As a further contribution, we believe the techniques developed in the course of our cryptosystem’s
security proof may be of independent interest toward better understanding LWE-based inner product
encryption schemes. Details follow.

1.2 Our Techniques

As in the work of O’Neill et al. [OPW11], our approach to bi-deniability relies primarily on a curious prop-
erty of Dual Regev type [GPVO08] secret keys: by correctness of any such scheme, each key z is guaranteed
to behave as intended for some 1 — negl(n) fraction of the possible random coins used to encrypt, but system
parameters may be set so that each key is also guaranteed to be faulty (i.e. fail to decrypt) on some negl(n)
fraction of the possible encryption randomness. More concretely, each secret key z is sampled from an
m-dimensional Gaussian distribution, as is the error term x (for LWE public key A € Zg*™). For every
fixed z, with overwhelming probability over the choice of x, the vectors z, & € Z;" will point in highly
uncorrelated directions in m-space. However, if the vector z and & happen to point in similar directions, the
error magnitude will be squared during decryption.

Our scheme is based around the idea that a receiver, coerced on honest key-ciphertext pair (z, ¢*), can
use the key authority’s faking key fk to learn the precise error vector * used to construct ¢*. Given x*, z,
and fk, the receiver re-samples a fresh secret key z* that is functionally-equivalent to the honest key z,
except that z* is strongly correlated with the vector =* in ¢*. When the coercer then attempts to decrypt
the challenge ciphertext ¢* using z*, the magnitude of decryption error will artificially grow and cause the
decryption to output the value we want to deny to. Yet, when the coercer attempts to decrypt any other
independently-sampled ciphertext ¢, decryption will succeed with overwhelming probability under z* if it
would have under z. We emphasize that to properly show coercion resistance, this behavior of z* should
hold even when c and c* embed the same attribute vector w.

However to push the above argument through formally, we must overcome a number of technical chal-
lenges. The first such challenge is an implicit requirement to very tightly control the precise noise magnitude
of evaluated ciphertexts. In previous functional (and homomorphic) encryption schemes from lattices, the
emphasis is placed on upper bounding evaluated noise terms, to ensure that they do not grow too large and
cause decryption to fail. Moreover, security (typically) holds for any ciphertext noise level at or above the
starting ciphertexts’ noises. In short, noise growth during evaluation is nearly always undesirable.

As with previous schemes, we too must upper bound the noise growth of evaluated ciphertexts in order
to ensure basic correctness of our IPE. But unlike previous schemes, we must take the step of also (carefully)
lower bounding the noise growth during the inner product evaluation. This is due to the fact, highlighted
above, that producing directional alignment between a key and error term can at most square the noise
present during decryption. Since coercion resistance requires that it must always be possible to deny any
ciphertext originally intended for any honest key, it must be that, with overwhelming probability, every
honest key and every honest ciphertext produce evaluated error that is no less than the square root of the
maximum noise threshold tolerated by the scheme.

At a high level, our security proof begins at the Fake experiment, where first a ciphertext ¢* and its asso-
ciated noise terms «* are sampled, then a fake key z* is generated that artificially fails to decrypt any cipher-
text with noise vector (close to) x*. We then proceed through a sequence of statistically-indistinguishable



hybrids, to arrive at an intermediate experiment where first the key z* is sampled uniformly from the space
of valid keys, then noise «* is instead chosen to be correlated with z*. Once we have an honestly-distributed
key z*, we can rely on Extended Learning with Errors (or more specifically, on our new assumption eLWE™)
to show that the artificial correlations with key z* present in the error term x* do not leak any additional,
meaningful information to an efficient distinguisher. Finally we arrive at the Real experiment, where key z*
is honestly distributed and ciphertext c* is uniform in the ciphertext space.

The most technically demanding stage of our proof arises when arguing statistical indistinguishability
between sampling orders: that is, (i) sampling * then z* in the Fake experiment vs. (ii) sampling z* then
a* in the Real experiment. In more detail, we will follow the general outline of the LWE-based IPE scheme
of [AFV11], where a ciphertext ¢ = {co,{c; ;},c'}, and decryption under sk, proceeds by including a
ciphertext c; ; in the summation ¢, = ), ¢; j only if the j-th bit of the i-th Z,-coordinate of v equals 1.
Decryption is completed by checking if ¢ — (z, [¢g|cy]) is closer to O than not.

In order to simulate the challenge ciphertext during the security proof, we replace each of the c; ; by
the m-vector R, jc) for matrices R; ; sampled randomly from {—1,1}™*". An application of the leftover
hash lemma shows the ¢; ; remain uniformly distributed. At this point in the simulation, the evaluated error
term becomes x, := R,z*, for R, = >, R;; computed as before, and for error vector «* originally
planted in the non-evaluated ciphertext component cy. Indeed, it is this specific error term x,, with which
fake keys z* sampled in the Fake experiment must be correlated. The key source of difficulty is that, while
each coordinate of honest secret keys z and error terms x* are (effectively) independently sampled from the
spherical Gaussian error distribution Yy, the coordinates of ¢, = R,x* are in fact skewed by the addition
of the random “rotation matrices” R; ;. Consequently, the distribution of x,, is an ellipsoidal Gaussian
distribution, not a spherical one. Thus, naively embedding x, into a new key in an identical manner to
O’Neill et al. [OPW11] will produce a key z* with a distribution that is statistically distinguishable from
honestly sampled keys z.

To avoid this pitfall, we need to take special care across our entire scheme and security proof to ensure
that every m-vector — every key, every error term, etc. — is sampled as a multi-dimensional Gaussian with
an individualized covariance matrix Q € Z™*"™, designed to produce just the right output distribution. Our
techniques here rely on elementary applications of probability theory and linear algebra, but we believe they
provide both a new technical perspective on Dual Regev type encryption and may serve as a fresh set of
tools for approaching such schemes.

2 Preliminaries

Notations. Let PPT denote probabilistic polynomial time. We use bold uppercase letters to denote ma-
trices, and bold lowercase letters to denote vectors. We let A be the security parameter, [n] denote the set
{1,...,n}, and |¢t| denote the number of bits in a string or vector ¢. We denote the i-th bit value of a string
s by s[i]. We use [-|-] to denote the concatenation of vectors or matrices, and || - || to denote the norm of
vectors or matrices respectively. Unless otherwise stated, we use the £5 norm throughout our work.

2.1 Multi-Distributional Bi-Deniable IPE: Syntax and Bi-Deniability

In this section, we describe the syntax and bi-deniability security definition of a (multi-distributional) bi-
deniable inner product encryption (IPE). A multi-distributional bi-deniable inner product encryption scheme
consists of a tuple of algorithms (Setup, Keygen, Enc, Dec, DenSetup, FakeRCoins, FakeSCoins):

Setup(1*): On input the security parameter ), the setup algorithm outputs public parameters pp and master
secret key msk.
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Figure 1: Security experiments for bi-deniable IPE

Keygen(msk, v): On input the master secret key msk and a predicate vector v, the key generation algorithm
outputs a secret key sk,, for vector v.

Enc(pp, w, M): On input the public parameter pp and an attribute/message pair (w, M), it outputs a
ciphertext cy,.

Dec(sky, ¢p): On input the secret key sk,, and a ciphertext c,,, it outputs the corresponding plaintext M if
(v, w) = 0; otherwise, it outputs L.

DenSetup(11): On input the security parameter ), the deniable setup algorithm outputs pubic parameters
pp, master secret key msk and faking key fk.

FakeRCoins(pp, fk, ¢, v, M, M'): On input public parameters pp, faking key fk, a ciphertext c,, for mes-
sage M, a predicate attribute v, and desired message M’, the receiver faking algorithm output a faked
secret key sk.,.

FakeSCoins(pp, rs, M, M'): On input public parameters pp, original random coins rg used in encryption
of message M and desired message M’, it outputs a faked random coin r.

Correctness. We say the bi-deniable IPE scheme described above is correct, if for any (msk, pp) < S(1%),
where S € {Setup, DenSetup}, any message M, predicate vector v, and any attribute vector w where
(v, w), we have Dec(skqy, ¢y) = M, where sk,, < Keygen(msk, w) and ¢ < Enc(pp, v, M).

Bi-deniability definition. Let M, M’ be two arbitrary messages, not necessarily different. We propose the
bi-deniability definition by describing real experiment Exptfff?\y’ (1) and faking experiment Expt';ﬁl}& A (1Y)
regarding adversary A = (A, Az, A3) below:

where KG(msk, w*, -) returns a secret key sk, < Keygen(msk, v) if (v, w*) # 0 and L otherwise.

Definition 2.1 (Multi-Distributional Bideniable IPE). An IPE scheme 11 is multi-distributional bi-deniable
if for any two messages M, M', any probabilistic polynomial-time adversaries A where A = (A1, A2, As3),
there is a negligible function negl(\) such that

AdviMM,(l’\) = |Pr[Exptie7?\'47M,(1A) =1] - Pr[Expthﬁlj‘\zM,(l)‘) = 1]| < negl(A)



2.2 Inner-Product-based Bitranslucent Set Scheme

In this section, we extend the bitranslucent set definition proposed by O’Neill et al. in [OPW11] to an inner-
product-based counterpart, i.e. an Inner Product Bi-Translucent Set (IP-BTS) scheme. An IP-BTS scheme
is made up of the following algorithms:

Setup(1*): On input the security parameter, the normal setup algorithm outputs public parameters pp and
master secret key msk.

DenSetup(1*): On input the security parameter, the deniable setup algorithm outputs public parameters
pp, master secret key msk and faking key fk.

Keygen(msk, v): On input the master secret key msk and a predicate vector v, the key generation algorithm
outputs a secret key sky.

P- and U-samplers SampleP (pp, w; rg) (or SampleU(pp; rs)) output some ¢,, (or c).

TestP(sky, € ): On input a secret key sk,, and a ciphertext c,,, the P-tester algorithm outputs 1 (accepts)
or O (rejects).

FakeSCoins(pp, rs): On input public parameters pp and randomness rg, the sender-faker algorithm outputs
randomness 7.

FakeRCoins(pp, fk, ¢, v): On input public parameters pp, the faking key fk and a ciphertext c,,, the
receiver-faker algorithm outputs a faked secret key sk.,.

Definition 2.2 (IP-BTS). We say the scheme
IT = (Setup, DenSetup, Keygen, SampleP, SampleU, TestP, FakeSCoins, FakeRCoins)

is an inner product bitranslucent set scheme if it satisfies:
1. (Correctness.) We say an IP-BTS scheme is correct if
e For any (pp,msk) < Setup(1?), any vector v, sk, + Keygen(msk,v),if (v,w) = 0 and
Cw < SampleP(pp, w, rg), then TestP(sky, ) = 1. Otherwise, TestP(sky, €y) = 0.
e Forany (pp, msk) < Setup(1*), any vector v, sk, + Keygen(msk, v), if ¢ +— SampleU(pp, rs),
then TestP(sky, ) = 0.

2. (Indistinguishable public parameters.) The public parameters pp generated by the two setup algo-
rithms (pp, msk) < Setup(1*) and (pp, msk, fk) <— DenSetup(1*) should be indistinguishable.

3. (Bi-deniability.) We propose the selective bi-deniability definition by describing real experiment
Expt’2 (1)) and faking experiment Expt2*¢(1*) regarding adversary A = (A1, Az, As) below:
where KG(msk, w*, -) returns a secret key sk, <— Keygen(msk, v) if (v, w*) # 0 and L otherwise.
We say the scheme is selectively bi-deniable, if for any probabilistic polynomial-time adversaries A

where A = (A1, A2, As3), there is a negligible function negl(\) such that
Advi (1Y) = |Pr[ExptR(17) = 1] — Pr[Expt2*(1*) = 1]| < negl())

Finally, there is a generic transformation [CDNO97] from multi-distributional (bi)deniable encryption
(with a negl(\) distinguishing advantage) into a “standard” (i.e. single-distribution) (bi)deniable encryption
with 1/poly(A) distinguishing advantage, which is best-possible for receiver-deniable encryption by the
lower bound of Bendlin et al. [BNNO11].
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Figure 2: Security experiments for IP-BTS

Remark 2.3. Correctness for the faking algorithms is implied by the bi-deniability property. In par-
ticular, with overwhelming probability over the randomness, the following holds: let (pp, msk,fk) <«
DenSetup(1?*), let =,y be any vectors, let sk, < Keygen(msk,y), and let ¢z <+ SampleP(pp, z;7g),
then

e SampleU(pp; FakeSCoins(pp,7s)) = Cq,
e TestP(FakeRCoins(pp, fk, ¢z, y), ce) = 0, and

e for any other &', let ¢’ <— SampleP(pp, ©'; r'y), then (with overwhelming probability) we have

TestP (FakeRCoins(pp, fk, ¢z, y), c') = TestP(sky, c).

It is not hard to see that if one of these does not hold, then one can easily distinguish the real experiment
from the faking experiment by performing the test prescribed.

Remark 2.4 (Adaptive bi-deniability). We say the IP-BTS scheme is adaptively bi-deniable, if the adversary
A does not need to commit to the challenge functionality (v*, w*) before obtaining public parameters pp.

Lemma 2.5. The existence of a inner product bitranslucent set scheme (IP-BTS) implies existence of a
multi-distributional bi-deniable IPE scheme, secure under Definition 2.1.

Proof Sketch. Canetti et al. [CDNO97] gave a simple encoding trick to construct a multi-distributional
sender-deniable encryption scheme from a translucent set. O’Neill, Peikert, and Waters [OPW11] gave a
similar trick for constructing multi-distributional bi-deniable encryption from a bi-translucent set scheme.
We observe a similar trick works here:

Encryption is performed bit-wise on the message M. The normal encryption algorithm encrypts a bit 0
as the pair of samples (U, U) and a bit 1 as (U, P). The IPE simulator encrypts a bit 0 as (P, P) and a bit 1
as (U, P). If the simulator needs to open an encryption of 0 as a 1, he uses FakeSCoins and FakeRCoins to
make a pair (P, P) appear as (U, P) under TestP. Similarly to open an encryption of 1 as a 0, the simulator
can use FakeSCoins and FakeRCoins to make a pair (U, P) appear as (U, U) under TestP.

The remainder of the proof is a routine calculation. O

2.3 Lattice Background

Throughout our work, without loss of generality we treat Z, as the subset of integers (—¢q/2, ¢/2] N Z, and

define the set Z; & {-1/2+1/q,—-1/2+2/q,...,1/2—1/q,1/2} representing the range (—1/2,1/2] C R
with bit-precision log,(q). We define the operators (mod ¢) and (mod 1) to map into these sets in the



natural way. We note that for any xo, 1 € Z; and y,y; € Z} where €y = qy,, 1 = qy;, it holds that
q¢(xo/q,x1/q) = (Yo, Y1) € Z1. Thatis, we have (xo,y;) = (®o,x1/q) € Z;. (The reader should think
of the multiplication operation in our inner product definition as operating on each input-argument, written
as a relative ratio of the argument’s domain’s size, ¢; i.e. over the rationals Q or, in general, the reals R
modulo 1. In prior works, this is sometimes alternatively denoted by the torus T.)

A full-rank m-dimensional integer lattice A C Z™ is a discrete additive subgroup whose linear span is
R™. The basis of A is a linearly independent set of vectors whose linear combinations are exactly A. Every
integer lattice is generated as the Z-linear combination of linearly independent vectors B = {b;, ..., b,,} C
Z™. For a matrix A € Zy*™, we define the “g-ary” integer lattices:

1 m u m
A; ={e€Z"|Ae=0mod g}, A} ={e€Z"|Ae =wumod ¢}

It is obvious that A is a coset of AqL.

Let A be a discrete subset of Z". For any vector ¢ € R™, and any positive parameter o € R, let
po.c(x) = exp(—r||z — ¢||?/0?) be the Gaussian function on R™ with center ¢ and parameter o. Next,
we set po.c(A) = D i Po.c(x) be the discrete integral of p, . over A, which gives the Discrete Gaussian

distribution Dy ;5 (y) = %. We will sometimes use the distribution Dy ,, which is understood as

centered at the origin, or when the context is clear, we will sometimes use D, to denote sampling over R,
then rounding to an appropriate element.

More frequently, we will use the generalized multi-dimensional (or m-variate) Discrete Gaussian distri-
bution Dz q. which denotes sampling a Z;-valued m-vector with covariance matrix Q € Z*™ . In order
to sample from the distribution Dz q, proceed as follows:

- Sample t' = (#}, ..., t},,) € R™ independently as t, < D; for i € [m].
- Find the Cholesky decomposition Q = LL”".
- Output the vector ¢ := Lt’ as the sample t <+ Dz q-

Recall that the Cholesky decomposition takes as input any positive-definite matrix Q € R™*™ and
outputs a lower triangular matrix L so that Q = LL”. Further, we recall the fact that the sum of two
m-variate Gaussians with means p1, uo and variances Q1, Q2 is an m-variate Gaussian with mean 1 + 2
and variance Q1 + Qo.

Next we show a useful lemma that we need for our construction.

Lemma 2.6. Let I, «., be the m-by-m identity matrix, R € R™*™, and Q def aL,m — ®°RTR for
positive numbers a, b such that a > b||R||. Then Q is positive definite.

Proof. To show that Q is positive definite, we need to show that for any column vector x of dimension m,
we have 7 - Q - & > 0. We prove this by unfolding the matrix Q:

2l Q. z=a". (aQImxm — bQRTR) -x
= a®z2'L,umx — Pz’ RTRx
= d’||z|] - v*||Ra||?

DR - [|][* — b Rax .

\Y

Since ||R|| - ||z|| > ||R||, we can conclude 27 - Q - = > 0. O



Randomness extraction. We will use the following lemma to argue the indistinghishability of two differ-
ent distributions, which is a generalization of the leftover hash lemma proposed by Dodis et al. [DRS04].
We use the lattice based leftover hash lemma in [ABB10].

Lemma 2.7 ([ABB10]). Suppose that m > (n + 1)logq + w(logn). Let R € {—1,1}™** be chosen
uniformly at random for some polynomial k = k(n). Let A, B be matrix chosen randomly from Zg‘xm, ZZILX k
respectively. Then, for all vectors w € Z™, the two following distributions are statistically close:

(A,AR,RTw) ~ (A,B,RTw)

Trapdoors and sampling algorithms. We will use the following algorithms to sample short vectors from
specified lattices.

Lemma 2.8 ([GPVO08]). Let q,n, m be positive integers with ¢ > 2 and sufficiently large m = (nlog q).
There exists a PPT algorithm TrapGen(q,n, m) that with overwhelming probability outputs a pair (A €
Zy ™, Ta € Z™*™) such that A is statistically close to uniform in Z;*™ and T is a basis for AqL(A)
satisfying ||Ta|| < O(nlogq).

Lemma 2.9 ([GPV08, CHKP10, ABB10]). Let g > 2,m > nand s > ||Ta|| - w(y/logm + my). There
are several polynomial time algorithms as follows:

e There is an efficient algorithm SampleLeft(A, B, Tau, s): It takes in A € Zy™™, a short basis T A
for lattice Aé‘(A), a matrix B € ngml, a vector u € ZZL and a Gaussian parameter s, then outputs
avector e € Ly from D1 (g4, s (up to negl(n) statistical distance), where F := (A|B).

e There is an efficient algorithm SampleRight(A, B, R, T, u, s): It takes in A € Zy*™, R € Zj**",
amatrix B € ngn, a short basis T for lattice Aé‘ (B), a vector u € Zg and a Gaussian parameter
s, then outputs a vector e € 7" such that e € A} (F), where F := (A|AR + B), and is statistical
close to DAZ]L(F)’S.

e There is an efficient algorithm SamplePre that takes as input a matrix A € Zy*™ together with its
trapdoor T o, and a vector u € Zy and outputs a matrix € € Z™ from D1 (o) 4y, (up to negl(n)
statistical distance.)

e There is a deterministic polynomial-time algorithm ExtBasis(A, T, A’) that takes in an arbitrary
A € Zy*™, whose columns generate the entire group Zy, an arbitrary basis Ta € Z™*™ of AL (A),

then outputs a basis T' of A+ (A|A’), such that ||T|| = ||Ta||. Moreover, the same holds even for
any given permutation of columns of A’.

e There is a deterministic polynomial time algorithm Invert(A, T A, b) that, given any A € Ly™™ with
its trapdoor T o € ZI™™ such that || T|| - w(y/logn) < 1/ for some 8 > 0, and b = A''s + x for
arbitrary s € Zy and random x < Df@”, outputs x with overwhelming probability.

3 Learning with Errors and Extended Learning with Errors

The LWE problem was introduced by Regev [Reg05], who showed that solving it on the average is as hard
as (quantumly) solving several standard lattice problems in the worst case.



Definition 3.1 (LWE). For an integer ¢ = q(n) > 2, and an error distribution x = x(n) over Zg, the
learning with errors problem L\WE,, ,,, 4 \ is to distinguish between the following pairs of distributions:

{A,b=ATs +x}and {A,u}

where A ﬁ ngm, s é ZZ]‘, u g Z;”, and ﬁ x™.

O’Neill et al. [OPW11] introduced the extended-LWE problem, which allows a “hint” on the error vector
x to leak in form of a noisy inner product. They observe a trivial “blurring” argument shows that LWE
reduces to eLWE when the hint-noise 3¢ is superpolynomially larger than the magnitude of samples from
X, and also allows for unboundedly many independent hint vectors (z, ;) while retaining LWE-hardness.

Definition 3.2 (Extended LWE). For an integer ¢ = q(n) > 2, and an error distribution x = x(n) over
Zg, the extended learning with errors problem eL\WE,, ,,, , \ 3 is to distinguish between the following pairs
of distributions:

{Ab=ATs+x,z (z,b—x)+2'} and {A,u,z, (z,u — x) + 2}

where A & Zy=™, s & Zy, u & Ly, x, z i x™ and x' i Dgy.

Further, Alperin-Sheriff and Peikert [ASP12] show that LWE reduces to eLWE with a polynomial mod-
ulus and no hint-noise (i.e. 8 = 0), even in the case of a bounded number of independent hints.

We introduce the following new form of extended-LWE, called eLWE™, which considers leaking a pair
of correlated hints on the same noise vector.

Definition 3.3 (Extended LWE Plus). For integer ¢ = q(n) > 2,m = m(n), an error distribution x =
x(n) over Zg, and a matrix R € Z7"*™, the extended learning with errors problem eLWE;:m sx.B.R S 10
distinguish between the following pairs of distributions:

{A,b=ATs+x 20,21, (z0,b—x) +z,(Rz1,b—x) + 2} and
{Av u, z9, 21, <Z()7 u — $> +z, <Rz17 u — $> + ':U/}

where A & Zy™™, s & Ly, u & Ly, x, 20, 21 & x™ and x, x’' & Dgy.

Hardness of extended-LWE™. A simple observation, following prior work, is that when y is poly(n)-
bounded and the hint noise 3¢ (and thus, modulus ¢) is superpolynomial in n, then LWE,, ,,, , , trivially

reduces to eLWE:m ox.p.R forevery R € Zy**™ so that Rz has poly(n)-bounded norm. This is because,

for any r = w(y/log n), ¢ € Z, the statistical distance between Dy, and ¢ + Dy, is at most O(|c|/r).

However, our cryptosystem will require a polynomial-size modulus q. So, we next consider the case of
prime modulus g of poly(n) size and no noise on the hints (i.e. 3 = 0). Following [ASP12], it will be
convenient to swap to the “knapsack” form of LWE, which is: given H <« Z((]m_")xm and ¢ € Z;"", where
either c = Hx for <~ x™ or c uniformly random and independent of H, determine which is the case (with
non-negligible advantage). The “extended-plus” form of the knapsack problem also reveals a pair of hints
(20, 21, (z0, ), (Rz1,x)). Note the equivalence between LWE and knapsack-LWE is proven in [MM11]
form > n + w(logn).

2We note that a higher quality reduction from LWE to eLWE is given in [BLPT 13] in the case of binary secret keys. However
for our cryptosystem, it will be more convenient to have secret key coordinates in Z,, so we extend the reduction of [ASP12] to
eLWET instead.
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Theorem 3.4. For m > n + w(logn), for every prime q = poly(n), for every R € Z;**™, and for every

LWE"
B0, Advig, (1Y) > (1/g?)Advy AR (1,

Proof. We construct an LWE to eLWE™ reduction B as follows. B receives a knapsack-LWE instance H €
Zémfn)xm,c € Zg'~™. It samples ', 20,21 + X and uniform vg, v <+ Zq'~". It chooses any R €

Z;"””, then sets

H = H— vzl —vi (Rz)" € Zém_")xm,
c:=c—wvg-(z0,@') —v1- (Rzy,2’) € Z' "

It sends (H', ¢/, zg, z1, (20, '), (Rz1, ') to the knapsack-eLWE™ adversary A, and outputs what A out-
puts.

Notice that when H, ¢ are independent and uniform, so are H', ¢
perfect.

Now, consider the case when H, ¢ are drawn from the knapsack-LWE distribution, with ¢ = Hx for
x < x". In this case, H' is uniformly random over the choice of H, and we have

/_ in which case B’s simulation is

¢ =Hzx — vy (z0,2') —v1 - (Rz1,2)
= (H’ +vozd 4+ vy (Rzl)T) x —vg- (z0,x') —v1- (Rzy, o)
=Hz +vy (20,2 — ') +v1- (Rzy,z — ).
Define the event £ = [Ey A E4] as
def

Ey =

def
E =

[<ZO,£B> = <Z0,$,>] )

[(Rz1,z) = (Rzy,2)] .

If event E occurs, then the reduction B perfectly simulates a pseudorandom instance of knapsack-
eLWE™ to A, as then vy - (20, x — ') +v1 - (R2z1, x — ') vanishes, leaving ¢/ = H'z for H' «+ ng_n)xm
and < " as required. Otherwise since ¢ is prime, the reduction B (incorrectly) simulates an independent
and uniform instance of knapsack-eLWE™ to A, as then either one of vy - (2o, T — ') or vy - (Rz1,x — ')
does not vanish, implying that ¢’ is uniform in Zq'~" over the choice of v (resp. v1) alone, independent of
the choices of H' and «.

It remains to analyze the probability that event E occurs. Because x and x’ are i.i.d., we may define
the random variable Zj that takes values (zp,x*) € Z, and the random variable Z; that takes values
(Rz1,x*) € Zq4 jointly over choice of * <— X", and analyze their collision probabilities independently.
Since the collision probability of any random variable Z is at least 1/|Supp(Z)|, we have that Pr[E] >
min CP[Zy] - min CP[Z1] = 1/¢? = 1/poly(n), and the theorem follows. O

4 Tighter Error Analysis

In this section, we provide some useful lemmas for a tighter analysis of the error growth in our IPE con-
struction. Our construction basically follows the IPE construction by Agrawal et al. [AFV11]. The analysis
of the scheme requires bounding evaluated noise of the form z” - x,, where z is a secret key and x,, is
the noise of an evaluated ciphertext, which has the form «, = Ra, where R is a random {—1, 1}™*™
matrix (or a sum of several such matrices), and « is the error term of the original ciphertext(s). To explain
our tighter analysis, we can think of a simplified version where z, s are samples from the m dimensional
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Gaussian distributions with width s, « respectively. (There are other terms in the actual construction, but
here for exposition we just focus on the simplified form.)

As discussed in the introduction, in order to achieve deniability while maintaining correctness of de-
cryption, we need to further leverage the gap between ||z7 - x,||, and ||z - x,||, where the former refers
to the decryption correctness bound, and the latter refers to the deniability bound. We require the for-
mer to be small, and the latter to be large. In this work, we carefully bound these terms and show that
||z7 - x,|| =~ mas, and ||x] - z,|| =~ m2as. The gap of m is crucial so that our parameters have a feasible
region. In particular, we will eventually lose an additional /m factor in this gap, in order to ensure positive-
definiteness of certain matrices in our construction. Therefore, we need this gap to be at least m!/2+9 for
0 > 0 to ensure feasibility in the end.

Our analysis uses a careful application of Hoeffding’s inequality on truncated random variables. Ba-
sically Hoeffding’s inequality shows that for i.i.d. random variables Y7, Ys, ..., Y,,, the probability ¥ =
Yi+---4Y,,— E[Y] > tis small for an appropriate setting of ¢. However, there is a subtlety when we apply
this inequality: if the Y;s may possibly take values in a large range, then the bound given by the inequality is
not as sharp, and in fact this is exactly our case. To overcome this, we first argue that with high probability,
each Y; take values in a much smaller range w.h.p. Therefore, we can first truncate the random variables Y;
to cut out the large values, which only induces a negligible statistical distance. Then we apply Hoeffding’s
inequality on the truncated random variables (with a lower upper bound) to obtain a sharper bound overall.

We note that previously, Agrawal et al. [AFV11] showed that ||z7 -z, || < ||zT]|-||R]|-||z|| = m'®as.
This bound is sufficient for the normal IPE setting where only correctness is required. However as discussed
above, it is not sufficient for us because a gap of \/m is (precisely!) too small to allow a feasible region for
our parameters.

Lemma 4.1. Let R is an m x m be a matrix chosen at random from {—1,1}""*™ and u = (uq, ..., up,) €
R™ be a vector chosen according to the m dimensional Gaussian with width . Then we have

Pr [|\Ru\|2 € @(m2a2)] > 1 — negl(m).

Proof. We know with overwhelming probability over the choice of u, all of its entries have absolute value
less than B = aw(logm). Also, we know that with overwhelming probability, we have ||u||*> = ©(ma?).
We call a sample typical if it satisfies these two conditions. Note that it is without loss of generality to just
consider the typical samples, from a simple union bound argument.

Then we consider a fixed typical choice of vector u = (uy, ..., uy,) € R™. We write the inner product
of r’ - w where r = (r1,...,7,) is sampled uniformly from {—1,1}"™. We observe that E [||r” - u||?] =
E [Zﬁl rEuE i Tirjuiuj] = Y7, u? = ||u||?. This is because each r;, r; are independent and
have mean 0.

Now, for such a fixed u we denote random variables X1, ..., X,, be i.i.d. samples of ”w. It is not hard
to see that

o ||Rul|? = X? + X3+ -+ + X2, (one can view X; as the i-th entry of Ru),
o E[|[Rul[*] = ml[u]|*.

Next we claim that for each i, X? < mB?w(logm) with overwhelming probability. By Hoeffding’s
inequality, we have

2t2
Pr Z rjuj| >t < 2emaB?,
J€[m]
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This is because each rju; € [—B, B]. (Recall that we consider a fixed u for the typical case). By setting
t = y/mBw(logm), we have Pr[|X;| > t] < negl(m). Thus X? < mB?w(logm) with overwhelming
probability. So we can consider truncated versions of Xz-2’s, where we cut out the large samples. This
will only induce a negligible statistical distance, and change the expectation by a negligible amount. For
simplicity of presentation, we still use the notation X f’s in the following arguments, but the reader should
keep in mind that they were truncated.

Next again we apply Hoeffding’s inequality to the X?’s to obtain

_ 2t/ _ 22
Pr [||[Rul]> — m||u|[*| > t'] < 2e Ty (mBZulogm)? — 96" m3Blulogm)

By taking ¢ = m||u||?/2, we have

[l |*

Pr [[[[Rul[” = ml[ul[?| > ¢'] < 2¢ 2mButosm.,

Since w is typical, we know that ||u||? = ©(ma?). Also recall that B = aw(logm). So we have

Pr [||Ru|® € ©(m*a?)] > 1 — e wlogm) = | — negl(m).
This completes the proof. O
Using the same argument as above, we can show the following lemma.

Lemma 4.2. Let u = (uq, ..., uy,) € R™ be an m dimensional Gaussian sample with width o. Then

Pr [HR(t)uHZ € O(tm*a®)] > 1 — negl(m),
where Ry is sampled as follows: first sample t matrices Ry, ..., Ry at random from {=1,1}", and then

set R(t) = 22:1 R;.

Lemma 4.3. Let z, x be m-dimensional Gaussian distributions with width s, a, respectively, and R is a
{=1,1}™%™ matrix sampled uniformly at random. Then |zT Rz| < msaw(logm) with overwhelming

probability.

Proof. Letr; ; be the (i, j)-thentry of R, 2 = (21,...,%mn), and € = (1, ..., %,,). Then |27 Rx| can be

written as » _; sep, T4,%i%;. Now we argue that for fixed vectors z, x, the probability that

E Tij%i%5| >

i,j€[m]

is small.
We observe that each 7; jz;x; is an independent random variables taking values between (—|z;z;|, |22
and has mean 0. Thus, we can apply Hoeffding’s inequality:

).

22
Pr r;iziTil >t <2expq — .
Z i,j il ] P{ Zi,je[m}(2|zixj|)2}

ij€[m]
By taking ¢ = | /3=, icp [2i%5]* - w(log m), we have
Pr Z rijzix; >t | < negl(m).
i.j€[m]
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We know that with overwhelming probability, all (absolute values of) entries of z are less than sw(logm)
and all entries in x are less than aw(logm). So we know that with overwhelming probability |z;z;| <
saw(logm). This is equivalent to saying that with overwhelming probability over the choices of x, z, we
have ¢t < msaw(logm). This completes the proof. O

5 Multi-Distributional Bideniable IPE

Let X be the security parameter. Let £ be the length of predicate/attribute vectors. Let n, ¢, m be positive
integers. Set k = [logy ¢q|. Let o, B,7,s € [0,1] be positive real Gaussian parameters. We will use the

gadget matrix G € Zy*™ along with a “good” basis T, as introduced in [MP12]. For fixed ¢ as above,

recall that the set Z; & {-1/2+1/q,-1/2+2/q,...,1/2 — 1/q,1/2} is the range (—1/2,1/2] C R

“modulo 17 represented with bit-precision log,(q).

Our construction of multi-distributional bideniable encryption for inner product predicates BiDenlPE
= (Setup, DenSetup, KeyGen, SampleP, SampleU, TestP, FakeSCoins, FakeRCoins) uses a semantically
secure public key encryption IT = (Gen’, Enc’, Dec’) with message space My = Z;**™ and ciphertext
space Cry, and is described as follows:

e Setup(1*,1%): On input security parameter A and predicate/attribute vector length parameter ¢, do:

1. Run TrapGen(g, n,m) to obtain a matrix A € Zg*™ and trapdoor basis T C Aj (A).

2. Sample £ - (1 + k) uniform matrices A; ; € Zg*™ fori = 1,...,¢,j = 0,..., k, and a uniform
vector u € Zg.

3. Compute a public/secret key pair (pk’,sk’) for a semantically secure public key encryption
(pk’,sk') < Gen’(1%).

4. Output public parameters pp and master secret key msk as
pp = (pk,7 Aa {Ai,j}’ u)7 msk = (TA> Sk,)

e DenSetup(1*, 1¢): On input security parameter \ and predicate/attribute vector length parameter ,
the deniable setup algorithm runs the same computation as setup algorithm, and outputs

pp = (pk', A, {A;;},u), msk = (T4, sk’), fk = (Ta,sk’)

e Keygen(pp, msk, v): On input public parameters pp, master secret key msk, and a predicate vector
v = (v1,...,00) € Zg, do:

1. For¢ = 1, ..., ¢, decompose v; into its bit representation as: v; = Z?:o Vi 27, where v €
{0,1}.

2. Define the matrices
¢k
Cy = ZZ’Uz’,in,j € Zng7 A, =[A|C,] € ZZXQm'

3. Sample vector z = (zp|z1), using
(zo|2z1) < SampleLeft(A, Cy, Ta, u, sq)

such that [A[|Cy] - (£9) = u.
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4. Output the secret key sk, = z.
e SampleP(pp, w): On input public parameters pk and attribute vector w = (wy, ..., wy) € Zg, do:

1. Choose a uniformly random vector s <— Zj. Then sample noise vector x <— Dzm and

noise term x < Dz, 4.
2. Letcy := (ATs/q) +x.
3. Fori=1,...,fand j =0, ..., k, do:
(a) Sample uniform matrix R; ; € {—1,1}
(b) Letc;; = ((Ai; +2w;G)T's/q) + RZjX.
(¢) Use public key encryption to encrypt matrix R, ;, i.e. S; ; < Enc’(pk’, R; ;).
4. Letd := (ul's/q) +z.
5. Output the P-sample ¢ = (co, {c; ;},,{Si;}).

7a21m><m

mxXm

Samp|eU(pp): For i = 1’ ’e andj = 07 sty k‘, let Sz’J - Encl(pkla Ome)a and output ({SiJ}v C)
for uniform ¢ € Z* x (ZTIH)ZXkH x 7y X Cllilxk-&-l‘

TestP(pp, sky, ¢): On input public parameters pp, secret key sk, = z for predicate vector v, and a
purported P-sample ¢ = (co, {c; ;}, ) € ZP x (ZP)>**+1 x 7y, do:

1. Define the binary expansion of vector v as Step 1 in key generation algorithm and compute:
¢ k
Cv =D i1 20 Vi,iCij-
2. Compute ¢ = ¢ — (z,c*) € (—1/2,1/2], where c* = (co|cy).

3. Accept c as a valid P-sample if |c| is closer to 0 than 1/4; otherwise reject c.

FakeSCoins(c): Simply output the P-sample c as the randomness 75, ., that would cause SampleU
to output c.

FakeRCoins(pp, fk, ¢, v): On input the public parameters pp, faking key fk, a ciphertext ¢ and an
attribute vector v:

1. If (v, w) # 0, then output sk,, = Keygen(msk, v).

2. Otherwise, first parse ciphertext as ¢ = (co, {c;}, ¢, {S; j}), and use algorithm & <— Invert(A, Ty, cp).
Then for¢ = 1,...,f and j = 0, ..., k, use public key decryption to decrypt S; ; to get R; ; €
{=1,1}m™ je. R;; := Dec'(sk’,S;;). Then sample a properly distributed secret key z,
using

z < SampleLeft(A, Txa, C,, u, sq)

where matrix C,, = Zle Z?:o vijA;j € L™,

3. Sample correlation coefficient p <— D, and sample correlation vectors to be Yy <— Dzm g2421

and y; < (uxy + Dzm q)q, where R, of Zle Z?:o v; ;R j, where x, e RIz, and
where ot
Q= FLuxm =70’ Ry Ro. (M)

Recall in order to sample from the (ellipsoidal) distribution Dzm q :
- Sample t’ = (#}, ..., t},,) € R™ independently as t; «— D, fori € [m].
- Find the Cholesky decomposition Q = LL for some lower triangular matrix L. (This is
possible by Lemma 2.6 and our parameter setting.)
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- Output the vector t := Lt' as the sample ¢t < Dzm q.
4. Lety = [yy|y;] € Z*™. Sample and output the faked secret key sk, = z* as the vector
z* < y + SampleLeft(A, C,, Ta, 2z — y,qV/ 2 — 5?)

where A, = [A|C,] € Z}7*™,

5.1 Correctness and Security Proof

Theorem 5.1. Assuming the hardness of extended- LWE:lrm ¢ Dym g R for any adversarially chosen distri-

bution over matrices R € Z;"*™ and semantically secure public key encryption 11 = (Gen’, Enc’, Dec’),
the above algorithms form a secure inner-product-based bitranslucent set scheme as in Definition 2.2.

Proof. Lemma 5.2 below shows the correctness property. The indistinguishability property follows directly
by Lemma 2.8. The bi-deniability property is proven in Lemma 5.3 below. O

Lemma 5.2. For parameters specified in Section 5.2, the IP-BTS defined above satisfies the correctness
property in Definition 2.2.

Proof. As we mentioned in Remark 2.3, the correctness of faking algorithms is implied by the bi-deniability
property. Therefore, we only need to prove the correctness of normal decryption algorithm. For inner
product (v, w) = 0, we have

L

t k k
co =Y Y vigeij=> > vi;j((A;+2wG) s/q+ R ;)

i=1 j=0 i=1 j=0

¢k ¢k
= (O vijAi) s/a+ (0.w)GTs /g + 3 Y v (R jz)

i=1j=0 i=1 j=0
kK {  k
= QD vighAi) sla+) D vij(Riw)
i=1 j=0 i=1 j=0
Then we set ¢* = (¢p|ey), which can be parsed as follows:

4 k 0 k
¢ = (coler) = [AID D vijAig) s/a+ [z )Y vi;Rla]

i=1 j=0 i=1 j=0

¢ k
=Als/q+ [z| Z va-jojw]

i=1 j=0

Recall that secret key sk, = z satisfying A,z = u, then for ¢ = ¢/ — (z/q, c*}, it holds that

¢k
c=d —(z,¢") = (ul's/q+z)—uls/q— z/q[x| ZZvi7jRg:j:c]
i=1 j=0

¢k
=z — (z, [z Z sz‘,jRijD

i=1 j=0
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Now we want to calculate a bound for the final noise term. To do so, we apply Lemma 4.3 over the
Zle E?:o to obtain the correctness constraint for evaluated noise

2¢1og(q)msaw(log(m)) < 1/4.

So by setting the parameters appropriately, as in Section 5.2, we have that

{ k
o = (=z,[2] Y D vi R ]| < 1/4,

i=1 j=0
and the lemma follows. O]

Lemma 5.3. Assuming the hardness of extended-LWE

R0, D g R for any adversarially chosen distribu-
tion over matrices R € Zy"*™ (and semantically secure public key encryption 11 = (Gen’, Enc’, Dec')), the

IP-BTS scheme described above is bi-deniable as in Definition 2.2.

Proof. First, we notice that because SampleU simply outputs its random coins as a uniformly random ¢ €
27 x (ZP)PFH x Zy x CEFT1 we can use ¢ as the coins.
We prove the bi-deniability property by a sequence of hybrids H; with details as follows:

Hybrid Hy: Hybrid Hy is the view of adversary A in the right-hand faking experiment in the definition of
IP-BTS bi-deniability. We use the fact that algorithm Invert successfully recovers noise vector  from
c with overwhelming probability over all randomness in the experiment.

Hybrid H;: In hybrid Hy, we will embed matrices R; ; and vector w in the public parameters pp.

Recall that in hybrid Ho, the matrices {A; j}z’e[ﬁ} ,jc|x) are sampled at random for each ciphertext. In
hybrid Hy, we will modify this as follows: Let w* = (wj, ..., w}) be the challenge attribute vector that
adversary A intends to attack. We sample random matrices R} ; € {—1,1}"*™ fori € [{], j € [k],
which will also be used in the generation of challenge ciphertext, and set the matrices {A; ; }icjg je[k]
to be

Aij = AR;; - 2uwG

where matrix G is the gadget matrix with short trapdoor T'q. The rest of the hybrid is unchanged.

Hybrid Hs: In hybrid Ho, we switch the ciphertexts S; ; to encryptions of zero.

Recall that in hybrid Hq, we encrypt the randomness matrix R; ; fori = 1,...,¢,j = 0,..., k using
semantically secure PKE IT, i.e. S; ; <= Enc’(pk’, R} ;). In hybrid Ha, we just set S; ; = Enc’(pk’, 0)
to be encryption of zero matrix 0 € Z"™*™ to replace the encryptions of matrices R},

Hybrid Hs: In hybrid Hs, we change the order of how we generate A, u in the public parameters pp, and
the generation of challenge secret key z*.

Let A be a random matrix in Zy*". The construction of { A; ; }ic[¢ je[») Temains the same as hybrid
Hi. Sample error vector * € Dyzm 421, .. that would be used in algorithm SampleP later and

compute evaluated error . = Zle Z?:o vp R a:*l, where v} = Z?:o PR 27. Set vectors
Yo < Dzm g2, and y, as the same way in FakeRCoins algorithm, i.e. y; < pqzxy. + Dzn q,

* . _ 1 k *
and 2% < y + Dzem_y (2 52)g2L,, 4, - LheN set matrix Ay = [A[> 5 >0 (07 ;A ;] and set
u = Ay~ - z¥. Moverover, since A is a random matrix, which means we do not have the trapdoor

of A to answer the key queries for predicate vector v, we will use the trapdoor T to answer key

21"7le
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queries. Consider a secret key query for predicate vector v, such that (v, w*) # 0. To respond, we
first decompose v to its bit expression v} = Z?:o v;j -2 fori =1,...,/, and set

kK { k

Ao = [A]D D viA I =[AIAQ) Y vl Ri;) — (v,w")G]

i=1 j=0 i=1 j=0

Then sample sk, = z, using

‘K
z = SampleRight(A Z Z v, WG, Tg,u,sq)
i=1 j=0
To answer P-sample queries, SampleP is the same as hybrid Hy except using error vectors x* and
matrix G. It first computes and outputs c¢* = (cj, {c;j},c*'), ie. = ATs/q + z* Cry =

R;T(ATs/q + x*),¢” = ((u,;s)/q) + a*, then for i = 1,..,¢,j = 0,...,k, encrypts matrix
Si; «+ Enc (R* , pk’) using semantically secure pubhc key encryption II. For fakmg receiver coins
algorlthm Fake RComs, simply output the vector z* pre-sampled in the generation of vector u before.

Hybrid Hy: In hybrid Hy, we change the order in which we generate vector y and error vector x*.

First, we directly sample the 2m-dimensional correlation vector y := (yo|y1) < Dzem 2215, 00
at once. (From y, we compute z* as in previous hybrids.) Next, we generate c;’s error term as

x* = vR}y,/q + Dgm q, where v < D, T A 7a2/52 and Dzm ¢ is sampled as L'Dzm

1 T Imxm

for
Q =LL7 ¥ oL, — T2B°RERT. )

Additionally, we modify the challenge ciphertext to be
=Als/g+a", e =Rijej/e, " = (u,5)/g+Dra

Observe that this induces an evaluated error term during decryption of the challenge ciphertext under
secret keys sk,, of the form =, = R x* = vR: Ry, /q + R Dgm Q-

Hybrid Hs: In hybrid Hs, we change the order in which we generate secret key z* and vector y.

First, we directly sample the 2m-dimensional secret key z* = (z{|z]) « Dyzm s2421,,.,,,- (This
determines sk,+ and vector u in pp.) Next, we generate the correlation vector as y = (ygly;) :=
2" /24 Dgzm (822 14)Tomxam - LNE remainder of the hybrid remains roughly the same. In particular,
the challenge ciphertext c* (and its noise term x*) is generated from y in the same manner as Hybrid
H,. We break the noise term z* into two terms z* = =) + 23 + vRZy, /q, where 1) «
Dzm”g/QIme and 93(2) — ,Dzm7Q/_6/21me. We set B, = Oé/2

Hybrid Hg: In hybrid Hg, we change how the challenge ciphertext is generated using Extended-LWE™.

First, sample uniformly random vector b € Z;" and set the challenge ciphertext as

cy=b/g+a® + Ry /g, o =Ric;, ¢ =2TIR;T(b/g—aV)+ Dy, 4

where matrix R} = Zl 1 Z v ;R ; and vectors x;,; are sampled as in Hy.

5=0 Vi,

Hybrid H7: In hybrid H7, we change the challenge ciphertext to be uniformly random. That is, SampleP
samples uniform vectors ¢ € ZY', c; ; € Zi" ,¢* € 7y and outputs ciphertext ¢* = (cj, {c; it ).
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Claim 5.4. Hybrids Hog and H; are statistically indistinguishable.

Proof. Observe the only difference between hybrids Hy and Hy is the generation of matrices { A, ; }Ze[g] Jelk }

Le. A;j = AR} — 2Jw? G, where matrix G is the gadget matrix with short trapdoor T'g and R},

{=1,1}m>m, Then by Leftover Hash Lemma 2.7, the distribution (A, {AR] ;}icg,jefr]) i statlstlcally
close to the distribution (A, {A;;}icie,jelk]), Where matrices A;; are uniformly random over Z™*™.
Hence, hybrid Hg and H; are statistically indistinguishable. O

Claim 5.5. Assuming the semantic security of PKE I1 = (Gen’, Enc’, Dec’), hybrids Hy and Hs are compu-
tationally indistinguishable.

Proof. Observe there is only one difference between hybrids H; and Hs: In the challenge ciphertext, the
encryptions (under PKE II) of the random rotation matrices R; ; are replaced by encryptions of 0. If an
efficient adversary A distinguishes between the Hi-encryptions of R, and the Hy-encryptions of 0 with
non-negligible probability, then we can construct an efficient reduction B that uses .4 to break the semantic
security of II with similar probability. O

Claim 5.6. Hybrids Hy and Hs are statistically indistinguishable.

Proof. Observe there are three differences between hybrid Hy and H3: The generation of matrices A, D,
the generation of challenge secret key sk,« and the computation method to answer secret key queries. By
the property of algorithm TrapGen in Lemma 2.8, the distribution of matrix A in hybrid Hs is statistically
close to uniform distribution from which matrix A in hybrid Hs is sampled.

For secret key queries, in hybrid Ha, we sample vector z = (zg|z1), using

z = (z9]2z1) + SampleLeft(A, C,, Ta,u, sq)

While in hybrid Hs, we sample vector z = (zg|21), using

Lk
z = SampleRight(A ZZ v,w")G, Tg,u, sq)
i=1 j=0

By setting the parameters appropriately as specified in Section 5.2 and the properties of algorithms SampleLeft
and SampleRight in Lemma 2.9, the secret key answers to queries are statistically close.

By Leftover Hash Lemma, the distribution ([A|Cy+], [A|Cy+] - 2*) and ([A|Cy+], w), where matrix
Cy+ = ZZ 1 Z oV jAij € Zy*™, are statistically close, which means matrix w in both hybrids are
statistically close. O

Claim 5.7. Hybrids H3 and H, are statistically identical.

Proof. The only difference between the two experiments in the choice of * and y — in particular, the
choice of the y, component of ¥y = (y,|y;). We will show that the joint distribution of (z*,y,) € (Z™)?
is identically distributed between the two experiments:

In Hybrid Hs, y; is sampled as y; < (ux}, + Dzm.q)q where Q = B2L,xm — 72a?REI R} with
x* < Dym and zf, = S0 SF i—ovijRiTx* = RyTa*. Therefore in Hy, we may write the joint

2L xm

L. . def aIme Omxm T
distribut f (x* T - Dyom here T = f =LL zmxm
istribution of (z*,y,) as T1-Dyamy,, ., where T ( vagRT gL > or Q €

via the Cholesky decomposition due to Lemma 2.6.
In Hybrid Hy, y = (yoly;) is sampled as y < Dyom g2y, ., . Then, x* is generated as z* =

vRyy1/q + Dzm q Where v <— D, T def va?/B?% and Q' = I, xm — T2B*REREL. Therefore, in Hy,
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. TR def
we may write the joint distribution of (z*,y;) as Ta - Dyam y,,, .., Where T = < 0

L’ TBR;, )
mxm  Bmxm
for Q' = L'L'T € Z™*™ via the Cholesky decomposition due to Lemma 2.6.

We claim equality of the following systems of equations:

1,17 — ?Lxm ya2qR _ L'LT + 7282R:RIT 78%gRE _ 1,17
yo* Ry a?RyTR; + ¢’LLT TR B2 L >

This fact may be seen quadrant-wise by our choice of 7 = va?/32 and the settings of Q = LL”
and Q' = L/L'T in Equations (1) and (2). It then follows that (T5 ' T;)(T5 ' T1)” = Iayx2m, implying
T1 = T2Q" for some orthogonal matrix Q*. Because the spherical Gaussian Dz2m 1, ., 18 invariant
under rigid transformations, we have T1 - Dzem 1, ., = ToQ" - Dgemy, ., = To-Dyomy, ., and
the claim follows. 0

Claim 5.8. Hybrids Hy and Hs are statistically indistinguishable.

Proof. Observe the main difference between hybrids Hy and Hs is the order of generation of vectors
y and z*: In the hybrid Hy, we first sample y = (yoly;) < Dzzm g221,,,,,, and set 2% < y +
Dy2m_y q2(52— 82)Lomxom » While inhybrid Hi, we first sample 2* < Dzom s2021,,. 0., » and sety = (yoly;) =
z*/2 4+ Dzam (82— 52 /4)¢?Tapmxam - BY setting parameters appropriately as in Section 5.2, these two distribu-
tions are statistically close. O
Claim 5.9. Assuming the hardness of extended- LWEZ -

over matrices R € Z?Xm, then hybrids Hs and Hg are computationally indistinguishable.

Dym g R for any adversarially chosen distribution

Proof. Suppose A has non-negligible advantage in distinguishing hybrid Hs and Hg, then we use A to
construct an extended-LWE™ algorithm B as follows:

Invocation. B invokes adversary A to commit to a challenge attribute vector w* = (wj,...,w;) and
challenge predicate vector v* = (v], ..., v;). Then B specifies R by sampling R} as in the hybrids,
and sets R = R}. Then it receives an extended-LWE™ instance for the matrix R = R, as follows:

{Aab = As +x, 20, 21, <Zo,b— m) + T, <Rz17b - $> —|—Q?l}

where A ﬁ ngm, s ﬁ Lq,u ﬁ Lq'sx, 20, 21 i x" and x, 2’ ﬁ x. Algorithm 3 aims to leverage
adversary A’s output to solve the extended-LWE™ assumption.

Setup. B generates matrices {A; j }ic(e,je[] @S specified in hybrid Hy. Then, B sets challenge secret key

sky» = 2* = (2§]27) = (20|21) from extended-LWE™ instance and computes vector « as in hybrid
Hs.

Secret key queries. 13 answers adversary A’s secret key queries as in hybrid Ho.

Challenge ciphertext. 3 answers adversary .4’s P-sample query by setting

¢y =b/g+z? + Ry /g, ¢ =Rilch, ¢ =u's/q+ Dz .

Faking receiver coin query. B answers adversary A’s faking receiver coin query by outputting the
extended-LWE instance’s vector sky« = 2*.

Output. B outputs whatever A outputs.
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. . ’
We can rewrite the expression of ¢c* to be

([A"[A'R)(22))"s/q + Dz,
(=529 ( R{};*T ))8/a+ Dz, 0 = 25A T s/q+ 2R AT s/ + Dy,
(z5,b/qg — ) + (Ry27,b/g — &) + Dy, .

We can see that if the eLWE™ instance’s vector b is pseudorandom, then the distribution simulated by
B is exactly the same as Hy. If b is truly random and independent, then the distribution simulated by B is
exactly the same as Hg. Therefore, if 4 can distinguish H5 from Hg with non-negligible probability, then

B can break the eLWE: 11.0.D 20 R problem for some o/ > 0 with non-negligible probability. O

Claim 5.10. Hybrids Hg and Hy are statistically indistinguishable.

Proof. The only difference in these two hybrids is the choice of (¢, ¢} o ¢*'). In hybrid Hg, we first observe

that ¢y is uniformly random, so Rﬁ(b /q + m(2)) is also uniformly random for each 1, j, by the leftover
hash lemma (Lemma 2.7) and our setting of parameters. Therefore, (c{, ¢ j) are uniformly random (in their

marginal distributions). Thus, it remains to show that that ¢ is still uniformly random even conditioned on
fixed samples of (cj, ¢} ;).
As calculated above, we have the following expression:

’

c* :<z6,b/q—x(1)>+< R;z1,b/qg—x ))+DZLQ.

We note that b/q — M) = ¢ — (1) — 2(?) — yR}y, /q. If we can show that
(Ryzi vRy1 /q)

is close to the uniform distribution (modulo 1), then ¢’ will also be close to the uniform distribution (modulo
1), as ¢ is masked by this uniformly random number.

Recall that in the hybrids, we set y; = z7/2+(shift), so it is sufficient for us to analyze <Rf,z*{, vREz%/ q> =

V<Rf,z>{, Rf,z*{/q> = v||R} 2%||*/q. By applying Lemma 4.2 to the most conservative case (i.e. the Ham-
ming weight of v is 1), we obtain that with overwhelming probability,

m
IR, 211*/q > qulz’{\l2-

We recall that z7 is sampled from Gaussian with width sgq, so its two-norm squared (i.e. £3-norm) is
at least m(sq)?/2 with overwhelming probability (by a Chernoff bound argument). Thus, the distribution
v||R%2%||?/q is a Gaussian distribution with width at least

v(ams)?q
4z

We recall again that v was sampled from a Gaussian with parameter 7 = ~vya?/3%. By our setting of
parameters, we have d > w(logn). A Gaussian with such width is statistically close to uniform in the
domain Z;. This completes the proof. O

d=T1(ms)*q/4 =

This completes the proof of Lemma 5.3. Further, Theorem 5.1 follows from Lemmas 5.2 and 5.3. A (multi-
distributional) bi-deniable IPE from LWE then follows from Lemma 2.5 and Theorems 3.4 and 5.1. ]
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Parameters Description Setting
n,m lattice dimension n=\m=n’logn
14 attribute/predicate vector length (=+/n
q modulus (resp. bit-precision) smallest prime > n? log4+25(n)
: T
« Samphng error terms r,T W:M(n)
I5; sampling correlation vector y 1/2
¥ sampling correlation coefficient p wTogl 5()
s sampling secret key z 3/4

Table 1: Parameter Description and Simple Example Setting

5.2 Parameter Setting

The parameters in Table 1 are selected in order to satisfy the following constraints (where for simplicity, we

choose ¢ := /n, B :=1/2):
e To ensure correctness in Lemma 5.2, we have 8/log(q)msaw(log(m)) < 1.

oy

e To ensure deniability in Hybrid H7, we have d/w(log(n)) > T llog())

e To ensure large enough LWE noise, we need o > (y/nlog** n)/q.
e To apply the leftover hash lemma, we need m > 2nlog(q).

e To ensure that that the matrix Q in FakeRCoins is positive definite, we have 3 > ayllog'™* (¢)/m;
thatis, 1/ > (a/B)¢log' ™ ¢/m. This constraint will also imply that in the security proof, both Q’
and Q' — 8%L,,,xm, are positive definite. (Note 5/ = a/2.)

e To ensure hybrid Hj is well-defined, we have s > S and 8 > s/2. Let s := (3/2) 0.

For a small constant § > 0 (and since q, m € poly(n)), we obtain the constraint:

62 log4+26(n)

>
Vq NG
For example, choosing ¢ := y/n and 3 := 1/2 as in Table 1 gives the following feasibility region (primarily
bounded between the deniability and positive-definitiveness constraints):

1+5(n)

1
% 2 <7< 5.\
n nlog ’(n)

We note that this region is satisfiable — i.e. it has “slack” of approximately (:j(\/ﬁ) Choosing ¢ as n¢/2,
for 1/2 < € < 2, reduces this feasibility gap from m'/? to m¢ > 0, for ¢ > 0 (up to poly(log(n)) factors).
Regev [Reg05] showed that for ¢ > /m//’, an efficient algorithm for LWE,, ,,, 4., for x = Dg, (and
B'q > y/nw(log(n))) implies an efficient quantum algorithm for approximating the SIVP and GapSVP
problems, to within O(n /") approximation factors in the worst case. Our example parameter setting yields
a bi-deniable IPE based on the (quantum) hardness of solving SIVPé(ngﬁ)7 respectively Ga pSVPé(n%).
(We write this term to additionally absorb the (1/¢?) loss from our LWE to eLWE™ reduction.) We leave
further optimizing the lattice problem approximation factor to future work, though we speculate it may
prove innately hard (or at least require new, very different ideas) to improve the approximation factor beyond
O(n'5+¢)2 = O(n3*+<"), for €, " > 0, even assuming a completely tight LWE to eLWE™" reduction.
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