
Improved Attacks on Reduced-Round Camellia-128/192/256

Xiaoyang Dong1, Leibo Li1, Keting Jia2, and Xiaoyun Wang1,3?

1 Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong

University, China

{dongxiaoyang,lileibo}@mail.sdu.edu.cn
2 Department of Computer Science and Technology, Tsinghua University

ktjia@mail.tsinghua.edu.cn
3 Institute for Advanced Study, Tsinghua University

xiaoyunwang@tsinghua.edu.cn

Abstract. Camellia is a widely used block cipher, which has been selected as an international

standard by ISO/IEC. In this paper, we consider a new family of differentials of round-reduced

Camellia-128 depending on different key subsets. There are totally 224 key subsets corresponding

to 224 types of 8-round differentials, which cover a fraction of 1− 1/215 of the keyspace. And each

type of 8-round differential consists of 243 differentials. Combining with the multiple differential

attack techniques, we give the key-dependent multiple differential attack on 10-round Camellia-128

with data complexity 291 and time complexity 2113. Furthermore, we propose a 7-round property

for Camellia-192 and an 8-round property for Camellia-256, and then mount the meet-in-the-middle

attacks on 12-round Camellia-192 and 13-round Camellia-256, with complexity of 2180 encryptions

and 2232.7 encryptions, respectively. All these attacks start from the first round in a single key

setting.

Keywords: Camellia, Block Cipher, Key-Dependent Attack, Multiple Differential Attack, Meet-

in-the-Middle Attack.

1 Introduction

The block cipher Camellia with 128-bit block size has variable key lengths of 128, 192, 256, named

as Camellia-128, Camellia-192 and Camellia-256, respectively. It was proposed by NTT and Mitsubishi

in 2000 [2]. Now Camellia has become a widely used block cipher as an e-government recommended

cipher by CRYPTREC [9]. Besides, Camellia was selected as one of NESSIE block cipher portfolio [26]

and international standard by ISO/IEC 18033-3 [14]. Therefore, Camellia has received a great deal of

attention from cryptanalysts with various attack methods, including higher order differential attack [13],

linear and differential attack [26], truncated differential attacks [15,18,27], collision attack [30], square

attacks [19,20], impossible differential attacks [22,25,31,23,21], meet-in-the-middle attacks [24,8] and zero

correlation cryptanalysis [5] etc.

An important property of Camellia is FL/FL−1 layers inserted every 6 rounds. The FL/FL−1 func-

tions are key-dependent functions which provide non-regularity across rounds to resist the differential

cryptanalysis. Many previous papers presented attacks on simplified versions of Camellia without the

FL/FL−1 layers and the whitening layers [20,18,22,25,26,30,31]. For the original Camellia, impossible

differential attacks on 10/11/12-round Camellia-128/192/256 were given in [21], and recently improved

by Boura et al. in [6]. The Meet-in-the-Middle (MITM) attack on Camellia was firstly proposed by Lu

et al. in [24], which introduced attacks on 10-round Camellia-128, 11-round Camellia-192 and 12-round

Camellia-256 utilizing 5-round and 6-round higher-order MITM properties of Camellia. However this

attack does not start from the first round and excludes the whitening layers. Chen et al. [8] attacked

12-round Camellia from the first round by applying the attack model for AES in [10] to construct a

7-round MITM property of Camellia. Besides, zero-correlation cryptanalysis with FFT method(ZC FFT)

was applied to 11-round Camellia-128 and 12-round Camellia-192 in [5], which was slightly better than

exhaustive search with almost the full codebook.
? Corresponding author

In this paper, we analyze the original versions of Camellia with FL/FL−1 layers and whitening key

starting from the first round by two methods: key-dependent multiple differential attack and meet-in-the-

middle attack. Multiple differential attack [4,29] uses multiple differentials to accumulate the advantage

of many differentials as a distinguisher. The key-dependent differential attack was proposed by Ben-Aroya

and Biham [3] to analyze Lucifer, which covered a fraction of 55% of the keyspace. A similar idea was also

used by Knudsen and Rijmen to analyze DFC in [16]. Later, Sun and Lai proposed the key-dependent

attack to analyze IDEA [28] by distinguishing the non-random distribution of the intermediate values for

different key subsets, which composed the full keyspace.

Our Contributions. In this paper, we first consider the key-dependent multiple differential attack

(KDMDA) on Camellia-128, by studying the multiple differentials corresponding to different key subsets.

There are 224 types of 8-round differentials corresponding to different key subsets for Camellia, and each

includes 243 differentials. Each key subset contains a fraction of 1/4 of the keyspace. All the 224 subsets

cover a fraction of 1− 1/215 of the keyspace. Using these differentials, we launch the multiple differential

attack on 10-round Camellia-128, which needs 291 chosen plaintexts and 2104.5 encryptions, and succeeds

on a fraction of about 99.99% of the keyspace. It is easy to extend this attack to the full keyspace by

exhaustive search on the remaining fraction of 1/215 of the keyspace. This is the first differential attack

on Camellia with FL/FL−1 layers.

The key-dependent multiple differential attack is also possible against Camellia-192/256. In order to

get better analysis results, we explore the meet-in-the-middle attack on Camellia-192/256. Combined with

the differential enumeration technique and multiset proposed by Dunkelman et al. [12], other improved

techniques proposed by Derbez et al. [11] and the relations of intermediate variables and subkeys, we

propose a new 7-round property for Camellia-192 and an 8-round property of Camellia-256 to reduce the

number of elements in a multiset. Based on both properties, we attack the 12-round Camellia-192 and

13-round Camellia-256 which costs 2113 chosen plaintexts, 2180 encryptions and 2154 128-bit memories

for Camellia-192, 2113 chosen plaintexts, 2232.7 encryptions and 2227 128-bit memories for Camellia-256,

respectively. However, we can not construct a good property for Camellia-128 since the complexity of the

precomputation phase are larger than 2128 and it should be further explored.

In this paper, we only discuss the attacks on Camellia with FL/FL−1 layers and whitening key starting

from the first round. Table 1 summarizes our results along with the major previous results, where CP

and CC refer to the number of chosen plaintexts and chosen ciphertexts, respectively.

Table 1. Summary of the Attacks on Reduced-Round Camellia

Rounds Percentage of Key Space Attack Type Data Time Memory Source

Camellia-128

10 100% Impossible Diff 2113.8CP 2120Enc 286.4Bytes [21]

10 99.99% KDMDA 291CP 2104.5Enc 296Bytes Section 4.4

10 100% KDMDA 291CP 2113Enc 296Bytes Section 4.4

11 100% ZC FFT 2125.3KP 2124.8Enc 2112.0Bytes [5]

Camellia-192

11 100% Impossible Diff 2113.7CP 2184Enc 2143.7Bytes [21]

12 100% ZC FFT 2125.7KP 2188.8Enc 2112Bytes [5]

12 100% MITM 2113CP 2180Enc 2158Bytes Section 5.2

Camellia-256

12 100% Impossible Diff 2114.8CP/CC 2240Enc 2151.8Bytes [21]

12 100% MITM 219CP 2231.2Enc 2229 Bytes [8]

13 100% MITM 2113CC 2232.7Enc 2231Bytes Section 5.3

The rest of this paper is organized as follows. Section 2 gives some notations and a brief description

of Camellia. Section 3 describes some observations of Camellia used in our cryptanalysis. In Section 4, we

give the 8-round multiple differentials of Camellia for different key subsets, and present key-dependent

2

multiple differential attack on 10-round Camellia-128. Section 5 illustrates the meet-in-the-middle attacks

on 12/13-round Camellia-192/256. Finally, we conclude the paper in Section 6.

2 Preliminaries

In this section we give the notations used throughout this paper, and then briefly describe the block

cipher Camellia.

2.1 Notations

The following notations are used in this paper:

Lr−1, L
′
r−1 the left 64-bit half of the r-th round input

Rr−1, R
′
r−1 the right 64-bit half of the r-th round input

Xr the state after the key addition layer of the r-th round

Yr the state after the substitution transformation layer of the r-th round

Zr the state after the diffusion layer of the r-th round

kr the subkey used in the r-th round

kwi the whitening key used in the beginning and an the end of Camellia, i = 1, 2, 3, 4

X[i] the i-th byte of a bit string X (1 ≤ i ≤ 8), where the left most byte is the first byte

XL (XR) the left (right) half of a bit string X,

X{i} the i-th most significant bit of a bit string X(1 ≤ i ≤ 128), where the left-most bit is

the most significant bit

∆X the difference of X and X ′

ham(X) the hamming weight of X, for example, X = 00100010, ham(X)=2

zero(X) the number of X’s zero bits, for example, X = 00100010, zero(X)=6

⊕, ∧, ∨ bitwise exclusive OR (XOR), AND, OR

¬x bitwise inversion of bit string x, e.g. ¬0x22 = 0xdd⋃
the union of sets

|A| the size of the set A

x‖y bit string concatenation of x and y

≪ l bit rotation to the left by l bit

2.2 Brief Description of Camellia

Camellia [2] is a Feistel structure block cipher, and the number of rounds are 18/24/24 for Camellia-

128/192/256, respectively. The encryption procedure (depicted in Appendix C) for 128-bit key is as

follows.

Firstly, a 128-bit plaintext M is XORed with the whitening key (kw1‖kw2) and separated into L0

and R0 of equal length. Then, for r = 1 to 18, except for r = 6 and 12, the following is carried out:

Lr = Rr−1 ⊕ F (Lr−1, kr), Rr = Lr−1.

For r = 6 and 12, do the following:

L∗r = Rr−1 ⊕ F (Lr−1, kr), R∗r = Lr−1,

Lr = FL(L∗r , kfr/3−1), Rr = FL−1(R∗r , kfr/3),

Lastly, the 128-bit ciphertext C is computed as: C = (R18‖L18)⊕ (kw3‖kw4).

For 192- and 256-bit keys, the 128-bit plaintext M is XORed with the whitening key (kw1‖kw2) and

separated into L0 and R0 of equal length. Then, for r = 1 to 24, except for r = 6, 12 and 18, the following

is carried out:

Lr = Rr−1 ⊕ F (Lr−1, kr), Rr = Lr−1.

3

For r = 6, 12 and 18, do the following:

L∗r = Rr−1 ⊕ F (Lr−1, kr), R∗r = Lr−1,

Lr = FL(L∗r , kfr/3−1), Rr = FL−1(R∗r , kfr/3),

Lastly, the 128-bit ciphertext C is computed as: C = (R24‖L24)⊕ (kw3‖kw4).

The round function F is composed of a key-addition layer, a substitution transformation layer S and a

diffusion layer P . The key-addition layer is an XOR operation of the left half input of the round function

and the round key, i.e. Xr = Lr−1⊕kr for the r-th round. There are four types of 8×8 S-boxes s1, s2, s3
and s4 in the S transformation layer. Let the input of the substitution transformation S of the r-th round

be Xr = (x1, x2, x3, x4, x5, x6, x7, x8), the output Yr is computed as follows:

Yr = S(Xr) =
(
s1(x1), s2(x2), s3(x3), s4(x4), s2(x5), s3(x6), s4(x7), s1(x8)

)
.

The linear transformation P is a diffusion operation based on the bytes. Let the input of the transfor-

mation P in round r be Yr = (y1, y2, y3, y4, y5, y6, y7, y8), the output be Zr = (z1, z2, z3, z4, z5, z6, z7, z8).

Zr = P (Yr) and its inverse P−1 are defined as follows:

z1 = y1 ⊕ y3 ⊕ y4 ⊕ y6 ⊕ y7 ⊕ y8 y1 = z2 ⊕ z3 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z8
z2 = y1 ⊕ y2 ⊕ y4 ⊕ y5 ⊕ y7 ⊕ y8 y2 = z1 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z7 ⊕ z8
z3 = y1 ⊕ y2 ⊕ y3 ⊕ y5 ⊕ y6 ⊕ y8 y3 = z1 ⊕ z2 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z8
z4 = y2 ⊕ y3 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y7 y4 = z1 ⊕ z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z7
z5 = y1 ⊕ y2 ⊕ y6 ⊕ y7 ⊕ y8 y5 = z1 ⊕ z2 ⊕ z5 ⊕ z7 ⊕ z8
z6 = y2 ⊕ y3 ⊕ y5 ⊕ y7 ⊕ y8 y6 = z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z8
z7 = y3 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y8 y7 = z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7
z8 = y1 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y7 y8 = z1 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z8

The FL function is used every 6 rounds. FL is defined as (aL‖aR, kfL‖kfR) 7→ (bL‖bR), where

aL, aR, kfL, kfR, bL and bR are 32-bit words.

bR = ((aL ∧ kfL) ≪ 1)⊕ aR, bL = (bR ∨ kfR)⊕ aL.

In accordance with the notations in [1], let the master key of Camellia be K. The subkeys KL, KR

are simply generated from K. For Camellia-128, KL = K, KR = 0. For Camellia-192, KL is the left

128-bit of K, i.e., KL = K{1− 128}, and the concatenation of the right 64-bit of K and its complement

is used as KR, i.e., KR = K{129 − 192}‖¬K{129− 192}. For Camellia-256, KL = K{1 − 128}, and

KR = K{129 − 256}. Two 128-bit keys KA and KB are derived from KL and KR by a non-linear

transformation. Then the whitening keys kwi (i = 1, ..., 4), round subkeys kr (r = 1, ..., 24) and kfj
(j = 1, ..., 6) are generated by rotating KL, KR, KA or KB . For more details of Camellia, we refer to [1].

3 Some Observations of Camellia

This section introduces some observations which help us analyze the reduced-round Camellia.

Observation 1 ([17]) Let X, X ′, K be l-bit values, and ∆X = X ⊕X ′, then the differential properties

of AND and OR operations are:

(X ∧K)⊕ (X ′ ∧K) = ∆X ∧K,
(X ∨K)⊕ (X ′ ∨K) = ∆X ⊕ (∆X ∧K).

Observation 2 Given the input difference of the i-th round ∆Li = (α, 0, 0, 0, 0, 0, 0, 0), ∆Ri = (0, 0, 0, 0,

0, 0, 0, 0), the output difference of (i + 3)-th round ∆Ri+3 and intermediate difference ∆Yi+2 satisfy the

following equations:

P−1(∆Ri+3)[4] = ∆Li[1] = α, P−1(∆Ri+3)[j] = 0, j = 6, 7

P−1(∆Ri+3)[1] = ∆Yi+2[1], P−1(∆Ri+3)[j] = ∆Yi+2[j]⊕ P−1(∆Ri+3)[4], j = 2, 3, 5, 8.

4

Observation 3 Given the output difference of the (i+2)-th round ∆Li+2 = (0, 0, 0, 0, 0, 0, 0, 0), ∆Ri+2 =

(α, 0, 0, 0, 0, 0, 0, 0), the input difference of i-th round ∆Ri and the intermediate difference ∆Yi+1 satisfy

the following equations:

P−1(∆Ri)[4] = ∆Ri+2[1] = α, P−1(∆Ri)[j] = 0, j = 6, 7

P−1(∆Ri)[1] = ∆Yi+1[1], P−1(∆Ri)[j] = ∆Yi+1[j]⊕ P−1(∆Ri)[4], j = 2, 3, 5, 8.

Observation 4 Let the input difference of FL−1 be (∆aL, 0). Then the output difference of FL−1 must

be (∆aL, 0), when ∆aL ∧ kf2L = 0.

4 Key-Dependent Multiple Differential Attack on Reduced-Round

Camellia-128

In this section, we present truncated differential based on the diffusion layer P for different key subsets.

Then, 224 different types of 8-round multiple differentials for different key subsets are constructed. Finally,

we launch the key-dependent multiple differential attack on 10-round Camellia-128.

4.1 Some Truncated Differentials

Observation 5 Let the input difference of P be (y1, y2, 0, 0, 0, 0, 0, 0),

– if y1 6= y2, the output difference of P is (y1, y1 ⊕ y2, y1 ⊕ y2, y2, y1 ⊕ y2, y2, 0, y1).

– if y1 = y2, the output difference of P is (y1, 0, 0, y2, 0, y2, 0, y1).

Observation 6 ([27]) If the input difference of P is (y1, y2, y3, y4, y5, y6, 0, y8), then the output difference

of P is (z1, z2, 0, 0, 0, 0, 0, 0) with probability 2−40. And the following equations hold: y1 = y6, y2 = y8, y3 =

y4 = y5 = y1 ⊕ y2.

Proof. By computing the inversion of P , we get y8 = z1, y6 = z2, y5 = z1 ⊕ z2, y4 = z1 ⊕ z2, y3 =

z1 ⊕ z2, y2 = z1, y1 = z2. Then, y1 = y6, y2 = y8, y3 = y4 = y5 = y1 ⊕ y2. ut

Using the above observations, we construct the following 4-round truncated differential with proba-

bility 2−56,

(00000000, ∗ ∗ 000000)
Round−−−−→
Pr=1

(∗ ∗ 000000, 00000000)
Round−−−−→
Pr=1

(∗ ∗ ∗ ∗ ∗ ∗ ∗0∗, ∗ ∗ 000000)

Round−−−−−−→
Pr=2−40

(∗ ∗ 000000, ∗ ∗ ∗ ∗ ∗ ∗ 0∗) Round−−−−−−→
Pr=2−16

(00000000, ∗ ∗ 000000)

Similarly, we get another three 4-round truncated differentials with probability 2−56 in the last three

columns of Table 2.

Table 2. 4-Round Truncated Differentials

Active S-boxes: 0→ 2→ 7→ 2

Case-1 Case-2 Case-3 Case-4

(00000000, ∗ ∗ 000000) (00000000, 0 ∗ ∗00000) (00000000, ∗00 ∗ 0000) (00000000, 00 ∗ ∗0000)

(∗ ∗ 000000, 00000000) (0 ∗ ∗00000, 00000000) (∗00 ∗ 0000, 00000000) (00 ∗ ∗0000, 00000000)

(∗ ∗ ∗ ∗ ∗ ∗ ∗0∗, ∗ ∗ 000000) (∗ ∗ ∗ ∗ ∗ ∗ 0, 0 ∗ ∗00000) (∗ ∗ ∗ ∗ ∗0 ∗ ∗, ∗00 ∗ 0000) (∗ ∗ ∗ ∗ 0 ∗ ∗∗, 00 ∗ ∗0000)

(∗ ∗ 000000, ∗ ∗ ∗ ∗ ∗ ∗ 0∗) (0 ∗ ∗00000, ∗ ∗ ∗ ∗ ∗ ∗ ∗0) (∗00 ∗ 0000, ∗ ∗ ∗ ∗ ∗0 ∗ ∗) (00 ∗ ∗0000, ∗ ∗ ∗ ∗ 0 ∗ ∗∗)
(00000000, ∗ ∗ 000000) (00000000, 0 ∗ ∗00000) (00000000, ∗00 ∗ 0000) (00000000, 00 ∗ ∗0000)

5

4.2 Key Subsets Corresponding to Truncated Differentials

In this section, we extend the 4-round truncated differentials in Table 2 by adding a FL/FL−1 layer

at the bottom. As a result, we divide the full keyspace into different subsets corresponding to different

differentials.

We denote the two nonzero input byte differences of FL−1 function as c1, c2. Then we get four

types of input differences of the FL−1 function, which are (c1, c2, 0, 0, 0, 0, 0, 0), (0, c1, c2, 0, 0, 0, 0, 0),

(c1, 0, 0, c2, 0, 0, 0, 0), (0, 0, c1, c2, 0, 0, 0, 0). To reduce the diffusion of the active S-boxes, we make the

input and the output differences of the FL−1 function equal, which determines a key subset according to

Observation 4. Therefore, a value of (c1, c2) corresponds to a key subset. Obviously, the lower the hamming

weight of (c1, c2) is, the larger the size of the corresponding key subset will be. In order to reduce the

complexity, we choose (c1, c2) to make the size of key subset as large as possible. According to Observation

5, in order to maintain the 4-round truncated differential, c1 should be different from c2. So we choose 56

values of (c1, c2) where ham(c1) = 1, ham(c2) = 1, and c1 6= c2, see Table 3. Combining with 4 truncated

differentials, we construct 224 key subsets, which are denoted as KDsetji , j = 1, 2, 3, 4 and i = 1, 2 · · · 56.

KDset1i = {K|kf2L = (¬ci1 ∧ ∗,¬ci2 ∧ ∗, ∗, ∗), ∗ ∈ F 8
2 },

KDset2i = {K|kf2L = (∗,¬ci1 ∧ ∗,¬ci2 ∧ ∗, ∗), ∗ ∈ F 8
2 },

KDset3i = {K|kf2L = (¬ci1 ∧ ∗, ∗, ∗,¬ci2 ∧ ∗), ∗ ∈ F 8
2 },

KDset4i = {K|kf2L = (∗, ∗,¬ci1 ∧ ∗,¬ci2 ∧ ∗), ∗ ∈ F 8
2 }.

In each key subset, two bits of kf2L are 0, and the other bits traverse all values. The size of a key subset

is 2126 for Camellia-128. We denote the union of all KDsetji as PKSPACE.

PKSPACE =

4⋃
j=1

56⋃
i=1

KDsetji

Table 3. 56 Different Values of (c1, c2) in Hexadecimal

i (ci1, c
i
2) i (ci1, c

i
2) i (ci1, c

i
2) i (ci1, c

i
2) i (ci1, c

i
2) i (ci1, c

i
2) i (ci1, c

i
2) i (ci1, c

i
2)

1 01, 02 8 02, 01 15 04, 01 22 08, 01 29 10, 01 36 20, 01 43 40, 01 50 80, 01

2 01, 04 9 02, 04 16 04, 02 23 08, 02 30 10, 02 37 20, 02 44 40, 02 51 80, 02

3 01, 08 10 02, 08 17 04, 08 24 08, 04 31 10, 04 38 20, 04 45 40, 04 52 80, 04

4 01, 10 11 02, 10 18 04, 10 25 08, 10 32 10, 08 39 20, 08 46 40, 08 53 80, 08

5 01, 20 12 02, 20 19 04, 20 26 08, 20 33 10, 20 40 20, 10 47 40, 10 54 80, 10

6 01, 40 13 02, 40 20 04, 40 27 08, 40 34 10, 40 41 20, 40 48 40, 20 55 80, 20

7 01, 80 14 02, 80 21 04, 80 28 08, 80 35 10, 80 42 20, 80 49 40, 80 56 80, 40

We collect the keys that do not belong to any one of the KDsetji to form the remaining key set

denoted as RKset, which is consisted of two classes:

Class 1 The pattern of kf2L is (∗,¬0, ∗,¬0) or (¬0, ∗,¬0, ∗), where ‘*’ is a random byte. There are

2× (28)2 − 1 = 217 − 1 possible kf2L.

Class 2 The remaining keys are not included in Class 1.

– If zero(kf2L)=2, the number of possible kf2L is 8× 4 = 48.

– If zero(kf2L)=3, the number of possible kf2L is 8C3
4 = 32.

– If zero(kf2L)=4, the number of possible kf2L is 8C4
4 = 8.

Totally, there are 48 + 32 + 8 = 88 possible kf2L.

So the size of remaining key set is 296 × (88 + 217 − 1) ≈ 2113.

The PKSPACE and remaining key set RKset form the full keyspace KSPACE:

6

KSPACE =

 4⋃
j=1

56⋃
i=1

KDsetji

⋃RKset.

Let the input difference of FL−1 function be (c1, c2, 0, 0), which corresponds a key subset KDset1i .

Therefore, for the key subset KDset1i , the probability for 4-round truncated differential of the case-1

appending a FL/FL−1 layer with output difference (00000000, c1c2000000) is 2−56 × 2−16 = 2−72.

4.3 Searching 8-Round Multiple Differentials for Every Key Subset

We use 4-round truncated differentials in Table 2 to construct 8-round differentials with FL/FL−1

functions. We extend the 4-round truncated differential by adding two rounds forward and appending a

FL/FL−1 layer and two rounds at the bottom to obtain 8-round differentials. We get four types of 8-round

differential patterns, named as type-1/-2/-3/-4 which are constructed by case-1/-2/-3/-4, respectively.

Property 1. For each KDsetji , i = 1, 2, · · · , 56, j = 1, 2, 3, 4, we construct a family of 8-round multiple

differentials.

1. There are 231 input differences and 26 output differences which produce 231+6 = 237 8-round differ-

entials with the probability 2−125.

2. 238 input differences and 26 output differences produce 238+6 = 244 8-round differentials with proba-

bility 2−126.

3. 245 input differences and 26 output differences produce 245+6 = 251 8-round differentials with proba-

bility 2−127.

⊕

⊕

⊕

⊕

⊕

⊕ ∪

∩

(c1c200) (0000)

kf2R

kf2L

<<<1

⊕

∪

∩

(0000) (0000)

(0000)

kf1R

kf1L

<<<1

(0000)

⊕

⊕

⊕

⊕

⊕

ΔR0=P(h100h40h60h8)

⊕(a1a2000000)
 ΔL0=(h00h0h0h)

ΔR8=(c1c2000000)ΔL8=(d00d0d0d)

 ΔL1=(a1a2000000) ΔR1=(h00h0h0h)

 ΔL2=(00000000) ΔR2=(a1a2000000)

ΔL3=(a1a2000000) ΔR3=(000000000)

ΔL4=(b1b2b3b4b5b60b8) ΔR4=(a1a2000000)

ΔL5=(c1c2000000) ΔR5=(b1b2b3b4b5b60b8)

ΔL6=(00000000) ΔR6=(c1c2000000)

ΔL7=(c1c2000000) ΔR7=(00000000)

Part-1

Part-2

Part-3

(c1c200) (0000)

1X 1Y
S P⊕

1Z

2X 2Y
S P⊕

2Z

3X 3Y
S P⊕

3Z

4X 4Y
S P⊕

4Z

5X 5Y
S P⊕

5Z

6X 6Y
S P⊕

6Z

7X 7Y
S P⊕

7Z

8X 8Y
S P⊕

8Z

Fig. 1. Type-1: 8-Round Differential Pattern with

FL/FL−1 Layer

8-Round differential

F ⊕

F ⊕

ΔR8 =

(0x08,0x10,0,0,0,0,0,0)

ΔR9 = (*,0,0,*,0,*,0,*)
ΔL9 =

(0x08,0x10,0,0,0,0,0,0)

⊕ P(*,0,0,*,0,*,0,*)

ΔL8 = (*,0,0,*,0,*,0,*)

⊕ ⊕ kw3(64)
kw4(64)

ΔR10 = (?,?,?,?,?,?,?,?)ΔL10 =

(0x08,0x10,0,0,0,0,0,0)

⊕ P(*,0,0,*,0,*,0,*)

ΔL0 = (h,0,0,h,0,h,0,h)

⊕ kw1(64) ⊕ kw2(64)

ΔR0=P(h1,0,0,h4,0,h6,0,h8)

⊕ (a1,a2,0,0,0,0,0,0)

Fig. 2. Multiple Differential Attack on 10-Round

Camellia-128

7

Proof. We prove the Property 1 by type-1 differential pattern illustrated in Fig. 1.

For the top two rounds, we apply the following 2-round differential

(∆L0, ∆R0)
Round−−−−→
Pr1

(a1a2000000, h00h0h0h)
Round−−−−−−→
Pr=2−14

(00000000, a1a2000000),

where ∆L0 = (h, 0, 0, h, 0, h, 0, h), ∆R0 = P (h1, 0, 0, h4, 0, h6, 0, h8)⊕ (a1, a2, 0, 0, 0, 0, 0, 0).

By the 2-round differential, we know ∆Y1 = (h1, 0, 0, h4, 0, h6, 0, h8), ∆Y2 = (h, h, 0, 0, 0, 0, 0, 0). Ob-

viously, there are (28 − 1) ∆L0. For each ∆L0, there are 27 × 27 = 214 possible ∆L1 with probability

2−14 as a result of two active S-boxes in round 2. Considering the 4 active S-boxes in the first round to

compute Pr1 and number of ∆Y1 values, there are C3
4 · 27 = 29 possible values of ∆Y1 with probability

2−6×3 × 2−7 = 2−25, C2
4 · 214 = 216 possible values of ∆Y1 with probability 2−6×2 × 2−7×2 = 2−26,

C1
4 · 221 = 223 possible values of ∆Y1 with probability 2−6 × 2−7×3 = 2−27, and 228 possible values of

∆Y1 with probability 2−28.

So, for the 2-round differential, there are 28 × 29 × 214 = 231 values of (∆L0, ∆R0) with probability

2−25 × 2−14 = 2−39, 28 × 216 × 214 = 238 values of (∆L0, ∆R0) with probability 2−26 × 2−14 = 2−40,

28 × 223 × 214 = 245 values of (∆L0, ∆R0) with probability 2−27 × 2−14 = 2−41, and 28 × 228 × 214 = 250

values of (∆L0, ∆R0) with probability 2−28 × 2−14 = 2−42.

The last 2-round differential with the input difference (00000000, c1c2000000) is

(00000000, c1c2000000)
Round−−−−→
Pr=1

(c1c2000000, 00000000)
Round−−−−−−→
Pr=2−14

(d00d0d0d, c1c2000000).

There are about 26 ∆L8. The probability of each (∆L7, ∆R7)⇒ (∆L8, ∆R8) is 2−13 or 2−14.

Totally, there are 231 input differences and 26 output differences which form 231+6 = 237 8-round differ-

entials, and the probability of each differential is 2−72−39−14 = 2−125; there are 238 input differences and

26 output differences which form 238+6 = 244 8-round differentials with probability 2−72−40−14 = 2−126;

there are 245 input differences and 26 output differences which form 245+6 = 251 8-round differentials

with probability 2−72−41−14 = 2−127. ut

Without loss of generality, we search type-1 differentials as an example to verify the correctness of

Property 1 experimentally. The search procedure is as follows.

1. We exhaustively search differentials which match 4-round truncated differential with appending a

FL/FL−1 layer depicted in Part-2 of Fig 1. Let (00000000, a1a2000000) be input difference, and

(00000000, c1c2000000) be the input difference of the FL/FL−1 layer, where (c1, c2) is chosen in Ta-

ble 3. Store the 4-round differential and its corresponding probability in a 56×216 table, where “row” is

indexed by (c1, c2), “column” is indexed by (a1, a2), and the elements are the corresponding probabili-

ty Pr of the differential, which is calculated by the following equations. We denote Y4 = (a
′

1a
′

2000000).

Pr1 = Pr((a1a2000000)
S−→ (a

′

1a
′

2000000)), P r2 = Pr((c1c2000000)
S−→ (a

′

1a
′

2000000)),

P r3 = Pr(P (a
′

1, a
′

2, 0, 0, 0, 0, 0, 0)
S−→ P−1(a1 ⊕ c1, a2 ⊕ c2, 0, 0, 0, 0, 0, 0))

Pr =
∑

a
′
1,a
′
2∈F 8

2

Pr1 · Pr2 · Pr3

2. For each row indexed by (c1, c2), calculate the output differences (d100d40d60d8, c1c2000000) of the

8-round differential, whose values form the output differences set, denoted as ∆OUTset. And then for

each column indexed by (a1, a2), collect the input differences of 8-round differential that could result

in (00000000, a1a2000000) differences after two rounds of encryption, to produce the input differences

set, denoted as ∆INset .

When c1 = 0x08, c2 = 0x10, we search type-1 differentials by PC, and obtain |∆OUTset| = 57 ≈ 26.

If the probability of each differential is larger than 2−125, the |∆INset| is 231.1. If the probability of each

differential is larger than 2−126, the |∆INset| is 237.9. If the probability of each differential is larger than

2−127, the |∆INset| is 244.8. Therefore, the experimental data reveals correctness of Property 1.

8

4.4 Key-Dependent Multiple Differential Attack on 10-Round Camellia-128

For every KDsetji , i = 1, 2 · · · 56, j = 1, 2, 3, 4 , we choose 237 input differences from ∆INset where the

probabilities are all larger than 2−126 and pick all the 26 output differences of ∆OUTset. We launch

multiple differential attack using these differentials. We repeat 224 times multiple differential attacks, if

one of the attacks succeeds, the right key can be recovered. Otherwise the right key belongs to RKset.

The following is one of the 224 attacks.

We choose type-1 differentials and c1 = 0x08 c2 = 0x10 to launch an attack, whose corresponding key

subset is KDset132. As the Fig. 2 shows, we add two rounds after the 8-round differentials distinguisher

to analyse 10-round Camellia-128.

In [4], there is a strong condition that the set of input differences are “admissible”. However, paper

[29] proves the condition is not necessary when applying structure technique. Here, we take advantage of

the structure attack model to implement multiple differential attack displayed as follows:

1. Choose 2x structures of plaintexts, and each structure contains 256 plaintexts with L0 = (α1, x1, x2,

α1, x3, α1, x4, α1), R0 = P (α2, x5, x6, α3, x7, α4, x8, α5)⊕ (α6, α7, x9, x10, x11, x12, x13, x14), where xi
are fixed values and αj take all the possible values in each structure.

2. For each structure, ask for the encryptions of the plaintexts P and store the 256 ciphertexts C, indexed

by P−1(CL)[1, 4, 6, 8]. When choosing one ciphertext indexed by P−1(CL)[1, 4, 6, 8] and another ci-

phertext indexed by P−1(CL)[1, 4, 6, 8]⊕P−1(0x08, 0x10, 0, 0, 0, 0, 0, 0,)[1, 4, 6, 8], we get a pair whose

difference matches ∆L10. Totally, we get 279+x pairs.
3. For each pair, check whether the input difference is one of the 237 input differences. There are about

279+x × 237 × 2−56 = 260+x pairs left.
4. For each pair and each possible ∆R9, where |∆R9| = |∆OUTset| = 26, do the following substeps.

(a) In the 10th round, we know the input difference and output difference of the F function, so we

deduce 64-bit key kw3 ⊕ k10 by the difference distribution table of S-boxes.

(b) We calculate the output value of the F function in 10th round by the values of kw3 ⊕ k10. In the

9th round, deduce 32-bit key (kw4 ⊕ k9)[1, 4, 6, 8] by the difference distribution table of S-boxes.

(c) Increase the corresponding counter of 96-bit subkey kw3 ⊕ k10, (kw4 ⊕ k9)[1, 4, 6, 8], and then we

obtain 26 subkeys for every pair.
5. Check all counters and generate a list L of the l candidate subkeys whose counters are the highest l

values.

We choose x = 33, then there are 2111+33 × 237−56 = 2125 pairs, and each matches one of the 237

input differences. The counter expectation for right key is 2125 × 26 × 2−126 = 25, and the expectation of

the counter for wrong key is about 2125 × 26 × 2−128 = 23. We use the Blondeau et al.’s method [4] to

compute the success rate. We know the number of differentials is |∆| = 237 × 26 = 243, the sum of the

probability of all differentials is
∑|∆|
i=1 Pri = 2−83, the number of pairs is Ns = 2125, the bit number of

guessed subkey is nk = 96, and l = 240, then the success probability is:

Ps ≈ 1−G∗[G−1(1− l − 1

2nk − 2
)− 1] = 99.9%,

where the definitions of functions G∗() and G−1() refer to Appendix B.

Key-Dependent Multiple Differential Attack on the PKSPACE. If the key belongs to the

PKSPACE, obviously this happens with significantly high probability of 1 − 1
215 ≈ 99.99%, then 224

multiple differential attacks can recover the key. For a particular j of KDsetji , i = 1, 2, · · · 56, the 56

multiple differential attacks use the differentials which have the common input truncated difference, the

structures can be shared in the 56 times multiple differential attacks. So the data complexity of the

attack is about 256+33 × 4 = 291 chosen plaintexts. The time complexity is 293+6 × 2
10 × 224 = 2104.5

10-round encryptions. The memory complexity is 296 which is used to store the counters for each of the

224 multiple differential attacks.

Key-Dependent Multiple Differential Attack on the Full KSPACE. For each one of KDsetji ,

i = 1, 2 · · · , 56, j = 1, 2, 3, 4, we launch the above multiple differential attack. If one of the attack succeeds,

the right key will be recovered; if all fail, we exhaustively search all the subkeys in the RKset.

9

Success Rate. If the correct key belongs to the remaining keyspace, then we will definitely recover

the key when traversing the remaining keyspace. If the correct key does not belong to the remaining

keyspace, then one of the 224 multiple differential attacks recovers the correct key with the probability

of Ps. So the success rate of the is the minimum of 224 Ps, which is about 99.9%.

Complexity Analysis. The data complexity of the attack is about 256+33×4 = 291 chosen plaintexts.

The whole attack procedure includes 224 multiple differential attacks and traversing the remaining key

set. The time complexity is 260+33+6 × 2
10 × 224 + 2113 = 2104.5 + 2113 ≈ 2113. The memory complexity

is 296 which is used to store the counters for each of the 224 multiple differential attacks.

The key-dependent multiple differential attack is also available to 11-round Camellia-192 and 12-round

Camellia-256. However, we find that it is more efficient for the meet-in-the-middle attack on Camellia-

192/256.

5 MITM Attacks on Reduced-Round Camellia-192/256

In this section, we first present a brief description of meet-in-the-middle attack, and then give the meet-

in-the-middle attack on reduced-round Camellia combining with multiset, the differential enumeration

technique, the relations of intermediate variables and subkeys etc.

5.1 Description of Meet-in-the-Middle Attack

For the meet-in-the-middle attack, the encryption cipher EK is divided into three parts EK = E2
K2
◦

Em ◦ E1
K1

, and there exists a specific property for the middle part Em, which is used to construct

a distinguisher and identify the correct key (K1,K2). The meet-in-the-middle methods we applied are

similar to the MITM attaks on AES [12,11]. Therefore we introduce some definitions of δ−set and multiset.

Definition 1. (δ−set) The δ−set is a set of 256 intermediate states of Camellia that one byte traverses

all values (the active byte) and the other bytes are constants (the inactive bytes).

Definition 2. (Multiset of bytes [12]) A multiset generalizes the set concept by allowing elements to

appear more than once. Here, a multiset of 256 bytes can take as many as (511255) ≈ 2506.7 different values.

We explain the multiset with more details. Let a δ−set (X0, · · · , X255) be the inputs of Em, where

the j-th byte is a variable and the other bytes are kept constant. Let the i-th output byte of Em
be the output of the function. The outputs of function with the δ-set as inputs form a 2048-bit vec-

tor EK(X0)[i]‖ · · · ‖EK(X255)[i] with ordered arrangement. However, if we don’t consider the order-

ing of the output bytes, the 256-byte value will form a multiset [EK(X0)[i] ⊕ EK(X0)[i], EK(X0)[i] ⊕
EK(X1)[i], · · · , EK(X0)[i] ⊕ EK(X255)[i]]. However, given two random functions f, g: F256 → F256,

the multisets (f(X0), · · · , f(X255)) and (g(X0), · · · , g(X255)) are equal with a probability smaller than

2−467.6 (but not 2−506.17). For more details, we refer to [11].

The key part of the meet-in-the-middle attack on AES is to construct a function for the input active

byte and one of the output bytes of Em, and reduce the number of the function parameters by specific

truncated differential, which decides the size of the multiset. Based on the subcipher Em, a few rounds

is extended at the top and bottom of Em, i.e. the cipher EK = E2
K2
◦ Em ◦ E1

K1
. The attack procedure

is described in Algorithm 1.

It is noticed that the number of values for a good multiset is much less than 2467.6. The precomputation

phase is to compute all the values of multiset in a table.

5.2 MITM Attack on 12-Round Camellia-192

This section introduces a 7-round property starting from the third round and ending at the ninth round

which is described in Property 2 outlined in Fig. 3. The active byte of δ−set is defined at the first byte

of the input of the third round R2[1].

10

Algorithm 1 The Main Procedure of Meet-in-the-Middle Attack

Precomputation phase: compute all values of the output sequence of the function constructed on Em, and

store them in a hash table.

Online phase:

1: Encrypt enough chosen plaintexts such that there exists a pair satisfying the specific differential.

2: Guess values of the subkeys K1 and K2 to find a pair satisfying the specific truncated differential.

3: Construct a δ-set based on the pair, and partially decrypt to get the corresponding 256 plaintexts.

4: Obtain the corresponding 256 plaintext-ciphertext pairs from the collected data. Then partially decrypt the

ciphertexts to get the corresponding 256-byte value of the output sequence of Em.

5: If a sequence value lies in the precomputation table, the guessed K1 and K2 may be right key.

6: Exhaustively search the remaining subkeys to obtain the right key.

Property 2. Encrypt 28 values of the δ−set through 7-round Camellia-192 starting from the third round,

where R2[1] is the active byte, in the case that a pair of the δ−set conforms to the truncated differential

outlined in Fig 3, then the corresponding multiset of bytes (P−1(∆L8))[6] only takes about 2128 instead

of 2467.6 values on average.

It is obvious that, the computation of the multiset of bytes (P−1(∆L8))[6] associated with a δ−set is

determined by a 36-byte intermediate variable

X4[1]‖X5[1, 2, 3, 5, 8]‖X6‖kf1‖kf2‖X7[2, 3, 5, 7, 8]‖X8[6].

The main work is to prove that there are only 16 byte variables needed to compute the multiset.

Proof. If a pair of the δ-set conforms the truncated differential as in Fig. 3, the 18-byte variable X4[1]‖
X5[1, 2, 3, 5, 8]‖X6‖X7[2, 3, 5, 8] is determined by the 9-byte difference ∆X4[1]‖∆Y4[1]‖∆Y5[1, 2, 3, 5, 8]‖
∆X8[1]‖∆Y8[1] and 128-bit subkey kf1‖kf2. Here, the value X4[1] is deduced from the differences ∆X4[1]

and ∆Y4[1]. Similarly, the value X5[1, 2, 3, 5, 8] is obtained by the differences ∆Y4[1], ∆Y5[1, 2, 3, 5, 8].

In the backward direction, the difference ∆Y6 is computed by ∆Y4[1], ∆Y8[1] and kf1 since ∆L4 =

P (∆Y4) and ∆L6 = P (∆Y8) in this case. The difference ∆X6 is computed by ∆X4[1], ∆Y5[1, 2, 3, 5, 8],

which is used to deduce the value X6. Similarly, the difference ∆Y7 is computed by the difference

∆X4[1], ∆Y5[1, 2, 3, 5, 8], ∆X8[1] and kf2, which helps us deduce X7[2, 3, 5, 8] owing to ∆X7 = P (∆Y8).

Since kf1‖kf2 has only 64-bit information by key schedule, the total 36-byte variable is computed by

19-byte variable ∆X4[1]‖∆Y4[1]‖∆Y5[1, 2, 3, 5, 8]‖∆X8[1]‖∆Y8[1]‖X7[7]‖X8[6]‖kf1 in such case.

However, for every 19-byte variable, we find that the difference ∆Y7 equals to P−1(FL−1(P (∆Y5)⊕
∆L3)) ⊕ P−1(∆L7), where the probability that ∆Y7[4, 6, 7] equals to 0 is 2−24. So there are only about

2128 possible values for 36-byte intermediate variable, actually. ut

Based on the 7-round property, we extend two rounds on the top and three rounds on the bottom

to attack the 12-round Camellia-192, see Fig.4. To reduce the computation complexity of the 12-round

attack on Camellia-192, we retrieve the equivalent keys k′1, k′2, k′10, k′11, k′12, and then deduce the master

key. The equivalent keys are defined as k′1 = k1 ⊕ kw1, k
′
2 = k2 ⊕ kw2, k

′
12 = k12 ⊕ kw4, k

′
11 = k11 ⊕ kw3,

and k′10 = k10⊕kw4. Note that the master key could be deduced by the equivalent key using the method

introduced in [7].

The key recovery is also composed of two phases: precomputation phase and online phase. In the

precomputation phase, we get 2128 possible values of multiset as described in Property 2, and store them

in a hash table H. The attack procedure of the online phase is similar to Algorithm 1. However we take a

balance of the time complexity of Step 2 and Step 3. We guess some related subkeys to find the possible

pairs which may satisfy the truncated differential, and then construct the δ−set to get their plaintexts.

The attack procedure of online phase is described as follows.

1. Choose 257 structures of plaintexts, and each structure contains 256 plaintexts that satisfy L0 = (α, α⊕
x1, α⊕x2, x3, α⊕x4, x5, x6, α⊕x7), R0 = P (β1, β2, β3, β4, β5, y1, y2, β6), where xi(i = 1, ..., 7), y1 and

11

⊕3X 3Y3k

S P⊕
3Z

⊕4X 4Y
4k

S P⊕
4Z

⊕5X 5Y
5k

S P⊕
5Z

⊕6X 6Y
6k

S P⊕
6Z

⊕7X 7Y7k

S P⊕
7Z

⊕8X 8Y
8k

S P⊕
8Z

⊕9X 9Y
9k

S P⊕
9Z

⊕
∪

∩ <<<1

⊕

1Lkf

1Rkf
⊕

∪

∩ <<<1

⊕
2Rkf

2Lkf

2 (00000000)L  2 (*0000000)R 

3 (*0000000)L 

4 (***0*00*)L 

5 (????????)L 

*

6 (????????)L 

6 (***0*00*)L 

7 (*0000000)L 

8 (00000000)L 

(***0*00*)

*

6 (????????)R 

8 (*0000000)R 

(***0*00*)

Fig. 3. The Truncated Differential of 7-round Camellia-

192

⊕1X 1Y
1k

S P⊕
1Z

⊕
2X 2Y

2k

S P⊕
2Z

⊕10X 10Y10k

S P⊕
10Z

⊕11X 11Y
11k

S P⊕
11Z

⊕12X 12Y
12k

S P⊕
12Z

0 1 2 3 4 5

1 2 3 4 5

(0 00)
(0000000)

(0 00)
(0 00)

R P j j j j j
a

P j j j j j
P aaaa a

 





0 (0 00)L jjj j j 

1 (0000000)L a 

7-round property

9 (0000000)L e 

10 (0 00)L ppp p p 

11 1 2 3 4 5(0 00)
(0 00)

L P p p p p p
P eeee e

 


12 1 2 3 4 5 6 7 8()L r r r r r r r r  12 1 2 3 4 5(0 00)
(0 00)

R P p p p p p
P eeee e

 


⊕⊕ 2kw1kw

⊕⊕ 3kw4kw

Fig. 4. The MITM Attack on 12-round Camellia-

192

y2 are constants, but α, βj (j = 1, ..., 6) take all possible values. Ask for corresponding ciphertexts

for each structure, compute P−1(R12) and store the plaintext-ciphertext pairs L0‖R0‖L12‖R12 in a

hash table indexed by 16-bit value (P−1(R12))[6, 7]. Hence, there are 257 × 2111 × 2−16 = 2152 pairs

whose differences satisfy P−1(∆R12)[6, 7] = 0 on average.

2. For every pair, do the following substeps to find a pair with corresponding subkeys conforming the

truncated differential.

(a) For l = 2, 3, 4, 5, 6, 7, 8, guess the 8-bit value of k′12[l] one by one. Partially decrypt the ciphertext

R12[l] and keep only the pairs which satisfy ∆Y12[l] = P−1(∆L12[l]). The expected number of

pairs left is about 2152 × 27×(−8) = 296. After that guess k′12[1], partially decrypt the remaining

pairs to get the value L10.

(b) For l = 2, 3, 5, 8, guess the 8-bit value of k′11[l]. Compute the intermediate value Y11[l] and elimi-

nate the pairs whose intermediate values do not satisfy∆Y11[l] = P−1(∆R12)[l]⊕P−1(∆R12)[4](see

Observation 2). Then guess k′11[1] and keep the pairs making ∆Y11[1] = P−1(∆R12)[1] hold. The

expected number of remaining pairs is 296 × 2−40 = 256.

(c) Similarly, for l = 1, 2, 3, 5, 8, guess k′1[l] and discard the pairs which do not make the equations

∆Y1[1] = P−1(∆R0)[1] and ∆Y1[l] = P−1(∆R0)[l] ⊕ P−1(∆R0)[4](see Observation 3) hold for

l = 2, 3, 5, 8. Then the expected number of remaining pairs is 256 × 2−40 = 216.

3. For the 216 remaining pairs, if we want to find the pair in content with the 7-round truncated

differential, we have to guess 64-bit equivalent key k′1[4, 6, 7]‖k′2[1]‖k′11[4, 6, 7]‖k′10[1] under each 144-

bit subkey guess. Obviously, it is infeasible, since the time complexity is greater than exhaustively

searching in such case. However, there are about a pair satisfying the truncated differential, for the

probability of the truncated differential occuring is about 2−16 for the remaining pairs. Therefore we

construct the δ−set for all 216 pairs. If the guessed 144-bit key information is correct, then there

should exist a pair to conform the truncated differential, and the corresponding value of the multiset

should exist in the table H. We construct a δ−set for every remaining pair under 144-bit key guesses

in the following.

(a) According to the differences ∆L0[1] and P−1(∆R0)[4], deduce the intermediate value X2[1]‖Y2[1]

of the pair by the difference distribution table of S-box s1.

12

(b) For the pair (L0‖R0, L
′
0‖R′0) corresponding to (X2[1], X ′2[1]), change the value X ′2[1] to a different

value X ′′2 [1], compute ∆Y ′2 [1] = s1(X ′′2 [1]) ⊕ s1(X2[1]), and get the difference ∆L′0[1, 2, 3, 5, 8].

Then get the left half of the plaintext L′′0 = L0 ⊕∆L′0.

(c) Compute the difference ∆Y ′1 [1, 2, 3, 5, 8] by the guessed subkey k′1[1, 2, 3, 5, 8]. Then obtain the

difference ∆R′0 and get the right half part R′′0 = R0⊕∆R′0. Here we get a new plaintext (L′′0 , R
′′
0)

of the δ−set.

(d) Compute all left 253 values of X2[1] to obtain all plaintexts of the δ−set, and identify the corre-

sponding ciphertexts.

4. For each δ−set under 144-bit key guesses, compute the intermediate value Y11[2, 3, 5, 8], P−1(L10)[6]

for every plaintext-ciphertext pairs by above guessed subkey. Guess 8-bit key k′11[7] to compute the

value X10[6].

5. Guess 8-bit key k′10[6] to compute the multiset of byte (P−1(∆L8))[6] = ∆Y10[6] ⊕ P−1(∆L10)[6].

Detect whether it belongs to H. Here, we need to detect 216 values of multiset for every 160-bit

guessed key. Then find the correct subkey if one of 216 values belongs to H. Note that the probability

that a wrong value of multiset could pass the check is about 2128 × 2−467.6 = 2−339.6.

6. Compute the related part of the master key by the equivalent keys k′1, k′2, k′10, k′11, k′12, and search

the unknown part.

Complexity Analysis. The precomputation phase needs about 2128 × 28 computations and 2130 128-

bit memories. Step 1 needs about 2113 encryptions. We also need 2113 128-bit memories to store all

plaintext-ciphertext pairs. The complexity of step 2 is dominated by substep 2.(c), which needs about

2168 computations. Step 3 needs about 2168 simple computations to construct 216 δ-for every 144-bit key

guess. Step 4 needs about 2160× 28× 28× 2−3 = 2173 12-round encryptions. The time complexity of step

5 is equivalent to 2176×28×2−4 = 2180 12-round encryptions. In total, the time complexity of the attack

is about 2180 encryptions, the data complexity is about 2113 chosen plaintexts, the memory complexity

is about 2130 128-bit.

5.3 The Attack on 13-Round Camellia-256

This section introduces an 8-round property of Camellia-256, which starts from the fifth round and ends

at the twelfth round introduced by Property 3. The truncated differential used in this section is outlined

in Fig. 5 of Appendix A, the active byte of the δ−set is located at L′12[5], and the corresponding byte of

multiset is defined as P−1(∆L4)[1].

Property 3. Decrypt 28 values of the δ−set through 8-round Camellia-256 starting from the 12-th round,

where L12[5] is the active byte, in the case that a pair of the δ−set conforms to the 8-round truncated

differential outlined in Fig 5 of Appendix A, then the corresponding multiset of bytes (P−1(∆L4))[1] only

takes about 2225 instead of 2467.6 values on average.

The sketch of Property 3 is similar to Property 2, we give the proof in Appendix A.

We mount a 13-round attack on Camellia-256 by adding four rounds in the forward and one round in

the backward of the 8-round Camellia (see Fig. 6 in Appendix A). We also recover the equivalent keys k′1,

k′2, k′3, k′4, k′13, and then deduce the master key, where the equivalent keys are defined as k′1 = k1 ⊕ kw1,

k′2 = k2 ⊕ kw2, k
′
3 = k3 ⊕ kw1, k

′
4 = k4 ⊕ kw2, and k′13 = k13 ⊕ kw4. The attack is worked in the

chosen-ciphertext model. In the precomputation phase, we compute all 2225 possible values of multiset,

and store them in a hash table. The attack procedure of the online phase is described as follows.

1. Select 281 structures of ciphertexts, and each structure contains 232 ciphertexts

L13 = P (α1, x1, x2, x3, α2, x4, x5, x6), R13 = (β1, y1, y2, y3, β2, y4, y5, y6),

where xi and yi (i = 1, ..., 6) are fixed values, and αj , βj (j = 1, 2) take all the possible values. Decrypt

and obtain the corresponding plaintexts. There are 2144 pairs totally.

13

2. Compute P−1(∆L1) for every pair by guessing 64-bit subkey k′1, eliminate the pairs which do not

satisfy P−1(∆L1)[6, 7] = 0. There are 2144−16 = 2128 pairs left on average.

3. For l = 2, 3, 4, 5, 6, 7, 8, guess the 8-bit value of k′2[l] one by one, compute the value Y2[l], and keep

the pairs which make ∆Y2[l] = P−1(∆L0[l]) hold. Then guess k′2[1] to compute L2. The number of

pairs kept about 2128−7∗8 = 272.

4. For l = 2, 3, 5, 8, guess the 8-bit value of k′3[l]. Compute Y3[l] and discard the pairs which do not

conform ∆Y3[l] = P−1(∆L1)[l] ⊕ P−1(∆L1)[4](see Observation 3). Then guess k′3[1] and keep the

pairs satisfying ∆Y3[1] = P−1(∆L1)[1]. There are 232 pairs remain for every 168-bit guessed key after

this step.

5. For l = 1, 5, guess the 8-bit value of k′13[l], and compute the value ∆Y13[l]. Delete the pairs which do

not content ∆Y13[l] = P−1(∆L13[l]). Then guess kf3R[1], compute ∆L∗12[1] by using Observation 1,

and delete the pairs when ∆L∗12[1] 6= 0. Hereafter, the expected number of remaining pairs is about

28.

6. Compute the value L3 by guessing 24-bit subkey k′3[4, 6, 7], and then deduce the value of subkey k′4[1]

for every pair.

7. Construct the δ−set for every pair, and compute corresponding value of multiset. Detect whether it

belongs to the precomputed table and find the possible correct key.

8. Compute the related part of the master key by the correct equivalent keys k′1, k′2, k′3, k′4, k′13, and

search the unknown part.

Complexity Analysis. The time complexity of precomputation phase is about 2225 × 28 × 2−1 = 2232

13-round encryptions. The memory complexity is about 2225× 22 = 2227 128-bit. The time complexity of

online phase is bounded to that of Step 6, which costs 2224×28×2−2 = 2230 13-round encryptions, which

also needs 2113 chosen ciphertexts to find the correct pairs. In total, the data, time and memory complex-

ities of the attack, including the precomputation phase, are 2113 chosen ciphertexts, 2232.3 encryptions

and 2227 128-bit memories, respectively.

6 Conclusion

In this paper, we give the key-dependent multiple differential attack and meet-in-the-middle attacks

on reduced-round Camellia-128/192/256. For key-dependent multiple differential attack, we divide the

keyspace into 224+1 subsets to ensure the input and output difference of FL−1 function same, and

then produce 224 types of corresponding 8-round differentials, and each type of differentials include

243 differentials. Based on 8-round multiple differentials, we attack 10-round Camellia-128 for every key

subsets, which works for about 99.99% of the keys, and exhaustively search for the remaining fraction of

1/215 of the keyspace. This attack is more efficient than previous 10-round attack on Camellia-128.

Furthermore, we also discuss the security of reduced-round Camellia-192/256 against the meet-in-the-

middle attack. Considering differential enumeration technique, multisets, intermediate variable relations

and key relations etc, we mount the attacks on 12-round Camellia-192 and 13-round Camellia-256 with

non-marginal complexities.

7 Acknowledgments

We would like to thank anonymous reviewers for their very helpful comments on the paper. This

work is supported by the National Natural Science Foundation of China (No. 61133013) and 973 Pro-

gram (No.2013CB834205), and the National Natural Science Foundation of China (No. 61402256 and

61272035).

References

1. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita, T.: Specification of Camellia

- a 128-bit Block Cipher. version 2.0, 2001

14

2. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita, T.: Camellia: A 128-Bit

Block Cipher Suitable for Multiple Platforms - Design and Analysis. In: Stinson, D.R., Tavares, S.E. (eds.)

SAC 2000. Lecture Notes in Computer Science, vol. 2012, pp. 39–56. Springer (2001)

3. Ben-Aroya, I., Biham, E.: Differential cryptanalysis of lucifer. In: Advances in CryptologyCRYPTO93. pp.

187–199. Springer (1994)

4. Blondeau, C., Gérard, B.: Multiple Differential Cryptanalysis: Theory and Practice. In: Joux, A. (ed.) Fast

Software Encryption - FSE 2011. Lecture Notes in Computer Science, vol. 6733, pp. 35–54. Springer (2011)

5. Bogdanov, A., Geng, H., Wang, M., Wen, L., Collard, B.: Zero-Correlation Linear Cryptanalysis with FFT

and Improved Attacks on ISO Standards Camellia and CLEFIA. In: Lange, T., Lauter, K., Lisonek, P. (eds.)

SAC 2013 to appear (2013)

6. Boura, C., Naya-Plasencia, M., Suder, V.: Scrutinizing and improving impossible differential attacks: Ap-

plications to clefia, camellia, lblock and simon. In: Advances in Cryptology - ASIACRYPT 2014 - 20th

International Conference on the Theory and Application of Cryptology and Information Security, Kaoshi-

ung, Taiwan, R.O.C., December 7-11, 2014. Proceedings, Part I. pp. 179–199 (2014), http://dx.doi.org/

10.1007/978-3-662-45611-8_10

7. Chen, J., Jia, K., Yu, H., Wang, X.: New Impossible Differential Attacks of Reduced-Round Camellia-192

and Camellia-256. In: Parampalli, U., Hawkes, P. (eds.) ACISP 2011. Lecture Notes in Computer Science,

vol. 6812, pp. 16–33. Springer (2011)

8. Chen, J., Li, L.: Low Data Complexity Attack on Reduced Camellia-256. In: Susilo, W., Mu, Y., Seberry, J.

(eds.) ACISP 2012. Lecture Notes in Computer Science, vol. 7372, pp. 101–114. Springer (2012)

9. Cryptography Research and Evaluation Committees: Http://www.cryptrec.go.jp/english/index.html

10. Demirci, H., Selçuk, A.A.: A Meet-in-the-Middle Attack on 8-Round AES. In: Nyberg, K. (ed.) FSE 2008.

Lecture Notes in Computer Science, vol. 5086, pp. 116–126. Springer (2008)

11. Derbez, P., Fouque, P.A., Jean, J.: Improved Key Recovery Attacks on Reduced-Round AES in the Single-Key

Setting. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT. Lecture Notes in Computer Science, vol. 7881,

pp. 371–387. Springer (2013)

12. Dunkelman, O., Keller, N., Shamir, A.: Improved Single-Key Attacks on 8-Round AES-192 and AES-256. In:

Abe, M. (ed.) Advances in Cryptology - ASIACRYPT 2010. Lecture Notes in Computer Science, vol. 6477,

pp. 158–176. Springer (2010)

13. Hatano, Y., Sekine, H., Kaneko, T.: Higher Order Differential Attack of Camellia (II). In: Nyberg, K., Heys,

H.M. (eds.) SAC 2002. Lecture Notes in Computer Science, vol. 2595, pp. 129–146. Springer (2003)

14. International Organization for Standardization(ISO): International Standard- ISO/IEC 18033-3, Information

technology-Security techniques-Encryption algorithms -Part 3: Block ciphers (2010)

15. Kanda, M., Matsumoto, T.: Security of Camellia against Truncated Differential Cryptanalysis. In: Matsui,

M. (ed.) Fast Software Encryption - FSE 2002. Lecture Notes in Computer Science, vol. 2355, pp. 286–299.

Springer (2001)

16. Knudsen, L.R., Rijmen, V.: On the decorrelated fast cipher (dfc) and its theory. In: Fast Software Encryption.

pp. 81–94. Springer (1999)

17. Kühn, U.: Improved Cryptanalysis of MISTY1. In: Daemen, J., Rijmen, V. (eds.) Fast Software Encryption

- FSE 2002. Lecture Notes in Computer Science, vol. 2365, pp. 61–75. Springer (2002)

18. Lee, S., Hong, S., Lee, S., Lim, J., Yoon, S.: Truncated Differential Cryptanalysis of Camellia. In: Kim, K.

(ed.) ICISC 2001. Lecture Notes in Computer Science, vol. 2288, pp. 32–38. Springer (2002)

19. Lei, D., Li, C., Feng, K.: New Observation on Camellia. In: Preneel, B., Tavares, S.E. (eds.) SAC 2005. Lecture

Notes in Computer Science, vol. 3897, pp. 51–64. Springer (2006)

20. Lei, D., Li, C., Feng, K.: Square Like Attack on Camellia. In: Qing, S., Imai, H., Wang, G. (eds.) ICICS 2007.

Lecture Notes in Computer Science, vol. 4861, pp. 269–283. Springer (2007)

21. Liu, Y., Li, L., Gu, D., Wang, X., Liu, Z., Chen, J., Li, W.: New Observations on Impossible Differential

Cryptanalysis of Reduced-Round Camellia. In: Canteaut, A. (ed.) Fast Software Encryption 2012. Lecture

Notes in Computer Science, vol. 7549, pp. 90–109. Springer (2012)

22. Lu, J., Kim, J., Keller, N., Dunkelman, O.: Improving the Efficiency of Impossible Differential Cryptanalysis

of Reduced Camellia and MISTY1. In: Malkin, T. (ed.) CT-RSA 2008. Lecture Notes in Computer Science,

vol. 4964, pp. 370–386. Springer (2008)

23. Lu, J., Wei, Y., Fouque, P.A., Kim, J.: Cryptanalysis of reduced versions of the Camellia block cipher. IET

Information Security 6(3), 228–238 (2012)

24. Lu, J., Wei, Y., Kim, J., Pasalic, E.: The Higher-Order Meet-in-the-Middle Attack and Its Application to the

Camellia Block Cipher. In: Galbraith, S.D., Nandi, M. (eds.) Progress in Cryptology - INDOCRYPT 2012.

Lecture Notes in Computer Science, vol. 7668, pp. 244–264. Springer (2012)

15

http://dx.doi.org/10.1007/978-3-662-45611-8_10
http://dx.doi.org/10.1007/978-3-662-45611-8_10

25. Mala, H., Shakiba, M., Dakhilalian, M., Bagherikaram, G.: New Results on Impossible Differential Crypt-

analysis of Reduced-Round Camellia-128. In: Jacobson, M., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009.

Lecture Notes in Computer Science, vol. 5867, pp. 281–294. Springer (2009)

26. Shirai, T.: Differential, Linear, Boomerang and Rectangle Cryptanalysis of Reduced- Round Camellia. In: the

Third NESSIE Workshop (2002)

27. Sugita, M., Kobara, K., Imai, H.: Security of Reduced Version of the Block Cipher Camellia against Truncated

and Impossible Differential Cryptanalysis. In: Boyd, C. (ed.) Advances in Cryptology - ASIACRYPT 2001.

Lecture Notes in Computer Science, vol. 2248, pp. 193–207. Springer (2001)

28. Sun, X., Lai, X.: The key-dependent attack on block ciphers. In: Advances in Cryptology–ASIACRYPT 2009,

pp. 19–36. Springer (2009)

29. Wang, M., Sun, Y., Tischhauser, E., Preneel, B.: A model for structure attacks, with applications to present

and serpent. In: Fast Software Encryption. pp. 49–68. Springer (2012)

30. Wu, W., Feng, D., Chen, H.: Collision Attack and Pseudorandomness of Reduced-Round Camellia. In: Hand-

schuh, H., Hasan, M.A. (eds.) SAC 2004. Lecture Notes in Computer Science, vol. 3357, pp. 252–266. Springer

(2004)

31. Wu, W., Zhang, W., Feng, D.: Impossible Differential Cryptanalysis of Reduced-Round ARIA and Camellia.

J. Comput. Sci. Technol. 22(3), 449–456 (2007)

A The Proof of Property 3

By Property 3, the 8-round property starts from the fifth round and ends at the twelfth round. The

active byte of δ−set is defined at the first bytes of the input of the third round L12[5], i.e., L12[5] is the

active byte. Considering to decrypt 28 values of the δ−set through 8-round Camellia-256, in the case

of that a pair of δ−set conforms to the 8-round truncated differential outlined in Fig. 5, we prove the

corresponding multiset of bytes P−1(∆L4)[1] has 2225 values.

Proof. If ∆L12[5] 6= 0 and there is no difference on the other bytes of the input (L12, R12), (P−1(∆L4))[1]

is determined by 321-bit intermediate variable

X11[5]‖X10[2, 3, 4, 6, 7, 8]‖X9‖X8‖X7‖kf1{9− 33, 42− 64}‖kf2L[1]‖kf2R[1]‖kf2L{9}‖X6[1].

However, if there exists a pair satisfying the truncated differential as described in Fig. 6, the 312-bit

intermediate variable

X11[5]‖X10[2, 3, 4, 6, 7, 8]‖X9‖X8‖X7‖X6[1]‖kf1{9− 33, 42− 64}‖kf2L[1]

is determined by 216-bit variable

∆X11[5]‖∆Y11[5]‖∆Y10[2, 3, 4, 6, 7, 8]‖∆Y9‖∆X6[1]‖∆Y6[1]‖kf1‖kf2L[1].

Besides, 9-bit value kf2R[1]‖kf2L{9} are also necessary to compute (P−1(∆L4))[1]. Hence the multiset

of bytes (P−1(∆L4))[1] could be computed by traversing all the 225-bit intermediate variable

V = ∆X11[5]‖∆Y11[5]‖∆Y10[2, 3, 4, 6, 7, 8]‖∆Y9‖∆X6[1]‖∆Y6[1]‖kf1‖kf2L[1]‖kf2R[1]‖kf2L{9}.

That is to say there are about 2225 possible values of multiset totally. ut

B Blondeau et al.’s Multiple Differential Cryptanalysis

Blondeau et al.’s propose multiple differential cryptanalysis in 2011. A precise analytical model as well

as formulas to compute success rate has been given. The success rate of a multiple differential attack can

be calculated as follows:

PS ≈ 1−G∗[G−1(1− l − 1

2nk − 2
)− 1/Ns], (1)

16

⊕5X 5Y5k

S P⊕
5Z

⊕6X 6Y
6k

S P⊕
6Z

⊕7X 7Y7k

S P⊕
7Z

⊕8X 8Y
8k

S P⊕
8Z

⊕9X 9Y
9k

S P⊕
9Z

⊕
∪

∩ <<<1

⊕

1Lkf

1Rkf
⊕

∪

∩ <<<1

⊕
2Rkf

2Lkf

4 (00000000)L  4 (*0000000)R 

5 (*0000000)L 

*

6 (***0*00*)L 

6 (????????)L 

7 (????????)L 

8 (????????)L 

*

6 (*0000000)R 

*

12 (00000000)R 

⊕10X 10Y10k

S P⊕
10Z

⊕11X 11Y
11k

S P⊕
11Z

⊕12X 12Y
12k

S P⊕
12Z

9 (0***0***)L 

10 (0000*000)L 

11 (00000000)L 

*

12 (0000*000)L 

(0***0***)

Fig. 5. The 8-round Truncated Differential of Camellia-

256

⊕3X 3Y
3k

S P⊕
3Z

⊕
4X 4Y

4k

S P⊕
4Z

1 1 2 3 4 5(0 00)
(0 00)

L P f f f f f
P eeee e

 


2 (0 00)L fff f f 

3 (0000000)L e 

⊕⊕ 2kw1kw

⊕1X 1Y
1k

S P⊕
1Z

⊕
2X 2Y

2k

S P⊕
2Z

0 1 2 3 4 5 6 7 8()R h h h h h h h h 0 1 2 3 4 5 6 7 8L i i i i i i i i 

8-round property

⊕13X 13Y13k

S P⊕
13Z

⊕
∪

∩ <<<1

⊕

3Lkf

3Rkf
⊕

∪

∩ <<<1

⊕
4Rkf

4Lkf

3kw4kw ⊕ ⊕
12 (00000000)R 12 1(000 000)L a a 

13 1(000 000)R a a 
13 1 2(000 000)L P r r 

Fig. 6. The Meet-in-the-Middle Attack on 13-

round Camellia-256

where nk is the number of key candidates, l is the size of list to keep and Ns is the number of samples.

The function G and G∗ are defined as follows:

G∗(τ)
def
= G(τ, p∗)

G(τ)
def
= G(τ, p)

(2)

where p∗ = Σi,jp
(
∗i, j) and p = |∆|

2m|∆0| . Σi,j is the sum of probability of all differential characters and m is

the block size. |∆| denotes the number of input difference values while |∆0| is the number of differentials.

G(− 1) is defined by G(− 1)(y) = minx|G(x) > y. G(τ, p∗) and G(τ, p) can be calculated as follows:

G(τ, q) =


G−(τ, q) if τ < q − 3

√
q/Ns,

1−G+(τ, q) if τ > q + 3
√
q/Ns,

Gp(τ, q) otherwise,

(3)

where Gp(τ, q) is the cumulative distribution function of the Poisson distribution with parameter qNs.

G−(τ, q) and G+(τ, q) are defined as follows:

G−(τ, q) = e(−NsD(τ‖,q))[
q
√

1− τ
(q − τ)

√
2πτNs

+
1√

8πτNs
] (4)

G+(τ, q) = e(−NsD(τ‖,q))[
(1− q)

√
τ

(q − τ)
√

2πτNs
+

1√
8πτNs

] (5)

where D(τ ‖ q) is the Kullback-Leibler divergence defined by:

D(τ ‖ q) = τ ln(
τ

q
) + (1 + τ)ln(

1− τ
1− q

) (6)

C Figure of the Camellia Algorithm

17

6-Round

 1(64)kw
2(64)kw

(128)M

1(64) 2(64) 3(64)

4(64) 5(64) 6(64)

, , ,

, ,

k k k

k k k

FL FL-1

6-Round

7(64) 8(64) 9(64)

10(64) 11(64) 12(64)

, , ,

, ,

k k k

k k k

1(64)kf 2(64)kf

FL FL-1

6-Round

13(64) 14(64) 15(64)

16(64) 17(64) 18(64)

, , ,

, ,

k k k

k k k

3(64)kf 4(64)kf

 3(64)kw
4(64)kw

0(64)L
0(64)R

18(64)L
18(64)R

(128)C

0(64)L
0(64)R

F 1(64)k

1(64)L
1(64)R

F 2(64)k

2(64)L
2(64)R

F 3(64)k

3(64)L
3(64)R

F 4(64)k

4(64)L
4(64)R

F 5(64)k

5(64)L
5(64)R

F 6(64)k

Fig. 7. : Encryption procedure of Camellia for 128-bit keys

18

	Improved Attacks on Reduced-Round Camellia-128/192/256
	Introduction
	Preliminaries
	Notations
	Brief Description of Camellia

	Some Observations of Camellia
	Key-Dependent Multiple Differential Attack on Reduced-Round Camellia-128
	Some Truncated Differentials
	Key Subsets Corresponding to Truncated Differentials
	Searching 8-Round Multiple Differentials for Every Key Subset
	Key-Dependent Multiple Differential Attack on 10-Round Camellia-128

	MITM Attacks on Reduced-Round Camellia-192/256
	Description of Meet-in-the-Middle Attack
	MITM Attack on 12-Round Camellia-192
	The Attack on 13-Round Camellia-256

	Conclusion
	Acknowledgments
	The Proof of Property 3
	Blondeau et al.'s Multiple Differential Cryptanalysis
	Figure of the Camellia Algorithm

