
A Meet-in-the-Middle Attack on
Reduced-Round Kalyna-b/2b

Riham AlTawy, Ahmed Abdelkhalek, and Amr M. Youssef

Concordia Institute for Information Systems Engineering
Concordia University, Montréal, Québec, Canada.

Abstract. Kalyna is an SPN-based block cipher that was selected dur-
ing Ukrainian national public cryptographic competition (2007-2010),
and its slight modification was approved as the new encryption standard
of Ukraine (DSTU 7624:2014) in 2015. The cipher supports a block size
and a key length of 128, 256 and 512 bits where the size of the key can
be either double or equal to that of the block length. According to its
designers, the cipher provides strength to several cryptanalytic methods
after the fifth and sixth rounds of the 128-bit and 256-bit block ver-
sions, respectively. In this paper, we present a meet-in-the-middle attack
on the 7-round reduced versions of Kalyna where the key size is double
the block length. Our attack is based on the differential enumeration
approach where we carefully deploy a four round distinguisher in the
first four rounds to bypass the effect of the carry bits resulting from the
pre-whitening modular key addition. We also exploit the linear relation
between consecutive odd and even indexed round keys which enables us
to attack seven rounds and recover all the round keys incrementally. The
attack on Kalyna with 128-bit block has a data complexity of 289 chosen
plaintexts, time complexity of 2230.2 and a memory complexity of 2202.64.
The data, time and memory complexities of our attack on Kalyna with
256-bit block are 2233, 2502.2 and 2170, respectively.
Keywords: Cryptanalysis, Kalyna, DSTU 7624:2014, Meet-in-the-Middle
attack, Differential Enumeration.

1 Introduction

Kalyna [17] is an SPN cipher that won the national public cryptographic com-
petition [2] organized by the state service of special communication and infor-
mation protection of Ukraine. This competition aimed to select a block cipher
to become the new Ukrainian national encryption standard [16] and replace the
legacy standard GOST 28147-89 [1]. Kalyna was chosen in 2014 and after a
slight modification, in 2015, it officially became the new encryption standard of
Ukraine known as DSTU 7624:2014 [1].

Kalyna supports block sizes of 128-bit, 256-bit, and 512-bit, and key sizes
of 128-bit, 256-bit, and 512-bit where the key size can be equal to or double
the block length. In this paper we will refer to a specific version of the cipher
as Kalyna−b/k, where b and k denote the employed block and key lengths,

respectively. Although the exact analysis of the resistance of Kalyna to various
attacks has not been discussed by its designer in [17], they concluded that the
cipher is sufficiently secure against several cryptanalytic methods after rounds
five and six when the block size is 128-bit and 256-bit, respectively (cf. page 14
of [15]).

The classical meet-in-the-middle (MitM) attack [9] has not been successful
on AES until Demirci and Selçuk proposed a modified MitM approach to crypt-
analyze it [6]. They have shown that the value of a given byte of the output of
a four round of encryption can be evaluated as a function of 25 byte parameters
and a given active byte in the input. They also showed that the values of each
output byte corresponding to the input byte values form an ordered sequence
that can be used as a distinguishing property to identify the right key guess. The
main disadvantage of their technique is the high memory complexity which is
required by a precomputation table that is used to store all the sequences result-
ing from all the possible combinations of the 25 byte parameters. Accordingly,
the approach was only valid to attack seven and eight rounds of AES-192 and
AES-256, but not the 128-bit version. Afterwards, the number of parameters
was reduced to 24 bytes in [7] where differences were used instead of the exact
values in the ordered sequence, which reduced the size of the table by a factor
of 8.

In the sequel, Dunkelman et al. targeted the problem of the high memory
requirements of the MitM attack by introducing two new techniques [10]. They
first proposed the idea of multisets which provides efficient encoding of the or-
dered sequence which reduces the size of the table by a factor of 4. Additionally,
they introduced differential enumeration that enables the generation of ordered
sequence as a function of 16 byte parameters only instead of 24, which reduced
the number of entries of the table from 2192 to 2128. This memory cost reduc-
tion was achieved by employing a truncated differential characteristic where the
generated sequence at its output can only take a restricted number of values. Ac-
cordingly, one must initially search through a large amount of input data pairs
to find one pair that satisfies the chosen distinguisher. Indeed, their proposal
has reduced the memory complexity of the attack at the expense of its data
complexity required to search for the right input data pair.

Later on, Derbez et al. [8] improved the attack of Dunkelman et al. by bor-
rowing ideas from the rebound attack [14] where they have proved that not all
of the sequences in the table can be verified by input data satisfying the trun-
cated distinguisher. Derbez et al. presented an efficient enumeration technique
and showed that the whole set of sequences can take only 280 values and not
2128 as with the case in the attack by Dunkelman et al. Accordingly, all the
generated sequences require the knowledge of only 10 byte parameters, thus the
number of entries of the precomputation table is further reduced to 280. A di-
rect consequence of their improvement is that the memory complexity is not the
bottleneck of the attack anymore but both the time and data complexities are.
Nevertheless, their attack is considered the most efficient attack on the 7-round

reduced AES-128 and 8-round reduced AES-192/256. They have also used a
5-round distingusher to attack the 9-rounds reduced AES-256.

Afterwards, Li et al. [13] employed a key-dependent sieve to further reduce
the memory complexity of the attack and present an attack on 9 rounds AES-
192 using a 5-round truncated differential distinguisher. MitM attacks using
differential enumeration have been used to analyze mCrypton [12], the Russian
encryption standard Kuznyechik [4], and Hierocrypt-3 [3]. The attack was further
generalized to present a framework for cryptanalyzing Feistel-based ciphers [11].

In this work, we present a MitM attack on seven round reduced Kalyna-b/2b
utilizing the idea of efficient differential enumeration. Kalyna employs a pre- and
post-whitening key mixing using addition modulo 264. Accordingly, we deploy
a specific four round distinguisher that covers the first four rounds where the
active byte is chosen to prevent the propagation of differences to the neighboring
bytes. We also exploit the linear relation between odd and even indexed round
keys to efficiently recover the last two round keys. The key schedule of Kalyna is
designed to make it computationally infeasible to retrieve the master key from
the round keys. For that reason, we propose an approach to recover all the
round keys using parameters matching. Employing this proposed technique, we
use the parameters corresponding to the matching multiset to filter pairs of two
consecutive round keys guesses.

The rest of the paper is organized as follows. In the next section, the descrip-
tion of the Kalyna block cipher along with the notation used throughout the
paper are provided. Afterwards, in section 3, we provide a detailed description
of the proposed distinguisher, the adopted attack procedure, and our round keys
recovery approach. Finally, the paper is concluded in section 4.

2 Specifications of Kalyna

Our attack targets Kalyna-b/2b where the size of the key is double that of the
state (i.e., Kalyna-128/256 and Kalyna-256/512). Accordingly, in this section,
we give the description of the encryption and round key generation procedures
of Kalyna-b/2b when b = 128 bits. The encryption procedure of Kalyna-128/256
and Kalyna-256/512 runs an AES-like round function for 14 and 18 times up-
dating an 8 × c state, respectively, where c denotes the number of columns in
the block state and is equal to 2 and 4 for the 128 and 256-bit block, respec-
tively. As depicted in Figure 1, the encryption procedure employs a pre- and
post-whitening stages using addition modulo 264 applied on the state columns
independently. In the sequel, the round function is iterated for 13 rounds. Each
round applies the following transformations on the state:

– SubBytes (SB): A layer of 8-bit substitution boxes.
– ShiftRows(SR): A transformation that cyclically right shifts the rows of the

state. The value of the shift is given by ⌊ i·b
512⌋, where i = 0, 1, · · · 7 and b = 128

denote the row number and state size, respectively.
– MixColumns(MC): A transformation that multiplies the columns of the state

independently by an MDS matrix.

– X: A round key mixing layer consisting of xoring the state with the round
keys.

Fig. 1. Kalyna-128/256 encryption function.

In the last round, the X transformation is replaced by a post-whitening modular
key addition. Hence, the full encryption function of the Kalyna-128/256 where
the ciphertext C is evaluated from the plaintext P can be described as:

C = K14 + (MC ◦ SR ◦ SB ◦ · · · ◦X[K1] ◦MC ◦ SR ◦ SB(P +K0))

In our analysis, we use the following property of the Sbox:

Proposition 1 Given two non-zero differences in F256, ∆x and ∆y, the average
number of solutions for SB(x)⊕ SB(x⊕∆x) = ∆y is one.

Key schedule. Round keys are independently evaluated from the master
key, K, and an intermediate key, Kσ. The process of calculating the intermediate
key is illustrated in the left side of Figure 2 where the 8×2 byte state is initialized
by the value of b+k+64

64 , which is equal to (128 + 256 + 64)/64 = 7 for Kalyna-
128/256. Given Kα and Kω which denote the least and most significant k/2 =
128 bits of the master key, K = Kω ∥ Kα, respectively, the state undergoes key
mixing for three rounds where Kα and Kω are used alternately. Afterwards, the
even indexed round keys are generated independently by the process depicted
on the right side of Figure 2. The round key state is first initialized by Kin, then
it undergoes two encryption rounds where the intermediate key Kσ is added
to a round constant tmvi and used for key mixing. Kin is evaluated according

to the round number, i, and is given by the least significant 128-bit of (K >
>> 16 · i) for round indices divisible by 4 and the most significant 128-bit of
(K >>> 64 · ⌊i/4⌋) for round indices not divisible by 4. Odd indexed round keys

Fig. 2. Kalyna key schedule.

are linearly computed from their previous even indexed round keys according to
the formula:

Ki = Ki−1 <<< (b/4 + 24).

For further details regarding the SBoxes, the linear transformation or the key
schedule of other versions, the reader is referred to [17].

2.1 Notations

The following notations are used throughout the paper:

– xi, yi, zi, and wi: the 8 × 2 bytes state after the X or addition module 264,
SB, SR, and MC transformations at round i, respectively.

– xi[j]: The jth byte of the state xi, where j = 0, 1, · · · , 15, and the bytes are
indexed column wise.

– xj
i : The state at round i whose position within a set or a sequence is given

by j.
– xi[j · · · k]: The bytes between the jth and kth positions inclusive of the state

xi.

– ∆xi, ∆xi[j]: The difference at state xi and byte xi[j], respectively.

We measure memory complexity of our attack in b-bit Kalyna-b/2b blocks and
time complexity in reduced-round Kalyna-b/2b encryptions. In the following sec-
tion, we give the details of our MitM attack on Kalyna-128/256.

3 A Differential Enumeration MitM Attack on
Kalyna-128/256

In the employed MitM attack, the analyzed cipher CK is divided into three parts
such that CK = Ck2 ◦ Cm ◦ Ck1 , where Cm verifies a distinguishing property.
The employed property is evaluated regardless of the key bits used in these
middle rounds. Hence, round key candidates for k1 and k2 are checked if they
verify this distinguishing property or not. Our middle distinguisher is a truncated
differential characteristic such that, when a set of input states from a δ-set [5]
is used as its input, the set of a given byte difference of the output state forms
an ordered sequence which can be represented using a multiset.

Definition 1 (δ-set of Kalyna-128/256) Let a δ-set be a set of 256 Kalyna-
128/256 states where one byte at a particular state position takes all the 28

possible values and the rest of the 15 bytes are constants.

Definition 2 (Multisets of bytes) A multiset generalizes the set concept by
allowing elements to appear more than once. In our case, a multiset of 256 bytes

can take as many as

(
28 + 28 − 1

28

)
≈ 2506.17 different values [10].

In our 7-round MitM attack, we employ a four round distinguisher that covers
the following transitions:

1 → 8 → 16 → 8 → 4.

As depicted in Figure 3, the distinguisher starts at x0 where byte x0[15] takes
all the possible 28 values and ends at z4, where we evaluate the multiset of
the 255 differences by partially encrypting the 256 values of x0. We specifically
locate the distinguisher in the first four rounds which enables us to exploit
the linear relation between the last two round keys and attack seven rounds.
Additionally, we choose the active byte at the beginning of the distinguisher
in the most significant byte of the second column to prevent the propagation
of the difference to the neighboring bytes, which can happen due to the carry
propagation resulting from the modular addition key mixing. On the other hand,
placing the distinguisher in the middle as in the traditional setting [6, 12] allows
us to attack six rounds only. Also, we must deal with the probabilistic carry
propagation in the analysis of the first round which reduces the path probability,
and hence both the data and time complexities of the attack are increased. It
should be noted that while our distinguisher ends with four active bytes which

increases the path probability when we evaluate the multiset from the ciphertext
side, this distinguisher does not affect the memory complexity because we store
a multiset of the differences in only one of the four active bytes. In other words,
since each byte out of the four active bytes at the end of the distinguisher forms
an ordered sequence, we can choose any of them to distinguish between key
candidates as long as the probability of error is negligible.

We denote the δ-set at state x0 by δs, where

δs = {x0
0, x

1
0, · · · , x255

0 }.

We also denote the set of 255 differences at bytes z4[0 · · · 3] by ds, where

ds = {∆1z4[0 · · · 3],∆2z4[0 · · · 3], · · · ,∆255z4[0 · · · 3]},

and ∆lz4[0 · · · 3] = z04 [0 · · · 3]⊕ zl4[0 · · · 3], for l = 1, 2, · · · , 255. We opt for variat-
ing the most significant byte of state x0 because plaintext pairs that differ in this
byte result in one byte difference in x0 after the modular addition key mixing as
the carry is inhibited at the most significant bit. Since, we are using a multiset
to encode the resulting set of differences, ds is evaluated by partially encrypting
the 256 bytes which are different in state y0 for 4 rounds as these set of states
also form an unordered delta set corresponding to δs. We employ multisets to
encode sets of differences in one of the resulting four byte differences only, which
is possible because the probability of having a false match when using one byte
differences is almost negligible. From the path depicted in Figure 3, we find
that ds is evaluated by the knowledge of the values of 37 bytes. More precisely,
given the values of ∆ly0[15], 8 bytes at x1[8 · · · 15], 16 byte at x2, 8 bytes at
x3[0 · · · 3], x3[12 · · · 15], and 4 bytes at x4[0 · · · 3], one can compute the value of
∆lz4[0 · · · 3]. However, by employing the rebound based differential enumeration
technique [8], we deduce that if x0

0 of δs belongs to a pair of plaintexts that
conforms to the differential path in Figure 3, then the corresponding multiset of
differences ds has only 2200 values. Accordingly, a given multiset of differences
can be computed by the knowledge of 25 byte parameters only. These parame-
ters are ∆y0[15], x1[8 · · · 15], x3[0 · · · 3], x3[12 · · · 15], x4[0 · · · 3], and ∆z4[0 · · · 3],
where ∆y0[15] and ∆z4[0 · · · 3] denote the differences generated by a conforming
message pair. In what follows, we give the procedure of the attack and show how
we evaluate the 2200 multisets from these 25 parameters.

3.1 Attack Procedure

The attack exploits the linear relationship between consecutive even and odd
indexed round keys to recover the last two 128-bit round keys K7 and K6.
However, even with the knowledge of these two round keys, the recovery of the
master key requires a time complexity equals to that of the exhaustive search.
Consequently, once these two keys are known, we propose an additional step that
recovers all the preceding round keys using parameters matching. The attack is
composed of precomputation and online phases. In the precomputation phase, for
each value of the values of the 25-byte parameters, we deduce the corresponding

37 bytes values which are then used to compute the multiset and store it in
a hash table. The online phase is further divided into data collection, and key
recovery phases. In the data collection phase, we query the encryption oracle
with chosen plaintext pairs to find at least one pair that satisfies the 7-round
path shown in Figure 3. In the key recovery phase, we test guesses of K7 and
K6 with each plaintext pair to evaluate the multiset and search for it in the
precomputed table.

Precomputaion phase: In this phase, we build a lookup table that contains
2200 multisets of the 255 difference in ds. Using the rebound approach, we iterate
over the 2200 possible values of the 25 bytes ∆y0[15], x1[8 · · · 15], x3[0 · · · 3],
x3[12 · · · 15], x4[0 · · · 3], and ∆z4[0 · · · 3] to construct 2200 multisets of differences.
The procedure can be summarized as follows:

– For each of the 2200 values of ∆y0[15] ∥ x1[8 · · · 15] ∥ x3[0 · · · 3], x3[12 · · · 15] ∥
x4[0 · · · 3] ∥ ∆z4[0 · · · 3], evaluate the value of x2 as follows:

1. Linearly propagate ∆y0[15] forward to evaluate ∆x1[8 · · · 15].
2. Using x1[8 · · · 15], deduce ∆x2.

3. Compute ∆y3[0 · · · 3], ∆y3[12 · · · 15] using ∆z4[0 · · · 3] and x4[0 · · · 3].
4. Using x3[0 · · · 3], x3[12 · · · 15], deduce ∆y2.

5. Find x2, such that SB(x2)⊕SB(x2⊕∆x2) = ∆y2. According to propo-
sition 1, we get one solution on average.

– Having the value of x2, we can now compute the 255 unordered differences
∆iz4[0 · · · 3] in ds for i = 1, 2, · · · , 255 as follows:

1. Set ∆iy0[15] = i. As the SBox is a permutation over F256, the sequence
of ∆y0[15] corresponds to the unordered sequence of ∆x0[15] of the delta
set.

2. Linearly propagate∆iy0[15] forward and compute the value of∆ix1[8..15].

3. Using the value of x1[8 · · · 15] and ∆ix1[8 · · · 15], pass the substitution
layer with certainty and evaluate ∆ix2.

4. Using the value of x2 and ∆ix2, evaluate ∆ix3[0 · · · 3], ∆ix3[12 · · · 15].
5. Propagate ∆ix3[0 · · · 3], ∆ix3[12 · · · 15] with the knowledge of x3[0 · · · 3],

x3[12 · · · 15] through the Sboxes to evaluate ∆ix4[0 · · · 3].
6. Using x4[0 · · · 3] and ∆ix4[0 · · · 3], compute ∆iz4[0 · · · 3].

– Encode the sequence of one out of the four generated byte differences, (i.e.,
∆iz4[j], j = 0, 1, 2, 3) using a multiset and store it in a hash table.

Online phase: This phase is divided into two stages, data collection and
key recovery. In the first stage, we collect enough pairs of plaintexts and their
corresponding ciphertexts so that we acquire at least one pair that follows the
path depicted in Figure 3. The second stage employs key guesses for K7 and K6

to evaluate candidate multisets from the collected ciphertext pairs, and matches
them against the ones stored in the precomputed table to identify the correct
round keys.

Data collection In this stage, we query the encryption oracle with structures
of chosen plaintexts to get enough pairs such that one of them conforms to the
whole truncated differential path. For each structure, we let the most significant
state byte take all the possible 28 values and set the remaining 15 bytes to a
constant value. We specifically choose to variate the most significant byte to
ensure that we get one active byte at the beginning of the distinguisher after
the modular addition key mixing. In other words, the carry generated by the
modular addition is inhibited in the last bit of this byte, thus one active byte in
the plaintext propagates to one active byte in x0 with certainty. This structure

results in about 28×(28−1)
2 ≈ 215 pairs. While a chosen plaintext pair follows the

forward path with certainty, the probability that its corresponding ciphertext
pair conforms to the backward path is 2−96. This probability is due to the
16 → 8 and 8 → 4 transitions through the inverse MixColumn transformation
in rounds six and five, respectively. Accordingly, it is expected that when trying
296 plaintext pairs, the corresponding ciphertext pair of one of them follows the
path in Figure 3. Since, each structure provides 215 pairs, one requires about
281 structures. All in all, we ask for the encryption of 281 × 28 = 289 chosen
plaintexts to get the required 296 pairs.

Key recovery: In this stage, for each plaintext pair (P0, P
′
0), we pick P0

and construct the rest of the 255 plaintexts in its delta set by Pi = P0 ⊕ i
for i = 1, 2, · · · , 255. Then, we get their corresponding 256 cipher texts Ci for
i = 0, 1, · · · , 255, partially decrypt them using guesses for K7 and K6 to get the
255 differences ∆iz4[0 · · · 3]. Note that we do not require to guess any bits from
K5 because the difference in x5 can be linearly propagated to get the difference
in z4. In this stage, we exploit the linear relation between even and odd indexed
round keys to identify the right K7 and K6 by guessing K7 only and getting
K6 candidates for free. Finally, we evaluate the multiset of the 255 differences
in one out of the four bytes in ∆iz4[0 · · · 3] (the same byte that was used in
the precomputation phase), and look for a match in the precomuted table. If a
match is not found, we can discard that key candidate. The probability of a false
match is given by 2200+96+128−467.6 = 2−43.6 which is negligible. Note that the
probability of randomly having a match in the table is 2−467.6 (and not 2−506.7)
because the number of ordered sequences associated to a multiset is not constant
[8].

Attack Complexity: The memory requirement of the attack is dominated
by the precomputation table needed to store 2200 multisets, each of 512 bits.
Hence, the memory complexity of the attack is 2200 × 512/128 = 2202 128-bit
blocks. The data complexity is determined by the data collection stage where we
query the encryption oracle with 289 chosen plaintexts. The time complexity of
the offline phase is due to performing 2200 partial encryptions on 256 messages,
which is equivalent to 2200+8 × 5/7 ≈ 2208 encryptions. The time complexity of
the online phase to recover K7 and K6 is given by 296+128+8 × 2/7 ≈ 2230.2.

3.2 Recovering the Remaining Round Keys

The key schedule of Kalyna is designed so that each even indexed round key is
generated independently from the master key which is used in a two rounds en-
cryption of an input state. Accordingly, the recovery of the master key from the
round keys is computationally infeasible. For this reason, to be able to perform
encryption and decryption, one can recover all the eight round keys instead of
the master key. The MitM attack recovers the last two round keys, K7 and K6.
These two keys are recovered when a specific plaintext pair and its correspond-
ing ciphertext pair results in a match in the precomputed table. The matching
sequence is calculated from a specific set of parameters which correspond to ac-
tual state values. Accordingly, if the parameters that represent state bytes are
stored in the table along with the multiset, one can use them to filter round
key guesses. In the precomputation phase, we store the values of the parameters
x1[8 · · · 15], x2, x3[0 · · · 3], x3[12 · · · 15], and x4[0 · · · 3] along with the multiset
in the table entries. When a match is found using a given plaintext-ciphertext
pairs, we partially decrypt one of the ciphertexts using the recovered K7 and K6

to evaluate state x5. Then, we retrieve the stored parameters corresponding to
the matching multiset, and perform the following incremental filtering to recover
the remaining round key:

– For all the possible 2128 values of K5, using the correct x5, evaluate x4. It is
expected that 296 key candidates produce states with bytes x4[0 · · · 3] equal
to that of the retrieved parameters.

– Evaluate K4 candidates using the surviving 296 K5 candidates from the
previous step. Now for all the 296 (K5,K4) candidates, compute x3 and
filter them using the retrieved x3[0 · · · 3], x3[12 · · · 15]. It is expected that 232

(K5,K4) candidates survive this stage.
– For all the possible 2128 values of K3 and all the 232 (K5,K4) candidates,

evaluate x2. About 232 (K5,K4,K3) candidates are expected to produce
values of x2 equal to that of the retrieved parameters.

– Evaluate K2 values from the surviving candidates of K3. Then for all the
232 (K5,K4,K3,K2) remaining candidates, compute x1. It is expected that
only one (K5,K4,K3,K2) value results in x1[8 · · · 15] equal to the retrieved
parameters.

– Finally, for all the 2128 possible values of (K1,K0), partially decrypt the
correct x1 that was evaluated in the previous step and compare the result
with the plaintext corresponding to the ciphertext used in the procedure. We
expect one (K1,K0) candidate to pass this filtering stage which leaves us with
one value for all round keys that decrypt a ciphertext to its corresponding
plaintext.

Recovering the remaining round keys does not affect the data complexity of
the attack. However, the memory complexity is slightly increased since we now
need to store an additional 36 bytes in each entry. Accordingly, the memory
complexity of the attack is given by 2200 × (512 + 36× 8)/128 = 2202.64 128-bit
blocks. The time complexity of this stage is evaluated by 2128×1/7+296×2/7+

2160 × 3/7 + 232 × 4/7 + 2128 × 1/7 ≈ 2159 reduced Kalina-128/256 encryptions.
Consequently, the online time complexity of the whole attack is dominated by
the last two rounds key recovery stage which is given by 2230.2 encryptions.

4 Analysis of the attack on Kalyna-256/512

Our MitM attack can also be applied on Kalyna-256/512 where the state has
four columns. The differential path used in the attack is depicted in Figure 4.
The attack steps are similar to the steps on Kalyna-128/256 except the pre-
computation phase. As shown in Figure 4, due to the ShiftRow operation, the
distinguisher ends in two active bytes (instead of four for Kalyna-128/256). Ac-
cordingly, we only need 21 byte parameters which are ∆y0[31], x1[16 · · · 23],
x3[0, 1], x3[26, 27], x3[20, 21], x3[14, 15], x4[0, 1], and ∆z4[0, 1]. We assume the
independence of ordered sequences generated by individual bytes and thus their
corresponding multisets. Accordingly, we store two multisets of differences in
the two active bytes of z4 so that the probability of false matches is very low.
Hence, for the path depicted in Figure 4, the memory requirement for recover-
ing the last two round keys is dominated by the precomputation table needed
to store 221×8 two multisets, each of 512 bits. Thus, the memory complexity
of the attack is 2168 × 1024/256 = 2170 256-bit blocks. The data complexity is
determined according to the path probability which is equal to 2−240. Accord-
ingly, we need 2240 plaintexts pairs from 2225 structures where each structure
consists of 28 chosen plaintexts. Thus the data complexity of the attack is given
by 2225+8=233 chosen plaintexts. The time complexity of the offline phase is due
to performing 2168 partial encryptions on 256 messages, which is equivalent to
2168+8 × 5/7 ≈ 2176 encryptions. The time complexity of the online phase is
given by 2240+256+8 × 2/7 ≈ 2502.2. The probability of a false match is given by
2168+240+256−467.6×2 = 2−271.2 which is negligible.

5 Conclusion

In this work, we have presented a MitM attack on the new Ukranian standard
encryption algorithm Kalyna. Our attack targets the 7-round reduced versions
of the standard where the key size is double the block length. According to the
security analysis performed by the designers of the cipher, Kalyna is resistant to
various cryptanalytic methods after rounds five and six of the 128-bit and 256-bit
block versions, respectively. In our attack, we construct our distinguisher such
that the effect of the carry propagation is avoided after the modular key addition
which improves the path probability and accordingly both the data and time
complexities are reduced. Finally, due to the infeasibility of recovering the master
key from the round keys, we exploit the linear relation between consecutive
even and odd indexed round keys to recover all the round keys efficiently. Our
results are considered the first steps towards the public cryptanalysis of the new
Ukrainian encryption standard.

References

1. Government committee of the USSR for standards. GOST 28147-89. State stan-
dard of the USSR, information processing systems, cryptographic protection, al-
gorithm of cryptographic transformation, 1999. (in Russian).

2. State service of special communication and information protection of
Ukraine. statement on public competition of cryptographic algorithms, 2006.
http://www.dstszi.gov.ua/dstszi/control/ua/publish/printablearticle?

art_id=48387 (in Ukrainian).
3. Abdelkhalek, A., AlTawy, R., Tolba, M., and Youssef, A. M. Meet-in-

the-middle attacks on reduced-round Hierocrypt-3. In Latimcrypt (2015), LNCS,
Springer. (to appear).

4. AlTawy, R., and Youssef, A. M. A meet in the middle attack on reduced
round Kuznyechik. Cryptology ePrint Archive, Report 2015/096, 2015. http:

//eprint.iacr.org/.
5. Daemen, J., and Rijmen, V. AES proposal: Rijndael, 1998.
6. Demirci, H., and Selçuk, A. A meet-in-the-middle attack on 8-round AES. In

FSE (2008), K. Nyberg, Ed., vol. 5086 of LNCS, Springer, pp. 116–126.
7. Demirci, H., Taşkn, I., Çoban, M., and Baysal, A. Improved meet-in-the-

middle attacks on AES. In INDOCRYPT (2009), B. Roy and N. Sendrier, Eds.,
vol. 5922 of LNCS, Springer, pp. 144–156.

8. Derbez, P., Fouque, P.-A., and Jean, J. Improved key recovery attacks on
reduced-round AES in the single-key setting. In EUROCRYPT (2013), T. Johans-
son and P. Nguyen, Eds., vol. 7881 of LNCS, Springer, pp. 371–387.

9. Diffie, W., and Hellman, M. Exhaustive cryptanalysis of the NBS Data En-
cryption Standard. Computer 10, 6 (1977), 74–84.

10. Dunkelman, O., Keller, N., and Shamir, A. Improved single-key attacks on
8-round AES-192 and AES-256. In ASIACRYPT (2010), M. Abe, Ed., vol. 6477
of LNCS, Springer, pp. 158–176.

11. Guo, J., Jean, J., Nikolić, I., and Sasaki, Y. Meet-in-the-middle attacks on
generic Feistel constructions. In ASIACRYPT (2014), P. Sarkar and T. Iwata,
Eds., vol. 8873 of LNCS, Springer, pp. 458–477.

12. Hao, Y., Bai, D., and Li, L. A meet-in-the-middle attack on round-reduced
mCrypton using the differential enumeration technique. In Network and System
Security (2014), M. Au, B. Carminati, and C.-C. Kuo, Eds., vol. 8792 of LNCS,
Springer, pp. 166–183.

13. Li, L., Jia, K., and Wang, X. Improved single-key attacks on 9-round AES-
192/256. In FSE (2015), C. Cid and C. Rechberger, Eds., vol. 8540 of LNCS,
Springer, pp. 127–146.

14. Mendel, F., Rechberger, C., Schläffer, M., and Thomsen, S. S. The re-
bound attack: Cryptanalysis of reduced Whirlpool and Grøstl. In FSE (2009),
O. Dunkelman, Ed., vol. 5665 of LNCS, Springer, pp. 260–276.

15. Oliynykov, R., Gorbenko, I., Kazymyrov, O., Ruzhentsev, V., Gorbenko,
Y., and Dolgov, V. A new encryption standard of Ukraine: The block cipher
”Kalyna” (DSTU 7624:2014), 2015. Online presntation: http://www.slideshare.
net/oliynykov/kalyna-english, accessed: 25-July-2015.

16. Oliynykov, R., Gorbenko, I., Kazymyrov, O., Ruzhentsev, V., Kuznetsov,
O., Gorbenko, Y., Dyrda, O., Dolgov, V., Pushkaryov, A., Mordvinov,
R., and Kaidalov, D. DSTU 7624:2014. National standard of Ukraine. Informa-
tion technologies. Cryptographic data security. Symmetric block transformation
algorithm. Ministry of economical development and trade of Ukraine, 2015.

17. Oliynykov, R., Gorbenko, I., Kazymyrov, O., Ruzhentsev, V., Kuznetsov,
O., Gorbenko, Y., Dyrda, O., Dolgov, V., Pushkaryov, A., Mordvinov,
R., and Kaidalov, D. A new encryption standard of Ukraine: The Kalyna block
cipher. Cryptology ePrint Archive, Report 2015/650, 2015. http://eprint.iacr.
org/.

Fig. 3. Differential path used in the attack on the 7-round reduced Kalyna-128/256.

Fig. 4. Differential path used in the attack on the 7-round reduced Kalyna-256/512.

