
A Note on the Indifferentiability
of the 10-Round Feistel Construction

Yannick Seurin

ANSSI, Paris, France
yannick.seurin@m4x.org

March 2011, updated September 2015

Abstract. Holenstein et al. (STOC 2011) have shown that the Feistel construction with fourteen
rounds and public random round functions is indifferentiable from a random permutation. In the
same paper, they pointed out that a previous proof for the 10-round Feistel construction by
Seurin (PhD thesis) was flawed. However, they left open the question of whether the proof could
be patched (leaving hope that the simulator described by Seurin could still be used to prove
indifferentiability of the 10-round Feistel construction). In this note, we show that the proof
cannot be patched (and hence that the simulator described by Seurin cannot be used to prove
the indifferentiability of the 10-round Feistel construction) by describing a distinguishing attack
that succeeds with probability close to one against this simulator. We stress that this does not
imply that the 10-round Feistel construction is not indifferentiable from a random permutation
(since our attack does not exclude the existence of a different simulator that would work).

1 Introduction

Indifferentiability has been introduced by Maurer, Renner and Holenstein [MRH04] as a way
to formally study whether some construction CF based on some ideal primitive F “behaves” as
some target ideal primitive G. To show that CF is indifferentiable from G, one has to exhibit
an efficient simulator S with black-box access to G such that the two systems (CF ,F) and
(G,SG) are indistinguishable. Informally, the goal of the simulator is twofold: it must provide
answers which are consistent with what the distinguisher can obtain by querying G, without
deviating too much from the distribution of answers of F . When CF is indifferentiable from
G, a composition theorem ensures that any cryptosystem which is provably secure when used
with the ideal primitive G remains provably secure when used with CF , therefore enabling
modular security proofs in idealized models.1

Soon after its introduction, the indifferentiability framework has been used by Coron et
al. [CDMP05] to revisit the construction of a hash function from an ideal cipher: they showed
that variants of the Merkle-Damgård domain extension method, when used with an ideal
cipher in Davies-Meyer mode, are indifferentiable from a random oracle. This implies that any
cryptosystem which is secure in the random oracle model can also be securely implemented
in the ideal cipher model, in short that the ideal cipher model “implies” the random oracle
model.

The other direction, namely whether it is possible to construct an ideal cipher from a
random oracle, turned out to be harder to achieve. A natural candidate for this task is the
Feistel construction. One round of this construction implements a permutation on 2n bits ΨF

1 Restrictions have been later put forward regarding this somehow imprecise formulation of the composition
theorem [RSS11].

from a function F from n bits to n bits, and is defined as ΨF (L,R) = (R,L⊕ F (R)). Given
r round functions (F1, . . . , Fr), the r-round Feistel construction is defined as

Ψ (F1,...Fr)
r = ΨFr ◦ . . . ◦ ΨF1 .

In the following, we will simply denote F the tuple (F1, . . . , Fr) and ΨF
r instead of Ψ (F1,...,Fr)

r .
A celebrated result by Luby and Rackoff [LR88] states the 3-round (resp. 4-round) Feistel
construction yields a pseudorandom permutation (resp. a strong pseudorandom permutation)
when the round functions are independent pseudorandom functions. It was conjectured quite
early that a sufficient number of rounds would make the Feistel construction (with public
random round functions) indifferentiable from a random permutation [CJP02, DP06]. To
obtain a construction which is indifferentiable from an ideal cipher, it is then sufficient to
prepend the key to the input to each round function.

Coron, Patarin, and Seurin [CPS08] published a first proof that the 6-round Feistel con-
struction is indifferentiable from a random permutation. They also showed that at least six
rounds are necessary to achieve indifferentiability by giving an attack for five rounds (we
insist that the attack described in [CPS08] works independently of the simulator, so that it
proves that the 5-round Feistel construction is not indifferentiable from a random permuta-
tion). Slightly later, in an effort to simplify the somehow complex proof of [CPS08], Seurin
gave in his PhD thesis [Seu09] a similar but less intricate proof for the 10-round Feistel con-
struction. Unfortunately, problems were detected in both proofs by Holenstein, Künzler, and
Tessaro [Kün09, HKT11]. Holenstein et al. were even able to give an attack against the sim-
ulator for six rounds of [CPS08], therefore excluding any hope to patch the proof of [CPS08]
without beforehand modifying the simulator. We emphasize that the distinguisher described
by Holenstein et al. works only for the simulator of [CPS08], not for any simulator, so that
it does not prove that the 6-round Feistel construction is not indifferentiable from a random
permutation. To the best of our knowledge, it is still a reasonable conjecture that six rounds
are sufficient to achieve indifferentiability, though simply describing a plausible simulator —
not to say proving that it works— remains an open problem. Regarding the proof for ten
rounds by Seurin [Seu09], Holenstein et al. could only point out the flaw in the proof, but
they did not describe an attack as in the 6-round case. Hence, it was an open problem to
establish whether the simulator described in [Seu09] actually worked (i.e. could be used to
prove indifferentiability for ten rounds), or whether it could be attacked. The goal of this note
is to describe an attack against the simulator of [Seu09]. Similarly to the distinguisher de-
scribed by Holenstein et al. in the 6-round case, our distinguisher is tailored for the simulator
described in [Seu09], and hence does not prove that the 10-round Feistel construction is not
indifferentiable from a random permutation.

In [HKT11], Holenstein et al. also gave a proof that the 14-round Feistel construction
is indifferentiable from a random permutation. Their simulator is very similar to the one
described in [Seu09], the only difference being the use of four “buffer” rounds surrounding
the adaptation rounds (see later for a more detailed account of the role of each round during
simulation). These four buffer rounds do not play any role in the simulation strategy, but
play on the other hand a crucial role when proving that the simulator “works”. By removing
these four rounds (and leaving the simulator otherwise unchanged), one exactly recovers the
simulator for ten rounds described in [Seu09].

Since we aim at keeping this note short, we omit any formal definition of indifferentiability
and refer the interested reader to [MRH04, CDMP05, CPS08, HKT11] for more details. In the

2

following, we start with a description of the simulator for the 10-round Feistel construction
as defined in [Seu09], and then describe and analyze the attack against this simulator.

Update (September 16, 2015). On September 8, 2015, two independent papers proposing
a new proof of the indifferentiability of the 10-round Feistel construction were sent to the
IACR ePrint archive: one by Dai and Steinberger [DS15], the other by Dachman-Soled, Katz,
and Thiruvengadam [DSKT15].

2 Description of the Simulator for Ten Rounds

2.1 Informal Description

We start by giving a high-level overview of how the simulator S works (see also Figure 1).
The simulator offers an interface Query(i, x) that can be accessed by the distinguisher, where
i names which round function is queried and x is the actual value which is queried. The
simulator maintains hash tables F1, . . . , F10 which map entries x ∈ {0, 1}n to values y ∈
{0, 1}n for each simulated round function. Initially, these hash tables are empty, meaning
that round function values Fi(x) are undefined for all i ∈ {1, . . . , 10} and all x ∈ {0, 1}n.
The hash tables are then modified during the execution of the simulator. When the simulator
receives a query (i, x), it looks in hash table Fi whether Fi(x) is already defined. If this is
the case, it simply returns the corresponding answer. Otherwise, it draws Fi(x) uniformly
at random in {0, 1}n. Moreover, for some specific values of i (namely i = 2, 5, 6, or 9), it
implements a “chain detection” mechanism followed by a “chain completion” mechanism to
ensure consistency with the random permutation P . The chain detection mechanism first puts
in a queue Queue tuples (xk, xk+1, k, `). The first three elements (xk, xk+1, k) specify which
chain must be completed, while the fourth element ` ∈ {3, 7}, specifies which round functions
will be “adapted” to ensure consistency with P (F3 and F4 when ` = 3, or F7 and F8 when
` = 7).

In more details, for a query (2, x2), the simulator checks for all values (x1, x9, x10) ∈
F1 × F9 × F10 whether P (x2 ⊕ F1(x1), x1) = (x10, x9 ⊕ F10(x10)), and enqueues the tuple
(x1, x2, 1, 3) if this holds. The behavior for a query (9, x9) is symmetric, but in that case
one has ` = 7: namely, for all values (x1, x2, x10) ∈ F1 × F2 × F10, the simulator whether
P (x2 ⊕ F1(x1), x1) = (x10, x9 ⊕ F10(x10)), and enqueues the tuple (x1, x2, 1, 7) if this holds.

When i = 5 or 6, the simulator detects and enqueues all newly created pairs (x5, x6) ∈
F5 × F6. For each such pair it enqueues (x5, x6, 5, `), where ` = 3 if i = 5, and ` = 7 if i = 6.

Once the simulator has enqueued all newly created chains, it starts completing them by
dequeuing tuples (xk, xk+1, k, `) from Queue. For each such tuple, it “moves” forward and
backward in the Feistel network starting from values xk and xk+1, defining missing round
function values at random, and making a call to P /P−1 to “wrap around”, until only F`(x`)
and F`+1(x`+1) remain undefined. These two values are then “adapted” by the simulator to
ensure consistency with the random permutation by setting:{

F`(x`) := x`−1 ⊕ x`+1
F`+1(x`+1) := x` ⊕ x`+2.

While completing a chain, new chains might be created due to the additional values put in
the hash tables Fi. These new chains are enqueued, and the simulator keeps dequeuing chains

3

F1

F2 x2

F3 x3

F4 x4

F5 x5

F6 x6

F7 x7

F8 x8

F9 x9

F10 x10

x0 x1

x10 x11

Adapt
functions

Adapt
functions

Detect chain

Detect chain

Detect chain

P

Fig. 1. Detection and adaptation zones used by the simulator for the 10-round Feistel construction.

4

until the queue is empty. At this point, it returns the answer to the original query of the
distinguisher.

The simulator also maintains a set Completed containing previously completed chains
to avoid completing the same chain twice.

For completeness, we give a detailed description of the simulator (adapted from [HKT11])
in the next section.

2.2 Definition of the Simulator in Pseudocode

We now describe the simulator in pseudocode. The formalism is very similar to the one
of [HKT11]. Procedure Query(i, x) is the only “public” procedure that can be queried by the
distinguisher.
1: Simulator

2: hash tables F1, . . . , F10 (initially empty)
3: queue Queue (initially empty)
4: set Completed (initially empty)

5: procedure Query(i,x):
6: y := InQuery(i, x)
7: while Queue 6= ∅ do
8: (xk, xk+1, k, `) := Queue.Dequeue()
9: if (xk, xk+1, k) /∈ Completed then

10: \\ complete the chain
11: (x`−1, x`) := EvalForward(xk, xk+1, k, `− 1)
12: (x`+1, x`+2) := EvalBackward(xk, xk+1, k, `+ 1)
13: Adapt(x`−1, x`, x`+1, x`+2, `)
14: \\ add corresponding partial chains to set Completed
15: (x1, x2) := EvalBackward(xk, xk+1, k, 1)
16: (x5, x6) := EvalForward(x1, x2, 1, 5)
17: Completed := Completed ∪ {(x1, x2, 1), (x5, x6, 5)}
18: return y

19: procedure InQuery(i,x):
20: if x /∈ Fi then
21: Fi(x)←$ {0, 1}n
22: if i ∈ {2, 5, 6, 9} then
23: EnqueueNewChains(i, x)
24: return Fi(x)

25: procedure Adapt(x`−1,x`,x`+1,x`+2,`):
26: F`(x`) := x`−1 ⊕ x`+1
27: F`+1(x`+1) := x` ⊕ x`+2

28: procedure EnqueueNewChains(i,x):

5

29: if i = 2 then
30: for all (x1, x2, x9, x10) ∈ F1 × {x} × F9 × F10 do
31: if P (x2 ⊕ F1(x1), x1) = (x10, x9 ⊕ F10(x10)) then
32: Queue.Enqueue(x1, x2, 1, 3)
33: else if i = 9 then
34: for all (x1, x2, x9, x10) ∈ F1 × F2 × {x} × F10 do
35: if P (x2 ⊕ F1(x1), x1) = (x10, x9 ⊕ F10(x10)) then
36: Queue.Enqueue(x1, x2, 1, 7)
37: else if i = 5 then
38: for all (x5, x6) ∈ {x} × F6 do
39: Queue.Enqueue(x5, x6, 5, 3)
40: else if i = 6 then
41: for all (x5, x6) ∈ F5 × {x} do
42: Queue.Enqueue(x5, x6, 5, 7)

43: procedure EvalForward(xk,xk+1,k,`):
44: while k 6= ` do
45: if k = 10 then
46: (x0, x1) := P−1(x10, x11)
47: k := 0
48: else
49: xk+2 := xk ⊕ InQuery(k + 1, xk+1)
50: k := k + 1
51: return (x`, x`+1)

52: procedure EvalBackward(xk,xk+1,k,`):
53: while k 6= ` do
54: if k = 0 then
55: (x10, x11) := P (x0, x1)
56: k := 10
57: else
58: xk−1 := xk+1 ⊕ InQuery(k, xk)
59: k := k − 1
60: return (x`, x`+1)

3 An Attack Against the Simulator for Ten Rounds

3.1 Description of the Attack

We describe a distinguisher D which interacts generically with oracles (P, F), where F =
(F1, . . . , F10), which might be either (ΨF

10,F) or (P ,SP). We will see that this distinguisher
makes the simulator overwrite a value with probability one when interacting with (P ,SP).
See also Figure 2 for an illustration of the attack.

The distinguisher first chooses two arbitrary values x1 and x2, and evaluates the chain
(x1, x2, 1) backward up to the input to F5, defining the following values (by making appropriate

6

queries to F1, P , . . . , F6):

x0 := x2 ⊕ F1(x1)
(x10, x11) := P (x0, x1)

x9 := x11 ⊕ F10(x10)
x8 := x10 ⊕ F9(x9)
x7 := x9 ⊕ F8(x8)
x6 := x8 ⊕ F7(x7)
x5 := x7 ⊕ F6(x6).

Then it chooses an arbitrary value x̄1 6= x1, and evaluates the chain (x̄1, x2, 1) backward up
to the input to F8, defining the following values (by making appropriate queries to F1, P , . . . ,
F9):

x̄0 := x2 ⊕ F1(x̄1)
(x̄10, x̄11) := P (x̄0, x̄1)
x̄9 := x̄11 ⊕ F10(x̄10)
x̄8 := x̄10 ⊕ F9(x̄9).

Then it defines
x′5 := x5 ⊕ x1 ⊕ x̄1,

as well as:
x′4 := x6 ⊕ F5(x′5),

by making a query to F5, and evaluates the chain (x′4, x5, 4) backward, defining the following
values (by making appropriate queries to F4, . . . , F9):

x′′′3 := x5 ⊕ F4(x′4)
x′′′2 := x′4 ⊕ F3(x′′′3)
x′′′1 := x′′′3 ⊕ F2(x′′′2)
x′′′0 := x′′′2 ⊕ F1(x′′′1)

(x′′′10, x
′′′
11) := P (x′′′0 , x′′′1)
x′′′9 := x′′′11 ⊕ F10(x′′′10)
x′′′8 := x′′′10 ⊕ F9(x′′′9).

Finally, the distinguisher checks whether evaluating the partial chain (x′5, x′6, 5) is consistent
with the permutation P . In more details, it computes the input (x′0, x′1) and the output
(x′10, x

′
11) corresponding to (x′5, x′6, 5) by making appropriate queries to the Fi’s, and checks

whether P (x′0, x′1) = (x′10, x
′
11). If this holds, it returns 1, otherwise it returns 0.

3.2 Analysis of the Attack

First, it is clear that the distinguisher always outputs 1 when interacting with (ΨF
10,F) since

the partial chain (x′5, x′6, 5) is always consistent with the permutation ΨF
10 in this case. We will

7

x0

x1

x2

x3

x7

x8

x9

x10

x11

x′0

x′1

x′2

x′3

x4

x5

x6

x′7

x′8

x′9

x′10

x′11

x′′0

x′′1

x′′2

x′′3

x′4

x′5

x′6

x′′7

x′′8

x′′9

x′′10

x′′11

x′′′0

x′′′1

x′′′2

x′′′3

x′′′7

x′′′8

x′′′9

x′′′10

x′′′11

x̄0

x̄1

x̄4

x̄5

x̄6

x̄7

x̄8

x̄9

x̄10

x̄11

Fig. 2. The attack on the simulator for the 10-round Feistel construction. Values in circles are those for which
Fi(x) is randomly set by the simulator, while values in squares are those such that the value Fi(x) is adapted
by the simulator. Grayed values are those that are queried by the distinguisher up to query F9(x′′′

9): queries
needed to check consistency of the partial chain (x′

5, x′
6, 5) are not shown. The burst for value x′

3 indicates that
the simulator overwrites the corresponding entry during the attack.

8

now see that it outputs 1 only with negligible probability when interacting with (P ,SP). For
this, we will show that the simulator overwrites (with probability one) the entry corresponding
to F3 in the computation path corresponding to (x′5, x′6, 5) (for later reference, this value will
be denoted x′3). More precisely, at some point during the simulation, evaluating partial chain
(x′5, x′6, 5) is consistent with the random permutation (namely immediately after the simulator
has adapted this partial chain). Later in the execution, the simulator overwrites F3(x′3) with
some random value independent of the previous value, so that evaluating (x′5, x′6, 5) after this
point has only a probability 2−n to be consistent with the random permutation.

In order to show the above claim that F3(x′3) is overwritten during the execution, we now
analyze the internal behavior of the simulator when faced with the sequence of queries of the
distinguisher (see also Figure 2). Until query (9, x̄9) included, the simulator just sets round
function values randomly and does not detect any partial chain. Immediately after query
(5, x′5), it enqueues (x′5, x6, 5, 3), and dequeues it immediately. It defines values

x′′7 := x′5 ⊕ F6(x6)
x′′8 = x6 ⊕ F7(x′′7)
...

x′′3 := x′′1 ⊕ F2(x′′2),

setting missing round function values randomly, and adapts F4(x′4) and F3(x′′3). Partial chains
(x′5, x6, 5) and (x′′1, x′′2, 1) are then added to Completed.

Then, all queries from (3, x′′′3) to (10, x′′′10) are simply answered randomly, and no par-
tial chain is detected. Finally, query (9, x′′′9) causes partial chain (x′′′1 , x′′′2 , 1, 7) to be en-
queued and dequeued immediately. While completing this partial chain, the simulator ran-
domly sets F5(x5) where x5 = x′′′3 ⊕ F4(x′4) = x7 ⊕ F6(x6), enqueues (x5, x6, 5, 3), computes
x′6 := x′4 ⊕ F5(x5), randomly sets F6(x′6), enqueues (x5, x

′
6, 5, 7) and (x′5, x′6, 5, 7), and adapts

round functions F7 and F8 for some irrelevant inputs x′′′7 and x′′′8 . Partial chains (x′′′1 , x′′′2 , 1)
and (x5, x

′
6, 5) are added to Completed.

Once this is done, the simulator dequeues (x5, x6, 5, 3). It evaluates the Feistel backward up
to the input value x2 for F2 (note that all round values needed are already defined in the cor-
responding hash tables), randomly sets F2(x2), enqueues (x̄1, x2, 1, 3) (as well as (x1, x2, 1, 3),
but note that (x1, x2, 1) is the chain that is being completed), and defines x3 := x1 ⊕ F2(x2)
and x4 := x6 ⊕ F5(x5). Then it adapts F3(x3) := x2 ⊕ x4 and F4(x4) := x3 ⊕ x5, and adds
(x1, x2, 1) and (x5, x6, 5) to Completed.

Then the simulator considers the next partial chain in the queue which is (x5, x
′
6, 5, 7), but

disregard it since (x5, x
′
6, 5) ∈ Completed, and proceeds to dequeuing (x′5, x′6, 5, 7). Observe

that
x′6 ⊕ F5(x′5) = x6 ⊕ F5(x5) = x4.

This is a direct consequence of the collision of (x′5, x6, 5) and (x5, x
′
6, 5) at round 4, namely

x′4 = x6 ⊕ F5(x′5) = x′6 ⊕ F5(x5).

Note that F4(x4) has been adapted while completing partial chain (x5, x6, 5, 3). Hence, when
evaluating the Feistel backward for (x′5, x′6, 5), the simulator defines x′3 := x′5 ⊕ F4(x4), ran-
domly sets F3(x′3), and finishes completing the chain, adapting F7 and F8 for some irrelevant
input values x′7 and x′8.

9

Finally, it dequeues (x̄1, x2, 1, 3). The crucial observation is that the completion of this
chain will overwrite F3(x′3). Indeed, one has F4(x4) = x3 ⊕ x5 = x1 ⊕ F2(x2)⊕ x5, so that

x̄1 ⊕ F2(x2) = x̄1 ⊕ x1 ⊕ x5 ⊕ F4(x4)
= x′5 ⊕ F4(x4)
= x′3.

Hence, F3(x′3) is overwritten during completion of (x̄1, x2, 1, 3) with some random value
x2 ⊕ x̄4 independent of its previous value (indeed x̄4 is randomly set by the simulator when
evaluating the chain (x̄1, x2, 1) backward), which renders (x′5, x′6, 5) inconsistent with the
random permutation.

The attack has been validated using the implementation of the simulator for ten rounds
provided with [HKT11]. The Python script for the attack is given in Appendix A.

3.3 Where Does the Proof Strategy for Fourteen Rounds Break?

A substantial part of the intermediate results of [HKT11] leading to the proof that the 14-
round Feistel construction is indifferentiable from a random permutation can be transposed
to the 10-round case. In this last section, we informally explain where the proof strategy
“breaks” for ten rounds.

We will use the following notation that has been introduced in [HKT11]. Fix hash tables
F1, . . . , F10. Given a chain C = (xk, xk+1, k), and i ∈ {1, . . . , 10}, val+

i (C) (resp. val−i (C)) is
defined as the input value for round function Fi obtained by moving forward (resp. backward)
in the Feistel construction, or ⊥ if at some point the computation stops because some value
is missing in the hash tables (note that this might imply a call to P /P−1, see [HKT11] for
more details).

A crucial part of the proof of [HKT11] is to show that (for most executions) the simulator
never overwrites entries in hash tables F` and F`+1 when adapting a chain. For this, a first
step is to show that just before the random assignment which leads to partial chain C being
enqueued to be adapted at position `, one has val+

` (C) = ⊥ and val−`+1(C) = ⊥ (this is a
consequence of Lemma 3.26 of [HKT11]). This also holds in the 10-round case. A second step is
to show that between the moment where C is enqueued, and the moment where it is dequeued,
the completion of other chains does not lead to val+

` (C) ∈ F` or val+
`+1(C) ∈ F`+1. This

obviously does not hold in the 10-round case, as the attack described in this note demonstrates.
In more details, there is some crucial lemma which holds in the 14-round case but not in
the 10-round case: namely, in the 14-round case, on can show that during an adaptation
assignment, for any partial chain C which is not equivalent to the chain being completed
and any i ∈ {1, . . . , 10}, val+

i (C) and val−i (C) does not change (this is Lemma 3.23 (b)
of [HKT11]). This does not hold in the 10-round case as we now analyze.

Consider the adaptation assignment F4(x4) := x3 ⊕ x5 during completion of partial
chain A = (x5, x6, 5). Before this assignment occurs, partial chains B = (x′5, x′6, 5) and
C = (x̄1, x2, 1) have been enqueued to be adapted respectively at position 7 and 3. Just
before the adaptation assignment F4(x4) := x3 ⊕ x5, val+

3 (C) = x′3 and val−3 (B) =⊥. Just
after the adaptation assignment, val−3 (B) = val+

3 (C) = x′3, i.e. partial chains B and C
collide at round 3. In particular, val−3 (B) does not remain constant during the adaptation

10

assignment F4(x4) := x3 ⊕ x5. Since B is dequeued before C, completion of chain B sets
F3(x′3) randomly, and the simulator then overwrites F3(x′3) when completing C.

A possible way to remedy this problem would be to modify the simulator in order to
do some backtracking and “re-adapt” chains which have been previously completed if they
are rendered inconsistent when some value is overwritten during a subsequent adaptation
assignment. For example, to counter the attack described in this note, the simulator could
erase values defined when completing partial chain B = (x′5, x′6, 5), and complete it again,
taking into account the new value of F3(x′3) = x2 ⊕ x̄4 that has been set when completing
partial chain C = (x̄1, x2, 1). Whether such a strategy can be used to patch the simulator is
out of the scope of this note.

References

[CDMP05] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya. Merkle-Damgård
Revisited: How to Construct a Hash Function. In Victor Shoup, editor, Advances in Cryptology
- CRYPTO 2005, volume 3621 of LNCS, pages 430–448. Springer, 2005.

[CJP02] Jean-Sébastien Coron, Antoine Joux, and David Pointcheval. Equivalence Between The Random
Oracle Model and the Random Cipher Model. Dagstuhl Seminar, 2002.

[CPS08] Jean-Sébastien Coron, Jacques Patarin, and Yannick Seurin. The Random Oracle Model and
the Ideal Cipher Model Are Equivalent. In David Wagner, editor, Advances in Cryptology -
CRYPTO 2008, volume 5157 of LNCS, pages 1–20. Springer, 2008.

[DP06] Yevgeniy Dodis and Prashant Puniya. On the Relation Between the Ideal Cipher and the Random
Oracle Models. In Shai Halevi and Tal Rabin, editors, Theory of Cryptography Conference - TCC
2006, volume 3876 of LNCS, pages 184–206. Springer, 2006.

[DS15] Yuanxi Dai and John Steinberger. Feistel Networks: Indifferentiability at 10 Rounds. ePrint
Archive, Report 2015/874, 2015. Available at http://eprint.iacr.org/2015/874.

[DSKT15] Dana Dachman-Soled, Jonathan Katz, and Aishwarya Thiruvengadam. 10-Round Feistel is
Indifferentiable from an Ideal Cipher. ePrint Archive, Report 2015/876, 2015. Available at
http://eprint.iacr.org/2015/876.

[HKT11] Thomas Holenstein, Robin Künzler, and Stefano Tessaro. The Equivalence of the Random Oracle
Model and the Ideal Cipher Model, Revisited. In Lance Fortnow and Salil P. Vadhan, editors,
Symposium on Theory of Computing - STOC 2011, pages 89–98. ACM, 2011. Full version
available at http://arxiv.org/abs/1011.1264.

[Kün09] Robin Künzler. Are the random oracle and the ideal cipher models equivalent? Master’s thesis,
ETH Zurich, Switzerland, 2009.

[LR88] Michael Luby and Charles Rackoff. How to Construct Pseudorandom Permutations from Pseu-
dorandom Functions. SIAM Journal on Computing, 17(2):373–386, 1988.

[MRH04] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, Impossibility Re-
sults on Reductions, and Applications to the Random Oracle Methodology. In Moni Naor, editor,
Theory of Cryptography Conference- TCC 2004, volume 2951 of LNCS, pages 21–39. Springer,
2004.

[RSS11] Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. Careful with Composition: Limi-
tations of the Indifferentiability Framework. In Kenneth G. Paterson, editor, Advances in Cryp-
tology - EUROCRYPT 2011, volume 6632 of LNCS, pages 487–506. Springer, 2011.

[Seu09] Yannick Seurin. Primitives et protocoles cryptographiques à sécurité prouvée. PhD thesis, Uni-
versité de Versailles Saint-Quentin-en-Yvelines, France, 2009.

11

http://eprint.iacr.org/2015/874
http://eprint.iacr.org/2015/876
http://arxiv.org/abs/1011.1264

A Python Script for the Attack on Ten Rounds

de f tenRoundsAttack (sim , perm) :
x1 = randomInt ()
x2 = randomInt ()
p r i n t " Querying x1 , 1 "
x0 = x2^sim . query (x1 , 1)
p r i n t " Querying P(x0 , x1) "
(x10 , x11) = perm . fwQuery (x0 , x1)
p r i n t " Querying x10 , 1 0 "
x9 = sim . query (x10 , 10)^ x11
pr in t " Querying x9 , 9 "
x8 = sim . query (x9 , 9)^ x10
pr in t " Querying x8 , 8 "
x7 = sim . query (x8 , 8)^x9
pr in t " Querying x7 , 7 "
x6 = sim . query (x7 , 7)^x8
pr in t " Querying x6 , 6 "
x5 = sim . query (x6 , 6)^x7
x1b = randomInt ()
p r i n t " Querying x1b , 1 "
x0b = x2^sim . query (x1b , 1)
p r i n t " Querying P(x0b , x1b) "
(x10b , x11b) = perm . fwQuery (x0b , x1b)
p r i n t " Querying x10b , 1 0 "
x9b = sim . query (x10b , 10)^ x11b
pr in t " Querying x9b , 9 "
x8b = sim . query (x9b , 9)^x10b
x5p = x5 ^ x1 ^ x1b
pr in t " Querying x5p , 5 "
x4p = sim . query (x5p , 5)^x6
pr in t " Querying x4p , 4 "
x3t = sim . query (x4p , 4)^x5
pr in t " Querying x3t , 3 "
x2t = sim . query (x3t , 3)^x4p
pr in t " Querying x2t , 2 "
x1t = sim . query (x2t , 2)^ x3t
p r i n t " Querying x1t , 1 "
x0t = sim . query (x1t , 1)^ x2t
p r i n t " Querying P(x0t , x1t) "
(x10t , x11t) = perm . fwQuery (x0t , x1t)
p r i n t " Querying x10t , 1 0 "
x9t = sim . query (x10t , 10)^ x11t
p r i n t " Querying x9t , 9 "
x8t = sim . query (x9t , 9)^ x10t

12

	A Note on the Indifferentiability of the 10-Round Feistel Construction
	Introduction
	Description of the Simulator for Ten Rounds
	Informal Description
	Definition of the Simulator in Pseudocode

	An Attack Against the Simulator for Ten Rounds
	Description of the Attack
	Analysis of the Attack
	Where Does the Proof Strategy for Fourteen Rounds Break?

	Python Script for the Attack on Ten Rounds

