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Abstract. The aim of this work is to find large S-Boxes, typically operating on 8 bits, having
both good cryptographic properties and a low implementation cost. Such S-Boxes are suitable
building-blocks in many lightweight block ciphers since they may achieve a better security
level than designs based directly on smaller S-Boxes. We focus on S-Boxes corresponding to
three rounds of a balanced Feistel and of a balanced MISTY structure, and generalize the
recent results by Li and Wang on the best differential uniformity and linearity offered by such
a construction. Most notably, we prove that Feistel networks supersede MISTY networks for
the construction of 8-bit permutations. Based on these results, we also provide a particular
instantiation of an 8-bit permutation with better properties than the S-Boxes used in several
ciphers, including Robin, Fantomas or CRYPTON.
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1 Introduction

A secure block cipher must follow Shannon’s criteria and provide confusion and diffusion [42]. In
most cases, confusion is achieved with small substitution boxes (S-Boxes) operating on parts of
the state (usually bytes) in parallel, and diffusion is achieved with linear operations mixing the
state. The security of the cipher is then strongly dependent on the cryptographic properties of
the S-Boxes. For instance, the AES uses an 8-bit S-Box based on the inversion in the finite field
with 28 elements. This S-Box has the smallest known differential probability and linear correlation,
and then allows the AES to be secure with a small number of rounds, and to reach very good
performances. However, it is not always the best option for constrained environments. In software,
an S-Box can be implemented with a look-up table in memory, but this takes 256 bytes for the
AES S-Box, and there might be issues with cache-timing attacks [7]. In hardware, the best known
implementation of the AES S-Box requires 115 gates [I3]; this hardware description can also be used
for a bit-sliced software implementation [24]. For some constrained environments, this cost might
be too high. Therefore, the field of lightweight cryptography has produced many alternatives with a
smaller footprint, such as TEA [48], CrRyPTON [28/29], NOEKEON [I5], PRESENT [I1], KATAN [16],
LBrock [49], PrRINCE [12], TWINE [45], the LS-Designs [22], or PRIDE [2]. In particular, many
of those lightweight ciphers use S-Boxes operating on 4-bit words, or even on a smaller alphabet
like in [I]. But, reducing the number of variables increases the values of the optimal differential
probability and linear correlation. Therefore, more rounds are required in order to achieve the same
resistance against differential and linear attacks.

An alternative approach when constructing a lightweight cipher consists in using larger S-Boxes,
typically operating on 8 bits like in the AES, but with a lower implementation cost. Then, we
search for S-Boxes with better implementations than the AES S-Box, at the cost of suboptimal
cryptographic properties. Finding 8-bit S-Boxes which offer such an interesting trade-off is a difficult
problem: they cannot be classified like in the 4-bit case [26/17], and randomly chosen S-Boxes have
a high implementation cost [47]. Therefore, we focus on constructions based on smaller S-Boxes
and linear operations. This general approach has been used in several previous constructions:
CRYPTON v0.5 [28] (3-round Feistel), CRYPTON v1.0 [29] (2-round SPN), WHIRLPOOL [5] (using
five small S-Boxes), KHAZAD [4] (3-round SPN), ICEBERG [43] (3-round SPN), Zorro [20] (4-round
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Feistel with mixing layer), and the LS-Designs [22] (3-round Feistel and MISTY network). As in [22],
we here focus on constructions with a 3-round Feistel network, or a 3-round balanced MISTY
network, because they use only 3 smaller S-Boxes, but can still provide good large S-Boxes. And we
study the respective merits of these two constructions, since this comparison is raised as an open
question in [22].

The Feistel and MISTY structures have been intensively studied in the context of block cipher
design, and bounds are known for the maximum expected differential probability (MEDP) [37I38313T]
and maximum expected linear potential (MELP) [36l3]. However, those results are not relevant for
the construction of S-Boxes, because they only consider the average value over all the keys, while
an S-Box is unkeyed. Therefore, the differential and linear properties of the Feistel and MISTY
constructions need to be analyzed in the unkeyed setting. Such a study has been initiated recently
by Li and Wang [27] in the case of 3 rounds of a Feistel network. In this work, we expand the
results of Li and Wang, by giving some more general theoretical results for unkeyed Feistel and
MISTY structures, with a particular focus on the construction of 8-bit permutations.

Our contributions. We first explain why the usual MEDP and MELP notions are meaningless in
the unkeyed setting. In particular we exhibit a 3-round MISTY network where there exists a
differential with probability higher than the MEDP for any fized key, but this optimal differential
depends on the key. Then, Section [3] gives some lower bounds on the differential uniformity and
linearity of any 3-round balanced MISTY structure, which involve the properties of the three
inner S-Boxes. Section [4] then focuses on the construction of 8-bit permutations. Similar results on
3-round Feistel networks are detailed in Section [b] which generalize the previous result from [27].
Most notably, we show that 3 rounds of a Feistel network with appropriate inner S-Boxes provide
better cryptographic properties than any 3-round MISTY network, explaining some experimental
results reported in [22]. Section |§| then gives an instantiation of such an 8-bit permutation, which
offers a very good trade-off between the cryptographic properties and the implementation cost. It
can be implemented efficiently in hardware and for bit-sliced software, and has good properties
for side-channel resistant implementations with masking. In particular, this S-Box supersedes the
S-Boxes considered in many lightweight ciphers including CRYPTON, Robin and Fantomas.

2 From keyed constructions to unkeyed S-Boxes

2.1 Main cryptographic properties for an S-Box

In this paper, we focus on S-Boxes having the same number of input and output bits. The resistance
offered by an S-Box against differential [10] and linear [30] cryptanalysis is quantified by the highest
value in its difference table (resp. table of linear biases, aka linear-approximation table). More
precisely, these two major security parameters are defined as follows.

Definition 1 (Differential uniformity [35]). Let F be a function from F3 into F5. For any
pair of differences (a,b) in FY, we define the set

Dp(a—=b)={zeF} | Flx®a)® F(x) =0} .

The entry at position (a,b) in the difference table of F then corresponds to the cardinality of
Dp(a — b) and will be denoted by dp(a,b).
Moreover, the differential uniformity of F is

0(F) = gﬁ%ﬁ(ﬁr(a,b) .

Obviously, the differential uniformity of an S-Box is always even, implying that, for any F,
0(F) > 2. The functions F for which equality holds are named almost perfect nonlinear (APN)
functions.

Similarly, the bias of the best linear approximation of an S-Box is measured by its linearity.



Definition 2 (Walsh transform of an S-Box). Let F' be a function from FY into F3. The
Walsh transform of F is the function

Fy xFy — Z
(a, b) s >\F(a, b) _ ZIEFQ(_l)b.F(IHam ]

Moreover, the linearity of F' is

L(F) = S [Ap(a,b)] .

Indeed, up to a factor 2™, the linearity corresponds to the bias of the best linear relation between
the input and output of F:

1 n— 1 F(x)+a-x 1 )\Fa,b
PrX[b~F(X)+a-X:1]=2n(2 fog ) (e >=2(1—§n)).
z€Fy

It is worth noticing that, for any fixed output mask b € F%, the function a — Ap(a,b), corresponds
to the Walsh transform of the n-variable Boolean component of F: x — b- F(z). In particular, it
enjoys all properties of a discrete Fourier transform, for instance the Parseval relation.

2.2 Constructing S-Boxes from smaller ones

If this paper we focus on the construction of S-Boxes using several smaller S-Boxes. Indeed small
S-Boxes are much cheaper to implement that large S-Boxes:

for table-based software implementations, the tables are smaller;
— for hardware implementations, the gate count is lower;
for bit-sliced software implementation, the instructions count is lower;

for vectorized implementation, small S-Boxes can use vector permutations.

In many cases, implementing several small S-Boxes requires less resources than implementing a
large one. Therefore, constructing S-Boxes from smaller ones can reduce the implementation cost.

The Feistel construction is a well-known construction to build a 2n-bit permutation from smaller
n-bit functions, introduced in 1971 for the design of Lucifer (which later became DES [33]). It is a
good candidate for constructing large S-Boxes from smaller ones at a reasonable implementation
cost. In particular, this construction has been used for the S-Boxes of CRYPTON v0.5 [2§], ZUC [19]
(for Sp), Robin [22] and iSCREAM [21]. The MISTY construction introduced by Matsui [3I] uses a
different structure, but offers a similar level of security. The main advantage of the MISTY network
is that it can offer a reduced latency because the first two S-Boxes can be evaluated in parallel.
Therefore it is a natural alternative to Feistel networks for the construction of lightweight S-Boxes,
and it has been used in the design of Fantomas [22] and SCREAM [2I]. In order to reduce the
number of gates used for implementing the construction, we focus on balanced MISTY networks,
while the MISTY block cipher proposed in [32] is unbalanced and combines an (n — 1)-bit S-Box
and an (n + 1)-bit S-Box.

The two structures we study are depicted in Figures |1f and [2| It is worth noticing a major
difference between the two: the function resulting from the Feistel construction is always invertible
(since one round is an involution, up to a permutation of the outputs), while the function resulting
from the MISTY construction is invertible if and only if all the inner S-Boxes are invertible.

Analysis of Feistel and MISTY structures. Since these two constructions have been used for
the design of many block ciphers (in particular the DES [33] and MISTY [32], respectively), their
security properties have been intensively studied. A natural way to measure the resistance of the
resulting block cipher against differential and linear cryptanalysis is to study the probabilities of
the differentials (respectively the potentials of the linear approximations) averaged over all keys.



Fig. 1. 3-round MISTY network Fig. 2. 3-round Feistel network

Definition 3 (MEDP and MELP). Let Fi be a family of function from FY into Fy. The MEDP
1s the maximum probability of a differential, averaged over all keys:

Sric (a,D)
MEDP(Fic) = max 5 Ly FK &
KeF%

The MELP is the mazimum potential of a linear approximation, averaged over all keys:
)\F a b
MELP(Fi) = max o zk Z < A (0.) )

The following theorem shows that the MEDP and MELP of a Feistel or MISTY network can be
bounded.

Theorem 1 (Feistel or MISTY, averaged over all keys, [37/38,3,31]).

Given Sy, Sa and S three n-bit permutations, let p = max; 6(S;)/2" and q = max;(L(S;)/2")2.
Then the family of functions (FK)K:(Kl,Kz,Ks)GIng defined by 3 rounds of a Feistel or of a MISTY
network with S; as inner functions verifies

MEDP(Fk) < p? and MELP(Fg) < ¢°

This theorem is very powerful for the construction of iterated block ciphers: it shows that a
big function with strong cryptographic properties can be built from small functions with strong
cryptographic properties. However, for the design of an S-Box from smaller S-Boxes, it is of little
use. Indeed, we are interested in the properties of a single fixed S-Box, rather than the average
properties of a family of S-Boxes. For a fixed (a,b) the theorem proves that the average values of
0y (a,b) and Ap, (a,b) are bounded, therefore there exist at least one key for which the value is
smaller than or equal to the average. However, it might be that the values a,b where the maximum
is reached are not the same for every key. Therefore if we select a key so that g, (a,b) is small for
an a, b maximizing the average probability, the maximum can be reached for another entry of the
differential table.

More strikingly, we discovered some choices of S, S, S3 such that the maximum differential
probability of the functions in the corresponding family is always higher than the MEDP.

Example 1. We consider a MISTY structure with three identical S-Boxes:
S; =[A,7,9,6,0,1,5,B,3,E,8,2,C,D,4,F|.

We have MEDP(Fk) < 16/256 according to Th. [1} because §(S;) = 4. However, for any function in
this family, there exists a differential with probability 32/256. This is not a contradiction, because
the differential reaching the maximum depends on the key.



The relevant property for the construction of an S-Box is the maximum differential probability
(respectively maximum linear potential). Therefore, we could derive some information on this
quantity for Fx for some fixed keys from the knowledge of the average value of the maximal
differential probability, i.e., the EMDP (resp. EMLP), which may significantly differ from the MEDP
(resp. MELP). We would like to point out that there is a confusion between the two notions in [32]:
the definition corresponds to the expected maximum differential probability (respectively expected
maximum linear potential), while the theorems apply to the MEDP and MELP.

Analysis of Feistel and MISTY structures with fixed key. In order to study the properties
of Feistel and MISTY structures for the construction of lightweight S-Boxes, we must study these
structures with a fixed key. Equivalently, we can consider the structures without any key, because a
structure with a fixed key is equivalent to an unkeyed one with different S-Boxes. Indeed, using an
S-Box S; with round key k; is equivalent to using S, :  — S;(z + k;) as an S-Box without any key.
In the following, we always consider a key-less variant.

In a recent analysis of the fixed-key Feistel structure [27], Li and Wang derive the best differential
uniformity and linearity which can be achieved by a 3-round Feistel cipher with a fixed key, and
give examples reaching this bound. Their main results are as follows:

Theorem 2 (Feistel unkeyed, [27]). Let S1, So and Ss be three n-bit S-Boxes and F be the 2n-
bit function defined by the corresponding 3-round Feistel network. Then, 6(F) > 26(Ss2). Moreover,
if So is mot a permutation, 6(F) > 2n+L,

If n =4, F satisfies §(F) > 8. If equality holds, then L(F) > 64.

3 S-Boxes obtained from 3 rounds of MISTY

3.1 Our results

In this paper, we generalize the bounds of Li and Wang [27] on Feistel structures, and derive
bounds for MISTY structures. The results are very similar for the two structures, but for a MISTY
structure, optimal results are only achieved with non-invertible inner functions. Therefore, our work
shows that Feistel structures allow better results than MISTY structures for the design of invertible
8-bit S-Boxes.

More precisely, we introduce two new S-Box properties dyin, and Ly, in order to derive our
bounds: L, is the smallest linearity we can have for a non-trivial component of the S-Box.
Similarly, dmin is the smallest value we can have for the maximum max §(a, b) within a row in the
difference table. In particular, for any 4-bit function S, dmin(S) > 2 and Lnin(S) > 4. Moreover, if
S is a 4-bit permutation, then dpin(S) > 4 and Lyin(S) > 8.

We first present the general lower bounds we obtain on the differential uniformity and linearity
of 3 rounds of a Feistel and of a MISTY construction.

1. For a Feistel network with inner S-Boxes Sy, Sy and Ss:

- 5(F) 2 5(52) max (5min(51)7 5min(53))

— if Sy is not a permutation, §(F) > 2"+,

— if Sy is a permutation, 0(F) > _;61211;1;(_ ) (6(5:)0min(S;), 6(S1)0min(S51))-
i#2,j#1,

- ,C(F) > L:(SQ) max (Emin(Sl)a Emin(Sg))

— if Sy is a permutation, L(F) > pax (L(S:)Lomin(S7)s L(Si)Lrnin(S51)).
i#2,j#1,

2. For a MISTY network with inner S-Boxes S, So and Ss:
- 5(F) Z 5(51) max (6min(52)75min(53))
— if Sy is not a permutation, §(F) > 27+1,
— if S is a permutation, §(F") > #rlna;é(l (6(5:)0min(S;5), §(Si)5min(S;1));
(2 3] 32
— L(F) > max (L(51)Limin(52), £(52) Limin(S1), L(S3)Lmin(51));
— if S5 is a permutation, £(F) > £(S1)Lmin(S5 ).
— if S is a permutation, L(F) > L(S3)Lmin(S2)-
— if Sy and S3 are permutations, £(F) > £(S2)Lmin(S5").



If n = 4 this yields for both constructions:
0(F)>8and L(F) >48.

Moreover, L(F) > 64 unless §(F') > 32.

For the MISTY construction with n = 4, if F' is a permutation, we obtain tighter bounds:
0(F) > 16 and L(F) > 64. This implies that the Feistel construction is more appropriate for
constructing 8-bit permutations. We will also show that all these bounds for n = 4 are tight. We now
detail the results first in the case of the MISTY construction, and then for the Feistel construction.

3.2 Differential uniformity of 3 rounds of MISTY

Our lower bound on the differential uniformity of the 3-round MISTY relies on the evaluation of
the number of solutions of some differentials for which the input difference of one of the 3 S-Boxes
is canceled (see Figure [3)).

Proposition 1. Let S1, So and S3 be three n-bit S-Boxes and F be the 2n-bit function defined by
the corresponding 3-round MISTY network. Then, for all a, b and c in F3, we have:
(i) 6 (0la, bllc) = ds,(a,c) x ds,(c,b & c);
(ii) If Sy is bijective,
dr(al|0,b]|c) = ds,(a,a @ c) X dg,(a,bDc) ;
(iii) dg,(a,b) X dg,(b,c) < dp(b|la,cllc) < 2551 (a,b® d) x dg,(b,c® d) x vs,(d)

deFy
where s, (d) is 0 if g,(d,0) =0 and 1 otherwise. Most notably, if Ss is bijective,

dr(blla, cllc) = ds, (a,b) X 35, (b, c) -

Proof. Let x be the input of the MISTY network, and let x; and zp be its left and right parts
respectively. The three results that we prove correspond to the configurations depicted on Figure

(i) =z = (xp,zR) satisfies F(ap||lzg) @ F(zr||(xr @ a)) = b||c if and only if
53(51(373) @Z‘L) ) 33(51(33}{ EBCL) @.’EL) = bEBC,
So(xr) ® S1(zr) ®xr ® Sa(xr) ® S1(zrPa) Dar =c
o S3(S1(zr) ®xL) @ S3(S1(zr D a) DaL) =bdc,
Si(zg) @ Si(zgr G a) =c
or equivalently
2r € Dg,(a — ¢) and z, € S1(zg) ® Ds,(c > bdc) .

Hence, we deduce that there are exactly dg, (a, ¢) values of x g, and for each of those, dg,(c, b® c)
values of x, such that z verifies the differential.

(ii) = = (zr,zR) satisfies F(zp|zg) ® F((zr ® a)||zr) = b|c if and only if

S3(S1(xr) ® xr) @ S3(S1(zr) B 2L B a) =bdec,
Sa(xr) @ Si(zr) ®xr ® Se(zr ®a)® S1(zr)PrrBa=c
Si(xr) ®zr € Dg,(a — b®c),
So(xr) ® Sa(zr ®a) =adc

or equivalently,
xr, € Dg,(a > a®c) and Si(zg) € 1, & Dg,(a > bdc) .

If Sy is invertible, for any fixed x,, each one of the g, (a,b @ c) values defined by the second
condition determines a unique value of xr. Therefore, the number of (z1,xr) satisfying the
differential is exactly dg,(a,a @ c¢) X ds,(a,b® c).



dxr=0 dTR=a ‘rr=a dxr=10 oxr=> dTR=a

| | |
S1 S1 Si
I I I
OYyr=—c oyr=20 oYyr=">
‘Q ' .
dxr=c 0x’r=0 dx=a dxr=a dx,=0 dx’r=1"
| | |
So So S2
[ [ [
Syr=0 Syr=a®ec SYr=rc
dxl=c dxlh=c dxf=c dxh=a dzl=rc Sxh=0
\ \ \
S3 S3 S3
[ [ [
Syp=b®c Syp=b®c Syh=10
[ ] D 3
0z,=1> dzr=—cC dzr,=0>b dzr=—cC 0z =rc dzr=—cC
3.1. Ss inactive. 3.2. S inactive. 3.3. S35 inactive.

Fig. 3. Red values indicate differences. The interest of these differentials is that for each of them, only 2
S-Boxes influence the 3-round differential (under the condition that S; is invertible for and that Ss is

invertible for .

(iii) (z,zg) satisfies F(zp||xg) ® F((zr ®b)|(zr ® a)) = ¢||c if and only if
S3(S1(zr) @ xr) ® S3(Si(xr Da)®ar ®b) =0,
So(xr) ® Si(xr) ®xp @ Sa(zr D) ® Si(xr Da) DL Db=c
- S3(S1(zr) ®xr) ® S3(S1(zr®a)dxL Pb) =0,
So(xr) ® S1(zr) ® So(xr ®b) B S1(xr@a)=bdc

This equivalently means that there exists some d € 5 such that

2r € Dg,(a > b®d), 21, € Dg,(b = cdd),
Sg(Sl(lvR) @IL) D Sg(Sl(xR D a) Dxr D b) =0,
ie.,

zgp € Dg,(a = b®d), x1, € Dg,(b— c®d) and S1(xr) ® 2 € Dg,(d — 0) .

Then, for any fixed d € F} such that dg,(d,0) = 0, no pair (2, xr) satisfies the third condition.
If 0s,(d,0) > 0, then some of the values (x,xr) defined by the first two conditions may also
satisfy the third one, and if d = 0, the third condition is always satisfied. It then follows that

0s, (a,b) x dg,(b,¢) < dp(blla,c|lc) < Z ds, (a,b® d) x dg,(b,c® d) X ys,(d)
deFy



where g, (d) is 0 if dg,(d,0) = 0 and 1 otherwise. Moreover, if S5 is bijective, dg,(d,0) > 0 if
and only if d = 0, implying that the two previous bounds are equal, i.e.,

dr(blla, c|lc) = ds, (a,b) x ds,(b,c) . O

These three particular types of differentials provide us with the following lower bound on the
differential uniformity of any 3-round MISTY network.
Theorem 3. Let Sy, Sy and S3 be three n-bit S-Boxes and let F' be the 2n-bit function defined by
the corresponding 3-round MISTY network. Then,

I(F) > 6(S1) max (dmin(S2), Omin(S3)) where dmin(S) = m;g max ds(a,b) .

Moreover,
— if S1 is a permutation,

O(F) 2 _max  max (5(5)dmin(55), 8(5:)dmin(S))

— if Sy is not a permutation, §(F) > 2n+L,

Proof. The result is a direct consequence of Prop. [} We here derive the bounds from the first item
in Prop. [T} the other cases can be similarly deduced from the two other items. Let us first consider
a pair of differences (o, ) which achieves the differential uniformity of Sy, i.e., 6(S1) = dg, (o, B).
Then, we choose a = « and ¢ = , and get that, for any b € F7,

r (0], b]|5) = 6(S1) x 85, (8, B D) -

Then, we can choose for b the value which maximizes dg, (8,8 @ b). This value is always greater
than or equal t0 dmin(S3). Similarly, we can now consider a pair of differences (a, §) which achieves
the differential uniformity of Ss, i.e., §(S5) = dg, (e, 8). In this case, we choose ¢ = aw and b = a® S,
and get that, for any a € Fg,

0r(0||a, (a ® B)|la) = ds, (a, ) x 6(S3) .

We then choose for a the value which maximizes dg, (a, a) which is always greater than or equal to
5min(Sf1) when 57 is a permutation.

Let us now assume that .S; is not bijective. This means that there exists some nonzero a € F}
such that dg, (a,0) > 2. Then, we deduce from the first item in Prop. [I} with b = ¢ = 0, that
F(zpl|lzr) ® Fx(xr ®allzr) = (0,0) has g, (a,0) x 6s,(0,0) > 2 x 2" = 271 solutions in F3". [

3.3 Linearity of 3 rounds of MISTY
The lower bound on the linearity of a three-round MISTY structure can be derived in a similar way.

Proposition 2. Let S1, Sy and S3 be three n-bit S-Boxes and F' the 2n-bit function defined by the
corresponding 3-round MISTY network. Then, for all a, b and c in F5, we have:

(1) Ar(allb,0flc) = As, (b, c)As, (a @ ¢, c)
(i) Ar(allb, clle) = As, (b, a)As, (a, ¢)
(iii) If Sy is bijective, Ap(al|0,b||c) = As,(a,b® c)As, (b D c,b)

Proof. The following three results correspond to the configurations depicted on Figure [

(i) )\F((J,Hb,OHC) _ Z( 1)c-S2(zL)®e-S1(zr) ez, Ba-zL Bb-zr
(

(zr,xr)E(FY)?

Z( C S1(zRr)®b-zr Z(_l)c.SQ(mL)GB(a@C)-a:L

:EREFQ ILG]F;

= Ag, (b,¢) Ag,(a @ ¢, )



a-xr b-xr a-xr, bxr a-xr 0-zgr

| | \
Sl S1 Sl
[ I I
CYR a-Yr 0-yr
. > >
ez, a®cry a-xf, 0-z'7 0-27, a-rp
\ | |
So So So
N T T
Yk 0% b cyr
. ° >
ey, 0-z% 0-z7 a-xh b®cal b®cah
| | |
Ss3 Ss S3
I [ [
0-y% CYR b-yr
'3 > >
0-z C'ZR czL CZR bz Cc2R
4.1. S5 inactive. 4.2. Sy inactive. 4.3. S inactive.

Fig. 4. Blue values indicate linear masks.

(i) Ar(allp,clle) = 32 (=1)(e0 e relom @t (o)
(zr,xr)€(FR)?
— Z c S3(S1(zr)®rL)Pa-xr®b-xr

(zr,or)€(Fy)?

We set 2, = S1(zg) ® z and observe that, for any fixed x g, z takes all possible values in F}
when z;, varies, implying that

(allp,clle) = 3 D (1) EeEES LRSI xg, (b, a)As, (a,¢) -
rr€elFy 2€Fy
(iii) )\F(CLHO,Z)H ) — Z(i )(b,c)-FK(zLHIR)GB(a,O)-(zL,xR)

(xr,wL)E(FT)?
Z( 1 bS\;(Sl(ZR)@IL)@[b@C][Sl(zR)EBSQ(:EL)]@[a@b@C]:EL
(erzr)e(Fy)?

If Sy is bijective, we set xp = ST (z @ x,). Using that, for any fixed z,, z takes all possible
values in F3 when zpr varies, we deduce that

Ar(al0.be) = 37 (-)Pe s 37 (q)rseee

zp €Fy 2€FR
= Asz (aab@c)ASS(b@C, b) ]



As in the differential case, the previous three linear approximations provide us with a lower
bound on the linearity of any 3-round MISTY network. This bound involves both the linearity of
the constituent S-Boxes and another quantity denoted by L,;n computed from the table of linear
biases as follows.

Definition 4 (Lyin). Let F' be an n-bit S-Box. We define

Lnin(F) = i A b)| .
win(F) =, in max e (e, 0)

Most notably, Lyin(F) > 2% and this bound is not tight when F is bijective.

Proof. By definition, £, (F') is the smallest linearity achieved by a component Fj, : z +— b- F'(z) of
F, when b varies in F} \ {0}. Since any F is an n-variable Boolean function, its linearity is at least
23 with equality if and only if F, is bent [41]. Since bent functions are not balanced, none of the
components of a permutation is bent, implying that Ly (F) > 2% when F is a permutation. [J

We then derive the following lower bound on the linearity of any 3-round MISTY network.

Theorem 4. Let Sy, Sy and S3 be three n-bit S-Boxes and let F' be the 2n-bit function defined by
the corresponding 3-round MISTY network. Then,

L(F) > max (L£(S1)Limin (S2), L(S2)Lmin(S1), L(S3)Lmin(S1)) -

Moreover, if Sy is a permutation, L(F) > L(S3)Lmin(S2); if S5 is a permutation, L(F) >
£(Sl)£min(S§1), and if both Sy and S3 are permutations, then L(F) > £(52)£m1n<551>.

Proof. Let us first choose a pair of masks (a, 3) for some .S; which achieves the linearity £(.S;). For
1 =1 or i = 2, we use the first item in Prop. [2] and deduce that, for any -,

IAr(Ylla, 01[B)] = L£(S1)[As, (v @ B, )]
[Ar((a @ B, 0lB)] = L(S2)|As, (v, )] -

For ¢ = 3, we use the second item in Prop. [2| and get
|Ar(ally, BB = L(Ss5)[As, (v, )| -

Moreover, when S; is a permutation, the third item in Prop. [2[ applies, and for (a, 8) such that
|>‘S3 (O[7ﬁ)| - ﬁ(s3), we get

IAr (7110, Bl (e ® B))] = L£(S3)[As, (v; )] -

Then, in all these four cases, we choose for v the nonzero value which maximizes the right-hand
term in the product, i.e., which maximizes the Walsh transform of the involved component of S;.
By definition, Lmin(S;) is then a lower bound for this right-hand term.

The last statements in the theorem are derived from the second (resp. third) item in Prop.
by choosing (o, 8) such that |Ag, (o, B)| = L(S1) (resp. |As, (e, B)| = L£(S2)). Then we obtain

IAr(Bllas ylI7)] = L(S1)[As; (8,7)]
[Ap(all0,y[[B8 & )| = L(S2)[As, (8,7)] ,

where the second equality holds when S; is a permutation. Then, if S; is a permutation, we use
that, for any fixed 8 # 0,
max [As; (8,7) = Lanin(957) - O
YEFY

4 Application to 8-bit S-Boxes

In this section, we investigate the cryptographic properties of 8-bit S-Boxes corresponding to a
3-round MISTY structure with 4-bit inner S-Boxes, with a particular focus on the case where the
three inner S-Boxes are bijective, since it corresponds to the case where the resulting function is a
permutation.



4.1 Differential uniformity

The following bound on the differential uniformity of any 3-round MISTY network over F§ is a
direct consequence of Theorem

Corollary 1. Any 8-bit function F corresponding to a 3-round MISTY network satisfies 6(F) > 8.

Proof. The bound clearly holds when S; is not bijective, since we known from Theorem [3| that
§(F) > 32 in this case. If S; is bijective, then §(S1) > 4 since APN permutations over F3 do not
exist, as proved in [23] Th. 2.3]. Obviously, any 4-bit S-Box S satisfies dyin(S) > 2, implying that

5(F) 2 5(51)5min(52) Z 8. O

Besides this general result, we can provide some necessary conditions on the constituent S-Boxes
to achieve the previous lower bound. This result relies on the following lemma.

Lemma 1. Let Sy be a 4-bit permutation with 6(S1) = 4 and Sy and Ss be two 4-bit functions. Let
F be the 8-bit function defined by the corresponding 3-round MISTY network. If §(S2) > 4 or if
0(S3) > 4, then 6(F) > 16.

Proof. Here, So and S3 play a symmetrical role. Then, we assume Wlog that §(S3) > 4. Let us
consider nonzero differences a and b such that dg,(a,b) > 4. Then Dg,(a — b) contains an affine
subspace of dimension 2 of F4. Indeed, if we choose 2 € Dg,(a — b), there exists ¢ € F5 \ {0}, ¢ # a,
such that Dg,(a = b) D {z,z @ a,z ® ¢,z ® ¢ ® a}. Hence, we get that

S3(x) @ Ss(x®c) = S3(x D a)dS;((zda) D)

and
S5(x) ® S3(z ® (c®a)) = S3(xDa)®Ss((x®a)d(cda))

Thus the three rows defined by a, ¢ and (a @ ¢) in the differential table of S3 contain a value greater
than or equal to 4.

From the first item in Prop. [} we deduce that, for any a € {a,c,a @ c}, we can choose some b
such that, for any -,

5}?(0”7,1)”0[) = 651 (7704) X 553 (Ol, bd Oé) > 4531 (7704) .

Therefore, §(F') > 16 unless the three columns in the difference table of S; defined by a difference
in {a,c,a ® c} do not contain any 4. Let C(S1) denote the set of columns in the difference table of
an S-Box which consist of 0s and 2s only:

C(S1) ={beF5\ {0} :ds,(a,b) <2,Va#0}.

Amongst all equivalence classes of 4-bit permutations S; with §(S7) = 4, only 12 satisfy #C(S1) > 3.
Moreover, 3 of them have their set C(S7) included in the set C(S7) of a function in another class,
hence we ignore them.

The values of C for the 9 remaining classes are listed below.

,2,3,4,6,9,A,8,B,C,E,5D,F,7

Y

Representatives of the class C
[0,1,2,3,4,6,9,A,8,C,5,D,B,E,F,7] {4,5,7,9,15}
[0,1,2,3,4,6,9,C,8,5,B,F,E,D,7,A]  {4,6,7,11,14}
[0,1,2,3,4,6,9,C,8,5,F,D,B,7,A,E  {4,10,12,13,15}
[0,1,2,3,4,6,9,A,8,B,C,E,F,7,5,D]  {4,5,11,12,13}
[0,1,2,3,4,6,9,A,8,5,C,F,D,B,E,7| {4,9,11,14}
[0,1,2,3,4,6,9,A,8,C,5,D,7,E,F,B] {5,9,11,15}
[0,1,2,3,4,6,9,A,8,C,B,D,5,F,E,7| {5,7,14,15}
[0,1,2,3,4,6,9,C,8,5,D,A,E, 7,B,F {10, 14,15}
0,1 ]

{6,7,11,14, 15}




We can check that none of these sets C(S) contains a subset with 3 elements stable by addition.
Furthermore, this property is invariant under affine transformation. Indeed, for S’ = As 0 S o Ay,
we have

ds/(a,b) = ds(L1(a), L3 (b))

where L; and Ly are the linear parts of 4; and As. It follows that C(S’) = L2(C(S)). Therefore,
the configuration needed for having 6(F') < 16 never appears. O

We can now deduce some necessary conditions to achieve 6(F) = 8.

Theorem 5. Let S1, Sy and S3 be three 4-bit S-Boxes and let F be the 8-bit function defined by
the corresponding 3-round MISTY network. Then, §(F) = 8 implies that S1 is a permutation with
0(S1) =4 and Sy and Sz are two APN functions. Otherwise, §(F) > 12.

Proof. Since 6(F') > 32 when 5] is not bijective, we only need to focus on the case where S; is a
permutation. If any of the constituent S-Boxes S; has differential uniformity strictly greater than 4,
ie., 0(S;) > 6, we deduce from Theoremthat 0(F) > 6(Si)0min(S;) > 12. Therefore, §(F) = 8
can be achieved only if §(S1) = 4, §(S2) < 4, and 6(S3) < 4. The fact that §(F') > 16 when at least
one of the S-Boxes S or S35 has differential uniformity 4 is proved in Lemma O

We can then prove that the lower bound in Corollary [I] is tight by exhibiting three 4-bit
S-Boxes satisfying the previous conditions which lead to a 3-round MISTY network with differential
uniformity 8.

Ezxample 2. The following 4-bit S-Boxes yield an 8-bit S-Box with differential uniformity 8 and
linearity 64 when used in a MISTY structure:

Sy =[4,0,1,£,2,b,6,7,3,9,a,5,c,d, e, 8]
Sy =10,0,0,1,0,a,8,3,0,8,2,b,4,6,e,d]
S3=1[0,7,b,d,4,1,b,f,1,2,¢c,e,d,c,5,5]

With bijective inner S-Boxes. We now focus on the case where the three inner S-Boxes are
permutations since this guarantees that the resulting MISTY network is a permutation. We have
proved that, in this case, the lowest possible differential uniformity we can obtain is 12. Here, we
refine this result and show that the differential uniformity cannot be lower than 16. This improved
bound exploits the following lemma on the difference tables of 4-bit permutations.

Lemma 2. Let S1, Sy and S3 be 4-bit permutations. Then, there exists a nonzero difference
v € F3\ {0} such that at least one of the following statements holds:

— The difference table of S1 has at least one value greater than or equal to 4 in Column v and the
difference table of So has at least one value greater than or equal to 4 in Row ~y;

— The difference table of S1 has at least one value greater than or equal to 4 in Column vy and the
difference table of S3 has at least one value greater than or equal to 4 in Row -y,

— The difference table of So has at least one value greater than or equal to 4 in Row vy and the
difference table of Ss has at least one value greater than or equal to 4 in in Row 7.

Proof. This result relies on an exhaustive search over the equivalence classes defined by composition
on the left and on the right by an affine transformation, exactly as in the classification of optimal
4-bit S-Boxes in [I7J26]. There are 302 equivalence classes for 4-bit permutations. From each of
the classes we picked a representative, and checked that its difference table has at least six rows
defined by some nonzero input difference a which contain a value greater than or equal to 4. Let
R(S) denote the corresponding set (of size at least six):

R(S) ={ae€F3\ {0} :3beF;\{0},6s(a,b) >4} .

Therefore, if there exists no difference v € F3 \ {0} satisfying one of the three statements in
the lemma, then this would mean that the three sets R(S2), R(S3) and R(S; ") are disjoint. In
other words, we could find 18 distinct values amongst the 15 nonzero elements in Fj, which is
impossible. O



We then deduce the following refined lower bound on the differential uniformity of a 3-round
MISTY network over F§ with inner permutations.

Theorem 6. Let Sy, Sy and Ss be three 4-bit permutations and let F' be the 8-bit function defined
by the corresponding 3-round MISTY network. Then, 5(F) > 16.

Proof. The result is a direct consequence of Prop. [I| combined with the previous lemma. Indeed,
Lemma [2] guarantees the existence of a, b and ¢ such that at least one of the three following
properties holds:

— 0g,(a,¢) >4 and dg,(c,b® c) > 4,
— 0s,(a,a®c¢) >4 and g, (a,bd c) > 4,
— dg,(a,b) > 4 and dg,(b,c) > 4.

In each of these three situations, Prop. 1| exhibits a differential («, 8) for F with dp(a, 8) = 16. O

4.2 Linearity

In order to apply Theorem [4 to the case of 8-bit MISTY network, we need to estimate the
best linearity (and L,i,) for 4-bit S-Boxes. It is well-known that the lowest linearity for a 4-bit
permutation is 8. But, this result still holds if the S-Box is not bijective.

Lemma 3. Any 4-bit S-Boz S satisfies L(S) > 8.

Proof. Assume that there exists some S from F3 into F§ with £(S) < 8, i.e., with £(S) < 6. Then,
all nonzero Boolean components of S, S, : x +— ¢- S(z) with ¢ # 0, satisfy £(S.) < 6. From the
classification of all Boolean functions of at most 5 variables by Berlekamp and Welch [6], we deduce
that any S., ¢ # 0, is affine equivalent either to x1zox3xy + X129 + 2324 O to T122 + X374, because
these are the only classes of Boolean functions with linearity at most 6. Let Ly (resp. Lo) denote
the set of all nonzero ¢ € F3 such that S, belongs to the first (resp. second) class. Since the degree is
invariant under affine transformations, Ly (resp. La) corresponds to the components with degree 4
(resp. with degree at most 2). The sum of two components of degree at most 2 has degree at most 2,
implying that Ly U {0} is a linear subspace V of F3. It follows that the projection of S on V' can be
seen as a function from F§ into F$™V with linearity 4, i.e., a bent function. It has been shown by
Nyberg [34] that, if a function F' from Fj into FJ* is bent, then m < n/2. Therefore, dimV < 2.
But, the sum of any two components S, of degree 4 cannot have degree 4 since there is a single
monomial of degree 4 of 4 variables. We deduce that, if L; contains ¢ words of weight 1 (i.e., if S
has ¢ coordinates with linearity 6), then

t
H#Ly > (2> +247t 1> 3,

for all 0 <t < 4, a contradiction. O

Combined with the previous lemma and with Definition [4] Theorem [4] provides the following
lower bound on the linearity of a 3-round MISTY network over F5.

Corollary 2. Any 8-bit function F' corresponding to a 3-round MISTY network satisfies L(F') > 32.

This bound is of marginal interest since, up to our best knowledge, £(S) = 32 is the lowest
known linearity for an 8-bit S-Box. But, once again, the previous lower bound can be improved
when focusing on permutations. Indeed, we can exploit that £,;,(S) > 8 for any 4-bit permutation:

Lemma 4. For any 4-bit permutation S, the table of linear biases of S has at least one value
greater than or equal to 8 on every row and column.

Proof. This result is obtained by an exhaustive search over all affine equivalence classes. The 302
representatives have been examined, and we could check the result for each of them. O

Using that any 4-bit permutation S satisfies £(S) > 8 and Liyin(S) > 8, we directly deduce
from Theorem [ the following improved lower bound.



Proposition 3. Let Sy, Sy and Ss be three 4-bit S-Bozes and let F' be the 8-bit function defined
by the corresponding 3-round MISTY network. If any of the three inner S-Bozes is a permutation,
then L(F) > 64. Most notably, if L(F') < 64, then §(F) > 32.

The last statement in the previous theorem is deduced from the first item in Theorem [3| While
it shows that 3-round MISTY with £(F) < 64 would be of little interest, we now show that their
linearity is at least 48.

We first observe that if there is a nonzero linear mask ¢ with |As,(0,¢)| > 4, then we have
[Ar(0]|0,c|lc)] = 16 x 4 = 64 according to Prop. [2 Therefore we study the functions such that
[As(0, ¢)| < 4 for all nonzero c.

Lemma 5. The only 4-bit functions S with |[As(0,c)| < 4 for all nonzero ¢ are the permutations,
and the functions with image size 15.

Proof. The property Ve # 0: |Ag(0, ¢)| < 4 depends only on the set of images of S, with multiplicity.

This results is obtained by an exhaustive search over all the multisets of 16 elements in {0,...,15}.
We have tested the property over all 300540195 multisets; only the multiset with 16 distinct values
and the 240 multisets with 15 distinct values satisfy it. O

Lemma 6. For any 4-bit functions S with image size 15 or 16, the table of linear biases of S has
at least one value greater than or equal to 6 in every column (i.e. Ve # 0: Ja,|As(a,c)| > 6).

Proof. The property is invariant under affine equivalence. Therefore, we obtain the result by an
exhaustive search over the affine equivalence classes of S with image size 15 or 16. According to the
classification of 4-bit permutations [I7], there is a set of 302 permutations Py such that any 4-bit
permutation P can be decomposed as P = o P, o a, where «, 8 are affine permutations.

Let S be a 4-bit function with image size 15. We denote by ; ; the projection i + j; x # i — x.
There exist a permutation P, and a projection m; ; such that S = m; ; o P. Using the decomposition
P = 8o P o, we show that S is affine equivalent to a function w4 ; 0 Py:

S = .5 OﬂOPk o = /8071'5—1(2')’6—1(]') OPk o .

We have tested the property for all 302 permutations Py, and all 72480 functions 7, 4, 0 P. O

This allows to prove the following improved bound.

Theorem 7. Let S1, So and S3 be three 4-bit S-Boxes and let F' be the 8-bit function defined by
the corresponding 3-round MISTY network. Then L(F) > 48.

Proof. The result is immediate if there exists a nonzero ¢ with |\g, (0, ¢)| > 4. Otherwise, we choose
a and b such that |Ag, (b, a)| > 8, and Lemmas 5] and [6] show that there exists ¢ with [Ag,(a,c)| > 6.
We have |Ar(allb, c||c)| > 48 from Prop. O

We conjecture that any MISTY network with 4-bit inner functions actually satisfies L(F') > 64,
but it seems hard to prove without a full classification of the 4-bit functions.

5 S-Boxes obtained from a 3-round Feistel network

The results by Li and Wang [27] on 3 rounds of the Feistel construction provide a lower bound on
the differential uniformity and on the linearity of the resulting function depending on the differential
uniformity and linearity of S3. However, these results can be generalized in order to involve the
properties of the three constituent S-Boxes in an almost symmetric way by using the same method
as for the MISTY construction. We here detail these generalized results and their proofs.



5.1 Differential uniformity of a 3-round Feistel construction

Proposition 4. Let S1, So and S3 be three n-bit S-Boxes and F' be the 2n-bit function defined by
the corresponding 3-round Feistel network. Then, for all a, b and c in Fy, we have:

(i) r(0]a, bl|c) = ds,(a,c) x bs,(c,a @ b);
(ii) If Sy is bijective,
dp(allb, clla)| = 6s, (a,b) X ds,(a,c) ;

(iii) dr(allb, c||0) = ds,(a,bE c) X dg,(c,a) .
Proof.
(i) = = (xp,xR) satisfies F(xp|lxzr) ® F(xp||(xr ® a)) = b||c if and only if

So(S1(zr) ®xr @ a) D S2(S1(xL) ®xRr) =c
S3(yr ®c) ® Si(xr) Dxr ®a® S3(yr) ® Si(wr) ®xr=">

or equivalently,
Si(xr) @xp € Dgy(a — ¢) and ygr € Dg,(c > a®D) .

The function (zr,2r) — ((S1(zr) ® xr),yr) is a permutation since it corresponds to 2 rounds
of the Feistel construction. Therefore, the number of x = (x1, xg) satisfying the differential is
ds,(a— ¢) X dg,(c = a®Db).

(ii) = = (xr,zR) satisfies F(zp|lzr) ® F((xr ® a)||(xr ® b)) = c||a iff

So(S1(x ®a)Drr®b) Dar ®a® S2(S1(zr) Dar)®xr =a
S3(yR@a) @Sl(fL @a) @fR@b@Sg(yR) @Sl(ﬂfL) Dxr=c

The first equality corresponds to
S (S1(zp ®a) ®xr®) ® S2 (Si(zr) ®xr) =0,

which is equivalent to
Si(zr ®a)®rr®b=S1(zr) Dzr

if S5 is a permutation. Therefore, (2, zg) satisfies the differential iff
21, € Dg,(a — b) and yr € Dg,(a — ¢) .

For any fixed z, € Dg, (a — b), there are dg, (a, c) values of zg = Sy *(z1, ®yr) ® S1(x1) which

provide a valid input.
(iii) = = (z1,zR) satisfies F(zp||zr) @ F((xr ® a)||(zr ® b)) = ¢||0 iff

So(S1(x, ®a)Drr®b) P ar Ba® Se(S1(xr) Dar)®xr, =0
S3(yr) & S1(xp G a) ®rr®bP S5(yr) ® S1(zL) Brr =c

The second equation is equivalent to
2, € Dg,(a > bDc)
and the first one corresponds to
Si(zr)®xzg € Dg,(c — a) . O

From these three particular types of differentials, we deduce a lower bound on the differential
uniformity of a 3-round Feistel construction, similar to Theorem

Theorem 8. Let Sy, So and S3 be three n-bit S-Boxes and let F be the 2n-bit function defined by
the corresponding 3-round Feistel network. Then,

5(F) > 5(52) max (5min(S1)a 5min(53)) .

Moreover,



— if S is a permutation,

> NS ) NS —-1
0P > s, e (3(5)an(5). mx0(5:)30in (55

— if Sy is not a permutation, §(F) > 2n+L,

Proof. The result when Sy is not a permutation has been proved in [27]. From the first item in the
previous theorem, we now deduce that

§(F) > 6(S2)0min(S3) and 6(F) > 6(S3)dmin(S5 2)

where the second inequality requires that S; is a permutation. Indeed, the first result is obtained by
choosing (a, ¢) such that dg,(a,c) = §(S2) and by taking the maximum over all b. When we choose
(a ®b,c) such that ds,(c,a ® b) = §(S5) and take the maximum over all a, we get the second result
using that

max Js, (a, B) = max Jg.1(B @) = Gmin(S3)

when S5 is a permutation.
The second item in Prop. [d which holds when S5 is a permutation, leads to

5(F) > 5(51)5min(S3) and 5(F) > 5(53)5min(gl) .

The first inequality is obtained by choosing (a,b) such that dg, (a,b) = §(S1) and by taking the
maximum over all ¢, and the second one by choosing (a, ¢) such that dg, (a,c) = §(S3) and then
taking the maximum over all b.

The third item in Prop. [4]leads to

§(F) > 5(S1)0min(Sy 1) and 6 > 6(S2)dmin(S1) -

The first inequality is obtained by choosing (a,b @ ¢) such that dg, (a,b® ¢) = §(S1) and by taking
the maximum over all ¢ when S5 is a permutation, and the second one by choosing (a, ¢) such that
ds,(c,a) = §(S2) and then taking the maximum over all b. O

Also, for n = 4, we can exhibit a necessary condition on the S-Boxes to achieve the lower bound
0(F) = 8, by using the same technique as for the MISTY construction. Indeed, we have a result
analogous to Lemma

Lemma 7. Let Sy be a 4-bit permutation with 6(S3) = 4 and Sy and Ss be two 4-bit functions. Let
F be the 8-bit function defined by the corresponding 3-round Feistel network. If 6(S1) > 4 or if
0(S3) > 4, then 6(F) > 16.

Proof. Let C(S) denote the set of columns in the difference table of an S-Box which consist of 0s
and 2s only. Then, the first item in Prop. [4] shows that §(F') > 16 unless C(S3) contains all the rows
in the difference table of S3 with a value greater than or equal to 4. Also, the third item in Prop. [
shows that d(F') > 16 unless C(S2) contains all the rows in the difference table of S; with a 4. We
have shown in the proof of Lemma 1| that this situation cannot occur. O

Therefore, we deduce the following condition for obtaining a 3-round Feistel construction over
F§ with differential uniformity 8.

Theorem 9. Let S1, So and S3 be three 4-bit S-Boxes and let F' be the 8-bit function defined by
the corresponding 3-round Feistel construction. Then, 6(F) = 8 implies that Sz is a permutation
with §(S2) = 4 and Sy and S3 are two APN functions. Otherwise, §(F) > 12.

For instance, we can directly derive that the 8-bit S-Box P in CS-CIPHER [44] and the S-Box
of Robin [22] have differential uniformity at least 16 since their constituent S-Boxes satisfy the
hypotheses of Lemma [7]



5.2 Linearity of a 3-round Feistel construction

Proposition 5. Let Sy, Sy and S3 three n-bit S-Boxes and F' the 2n-bit function defined by the
corresponding 3-round Feistel construction. Then, for all a, b and c in Fy, we have:

(1) Ar(allb,0l|c) = As, (a® c,b)As, (b,c)
(ii) /\F(a‘ |0, b‘ |C) = As, (b, a)/\SB (a®e, b)
(iii) If Sy is bijective, Ap(a||b,bl|c) = As, (a,b)As,(c,b)

Proof. (i) Ar(allb, 0fle) = Y o(-1)erte s Gilensemaeriben

(xr,wL)EFT)?

— Z (_1)(Q@C)IL+bsl(’I'L) Z(_l)CSQ(Z)J,-bZ

zr €FY z€Fy

= Ag, (a® ¢, b) Mg, (b, c)

where we set z = S1(z1) + g and we use the fact that, for any fixed zr, 2g — 2z is a
permutation.

(i) A (all0,blle) = S (—1)e Sl 40 51 e ot
(zRr,ar)€(Fy)?
= (~1)euntb-Salur)tbata ur+Sa(z)
(yr,2)€(F3)?

= As,(b,a) As,(a @ ¢, b)

where we use that the function (z1,xr) — (yr, ) is a permutation since it corresponds to two
rounds of the Feistel construction.

(i) Ar(allb,blle) = J0(—) S ) S an) S

(zr,zL)EFT)?

— Z (_1)b~Sl(afL)@a'xL Z(_l)c-y+b~53(y)

zp €FY y€EeFy

= As, (a,0) As, (¢, D)

using that zg — y = 21, ® S2(S1(xr) ® xr) is a permutation for any fixed z;, when S is a
permutation.
O

We then deduce the following lower bound on the linearity of any 3-round Feistel construction.

Theorem 10. Let S1, So and Ss be three n-bit S-Bozes and let F' be the 2n-bit function defined
by the corresponding 3-round Feistel network. Then,

L(F) > L(S2) max (Lmin(S1), Lmin(S3)) -
Moreover, if So is a permutation,
L(F) > L£(S1) max (Lmin(95 "), Limin(S3))
and L(F) > L£(S3) max (Linin(S1), Lmin(S31)) -
Proof. From the first item in the previous theorem, we deduce that
L(F) > L(S1)Limin(S3 ") and L(F) > L£(S2) Linin(S1)

where the first inequality requires that Ss be a permutation.
The second item in Prop. [§] provides

E(F) Z E(SQ)Emin(Sg,) and [,(F) Z £(Sd)ﬁmln(551)



where the second inequality holds when Ss is a permutation.
From the third item in Prop. [5] we get that, when S5 is a permutation

‘C(F) > ‘C(Sl)‘cmin(53) and ‘C(F) > [’(S?))ﬁmirl(sl) :
O

The previous general bound can be improved in the case n = 4, exactly as for the MISTY
construction. First, we get the following proposition as a direct consequence of Lemma [4

Proposition 6. Let Sy, So and S3 be three 4-bit S-Boxes and let F' be the 8-bit function defined by
the corresponding 3-round Feistel network. If any of the three inner S-Boxes is a permutation, then

L(F)>64.

Most notably, if L(F) < 64, then §(F) > 32.

Even if 3-round Feistel with £(F") < 64 would be of very little interest, we can show that their
linearity is at least 48.

Theorem 11. Let S1, So and Ss be three 4-bit S-Bozes and let F' be the 8-bit function defined by
the corresponding 3-round Feistel network. Then

L(F)>48.

Proof. The previous theorem shows that the result holds if S is a permutation. Assume that Ss is
not a permutation, i.e., there exists some nonzero output mask ¢ such that Ag,(0,¢) > 0. Using the
first item in Prop. [B] we get that

Ar(c]|0,0]|c) = A, (0,0)As, (0, ¢) = 16Ag,(0,¢) .

The result then holds if there exists some nonzero ¢ such that Ag, (0, c) > 4. Otherwise, we deduce
from Lemmas [B] and [6] that
L(F)>48. O

6 Constructions

We now use the previous results to design concrete 8-bit invertible S-Boxes optimized for lightweight
implementations. We use Feistel and MISTY networks, and select 4-bit S-Boxes 5;’s with a low-cost
implementation that provide good cryptographic properties of the resulting 8-bit S-Box. Such
S-Boxes have been considered as good candidates for many lightweight construction (e.g. the
LS-designs [22]), but their respective merits and their cryptographic properties remained open.

We focus on implementing functions with a low gate count for hardware implementations, and
a low instruction count for bit-sliced implementations (for table-based implementations, the table
size is independent of the concrete S-Boxes). Moreover, we focus on implementations with a small
number of non-linear gates, because non-linear gates are much harder to implement than linear
gates in some dedicated settings such as masking [40], multi-party computation, or homomorphic
encryption [I]. Bit-slicing can be used as an implementation technique to take advantage of some
platform characteristics (for instance, it yields the fastest known implementation of AES on some
Intel processors [24]), but it can also be a design criterion. Indeed, using a bit-sliced S-Box allow
compact implementations without tables, and good performances both in software and hardware.
In addition, S-Boxes implemented in this way are easier to protect against side-channel attacks
with masking. Therefore, this approach is used by many lightweight designs such as SERPENT [9],
NoOEKEON [15], KEccak [8], ROBIN and FANTOMAS [22], PRIDE [2], PrROST [25], or AscoN [18].
This makes the construction of S-Boxes with a low gate count particularly relevant for lightweight
cryptography.

Following the previous sections, the best results we can achieve for an 8-bit invertible S-Box are:

With a MISTY network: 6(F) = 16 and L(F') = 64.



With a Feistel network: §(F) =8 and L(F) = 64.

We can provide some examples fulfilling these bounds: Example [2] is optimal for the MISTY
construction, and an example for the Feistel construction is now exhibited. It is worth noticing that
these results explain the compared properties of the S-Boxes obtained by the simulations reported
n [22]. Since Feistel networks can reach a better security, we will mostly consider this construction.
In this case, the optimal differential uniformity can be reached only if S, S3 are APN, and Ss is a
permutation with 6(S2) = 4, as proved in Th. @ Note that, in some other contexts, the MISTY
construction presents some advantages since it offers better performance in terms of throughput
and latency because the first two S-Boxes can be evaluated in parallel.

6.1 Feistel network with low gate count and instruction count

Rather than choosing S-Boxes S7, So and S3 with good properties first, and then searching for an
efficient implementation of these S-Boxes (as in [39I13] for instance), we take the opposite approach,
following Ullrich et al. [46]. We build gate descriptions of S-Boxes, and we test their cryptographic
properties until we find a good candidate. Indeed, we do not have to specify in advance the 4-bit
S-Boxes S1, So, Ss. Instead, we look for a good implementation of a permutation with §(S) = 4 for
So, a good implementation of an APN function for S; and Ss3, and we test the properties of the
resulting Feistel structure. With good probability, this results in a Feistel network F' with §(F) = 8
and L(F) = 64.

Following Ullrich et al., we run a search oriented towards bit-sliced implementations. We consider
sequences of software instructions, with instructions AND, OR, XOR, NOT, and MOV, using at most 5
registers. This directly translates to a hardware representation: the MOV instruction become a branch
while the other instructions represent the corresponding gates. There are 85 choices of instructions
at each step, but we use an equivalence relation to restrict the search. For S;, we can directly
reuse the results of [40]: they give an optimal implementation of a 4-bit permutation with §(S) = 4.
For S; and S3, we implemented a version of their algorithm, and searched for APN functions. We
found that there is no construction of an APN function with 9 or fewer instructions. There are
solutions with 10 instructions, but they have at least 6 non-linear instructions (AND, OR), which is
not efficient for a masked implementation. Finally, with 11 instructions, there are constructions of
APN functions with 4 non-linear instructions, 5 X0R instructions, and 2 MOV (copy) instructions.
This search requires about 6000 core-hours of computation. The branching factor of our search
is close to 10, while Ullrich et al. report a branching factor of less than 7; this is because we do
not restrict the search to permutations (indeed, 4-bit APN functions are not permutations). This
results in a very efficient 8-bit S-Box with good cryptographic properties, using 12 nonlinear gates,
and 26 XORs. According to Theorem [J] and to the following Lemma, this is the optimal number of
non-linear gates.

Lemma 8. Let S be a 4-bit permutation with 6(S) < 4 or a 4-bit APN function. Any implementation
of S requires at least 4 non-linear gates.

Proof. If S can be implemented with 3 non-linear gates or less, then the algebraic expression
of the output variables is a linear combination of the input variables, and of the 3 polynomials
corresponding to the output of the 3 non-linear gates. Therefore, there exists a linear combination
of the input and output variables that sums to a constant, i.e. £(S) = 16. According to the
classification of 4-bit permutation in [I7], any permutation with 4(S) = 4 satisfies £(S) < 12.
Furthermore, the classification of 4-bit APN functions [I4] shows that they satisfy £(S) = 8, which
proves the lemma. O

We give an example of such an implementation in Figure [5} and we compare our results with
previous designs in Table|[l] In particular, we reach a better differential uniformity than the S-Boxes
used in Robin and Fantomas [22], for a small number of extra gates. For comparing the respective
merits of the S-Boxes considered in Table |1} we use the fact that, as a simple approximation, the
number of rounds needed to reach a fixed security level against differential attacks is proportional
to 1/1og(6(5)/256), and the implementation cost per round is proportional to the number of
non-linear gates (for a bit-sliced software implementation with masking). This allows to derive a
simple implementation cost metric for the S-Boxes presented in the last column, taking 1 for the
AES, and considering only security against differential attacks.
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5.1. S1, APN function with 6(S1) = 2. 5.2. So, permutation with 6(S2) = 4.
S, =[0,0,4,d,¢,0,0,5,8,0,7,6,5,a,2,4] S> =10,8,6,d,5,£,7,c,4,e,2,3,9,1,b, a]

Fig. 5. Construction of a lightweight S-Box S with a three-round Feistel (S1,S2, 51) satisfying §(S) = 8
and L(S) = 64.

6.2 TUnbalanced MISTY structure

Finally, we consider an alternative to MISTY structures as studied in this paper. Instead of dividing
the input into two halves of equal size, we consider unbalanced networks. The idea is to split the
8 input bits in two inequal parts of 3 and 5 bits. Thus, the MISTY network will use only 3 and
5 bit S-Boxes. The advantage of 3- and 5-bit S-Boxes is that invertible S-Boxes with § = 2 exist,
contrarily to the case of 4-bit S-Boxes. We managed to obtain 8-bit S-Boxes S with §(5) = 8
using unbalanced MISTY networks, which is better than the lower bound 6(S) > 16 proved for
balanced MISTY networks. However, this method uses 5-bit S-Boxes, which are more complicated
to implement than 4-bit S-Boxes.

Ezample 3. We consider a 3-round unbalanced MISTY structure, with 5-bit permutations Sy, .53
and a 3-bit permutation Ss. After S; and S3, the 3-bit z, is xored in the 3 MSB of xg; after So
the 3 MSB of the 5-bit x;, are xored into zj. The following S-Boxes define an 8-bit S-Box with
6 =8 and L = 64:

S = [00,01, 02,04, 03,08, 0d, 10,05, 11, 1c, 1b, 1e, Oe, 18, 0a,
06,13,0b,14, 1f, 1d, 0c, 15,12, 1a, 0f, 19, 07, 16, 17, 09]

Sy =1[2,5,6,4,0,1,3,7]

S3 = [00,01,02,04,03,08,10, 1c, 05, 0a, 1a, 12, 11, 14, 1, 1d,
06,15,18,0c, 16, 0f, 19,07, Oe, 13, 0d, 17, 09, 1e, 1b, Ob]

This shows that generalizing our results to the unbalanced case, especially for the MISTY
construction, may be of interest.

7 Conclusion

Our results give a better understanding of the cryptographic properties of lightweight S-Boxes built
from smaller S-Boxes. We give a precise description of the best security achievable with a 3-round
balanced Feistel or MISTY structure for an 8-bit S-Box, and necessary conditions to reach the
bound. Interestingly, the MISTY network cannot offer the same security as the Feistel network for
constructing an invertible 8-bit S-Box. Using those results, we describe an 8-bit S-Box S using only
12 non-linear gates and 26 XOR gates, with 6(S) = 8 and £(S) = 64. This is the best security than
can be achieved with a 3-round Feistel or MISTY structure, and our construction uses the minimal
number of non-linear gates to reach this security with these structures. This is an improvement over
previous proposals, including the S-Boxes used in CRYPTON, Fantomas and Robin, but further
work is required to determine whether different structures can provide better S-Boxes.



Table 1. Comparison of some 8-bit S-Boxes. § and L respectively denote the differential uniformity and
the linearity of the S-Box (see Section for the definitions), the last column presents the relative overall
implementation cost (taking 1 for the AES).

Implementation Properties

S-Box Construction AND/OR XOR L ) cost
AES [13] Inversion in Fys + affine 32 83 32 4 1

Whirlpool [5]  Lai-Massey 36 58 64 8 1.35
CRYPTON |[28] 3-round Feistel 49 12 64 8 1.83
Robin [22] 3-round Feistel 12 24 64 16 0.56
Fantomas [22]  3-round MISTY (3/5 bits) 11 25 64 16 0.51
Unnamed [22] Whirlpool-like 16 41 64 10 0.64
New 3-round Feistel 12 26 64 8 0.45
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