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Abstract. Hill is a classical cipher which is generally believed to be
resistant against ciphertext-only attack. In this paper, by using a divide-
and-conquer technique, it is first shown that Hill with d x d key matrix
over Zss can be broken with computational complexity of O(d26%), for
the English language. This is much less than the only publicly known
attack, i.e., the brute-force with complexity of O(d‘?’%d2 ). Then by using
the Chinese Remainder Theorem, it is shown that the computational
complexity of the proposed attack can be reduced to O(dlSd). Using
an information-theoretic approach, supported by extensive simulation
results, it is shown that the minimum ciphertext length required for a
successful attack increases by a factor of about 7 and 9.8, respectively
for these two attacks in comparison with the brute-force attack. This is
the only serious attack on Hill since its invention in 1929.

Keywords: Hill cipher, ciphertext-only attack, classical ciphers, Chi-
nese Remainder Theorem, entropy, redundancy

1 Introduction

Classical ciphers refer to a type of historically used ciphers which now have fallen
into disuse. They are usually divided into substitution and transposition ciphers.
In substitution ciphers, groups of letters are systematically replaced throughout
the plaintext with other groups of letters, while in transposition ciphers, the
letters themselves are kept unchanged, but their order within the plaintext is
scrambled according to some well-defined scheme. There are several classical
ciphers such as Caesar, monoalphabetic and polyalphabetic substitution ciphers,
Vigenere square, Great, Morse Code, Pigpen, Scytale, Columnar, Chinese cipher,
and so on [7,5,8].

Cryptanalysis of classical ciphers is usually a simple work, and most of them are
broken not only with Known Plaintext Attacks (KPA), but also with Ciphertext-
Only Attacks (COA). Of course, the requisite of breaking a cipher with COA is
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existence of some redundancy in the messages (e.g., an English text), else the
cipher is information-theoretically secure.

Interestingly, some of these ciphers are still quite resistant against the COA. Our
focus on this paper is on the Hill cipher [2], a polygraphic substitution cipher
based on linear algebra, invented by Lester S. Hill in 1929. This cipher uses
matrix multiplication of a d X d secret key matrix with 1 x d plaintext blocks over
Zs6 to compute the ciphertext blocks. Because of linear property of the cipher,
one can easily show that with KPA, the Hill cipher can be simply broken and
the matrix of production (i.e., the key matrix) can be extracted. Nevertheless, it
is generally accepted that mounting COA on Hill is much harder [10, 8].

The trivial exhaustive key space search on d x d Hill requires 264" matrix multi-
plications. To the best of our knowledge, no better attack has ever been reported
in the literature. We remark that taking into account the invertibility of the key
matrix does not lead to a substantially improved attack. It is well-known (e.g.,
see [4]) that the number of invertible d x d matrices over Zsgg, i.e., the size of key
space KC, can be calculated as follows:

d
K| =267 (1 —277)(1 - 137%) > 0.229 x 26
=1

As it can be seen, this leads to marginal improvement and the asymptotic com-
plexity of the attack does not change, let alone that determining the invertibil-
ity of a matrix demands some extra effort. Although the complexity of 26" for
brute-force COA on Hill is common knowledge (see [11]), it seems that there is
no report on the possibility of any further improvements in the literature. We
have also reviewed several cryptography books. Some are content to say that
“[Hill] can be difficult to break with a ciphertext-only attack” [8], some just
say that “A ciphertext-only attack [on Hill] is harder” [10]. In addition the lat-
ter states that cryptanalysis based on letter frequency does not work because
the Hill cipher encrypts blocks of letters together. Nonetheless, in this paper, we
show that cryptanalysis based on letter frequency works just fine. In addition, we
have surveyed several introductory crypto courses offered by renowned crypto
scholars and noticed none of them pays enough attention to COA attack on
Hill. One exception is a professor of mathematics at Northern Kentucky Univer-
sity [1] who discusses COA on a 2 x 2 Hill using bigram frequencies in his lecture
notes. In another course at the Department of Computer Science of University
of Rochester [3], lots of effort is made to explain the COA on 3 x 3 Hill, in a
course project devoted to COA on Hill using a specific computer program. None
of these methods can be extended to break even 4 x 4 Hill.

All the above reasons affirm the COA resistance of Hill, and in fact, we can say
that the best publicly known COA on Hill cipher requires full search over all
O(26d2) possible secret keys. To be more precise, this attack requires O(26d2)
operations consisting of O(1) multiplications of d x d square matrices. There-
fore, if one does not bother to use fast algorithms for matrix multiplication such
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as Strassen’s method [9], the complexity of trivial brute-force attack will be
O(d326d2). In fact, by using Strassen’s method, the complexity will reduce to
O(d'°s2 726‘12) ~ O(d2'80726d2). However, a better approach is to, by eliminating
the repeated calculations, tweak the attack to one with computational complex-
ity of O(d26d2). We will not explore this possibility further but the idea will be
clear when we present Algorithm 1 in Section 5.

We show that for the English language, a COA can be applied on Hill much
faster than full search of key matrix elements (i.e., the brute-force attack). Our
first key contribution leads us to a new COA that uses a divide-and-conquer
technique by searching over each column of the decryption key matrix, sepa-
rately. Here, by leveraging the non-uniformity of monograms, we perform the
attack. The computational complexity of our COA is O(d26%) which is already
dramatically lower than the previous ones. In our second contribution, using the
Chinese Remainder Theorem (CRT), we devise an attack with computational
complexity of O(d139), leveraging non-uniformity of monograms when consid-
ered both modulo 2 and 13. This leads to practical COA on Hill with d as large
as say 10 (notice that 10 x 13'° ~ 2404 which is considered affordable on a
typical PC in a tolerable amount of time).

The rest of paper is organized as follows. Section 2 presents the preliminaries of
the paper. In section 3, Hill cipher will be described. COA on Hill using mono-
grams and CRT-based divide-and-conquer attack are introduced in Section 4 and
Section 5, respectively. Experimental results are presented in Section 6. Finally,
we conclude the paper in Section 7.

2 Preliminaries

We need the following preliminaries to describe and analyze our attacks, most
of which (expect Definitions 4 and 5) can be found in [8].

English language properties. Various people have estimated frequencies, i.e.,
probabilities of occurrence of the 26 letters of the English language. Let f; de-
note the correct frequency of the i*" letter of English alphabet, also known as
monogram frequencies. We use the frequencies reported in [8] as our reference.
If X is a random variable with probability distribution of that of English mono-
grams, then the entropy of X, define as H; = ), f;log, fi, is estimated to be
H, =~ 4.1718. The frequencies of n-gram’s and n-gram entropy, denoted by H,,,
are similarly defined.

Definition 1 (natural entropy and redundancy). The natural entropy H
and the redundancy R of a language with alphabet P is defined as:
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H = lim &,
n—oo N
H
R=1— —. 1
log, [P M)

Experimental results for the natural entropy of English language, with |P| = 26,
shows that 1.0 < H < 1.5. For later references, we use the more conservative
lower bound H =~ 1.0.

Definition 2 (unicity distance). The minimum ciphertext length required to
break a cipher, i.e., determine the secret key almost uniquely, is called the unicity
distance of the cipher.

Using information theory concepts, it is straightforward to show that the unicity
distance of a cipher can be calculated according to the following theorem.

Theorem 1. The unicity distance of a cipher with key space IC, over a plaintext
space with alphabet P and redundancy R, is:

- log, |K|
no~ —————=-

Rlog, |P|
We remark that many cryptanalysis techniques mount a COA only using the non-
uniformity of monograms, instead of taking advantage of the full redundancy in
the plaintext. This, however, causes to require a longer ciphertext to find the
key almost uniquely. In this case, one should notice that, for calculating the
the minimum ciphertext length, the redundancy R must be computed according
to Eq. (1) with H = H; when using Theorem 1. The cryptanalysis techniques
based on monogram frequencies usually use index of coincidence, defined below,
to measure how well a string of English alphabet matches with English language
in terms of monograms.

Definition 3 (index of coincidence). The index of coincidence (IC) of a
string P over English alphabet with the observed (normalized) frequency f; for
the i'h letter (i.e., Y., f; = 1) is defined as:

IC(P)=>_fif:
i
For many ciphers, when a given ciphertext is decrypted using a random wrong

key, it is reasonable to assume that the decrypted string is uniformly random. We
call this assumption Simple Uniform Wrong Key Decryption (SUWKD). Under
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SUWKD assumption, using statistical hypothesis testing similar to those used
in correlation attacks [6], one can argue that the optimum criteria to measure
how well a string matches with English language in terms of monograms, is the
index of maximum likelihood, defined as follows.

Definition 4 (index of maximum likelihood). The index of maximum like-
lihood (IML) of a string P over English alphabet with the observed (normalized)
frequency fi for the it" letter is defined as:

IML(P) = — Z filog, fi

To the best of our knowledge, this is the first time that IML is used for cryptanal-
ysis of classical ciphers instead of IC. Our simulation results in Section 6 verifies
the optimality of IML. We formalize the notion of how well a string over English
alphabet matches with English language using the following definition. We ignore
to provide a similar definition based on IC due to its non-optimality.

Definition 5 (monogram-wise meaningful string). We say that a string P
over English alphabet is monogram-wise meaningful if the corresponding IML(P)
is greater than a certain threshold.

Let us discuss how a ciphertext C of a cipher with key space K can be broken
using brute-force attack and based on monogram frequencies. To find a few can-
didates as the potential correct keys, one approach is to decrypt the ciphertext
with all possible candidate keys K € K and report those whose correspond-
ing decrypted string is monogram-wise meaningful for an appropriately chosen
threshold. Another approach is to report the key (or a few keys) with the high-
est IML for the corresponding decrypted string. Essentially, if the threshold in
Definition 5 is chosen properly based on the ciphertext length and the key space
size, these two approaches are statistically the same. The interested reader is
referred to [6] for justification.

3 Description of Hill

Without loss of generality, we assume that for Hill cipher, the plaintext space is
the set of all meaningful English strings of length a multiple of an integer d. Each
character is naturally interpreted as an element of Zsg. To encrypt a plaintext
P = (p1,p2, ..., Pma) using a d x d key matrix K over Zsg, it is first divided into
m blocks of d characters. Let P; = (pi—1)d+1,P(i—1)d+2; -+ P(i—1)d+d) denote
the i*" block of the plaintext for i = 1,2,--- ,m. The corresponding ciphertext
block C; is then calculated as C; = P; K to construct the final ciphertext C' =
(C1,Cs, ..., Cp).
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KPA on Hill. Hill can be easily broken in the standard KPA model. Suppose
that the attacker knows d linearly independent blocks of plaintext, (P, , Piy, ..., Pi,),
and the corresponding ciphertext blocks, (C;, , Ci,, ..., Cj, ). All block pairs (P, C;;)
can be collected from one single plaintext/ciphertext pair or from multiple
plaintext/ciphertext pairs. The attacker can then construct the matrices U =
(P, PL, ... PIYT and W = (C],CL,...,C]))T, and easily calculate the cor-
responding key matrix as K = U~'W. Because of linear independence of the
matrix U rows, the invertibility of this matrix is ensured.

COA on Hill. Although Hill is easily broken with KPA, there is no reported
attack faster than brute-force attack in COA model, with the assumption that
the plaintext is an English text. The existing redundancy of English text can be
used to mount COA on Hill, e.g, using a brute-force attack. In this case, we have
IK| ~ 264, |P| = 26, and H ~ 1.0. Therefore, R ~ 0.787 and by Theorem 1,
the attack can determine the secret key almost uniquely if the ciphertext is of
length at least:

log, 264°

~ 22T 1.27d7 2
0.787log, 26 (2)

no

In the rest of the paper, we show how our new attacks can be applied on Hill
cipher in the COA model much faster than brute-force attack, with slightly
increased required ciphertext length.

4 COA on Hill using monograms

In this section, we describe a brute-force attack on Hill using monograms only
(instead of the whole language redundancy). We then further improve the attack
using the divide-and-conquer technique. However, this will not result in finding
the correct secret decryption matrix and, instead, we will find the secret matrix
uniquely up to an unknown permutation of its columns. The correct order of the
columns can then be determined using bigram frequencies very efficiently which
is equivalent to breaking a permutation cipher. First we define the notion of a
representative key. Before definition, note that a ciphertext block C' is decrypted
under a decryption key matrix K ! according to P = CK~!. We abuse the
notation and similarly denote the decryption of a ciphertext C' of an arbitrary
length, but a multiple of d, by P = CK 1.

Definition 6 (representative key). For a given ciphertext C, we say that a
(candidate) decryption key matriz K1 is a representative key if the decrypted
string P = CK ™! is monogram-wise meaningful (for a certain threshold,).
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4.1 Dbrute-force attack on Hill

In order to characterize the representative keys for the Hill cipher, we need to
take into account the following theorem, whose proof is straightforward based
on the given definitions so far.

Theorem 2 (permutation rule). For a given ciphertext C, if a matriz K1
s a representative key, then so is a matriz produced by any arbitrary permutation
of the columns of K~1.

Consequently, for a long enough ciphertext and for a well-chosen threshold, all
the d! matrices derived from the correct key matrix are the only representative
keys. We conclude that in order to find all the representative keys, one can
exhaust all the O(26“l2 /d!) matrices — which are equivalent in terms of column
permutation — instead of a brute-force attack over all possible matrices. Let us
discuss the unicity distance of the attack, i.e., the minimum ciphertext length to
determine the d! correct representative keys almost uniquely. We need to plug
IK| =~ 267 /d!, |P| = 26 and R ~ 0.1107 (corresponding to H ~ 4.1758) in
Theorem 1:

log, (26d2 /d!)

~ 8.96d* — O(logd
0.1107 log, 26 (log d)

In other words, if the ciphertext length is about the above amount, then the
secret matrix is almost uniquely determined up to an unknown permutation over
its columns. The bigram frequencies can then be used to distinguish the correct
permutation of a correct representative key with computational complexity of
O(d?), ignorable in comparison with the overall exponential complexity of the
attack. Therefore, we can ignore the complexity of the permutation attack and
consider finding a correct representative key as the end goal. To summarize, the
computational complexity of the attack, without bothering to use fast matrix
multiplication algorithms, is O(d3267" /d!) = O(d226%" / log d).

4.2 A divide-and-conquer attack on Hill

We describe how a divide-and-conquer technique can be used to transform the
brute-force attack into a new attack with high improvement in computational
complexity. This attack is based on three key observations:

i) Let K; ' denote the j column of a candidate matrix K~'. Given a cipher-

text block Cj, the j** element of the decrypted string block P; = C; K1,
()

which we denote by p;”’, can be calculated according to pl(-j ) = C; K i L
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ii) We expect that the monogram frequencies are still observed if we decimate
an English language string (e.g., by keeping the letters which are d positions
apart). In other words, for enough number of ciphertext blocks C;’s, and for
a column K- L of the correct decryption matrix K !, the sequence of pz(»] )

is monogram-wise meaningful.

iii) We conclude that each column of decryption key matrix can be found sepa-
rately and independently by trying all (2¢—1)(13%—1) ~ 267 possibilities for
a column. Since there is no superiority in considering each column, guessing
a single column of K ! actually reveals all the correct columns, provided
that the ciphertext is long enough.

Using Theorem 1, the enough number of decrypted letters for almost uniquely
determining a column, in fact all the d columns, of the decryption matrix can
be calculated as:

log, 264

—=——— ~ 8.96d.
0.1107log, 26 5.96

Notice that the enough ciphertext length for obtaining the above amount of
decrypted letters is equal to

ni* ~ 8.96d . (3)

Compared with the trivial brute-force attack, which takes advantage of the full
redundancy of the English plaintext, the required minimum length to mount a
successful attack increases by a factor of n((JzG) /no =~ 7; see Eq. (2).

Now, let us discuss the complexity of the attack. Our divide-and-conquer attack
performs O(26) vector by matrix multiplications. Therefore, a naive implemen-
tation of the attack has a computational complexity of O(d?26?). By eliminating
repeated calculations, we present an improved attack in Algorithm 1 with com-
plexity of O(d26%). The idea behind the improved algorithm is as follows. In
the naive implementation, a ciphertext block C; is multiplied by each guessed
column vector z for K- Uin time O(d). Assume that one has already computed
the product p; = C;x’, where x’ is the lexicographically precedent vector of x.
The product C;xz = p; +d;; can then be computed in O(1), where d; ;’s are some
precomputed values and 0 < ¢ < d — 1 is the number of zeros on the top of the
column vector z. The precomputation takes time O(d?) and requires the same
amount of memory. Let 2’ and x be of the following form where z; # 25,
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T
.I‘/ = [257 525axtaxt+17"' 7l'd} 5
————
t
T _
X —[0,"',0,$t+1,xt+1,"',$d}.
——

t

Notice that x — 2’ mod 26 is a 0-1 vector whose only top ¢ + 1 elements are 1.
Since d;; = Ci(x — '), the d;,’s can be precomputed as the modulo 26 sum of
the first ¢ + 1 elements of C;. The reader can easily convinces himself that the
for loop at the Step 12 in Algorithm 1 updates the IML of the sequence of p;’s
accordingly.

Algorithm 1 Divide-and-conquer attack on Hill in O(d26%)

Require: A ciphertext C of length n = md
Ensure: A representative decryption matrix K !

1: Divide C into m blocks Ci,---,Cp,

2: fort=0tod—1do

3: fori=1tomdo

4: Set d;,+ to the modulo 26 sum of the first ¢t + 1 elements of C;
5

6

: Set K~' to an arbitrary d x d matrix
: Set I to an all —oo vector of length d
{the j’th element of T corresponds to the IML of the j’th column of K ™'}
for i =1to m do
8: Set p; =0

{p; is a decrypted letter of C; using an all-zero guess for a column of K '}
9: Set iml = IML(p1,- -+ ,pm) = — log, fo
10: for all d x 1 vectors x (except the all-zero vector) in lexicographical order do
11:  Let ¢t denote the maximum number of zeros at the top of x.
12:  for i =1to m do

=

13: iml = iml — L log, fp,
14: pi = p; +diy mod 26
15: iml = iml + = log, fp,

16: if z is not all-zero modulo 2 or 13 then

17:  if K~! has a column y whose corresponding IML is smaller than iml then
18: Replace the column y in K~ with «

19: Replace the corresponding IML value in I with iml

5 A CRT based divide-and-conquer attack on Hill

Based on the following Observation, the computational complexity of the divide-

and-conquer attack can be improved using the Chinese Reminder Theorem
(CRT).
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Observation 3 (Z,5 and Zs entropy) Let X denote a random variable over
Zog with the probability distribution of that of English letters. The Zi3 entropy
of English monograms is defined to be the entropy of the random variable (X
mod 13). Similarly, we define the Zs entropy. A simple calculation shows that
Zqs and Zs entropy of English monograms are 3.4052 and 0.9865, respectively.
The corresponding redundancies are then 0.0798 and 0.0135.

With this observation, the same procedure for divide-and-conquer attack can be
done in order to find the columns of the decryption key matrix modulo 2 and
13. To be more precise, for example, in order to find the decryption key matrix
columns modulo 13, the ciphertext is first reduced modulo 13. Then all possible
13% — 1 values for a column modulo 13 are tried using the brute-force attack.
Finally, the best d candidates for the probable columns modulo 13 are identified.
The minimum ciphertext length required to almost uniquely find a representative
decryption key matrix modulo 13 can be approximated as follows:

d
(13) log, 13 2
N ————— X d= 12.5d". 4
"0 0.0798 log, 13 )
A similar procedure can be performed to find a representative decryption key
matrix modulo 2, requiring the following amount of ciphertext length:

log, 24
n® 0825 g A2, (5)
0.01351og, 2
Interestingly, to find a representative key modulo 26, the attack can be devised
in two different ways using the CRT. Although the computational complexities
are the same, the required ciphertext lengths for a successful attack are differ-
ent.

Combinational attack. Perform the divide-and-conquer attack modulo 13
and 2, and attain a representative decryption key matrix over Z;3 and one
over Zs. Here, the enough ciphertext lengths for performing these attacks
using Theorem 1 are 12.5d? for Zi3 and 74d? for Z,. Now, combine each
column j of the representative key over Zi;3 with all the d columns of the
representative key over Zs and extract d vectors for the jth column over
Zog using the CRT. Then by calculating IML for all of these d possibilities,
the vector with largest index is considered as the j’th column of the rep-
resentative key over Zsog. The computational complexity of this method is
O(d13% 4 d2¢ + d*) = O(d13%), and the enough ciphertext length is 74d2.

Lifting attack. Perform the divide-and-conquer attack over modulo 13 only,
and attain a representative key over Zi3. Then for each column j of the
matrix do the following steps to lift the Z13 representative key into one over
ZQGI
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a) combine all the 2¢ — 1 non-zero vectors over Z, with the jth column
and compute the corresponding vectors over Zsog using the CRT.

b) calculate the IML for each one and choose the vector with the largest
index as the j’th column of the representative key matrix over Zog.

Now a representative key over Zsg is attained. The computational complexity
of this method is O(d13? + d32¢) = O(d139), but the enough ciphertext
length is 12.5d?, i.e., only a factor of nél?’)/no = 9.8 larger than the trivial
brute-force attack.

6 Experimental Results

In this section, we study and compare the experimental results with theoretical
approaches. We are interested in the success probability of the attacks in terms
of the ciphertext length. For this purpose, we produce graphs indicating the
success probability of the attacks versus a length coefficient A, corresponding to
an attack that uses a ciphertext of length Ang where ng (see Eq. (3)—(5)) is the
theoretical minimum ciphertext length for mounting a “successful” attack. If our
SUWKD (simple uniform wrong key decryption) assumption holds in practice,
we expect to have a significant probability of success (say 20-40%) when A = 1.
Increasing the ciphertext length by a small factor (say A ~ 4-5) should then lead
to an attack with success probability very close to one. We typically perform our
simulation for A\ between 1 and 5.

To perform our simulations, we produce plaintexts with statistically independent
letters whose distributions correspond to that of English monograms. In other
words, we do not model the full redundancy of English language by producing
meaningful plaintexts due to not being so easy to handle. As our attacks are
only based on monogram distribution, this does not really matter. To verify this
statement, we also perform a final simulation using real English text.

6.1 Finding a representative key modulo 26, 13 and 2

Fig. 1 presents the simulation results for finding a representative key modulo
26, 13 and 2. The modulo 26 attack exactly implements the Algorithm 1. The
experiment is performed for N randomly chosen sample ciphertexts of length 5ny
where ng ~ 8.96d? (see Eq. (3)). Each sample ciphertext is produced by choosing
a random key matrix and a random simulated plaintext. Then, for different
values of A € {1,1.2,1.4,1.6,1.8,2,2.5,3,3.5,4,4.5,5}, the attack is applied to a
prefix of length Ang (more precisely d x |Ang/d]) on each sample. The attack
on the sample is considered successful if Algorithm 1 outputs a decryption key
matrix whose columns are the same as those of the original decryption key
matrix. We have also implemented our attack using the IC instead of IML.
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Fig. 1. Simulation results for the success probability of finding a representative key
modulo 26, 13 and 2 in terms of X\ using ciphertexts of length Ang.

This can be done by modifying Algorithm 1 accordingly. Fig. 1(a) presents the
simulation results for d = 5 using N = 100 samples for both IML and IC. The
modulo 13 and 2 attacks have been simulated similarly. Recall that the minimum
ciphertext length for these two cases are ng ~ 12.5d? (see Eq. (4)) and ng ~ 74d?
(see Eq. (5)), respectively. Figures 1(b) and 1(c) present the simulation results
for d = 6 using N = 100 and N = 1000 samples, respectively, for these two

moduli.

Here, the following results can be extracted from the graphs:
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1. Our simulation results verify the superiority of using IML over IC. As we
can see, IML, works much better than IC to find a correct representative key
over Zog and Zy3. However, it does not matter to use which one over Zs.
Using some simple calculations one can justify this by showing that IML of
a string over Zs can be well approximated as an affine function of its IC.

2. The SUWKD assumption holds quite well for the attack on finding a correct
representative key over Z,3 and Zs as for A ~ 4.5 we already reach a success
probability of almost one.

3. The SUWKD assumption, however, does not hold quite well for the attack on
finding a correct representative key over Zyg as for A &~ 5 we reach a success
probability of only about 96%. We will explore this issue and study the reason
of this phenomena in next subsection. In any case, although interesting, this
does not really matter since the success probability approaches one by using
a slightly larger value for A.

6.2 Lifting a representative key over Z;3 into Zag

Fig. 2 presents the simulation results for finding a representative key modulo
26 assuming that we already know a representative key modulo 13, using the
approach that was used in the “lifting attack” in Section 5.

Recall that each column of the representative key over Zi3 is combined with all
2¢ _ 1 non-zero vectors over Zsg to compute a vector over Zog using the CRT.
According to Theorem 1, the minimum ciphertext length to be able to find the
representative key modulo 26 almost uniquely should be

log, (24
no ~ 0g5(29)

22" ] s d a2 1.9d7 . 6
0.1107log, 26 (©)

Fig. 2(a) depicts the simulation results for d = 6 using N = 1000 samples. As
it can be seen, the SUWKD assumption does not hold quite well here since for
finding a correct representative key we need A to be greater than 30. Stated
differently, if a wrong key is the same as the original key modulo 13, then the
decrypted ciphertext using the wrong key can not be treated as a random string
due to its correlation with the original plaintext. This justifies our third point
in the previous subsection since 30 x 1.9d> > 5 x 8.96d>.

However, luckily our attack for finding a representative key modulo 13 already
requires a ciphertext of length ng ~ 12.5d%. Fig. 2(b) depicts the simulation re-
sults for d = 6 using N = 1000 samples in this case. In fact Fig. 2(b) corresponds
to part of Fig. 2(a) which lies in the interval 6.6 < A < 32.9. Small differences
in the figures are due to length rounding error.
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(a) Results for d = 6 with no ~ 1.9d (see Eq. 6) using 1000 samples for A < 33.
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(b) Results for d = 6 with ng ~ 12.5d° using
1000 samples for A < 5.

Fig. 2. Success probability of finding a representative key modulo 26 in terms of A
assuming that we already know a representative key modulo 13 using ciphertexts of
length Ang.

6.3 Success probability of our attack

The success probability of our attack (lifting attack) can be estimated as the
product of Fig. 1(b) and Fig. 2(b), depicted as the solid-lines in Fig. 3 for d = 6.
Direct simulation of the overall success probability of the attack also results
in the same chart. So far we have performed our simulations using simulated
plaintexts by generating independent letters with probability distribution of that
of English monograms. To verify this approach, we have mounted our attack on
45 plaintexts of length 12.5 x 5 x 62 = 2250, driven from the well-known book
“Alice in the Wonderland”. The results are shown in dashed-lines in Fig. 3.
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Although our attack using IML on the real-text is highly consistent with the
attack on simulated text, there is a slight difference for the attack that uses IC,
the reason of which is unclear to us.

-5 IML (simulated monograms)
1| |-® IC (simulated monograms)
-er IML (real-text)
-o IC (real-text)

0.8}

0.6

Probability

0.4

0.2

Fig. 3. Success probability of our attack (lifting attack) in terms of A using ciphertexts
of length Ang with no ~ 12.5d* for d = 6: the blue solid-line is for the simulated
plaintext computed as the product of Fig. 1(b) and Fig. 2(b) whereas the red dashed-
line is for real text from “Alice in the Wonderland” using 45 samples.

7 Conclusion

Hill is a classical encryption system which is generally conceived as a ciphertext-
only attack resistant block cipher. In this paper we presented a new COA on
Hill using divide and conquer technique and the redundancy of the monograms
only. Our attack then turns the ciphertext into the output of a permutation
cipher, which can be easily broken using the redundancy of bigrams. The com-
putational complexity of the attack is O(d26?) which is dramatically lower than
the computational complexity of brute-force attack on Hill. Also, by using Chi-
nese Remainder Theorem, we improved the divide-and-conquer COA on Hill
to the computational complexity of O(d13?) with the cost of a slightly more
data complexity. Comprehensive simulations results verifies our theoretical re-
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sults. Beating our results or proving its optimality based on some reasonable
computational complexity assumptions remains an open problem.
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