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Abstract. ecdsa is one of the most important public-key signature scheme, however it is
vulnerable to lattice attack once a few bits of the nonces are leaked. To protect Elliptic Curve
Cryptography (ecc) against Simple Power Analysis, many countermeasures have been pro-
posed. Doubling and Additions of points on the given elliptic curve require several additions
and multiplications in the base field and this number is not the same for the two opera-
tions. The idea of the atomicity protection is to use a fixed pattern, i.e. a small number of
instructions and rewrite the two basic operations of ecc using this pattern. Dummy opera-
tions are introduced so that the different elliptic curve operations might be written with the
same atomic pattern. In an adversary point of view, the attacker only sees a succession of
patterns and is no longer able to distinguish which one corresponds to addition and doubling.
Chevallier-Mames, Ciet and Joye were the first to introduce such countermeasure.
In this paper, we are interested in studying this countermeasure and we show a new vulnerabil-
ity since the ecdsa implementation succumbs now to C Safe-Error attacks. Then, we propose
an effective solution to prevent against C Safe-Error attacks when using the Side-Channel
Atomicity. The dummy operations are used in such a way that if a fault is introduced on
one of them, it can be detected. Finally, our countermeasure method is generic, meaning that
it can be adapted to all formulæ. We apply our methods to different formulæ presented for
side-channel Atomicity.
keywords: Elliptic Curve Cryptography, Side-Channel Atomicity, Fault Attacks, Infective
Countermeasure, Lattice Attack

1 Introduction

As well as most of cryptosystems, Elliptic Curve Cryptography (ecc) is vulnerable to side-
channel attacks. One of the first reported attack on ecc was the Simple Side-Channel
Analysis (SSCA) [6]. It consists in analyzing a single trace of the execution of the Elliptic
Curve Scalar Multiplication and attempts to distinguish the power consumption between a
doubling and an addition of elliptic curve points.
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Numerous countermeasures exist against the SSCA. The side-channel Atomicity is one
of them and was proposed by Chevallier-Mames, Ciet and Joye in 2004 [4]. It consists in
writing the different elliptic curve operations, such as doubling and addition, with identical
block of field operations, which makes SSCA infeasible. Inspired from this paper [4], different
formulæ that are more efficient, or more suitable for particular scalar multiplications, have
been proposed [10,7,15]. Up to now, all these formulæ contain at least one dummy operation.

One of the most popular elliptic curve cryptographic scheme is the signature scheme
ecdsa and it is well-known that this scheme is sensible to lattice attacks once some infor-
mation on the most significant bits of the nonces k are known. Many attacks have been
proposed since [8,13,12,3].

It is possible to use C Safe-Errors on the dummy operations added purportedly for the
atomicity formulae as Yen et al. proposed against the CRT-RSA implementation in [18].
The attacker introduces a fault during a possibly dummy field operation. If the result is still
correct, the operation was indeed dummy and the elliptic curve operation can be deduced. As
a consequence, the current target bit of the secret scalar can be learned. However, such way
of attacking discloses only a small number of bits of the nonce per ecsm if we allow multiple
faults. Liu and Nguyen at CT-RSA 2013 in [9] show that it is possible to recover the secret
key on DSA as soon as we have at least 2 bits of the nonces for 160-bit modulus. This lower
bound has been proven in [14]. The number of bits increases with the size of the modulus
and for 192-bit and 256-bit moduli we do not know how many bits are required. Thus,
C safe errors must be improved, otherwise not enough information is collected to extract
the secret key. Another alternative to lattice-based attacks consists in using Bleichenbacher
attack that has been recently proposed by De Mulder et al. at CHES 2013 [11]. This attack
allows in theory to recover the secret key as soon as a few bits of the nonces is known and
according to the modulus size, it could be preferable to use this attack in comparison with
lattice attacks. The main drawback of this attack is that if we want to use a very small
number of bits, then the number of needed signature becomes quite large. For instance, in
order to attack ecdsa on 160-bit finite field knowing only one bit of the nonce, the number
of signatures is about 233. We use an interesting idea introduced in [1] to reduce the number
of faulty signatures to 226 if one bit is known for 160-bit moduli and to 219 if two bits are
known and in this case we can attack 160-bit and 192-bit moduli by increasing the time and
memory complexity. When more bits are available, it is not easy to tell which one of lattice
attacks and Bleichenbacher attacks is the most efficient as shown in [11] since lattice attack
can also be used to makes Bleichenbacher attack more efficient.

In this paper, we also present a countermeasure against this attack for the atomicity
implementations. The formulæ are rewritten such that the dummy operations no longer
occur. We define some processes such that every fault induced will inevitably be detected.

The rest of the paper is organized as follows. In Section 2, we recall background on
ecc, side-channel attacks, and the side-channel atomicity countermeasures. The attacks
on protected implementations are given in Section 3. The classical C safe-errors when the
exponent is static and our new attack when the exponent is ephemeral using previous
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algorithms [11,1]. Section 4 presents our proposed solution that can be applied to any
formulæ. Finally, we conclude in Section 5.

2 Background

In this section, we present the required background to understand the attack on the Side-
Channel Atomicity and the protection that we suggest.

2.1 Elliptic Curve Cryptography

An elliptic curve over a finite prime field Fp of characteristic p > 3 can be described by its
reduced Weierstraß form:

E : y2 = x3 + ax+ b. (1)

We denote by E(Fp) the set of points (x, y) ∈ F2
p satisfying equation (1), plus the point

at infinity O.
The points on E(Fp) define an additive Abelian group given by the following addition

law. Let P = (x1, y1) 6= O and Q = (x2, y2) 6∈ {O,−P} be two points on E(Fp). Point
addition R = (x3, y3) = P +Q is defined by the formula:

x3 = λ2 − x1 − x2
y3 = λ(x1 − x3)− y1

where λ =

{
y1−y2
x1−x2 if P 6= Q,
3x21+a
2y1

if P = Q.

The inverse of point P is defined as −P = (x1,−y1).

To avoid modular inversions, implementers frequently work in the Jacobian projective
coordinates system. The equation of an elliptic curve in the Jacobian projective coordinates
system in the reduced Weierstraß form is:

EJ : Y 2 = X3 + aXZ4 + bZ6.

The projective point (X,Y, Z) corresponds to the affine point (X/Z2, Y/Z3). The point
(X,Y, Z) is equivalent to any point (r2X, r3Y, rZ) with r ∈ F∗p.

Let P1 = (X1, Y1, Z1), P2 = (X2, Y2, Z2) be two points on EJ (Fp) with P1 6= O, ord(P1) >
2 and P2 6∈ {O,−P1}. Point doubling and points addition are defined by the following for-
mulæ:

– ecdbl. P3 = (X3, Y3, Z3) = 2P1 can be computed as:
X3 = T, Y3 = −8Y 4

1 +M(S − T ), Z3 = 2Y1Z1, where
S = 4X1Y

2
1 , M = 3X2

1 + aZ4
1 , T = −2S +M2

– ecadd. P3 = (X3, Y3, Z3) = P1 + P2 can be computed as:
X3 = −H3 − 2U1H

2 +R2, Y3 = −S1H3 +R(U1H
2 −X3), Z3 = Z1Z2H, where

U1 = X1Z
2
2 , U2 = X2Z

2
1 , S1 = Y1Z

3
2 , S2 = Y2Z

3
1 , H = U2 − U1, R = S2 − S1
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2.2 Elliptic Curve Digital Signature Algorithm

The Elliptic Curve Digital Signature Algorithm (ecdsa) is a signature scheme. It has been
standardized in [17]. Given the following curve parameters:

– E, an elliptic curve over a prime field Fp,
– G, a generator of a subgroup of E of order t,

the signature process is as follows:

Algorithm 1 ecdsa Signature
Input: private key d, an encoded integer m ∈ {0, p− 1} representing a message
Output: Signature (r, s)

1: k
R←− {1, . . . , t− 1}

2: Q← [k]G
3: r ← xQ mod t
4: if r = 0 then
5: go to line 1
6: end if
7: s← k−1(dr +m) mod t
8: if s = 0 then
9: go to line 1
10: end if
11: return (r, s)

2.3 Side-Channel Atomicity

In ecc, one has to compute scalar multiplications, i.e. compute [k]P , given P and an integer
k. The Left-to-Right Double-and-Add and Right-to-Left algorithms (Algorithms 2 and 3)
are ways of doing so.

Algorithm 2 Left-to-Right Double-and-Add
Input: a point P and an integer k = (1, kn−2, . . . , k0)2
Output: [k]P

R0 ← P
for i = n− 2 downto 0 do

R0 ← 2R0 . R0 = [(kn−1, . . . , ki+1, 0)2]P
if ki = 1 then R0 ← R0 + P . R0 = [(kn−1, . . . , ki+1, ki)2]P

end for
return R0
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Algorithm 3 Right-to-Left Double-and-Add
Input: k = (kn−1, . . . , k1, 1)2, P
Output: [k]P

R0 ← P
R1 ← 2P
for i = 1 to n− 1 do

if ki = 1 then R0 ← R0 +R1 . R0 = [(ki, . . . , k0)2]P
R1 ← 2R1 . R1 = [2i+1]P

end for
return R0

Both algorithms exist when the scalar is given by its Non-Adjacent Form (NAF) repre-
sentation. They are given in Appendix A.

If an adversary is able to distinguish the power consumption of an addition and a dou-
bling during the execution of such algorithm, then she is able to recover the secret scalar
k [6]. In order to prevent this attack called the Simple-Power Analysis, Chevallier-Mames,
Ciet and Joye suggest to write the elliptic curve formulæ with sequences of identical atomic
patterns. An atomic pattern is defined in [4] as the sequence of the following (possibly
dummy) operations:

1. modular multiplication or square
2. modular addition
3. modular opposite
4. modular addition

A point doubling requires 10 of these atomic patterns, while an addition requires 16 in
the Jacobian coordinates systems. It has been later improved several times by Longa in
[10], Giraud and Verneuil in [7] and Rondepierre in [15]. Hereafter, we recall Giraud and
Verneuil’s pattern, the state-of-the-art best atomic pattern when applied with the Right-to-
Left Double-and-Add, and Rondepierre’s pattern, the state-of-the-art best atomic pattern
when applied with the Left-to-Right Double-and-Add.

2.4 Giraud and Verneuil’s pattern [7]

Giraud and Verneuil suggest a pattern composed of two squares, six multiplications, six addi-
tions and four subtractions. An addition of points requires two patterns while a doubling re-
quires only one. The points are given in modified Jacobian coordinates: P = (X1, Y1, Z1,W1 =
aZ4

1 ), for faster doubling [5]. These coordinates are suitable for the Right-to-Left Double-
and-Add algorithms (Algorithms 3 and 5). We recall the formulæ in Fig. 1. From P =
(X1, Y1, Z1) and Q = (X2, Y2, Z2), one can compute P + Q = (X3, Y3, Z3) and 2P =
(X3, Y3, Z3,W3 = aZ4

3 ).

2.5 Rondepierre’s pattern [15]

Rondepierre suggests a pattern composed of two squares, eight multiplications, five ad-
ditions and five subtractions. An addition of points requires one patterns, as well as a
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Addition - part 1 (A1) Addition - part 2 (A2) Doubling (D)

1. T1 ← Z2
2 T1 ← T 2

6 T1 ← X2
1

2. ?← ?+ ? ?← ?+ ? T2 ← Y1 + Y1

3. T2 ← Y1 × Z2 T4 ← T5 × T1 Z3 ← T2 × Z1

4. ?← ?+ ? ?← ?+ ? T4 ← T1 + T1

5. T5 ← Y2 × Z1 T5 ← T1 × T6 T3 ← T2 × Y1

6. ?← ?+ ? ?← ?+ ? T6 ← T3 + T3

7. T3 ← T1 × T2 T1 ← Z1 × T6 T2 ← T6 × T3

8. ?← ?+ ? ?← ?+ ? T1 ← T4 + T1

9. ?← ?+ ? ?← ?+ ? T1 ← T1 +W1

10. T4 ← Z2
1 T6 ← T 2

2 T3 ← T 2
1

11. T5 ← T5 × T4 Z3 ← T1 × Z2 T4 ← T6 ×X1

12. ?← ?+ ? T1 ← T4 + T4 T5 ←W1 +W1

13. T2 ← T2 − T3 T6 ← T6 − T1 T3 ← T3 − T4

14. T5 ← T1 ×X1 T1 ← T5 × T3 W3 ← T2 × T5

15. ?← ?− ? X3 ← T6 − T5 X3 ← T3 − T4

16. ?← ?− ? T4 ← T4 −X3 T6 ← T4 −X3

17. T6 ← X2 × T4 T3 ← T4 × T2 T4 ← T6 × T1

18. T6 ← T6 − T5 Y3 ← T3 − T1 Y3 ← T4 − T2

Fig. 1. Addition and doubling operations written with Giraud and Verneuil’s pattern (? represents a dummy
operand). Each column is an atomic pattern.

doubling. From P = (X1, Y1, Z1, Z
2
1 , Z

3
1 ), Q = (X2, Y2, 1) and I =

√
−a3−1, Rondepierre

propose formulæ to compute P +Q = (X3, Y3, Z3, Z
2
3 , Z

3
3 ), P −Q = (X3, Y3, Z3, Z

2
3 , Z

3
3 ) or

2P = (X3, Y3, Z3, Z
2
3 , Z

3
3 ). The subtraction of points is suitable for the right-to-left method

(Algorithm 4). The formulæ are suitable for the Right-to-Left Double-and-Add algorithms
(Algorithms 2 and 2). They are given in Fig. 2.

3 Attacks on Side-Channel Atomicity

3.1 C Safe-Error

The C Safe-Error attack was first published by Yen, Kim, Lim and Moon [18]. They target an
rsa implementation which contains dummy operations to prevent the SPA. A fault is intro-
duced during an operation which is possibly a dummy one. If the result of the cryptographic
operation is correct, the operation was indeed a dummy operation and some information on
the private key can be deduced.

C Safe-Error on the side-channel atomicity countermeasure for ecc relies on the same
principle.

C Safe-Error on Giraud and Verneuil’s pattern. Suppose that the Right-to-Left
Double-and-Add (Algorithm 3) is used, with the patterns of Figure 1. Regarding the Right-
to-Left Double-and-Add, the last pattern is necessarily a doubling. However, regarding the
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Addition (A) Subtraction (S) Doubling (D)

1. T1 ← X2 × Z2
1 T1 ← X2 × Z2

1 T0 ← I × Z2
1

2. T1 ← T1 −X1 T1 ← T1 −X1 T1 ← X1 − T0

3. ?← ?+ ? Z2
1 ← Y1 + Y1 T2 ← Y1 + Y1

4. T2 ← T1 × T1 T2 ← T1 × T1 Z2
3 ← Y1 × T2

5. ?← ?+ ? ?← ?+ ? Y3 ← Z2
3 + Z2

3

6. T3 ← X1 × T2 T3 ← X1 × T2 T3 ← T2 × Z1

7. T0 ← Y2 × Z3
1 T0 ← Y2 × Z3

1 T2 ← Y3 ×X1

8. ?← ?+ ? T0 ← Z2
1 + T0 X3 ← X1 + T0

9. Z3
1 ← T1 × T2 Z3

1 ← T1 × T2 T0 ← T1 ×X3

10. T2 ← Z1 × T1 T2 ← Z1 × T1 T1 ← Z2
3 × Y3

11. X3 ← T3 + T3 X3 ← T3 + T3 T2 ← T0 + T0

12. X3 ← Z3
1 +X3 X3 ← Z3

1 +X3 T0 ← T0 + T2

13. Z2
3 ← (T0)

2 Z2
3 ← (T0)

2 X3 ← (T0)
2

14. T0 ← T0 − Y1 T0 ← T0 − Y1 X3 ← X3 − T2

15. T1 ← (T0)
2 T1 ← (T0)

2 Z2
3 ← (T3)

2

16. X3 ← T1 −X3 X3 ← T1 −X3 X3 ← X3 − T2

17. T1 ← T3 −X3 T1 ← T3 −X3 T2 ← T2 −X3

18. T3 ← T1 × T0 T3 ← T1 × T0 Z2
3 ← Z2

3 × T3

19. T0 ← Y1 × Z3
1 T0 ← Y1 × Z3

1 Y3 ← T0 × T2

20. Y3 ← T3 − T0 Y3 ← T3 − T0 Y3 ← Y3 − T1

21. Z3 ← T2 Z3 ← T2 Z3 ← T3

Fig. 2. Addition, subtraction and doubling operations written with Rondepierre’s pattern (? represents a
dummy operand). Each column is an atomic pattern.

trace during the execution of the penultimate pattern, the attacker cannot deduce that it is
a doubling or the second part of an addition.

Suppose that the attacker injects a fault on the arithmetic module unit during the
execution of the first addition of the penultimate pattern (line 6 of Figure 1). If the pattern
is indeed the second part of an addition, the error has no effect on the result. The fault is
safe. In this case, the most significant bit of the scalar is 1.

On the other hand, if the result is incorrect, the pattern was a doubling and the most
significant bit is 0.

The attacker can repetitively perform this attack during several ecdsa signature gen-
erations. She can collect several signatures and keep only the correct ones (the ones where
the error was safe). She then got several signatures knowing that the most significant bit of
the ephemeral scalar is 1.

C Safe-Error on Rondepierre’s pattern. The attack on this pattern is analogous to
the previous one.
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Suppose that the Left-to-Right Double-and-Add (Algorithm 2) is used, with the pat-
terns of Figure 2. Regarding the trace during the execution of the last pattern, the attacker
cannot deduce that it is a doubling an addition.

Suppose that the attacker injects a fault on the arithmetic module unit during the
execution of the first subtraction of the last pattern (line 3 of Figure 2). If the pattern is
indeed an addition, the error has no effect on the result. The fault is safe. In this case, the
least significant bit of the scalar is 1.

On the other hand, if the result is incorrect, the pattern was a doubling and the least
significant bit is 0.

The attacker can repetitively performs this attack during several ecdsa signature gen-
erations. She can collect several signatures and keep only the correct ones (the ones where
the error was safe). Hence she has got several signatures such that the least significant bit
is 1.

Extension to several bits. Of course, the attacker can inject several faults at different
times during the algorithm.

For Giraud and Verneuil’s patterns, two patterns are required for the addition. The
attacker can inject one fault on the penultimate pattern and one fault on the fifth last
pattern. If the result is correct, it means that the last patterns are A1;A2;D;A1;A2;D,
thus the two most significant bits are 1.

For Rondepierre’s patterns, the attacker can inject a fault on the last pattern and on
the third last pattern. If the result is correct, it means that the last patterns are A;D;A,
thus the two least significant bits are 1.

Injecting the fault at the right time. We describe here the issue of injecting the fault
at the right time. As a matter of fact, we said before that the attacker needs to inject a fault
on the last or penultimate pattern. How does she know that this is the last or penultimate
pattern before the end of the ecsm? Indeed, a fault cannot be injected retrospectively, i.e.,
after noticing that the ecsm is finished.

In fact, she can suppose that the Hamming weight of the n-bit scalar is n/2 which hap-
pens with high probability. In this case, there will be n doubling and n/2 additions. This
gives a total of 2n Giraud and Verneuil’s pattern (because two patterns are required for
the addition) and n+ n/2 Rondepierre’s pattern. The last pattern is thus the 2nth pattern
(Giraud and Verneuil) and the (n+ n/2)th pattern (Rondepierre).
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The attacker can verify afterwards that the Hamming weight of the scalar was is indeed
n/2 counting the patterns by SPA. If it is not the case, she throws out the signature 5.

3.2 Lattice Attacks Knowing only two bits per value of the Ephemeral Nonces

The attack works as follows: in a first step, a small number of bits ` (e.g., ` = 1, 2, 3, 4, 5,
or 6) is gathered about the nonce k used in ecdsa. Namely, one bit is tested through the
effectiveness (or not) of an injection at a given field operation in one ecdbl or ecadd
atomic pattern. Then, a lattice attack is launched using only these ` bits of information
about the ephemeral nonce per ecsm.

There are basically two different strategies to recover the secret key d. The first one
consists in solving the Hidden Number Problem (HNP), which can be described as follows:
given (ti, ui) pairs of integers such that

|dti − ui|q ≤ q/2`+1,

where ` denotes the number of bits we recovered by C Safe-Errors, d denotes the hidden
number we are looking for and | · |q denotes the distance to qZ, i.e. |z|q = mina∈Z |z − aq|.
Such problem can be cast as a Closest Vector Problem (CVP) in a lattice and the LLL
algorithm can be used to solve it in practice very efficiently. We recall the basic attack in
appendix 5 and its extensive presentation can be found in [14]. The main advantage of this
technique is that the number of signatures required is usually very small, but it cannot
be used all the time when the number of bits becomes very small. Indeed, in this case for
160-bit modulus for instance, Liu and Nguyen used BKZ 2.0 to solve such lattice and the
dimension becomes very high for lattice algorithms [9].

When the number of bits is very small, which is the case here if we try to reduce the
number of faults, another technique due to Bleichenbacher can be used. This technique has
been described in [11] for attacking a smartcard using ecdsa on 384-bit modulus. The idea
is that there is a bias on distribution of the nonces kj . If we correctly guess the value of the
secret d is large and all other biases are small (close to 0) according to the correct definition
of bias Bq(D) = E(exp2iπD/q) where E is the expectation of the random variable exp2iπD/q

and D is the random variable representing the choice of d. We can approximate this bias
experimentally using many signatures by computing Bq(d) = (1/m) ·

∑m−1
j=0 exp2iπ(hj+cjd)/q

where hj = H(mj)/sj mod q and cj = rj/sj mod q for signature (rj , sj) of message mj

and m the number of such signatures. The idea is just to compute all the bias Bq(d) for
all possible values of d and pick the largest one. Due to the special form of the bias, it
is possible to perform all these computations using Fast Fourier Transform, however the
time complexity of this task is out of reach since there are 2160 different values for d.
Bleichenbacher proposes a first phase which consists in reducing the range of the value d
5 Notice that the atomicity countermeasure does not execute in constant time. However, the only informa-
tion that is leaked is the Hamming weight of the scalar, which is not enough to design an attack (at least
with state-of-the-art knowledge).
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(we are looking for the, say 32 most significant bits of d, by reducing the bias of d. This
operation will also widen the width of the pick of the bias d in the frequence domain. In the
first stage of this attack, we are looking for a linear combination of the values cj which is
small, less than 32 bits. In this case, it has been shown in [11] that we can recover the 32
most significant bits of d. However, the number of required signatures becomes very high
and De Mulder et al. use a lattice reduction technique to reduce the number of signature
contrary to Bleichenbacher original attack which uses more Generalized Birthday Paradox
(GBP) ideas [16]. For instance, given (hj , cj) such that hj + dcj = kj , if cj and cj′ have
32 bits in common, then hj − hj′ + d(cj − cj′) = kj − kj′ is a new relation where the new
value (cj − cj′) has been reduced by 32 bits and since we add the kjs, the initial bias b is
increased to b2 according to the Piling-up lemma. In [1], the authors show that it is possible
to recover a 160-bit secret value with only one bit of the nonces. However, the number of
required signatures grows up to 233. They also show that it is possible to reduce the number
of signatures required in Bleichenbacher algorithm by using time-memory/signature tradeoff.

The idea is that the first iteration will allow us to make many signature samples (hj , cj)
by increasing the bias. For instance, given m signatures, we can generate m2 samples by
performing addition and substraction modq of the initial signatures.

In Figure 3, we give the minimal number m of signatures required for number of known
bits ` of the nonce.

q 160 bits 192 bits 256 bits
` 1 2 2 2 3
m 226 214 200 216 216

Tech. Bleich. Bleich. Latt. Bleich. Bleich.
Compl. 240 228 Few hr 233 233

Fig. 3. Minimal number of signatures d required depending on the number of bits ` using Brainpool curves.

4 Our protection

We propose in this section our protection. It consists in using the dummy operations to
perform a check at the end of the ecsm.

4.1 Generalized protection

In the patterns of all known atomic side-channel protections, the dummy operations are
either field additions or field subtractions and are only on patterns of the addition and
subtraction of points. The underlying reason is that those operations are more furtive than
multiplications. Thus, it is unlikely that an attacker manages to distinguish between dummy
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and functional operations in the patterns.

Our idea is to perform a check at the end of the ecsm such that if an error occurred,
the circuit detects it and no result is returned.

Let addition and doubling formulæ using some patterns such that an addition of points
contains l dummy field additions and m dummy subtractions. This means that, at the end
of the ecsm, there are (l times the number of additions of points) dummy field additions
and (m times the number of additions of points) dummy field subtractions.

We propose to add two temporary registers Tadd and Tsub first initialized with Tadd ←
radd, Tsub ← −rsub; radd, rsub being two random integers. Every dummy addition ?← ?+ ?
is replaced by Tadd ← Tadd + radd and every subtraction ? ← ? − ? is replaced by Tsub ←
Tsub − rsub. In this way, at the end of the ecsm, Tadd should be equal to l × radd times the
number of additions performed during the ecsm and Tsub should be equal to m× rsub times
the number of additions.

A counter is added for each pattern to count the number of additions and doubling per-
formed. Another method is that the number of patterns is related to the Hamming weight
(HW) of the scalar used.

The protection consists in verifying that the equality is satisfied at the end of the ecsm.

4.2 The protection with Giraud and Verneuil’s pattern

With those formulæ, there are 11 dummy additions and 2 dummy subtractions for the ad-
dition of points. The number of addition of points is HW(k) for the Right-to-Left Double-
and-Add algorithm (Algorithms 3), k being the scalar.

Thus the protection consists in verifying that Tadd is equal to 11 × HW(k) × radd and
Tsub is equal to 2×HW(k)× rsub at the end of the ecsm.

4.3 The protection with Rondepierre’s pattern

With those formulæ, there are 3 dummy additions for the addition of points. The number
of addition of points is HW(k) for the Left-to-Right Double-and-Add algorithm (Algorithm
2), k being the scalar.

Thus the protection consists in verifying that Tadd is equal to 3×HW(k)× radd.

5 Conclusion

In this paper, we show how to use C Safe-Errors on the atomicity side-channel countermea-
sure to recover a few bits of ephemeral scalars used during ecdsa signatures. With only
two bits of the scalar, we are able to recover the secret key.
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Then, we propose a protection to thwart C Safe-Errors that target the atomicity coun-
termeasure. The method consists in replacing the dummy operations of the atomic patterns
by chained secret operations that are verified in a final check. In this case, the C Safe-error
is no longer applicable.
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Reminder about the Lattice-based attack on ECDSA

Using the ` least significant bits of k (the attack also works with the most significant bits),
we can write k = 2`(k � `) + lsb` k = 2`b+ lsb` k for some integer b ≥ 0. We then get from
dr = sk − h mod q:

dr · 2−`s−1 = b− h · 2−`s−1 + lsb` k · 2−` mod q.

Now let t and u two values which can be computed from known or retrieved information,
such as:

t = r · 2−`s−1 mod q, u = −h · 2−`s−1 + lsb` k · 2−` mod q.

The inequality b < q/2` can be expressed in terms of t and u as:

0 ≤ dt− u mod q < q/2`.

Therefore, if we denote by | · |q the distance to Z/qZ, i.e. |z|q = mina∈Z |z − aq|, we have:

|dt− u− q/2`+1|q ≤ q/2`+1,

|dt− v/2`+1|q ≤ q/2`+1,

where v is the integer 2`+1u + q. Given a number of faulty signatures (ri, si) of various
messages, say m of them, the same method yields pairs of integers (ti, vi) such that

|dti − vi/2`+1|q ≤ q/2`+1. (2)

The goal is to recover d from this data. The problem is very similar to the hidden number
problem considered by Boneh and Venkatesan in [2], and is approached by transforming it
into a lattice closest vector problem.

More precisely, consider the (m + 1)-dimensional lattice L spanned by the rows of the
following matrix: 

2`+1q 0 · · · 0 0

0 2`+1q
. . .

...
...

...
. . . . . . 0

...
0 · · · 0 2`+1q 0

2`+1t1 · · · · · · 2`+1tm 1


Inequality (2) implies the existence of an integer ci such that:

|2`+1dti − vi − 2`+1ciq| ≤ q. (3)
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Now note that the row vector, called hidden vector,

c = (2`+1dt1 + 2`+1c1q, · · · , 2`+1dtm + 2`+1cmq, d)

belongs to L and c is very close to the row vector v = (v1, · · · , vm, 0). Indeed, by (3), the
distance from c to v is bounded as:

‖v − c‖ ≤ q
√
m+ 1.

We thus have a CVP to solve. In practice, we use an embedding technique to reduce CVP
to SVP. This technique consists in computing the (m + 2)-dimensional lattice L′ spanned
by the rows of the matrix (

L 0
v 1

)
The row vector (v − c, 1) is short, belongs to L′ and we hope this is the shortest vector of
L′. This assumption implies a condition on the required number of signatures depending
on the parameter ` and the modulus. An estimate which makes it possible to recover the
private key is:

m &
n

`− log2
√
πe/2

.

The above estimate is heuristic, but it is possible to give parameters for which attacks of
this kind can be proved rigorously [13].

A Elliptic Curve Scalar Multiplications in NAF

We recall the definition and the NAF of integers.

Definition 1. A non-adjacent form (NAF) of a positive integer k is an expression k =∑l−1
i=0 ki2

i where ki ∈ {−1, 0, 1}, kl−1 6= 0, and no two consecutive digits ki are nonzero. The
length of the NAF is l. The NAF of an integer k is denoted NAF(k) or (kl−1, . . . , k0)NAF.

Algorithm 4 Left-to-Right NAF scalar multiplication
Input: k = (1, kl−2, . . . , k0)NAF, P
Output: [k]P

Q← P
i← l − 2
while i ≥ 0 do

Q← 2Q
if ki = 1 then Q← Q+ P
if ki = −1 then Q← Q− P
i← i− 1

end while
return Q
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The following algorithm computes the width NAF representation of the scalar on the
fly.

Algorithm 5 Right-to-Left NAF scalar multiplication
Input: k = (kn−1, . . . , k0)2, P
Output: [k]P

R← P
Q← O
while k ≥ 1 do

if k0 = 1 then
u← (k mod 4)
k ← k − u
if u = 1 then

Q← Q+R
else

Q← Q−R
end if

end if
R← 2R
k ← k/2

end while
Q← Q+R
return Q


