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Abstract. Homomorphic encryption allows computation on encrypted data and makes it possi-
ble to securely outsource computational tasks to untrusted environments. However, all proposed
schemes are quite inefficient and homomorphic evaluation of ciphertexts usually takes several sec-
onds on high-end CPUs, even for evaluating simple functions. In this work we investigate the
potential of FPGAs for speeding up those evaluation operations. We propose an architecture to
accelerate schemes based on the ring learning with errors (RLWE) problem and specifically im-
plemented the somewhat homomorphic encryption scheme YASHE, which was proposed by Bos,
Lauter, Loftus, and Naehrig in 2013. Due to the large size of ciphertexts and evaluation keys,
on-chip storage of all data is not possible and external memory is required. For efficient utiliza-
tion of the external memory we propose an efficient double-buffered memory access scheme and
a polynomial multiplier based on the number theoretic transform (NTT). For the parameter set
(n = 16384, dlog2 qe = 512) capable of evaluating 9 levels of multiplications, we can perform a
homomorphic addition in 0.94ms and a homomorphic multiplication in 48.67ms.
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1 Introduction

A homomorphic encryption scheme enables a third party to perform meaningful computation on en-
crypted data and a prime example for an application is the outsourcing of a computational task into
an untrusted cloud environment (see, e.g., [9, 16, 17, 36]). Such schemes come in different flavors, the
most versatile being a fully homomorphic encryption (FHE) scheme, which allows an unlimited number
of operations. The first FHE scheme was proposed by Gentry in 2009 [30] and led to a large number
of new schemes optimized for better efficiency or security (e.g., [10, 12, 20, 24, 31, 33, 38]). FHE schemes
usually consist of a so-called somewhat or leveled homomorphic scheme with limited functionality to-
gether with a procedure to bootstrap its capabilities to an arbitrary number of operations. The somewhat
homomorphic encryption (SHE) schemes are usually a lot more efficient than their corresponding FHE
counterparts because bootstrapping imposes a significant overhead. Examples of SHE schemes are the
BGV [12] and LTV [38] schemes and the subsequent YASHE [8] scheme, which are relatively straight-
forward and conceptually simple as they mainly require polynomial multiplication and (bit level) ma-
nipulation of polynomial coefficients for evaluation of ciphertexts (i.e., mul, add). But even limited SHE
schemes are still slow and especially for relatively complex computations, evaluation operations can take
several hours, even on high-end CPUs [32,37]. A natural question concerning FHE and SHE is whether
reconfigurable hardware can be used to accelerate the computation. However, as ciphertexts and keys
are large and require several megabytes or even gigabytes of storage for meaningful parameter sets, the
internal memory of FPGAs is quickly exhausted, and required data transfers between host and FPGA
might degrade the achievable performance.
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These may be reasons that previous work has mainly focused on using GPUs [23,50,51] and ASICs [26,
54], and that FPGA implementations either work only with small parameters and on-chip memory [15]
or explicitly do not take into account the complexity of transferring data between an FPGA and a
host [13,45]. Also, for ASIC implementations, the area costs for caches and on-chip storage are high due
to large parameter sizes. As an example, in [26] 99.25% of the 26.7 million gates are used to implement a
768 Kbyte cache. As a consequence, for our implementation we use the Catapult data center acceleration
platform [44], which provides a Stratix V FPGA on a PCB with two 4 GB memory modules inserted
into the expansion slot of a cloud server. This fits nicely into the obvious scenario in which homomorphic
evaluation operations are carried out on encrypted data stored in the cloud. Since future data centers
might be equipped with such accelerators, it makes sense to consider the Catapult architecture as a
natural platform for evaluating functions with homomorphic encryption.

Our Contribution. To our knowledge, we provide the first fully functional FPGA implementation
of the homomorphic evaluation operations (i.e., addition, multiplication) of a ring learning with errors
(RLWE) based somewhat homomorphic encryption (SHE) scheme. Our main contribution is an efficient
architecture for performing number theoretic transforms, which is used to implement the SHE scheme
YASHE. Compared to previous FPGA implementations of integer-based FHE schemes (e.g., [13]) we
especially take into account the complexity of using off-chip memory. Thus we propose and evaluate the
usage of the cached-NTT [2, 3] for bandwidth-efficient computations of products of large polynomials
in Zq[X]/(Xn + 1) and the YASHE specific parts of the KeySwitch and Mult algorithms. The main
computational burden is handled by a large integer multiplier built out of DSP blocks and modular
reduction using Solinas primes. An implementation of the parameter set (n = 16384, dlog2 qe = 512) that
can handle computations on the encrypted data of multiplicative depth up to L = 9 levels (for t = 1024)
roughly matches the performance of a software implementation of the parameter set (n = 4096, dlog2 qe =
128) supporting just one level [37]. With only 48.67 ms for a homomorphic multiplication (instead of
several seconds in software) we provide evidence that hardware-accelerated somewhat homomorphic
cryptography can be made practical for certain application scenarios.

2 Background

In this section we introduce the somewhat homomorphic encryption scheme YASHE, the NTT, and the
Catapult framework.

2.1 Somewhat Homomorphic Scheme YASHE

The homomorphic encryption scheme YASHE [8] is based on the multi-key fully homomorphic encryption
scheme from [38] and the modified, provably-secure version of NTRU presented in [48]. Stehlè and
Steinfeld show in [48] how to modify the NTRU public key scheme [35] in order to make it provably
secure based on the ring learning with errors (RLWE) problem [39]. López-Alt et al. [38] demonstrate
that this modified NTRU encryption can be used to construct a multi-key fully homomorphic encryption
scheme. However, they only prove security under an additional assumption, the so-called Decisional Small
Polynomial Ratio (DSPR) assumption. In [8], it is shown that a scale-invariant version of the modified
NTRU scheme can be used as a basis for a fully homomorphic scheme with security only relying on the
assumption that the RLWE problem is hard. The homomorphic multiplication operation in this scheme
is very costly and [8] contains a more practical variant YASHE’ with a much more efficient homomorphic
multiplication algorithm. This is achieved by reintroducing the DSPR assumption in addition to RLWE.
YASHE’ is leveled homomorphic and due to its scale-invariance achieves its homomorphic capabilities
without the modulus switching technique. Next, we describe this scheme, which we use under the name
YASHE in this paper.

The system parameters are fixed as follows: a positive integer m = 2k that determines the ring
R = Z[X]/(Xn + 1) and its dimension n = ϕ(m) = m/2, two moduli q and t with 1 < t < q, discrete
probability distributions χkey, χerr on R, and an integer base w > 1. We view R to be the ring of
polynomials with integer coefficients taken modulo the m-th cyclotomic polynomial Xn + 1. Let Rq =
R/qR ∼= Zq[X]/(Xn + 1) be defined by reducing the elements in R modulo q, similarly we define Rt.

A polynomial a ∈ Rq can be decomposed using base w as a =
∑`w,q−1
i=0 aiw

i, where the ai ∈ R have
coefficients in (−w/2, w/2]. The scheme YASHE makes use of the functions Decw,q(a) = ([ai]w)

`w,q−1
i=0 and
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Table 1: YASHE parameter sets and supported number of multiplicative levels for different plaintext
moduli t. Following the analysis in [37], they provide at least 80 bits of security. The parameter for
sampling the discrete Gaussian error distribution is s = 8.

Set n q q′ `w,q Levels
t = 220 t = 210 t = 25 t = 2

I 4096 2124 − 264 + 1 2262 − 256 + 1 2 0 1 1 1
II 16384 2512 − 232 + 1 21040 − 232 + 1 8 6 9 11 14

Poww,q(a) = ([awi]q)
`w,q−1
i=0 , where `w,q = blogw(q)c+ 1. Both functions take a polynomial and map it to

a vector of polynomials in R`w,q . They satisfy the scalar product property 〈Decw,q(a),Poww,q(b)〉 = ab
(mod q) .

The homomorphic encryption scheme YASHE consists of algorithms for key generation, encryption
and decryption. The evaluation functions that allow computation on encrypted data are the two functions
Add and Mult. The latter consists of two parts, the rounded multiplication RMult and the key switching
step KeySwitch.

KeyGen(d, q, t, χkey, χerr, w): Sample f ′ ← χkey until f = [tf ′ + 1]q is invertible modulo q. Compute the
inverse f−1 ∈ R of f modulo q, sample g ← χkey and set h = [tgf−1]q. Sample e, s ← χ

`w,q
err , compute

γ = [Poww,q(f) + e + h · s]q ∈ R`w,q and output (pk, sk, evk) = (h, f ,γ).

Encrypt(h,m): For a message m ∈ R/tR, sample s, e ← χerr, scale [m]t by the value bq/tc, and output
c =

[⌊
q
t

⌋
[m]t + e + hs

]
q
∈ R.

Decrypt(f , c): Decrypt c as follows. First compute the ring product [fc]q modulo q, scale it down by the
factor t/q over the rational numbers, round it and reduce it modulo t, i.e. output m =

[⌊
t
q [fc]q

⌉]
t
∈ R.

Add(c1, c2): Add the two ciphertexts modulo q, i.e. output cadd = [c1 + c2]q.

RMult(c1, c2): Compute the product c1c2 without reduction modulo q over the integers, scale by t/q,
round the result and reduce modulo q to output

c̃mult =

[⌊
t

q
c1c2

⌉]
q

.

KeySwitch(c̃mult, evk): Compute the w-decomposition vector of the input element c̃mult and output the
scalar product with the evaluation key evk, reduced modulo q: cmult = [〈Decw,q(c̃mult), evk〉]q.

Mult(c1, c2, evk): First apply RMult to c1 and c2 and then KeySwitch to the result. Output the ciphertext
cmult = KeySwitch(RMult(c1, c2), evk).

In Table 1, we provide the implemented parameter sets and their number of supported multiplicative
levels determined by the worst case bounds given in [8]. The plaintext modulus in our implementation
is t = 1024 for both parameter sets. Since changing t is relatively easy, we also give the number of
multiplicative levels for various other choices to illustrate the dependence on t and possible trade-offs.
According to the analysis in [37], moduli stay below the maximal bound to achieve 80 bits of security
against the distinguishing attack with advantage 2−80 as discussed there. The error distribution χerr is
the n-dimensional discrete Gaussian with parameter s = 8 and the key distribution samples polynomials
with uniform random coefficients in {−1, 0, 1}. Note that one ciphertext requires ndlog2(q)e bits (1 MiB
for Set II) and the evaluation key is (`w,q)ndlog2(q)e bits large (8 MiB for parameter Set II).

The reason why we have selected a scale-invariant scheme is that we can avoid modulus switching so
that we do not have to deal with various moduli in hardware. And we have chosen YASHE over Fan and
Vercauteren’s (FV) scale-invariant version of BGV [12] because it has one-element ciphertexts. A detailed
comparison of FV [28] with YASHE [8], as well as details on the implementation and parameter selection
can be found in [37].
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2.2 Number Theoretic Transform

Polynomial multiplication can be performed with O(n log n) operations in Zq using the number theoretic
transform (NTT), which is basically an FFT defined over a finite field or ring. Given a primitive n-
th root of unity ω the forward transformation NTTq(a) of a length-n sequence (a[0], ..,a[n − 1]) with
elements in Zq is defined as A[i] =

∑n−1
j=0 a[j]ωij mod q and the inverse transformation INTTq(A) as

a[i] = n−1
∑n−1
j=0 A[j]ω−ij mod q for i = 0, 1, ..., n− 1 (see [22,41,55] for more information on the NTT).

For efficient multiplication of polynomials in Rq = Zq[X]/(Xn + 1), one can use the negative wrapped
convolution, which removes the need for zero padding of input polynomials. Let ω be a primitive n-
th root of unity in Zq and ψ2 = ω. For two polynomials a = a[0] + a[1]X + · · · + a[n − 1]Xn−1 and
b = b[0]+b[1]X+· · ·+b[n−1]Xn−1 of degree at most n−1 with elements in Zq, we define d = d[0]+· · ·+
d[n−1]Xn−1 as the negative wrapped convolution of a and b so that d = a∗b mod (Xn+1). We further
define the representation ŷ = y[0] + ψy[1]X + · · ·+ ψn−1y[n− 1]Xn−1 and use it as â, b̂ and d̂. In this
case it holds that d̂ = INTTq(NTTq(â)◦NTTq(b̂)), where ◦ means coefficient-wise multiplication [22,55].

Various algorithms that implement the FFT efficiently and which are directly applicable for the NTT
are reviewed in [18]. A popular choice is a radix-2, in-place, decimation-in-time (DIT) [19] or decimation-
in-frequency (DIF) [29] algorithm that requires roughly n

2 log2(n) multiplications in Zq (see [1, 43, 46]
for implementation results). Note that in the FFT context precomputed powers of the primitive root of
unity ω are often referred to as twiddle factors.

It is also worth mentioning that other algorithms for efficient polynomial multiplication like Karat-
suba’s method, Nussbaumer’s method, or Fermat [4] and Mersenne variants of the NTT exist [41].
However, the regular structure of FFT/NTT algorithms, previous successful hardware implementations
targeting lattice-based cryptography (see [1,15,43,46]), the ability to use efficient Solinas primes [47], and
available work like the cached-FFT [2,3] make the NTT our first choice for a hardware implementation.

The primes q and q′ we use in our implementation are Solinas primes of the form q = 2y − 2z + 1,
y > z such that q ≡ 1 (mod 2n). In order to find a primitive 2n-th root of unity ψ ∈ Zq that is needed
in the NTT transforms as mentioned above, we simply chose random non-zero elements in a ∈ Zq, until
a(q−1)/2n 6= 1 and a(q−1)/2 = −1 and then set ψ = a(q−1)/2n.

2.3 Cached-FFT

In this section we revisit the cached-FFT algorithm proposed by Baas [2, 3]. It is designed for systems
with hierarchical memory like modern processors that usually have several layers of fast cache memory
(e.g., L1, L2) and then relatively slow main memory (e.g., DRAM). It is assumed that the cache that
contains C coefficients can be accessed faster and with much less latency than the rest of the memory and
that the cache is much smaller than the total number of coefficients n. The high-level description of the
steps of the cached-FFT or cached-NTT (obtained from [3], with small updates and adapted notation)
is:

1. n input coefficients are loaded into main memory.
2. C of the n coefficients are loaded into the cache.
3. As many butterflies as possible are computed using the data in the cache.
4. Processed data in the cache is flushed to main memory.
5. Steps 2–4 are repeated until all n words have been processed once.
6. Steps 2–5 are repeated until the FFT has been completed.

The following definitions (also obtained from [3] with small updates and adapted notation) are useful
when describing the cached-FFT algorithm:

– An epoch (E) is the portion of the cached-FFT algorithm where all n coefficients are loaded into a
cache, processed, and written back to main memory once. Normally, E ≥ 2. Steps 2–5 in the listing
above comprise the computations performed on one epoch.

– A group (G) is the portion of an epoch where a block of data is read from main memory into a cache,
processed, and written back to main memory. Steps 2–4 in the listing above comprise the operations
performed on a group. A group contains C coefficients.

– A pass (P ) is the portion of a group where each word in the cache is read, processed with a butterfly,
and written back to the cache once.
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Fig. 1: Dataflow diagram of a 64-point cached-FFT split into two epochs with eight coefficients in each
group/cache parameterized as (n=64, E=2, G=8, P=3, C=8). This figure is based on [3, Figure 3]).
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Table 2: Configuration options (n,E,C,G, P ) of the cached-FFT for various values of n usually used
in RLWE-based homomorphic cryptography.

Dimension Epochs Cache size Groups Passes per epoch
(n) (E) (C = n/G) (G = n/C) (P = log2(n)/E)
2048 1 2048 1 11
2048 11 2 1024 1
4096 1 4096 1 12
4096 2 64 64 6
4096 3 16 256 4
4096 4 8 512 3
4096 6 4 1024 2
4096 12 2 2048 1
8192 1 8192 1 13
8192 13 2 4096 1
16384 1 16384 1 14
16384 2 128 128 7
16384 7 4 4096 2
16384 14 2 8192 1
32768 1 32768 1 15
32768 3 32 1024 5
32768 5 8 4096 3
32768 15 2 16384 1
65536 1 65536 1 16
65536 2 256 256 8
65536 4 16 4096 4
65536 8 4 16384 2
65536 16 2 32768 1

– A cached-FFT is balanced if there are an equal number of passes in the groups from all epochs.
Balanced cached-FFTs do not exist for all FFT lengths.

When describing an FFT or NTT we thus denote the number of epochs by E, the number of groups by
G, the number of coefficients in the cache by C, and the number of passes by P . The required computation
on a group is just a standard Cooley-Tukey, radix-2, in-place, DIT FFT/NTT [18,19], denoted as C-NTT
and the number of stages or passes (recursive divisions into sub-problems) of the C-NTT is P = log2(n/G).
Thus one C-NTT on a group requires Pn

2G multiplications in Zq. A dataflow diagram of a 64-point radix-2
decimation-in-time cached-FFT that splits the computation into two epochs, each consisting of eight
groups, is given in Figure 1. Different configuration options of the cached-FFT for dimensions n ≥ 2048
are given in Table 2 where C,G, P depend on the chosen number of epochs E for a given dimension n.
For the actual details of the implementation of address generation we refer to the description in [2, 3].
However, referring to the E = 2 case displayed in Figure 1, it is easy to see that, with a hardware
implementation in mind, it is necessary to read 2n coefficients from the main memory and to write 2n
coefficients back to the main memory to compute the FFT. However, only two of these reads/writes
are non-consecutive (i.e., the reordering) while two read/writes are in order. Additionally, it is possible,
e.g., after epoch zero, to choose whether to write consecutive and then to read reordered or the other
way round. Another interesting observation for the E = 2 case is that the twiddle factors in epoch zero
are the same for each group. When the cached-FFT algorithm is used to implement the NTT algorithm
(with built-in reduction by Xn + 1) it is also possible to merge the multiplication by powers of ψ and
the actual NTT computation as proposed in [46, Section 3.2].

A bitreversal is necessary as the cached-FFT is not order preserving and expects bit-reversed input
and produces an ordered output. The functions to compute the bitreversal (Bitrev) of an address is given
in Algorithm 1 and the computation of the cached-NTT reordering of an address (Reorder) is given in
Algorithm 2. Note that both functions assume n to be a power of two.
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Algorithm 1 Bitreversal operation
1: func Bitrev(x ∈ [0, 2n))
2: //x is an integer in binary form x = xn−1 . . . x0

3: for i = 0 to n− 1 do
4: yi ← xn−1−i

5: end for
6: return y
7: end func

Algorithm 2 Cached-NTT reordering
1: func Reorder(x ∈ [0, 2n))
2: //x is an integer in binary form x = xn−1 . . . x0

3: yn/2−1,...,0 ← xn−1,...,n/2

4: yn−1,...,n/2 ← xn/2−1,...,0

5: return y
6: end func

2.4 Catapult Architecture/Target Hardware

Because a primary application of homomorphic encryption is use in untrusted clouds, we chose to im-
plement YASHE using a previously proposed FPGA-based datacenter accelerator infrastructure called
Catapult [44]. Catapult augments a conventional server with an FPGA card attached via PCIe that
features a medium size Stratix V GS D5 (5GSMD5) FPGA, two 4 GB DDR3-1333 SO-DIMM (small
outline dual inline memory module) memory modules, and a private inter-FPGA 2-D torus network.
In the original work, Catapult was used to accelerate parts of the Bing search engine, and a prototype
consisting of 1,632 servers was deployed. The two DRAM controllers on the board can be used either in-
dependently or combined in a unified interface. When used independently the DIMM modules are clocked
with 667 MHz. The Catapult shell [44, Section 3.2.] provides a simple interface to access the DRAM and
to communicate with the host server. It uses roughly 23% of the available device resources, depending
on the used functionality like DRAM, PCIe, or 2-D torus network. Application logic is implemented as a
role. For our design, we restrict the accelerator to only a single FPGA card per server. Spanning multiple
FPGAs is a promising avenue for improving performance, but is left for future work. Note also that
none of the work presented here is exclusive to Catapult and that any FPGA board with two DRAM
channels, a sufficiently large FPGA, and fast connection to a host server will suffice. However, Catapult
is specifically designed for datacenter workloads, so it presents realistic constraints on cost, area, and
power for our accelerator.

3 High Level Description

The goal of our implementation is to accelerate the (cloud) server-based evaluation operations Mult and
Add of YASHE (and polynomial multiplication in general) without interaction with the host server using
the Catapult infrastructure. Key generation, encryption, and decryption are assumed to be performed on
a client and are not in the scope of this work. However, we would like to note that except for a Gaussian
sampler, most components required for key generation, encryption, and decryption are already present
in our design.

Our main building block is a scalable NTT-based polynomial multiplier that supports the two mod-
uli q and q′. The computation of the NTT is by far the most expensive operation and necessary for the
polynomial multiplications in RMult and KeySwitch, which are called during a Mult operation. Other com-
putations like polynomial addition or pointwise multiplication are realized using the hardware building
blocks from the NTT multiplier. The modulus q′ > nq2 is used to compute

c1c2 = INTTq′(NTTq′(c1)◦NTTq′(c2))

in RMult exactly without modular reduction as each coefficient of c1 and c2 is smaller than q and thus
each coefficient of the result is guaranteed to be smaller than nq2. Reductions modulo q are required for
the computation of the scalar product cmult = [〈Decw,q(c̃mult), evk〉]q in KeySwitch and the polynomial
addition in Add. A naive implementation of KeySwitch would require `w,q polynomial multiplications and
`w,q − 1 polynomial additions. By using the NTT and its linearity we just compute

KeySwitch(c̃mult, evk) = INTTq

`w,q−1∑
i=0

NTTq ([(cmult)i]w) ◦ evki

 (1)
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Fig. 2: Block diagram of our HomomorphicCore core used to implement YASHE. The design is controlled
by a host server using the CatapultShell and has access to two 4 GB DDR3-1333 DRAMs.

and store the evaluation keys evki in NTT form as evki = NTTq(evki) for i ∈ [0, `w,q − 1] (similar
to [23, Algorithm 2]). To deal with the limited internal memory when computing the NTT we use the
aforementioned cached-FFT algorithm [2,3]. This enables us to exploit the memory hierarchy on Catapult
where we have access to fast but small FPGA-internal memory (≈ 4.9 MiB) and large but slow external
DRAM (two times 4 GB). We also incorporate some of the optimizations to the NTT proposed in [46].
By merging the multiplication by powers of ψ into the twiddle factors of the main NTT computation
we not only save n multiplications but also eliminate expensive read and write operations. To optimally
utilize the burst read/write capabilities of the DRAM4 we have designed our core in a way that we
balance non-continuous reorderings and continuous reads or writes. While we only implemented two
main parameter sets, our approach is scalable and could be extended to even larger parameter sets5 and
is also generally applicable as we basically implement polynomial multiplication, which is common in
most RLWE-based homomorphic encryption schemes.

The general architecture of our HomomorphicCore design is shown in Figure 2. We have divided our
implementation into a memory management unit (NTTMemMgr) and an NTT computation unit (NttCore).
The NTTMemMgr component performs the steps 2 and 4 of the listing in Section 2.3 (load/store of groups)
while NttCore is responsible for step 3 (butterfly computations on the cache). Both components have
access to the memories ConstDualBuf and DataDualBuf. The DataDualBuf buffer contains a configurable
number of groups of a polynomial and the ConstDualBuf buffer contains the constants (e.g., twiddle
factors or evaluation keys) that correspond to the groups in DataDualBuf. To the NttCore it does not
matter which subset of the cached-NTT has to be computed as this is only determined by the loaded
data and twiddle factors. This makes the design simpler and also easier to test. To support moduli q and
q′ we implemented two butterfly units that share one large integer multiplier. Both buffers are double-

4 The throughput of the DRAM is drastically increased if large continuous areas of the memory are read at once
using the so called burst mode.

5 However, in this case the current tools for RTL-level simulation are clearly a limiting factor as verification in
the simulator becomes extremely time consuming. As a consequence, it appears that a generic architecture
supporting small parameter sets is almost mandatory to allow relatively efficient simulation and debugging
and thus less debug cycles for the larger parameter sets.
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buffered so that the NttCore component can compute on one subset of the data while the NTTMemMgr
component can load or store a new subset from or into the other buffer. Ciphertexts, NTT constants,
and keys are held in one of the two DRAMs (Dram0 or Dram1) and are provided to the core from the
outside over the UserIo and CatapultShell components. The CatapultShell component implements
a simple PCI Express (PCIe) interface that allows the host server to issue commands (e.g., Add, or Mult)
and to transfer data. Evaluated ciphertexts are also stored in the DRAM and can be read by the host
after a computation is finished.

4 Hardware Architecture

In this section we describe our hardware architecture with an emphasis on the memory bandwidth-friendly
cached-NTT polynomial multiplier.

4.1 Implementation of the Cached-NTT and Memory Addressing

A crucial aspect when implementing the cached-NTT is efficient access to the main memory (i.e., DRAM)
and the use of burst transfers. In this section we describe how data is transferred between the main
memory (Dram0 and Dram1) and the cache memory (DataDualBuf and ConstDualBuf) and how these
transfers are optimized.

General Idea. The cached-FFT has been designed for systems with a small cache that supports fast
access to coefficients during the computation of a C-NTT on a group. For our core we do not have a
transparent cache, like on a CPU, but implement the fast directly addressable internal on-chip memories
DataDualBuf and ConstDualBuf using BRAMs. As we know exactly which values are required at which
time, we explicitly load a group into the internal memory before and write it back after a C-NTT
computation. The necessary reordering (see Figure 1) is either performed before or after a computation
on a group and done when reading from or writing data into the DRAM. As the DRAM is large enough,
plenty of memory is available for temporary storage, but one epoch has to be computed completely
and the reordering has to be finished before the next epoch can be computed. In general, it would be
sufficient to just store one group consisting of C = n/G coefficients in each buffer of DataDualBuf.
However, we allow the storage and computation on K groups/caches (configurable as generic during
synthesis) in D-BRAM0 and D-BRAM1 at the same time (when computing modulo q). One reason is that
for relatively small groups we can then avoid frequent waiting for the pipeline to clear after a C-NTT has
been computed. Additionally, storing of multiple groups allows more efficient usage of burst reads and
writes.

For efficiency and simplicity we restrict our implementation to a cached-NTT with two epochs6 (see
Table 2 for possible numbers of epochs and groups). While it is in general possible to also support three
or more epochs this would lead to more memory transfers. The reasons is that each epoch requires
one to write the whole polynomial subsequently into the cache and also to subsequently read the whole
polynomial after the C-NTT computations are finished. Additionally, more than two epochs result in more
complicated address generation. Thus, our implementation supports only dimensions n = 2n

′
for even

values of n′. For Set I we use (n=4096, E=2, G=64, P=6) and for Set II (n=16384, E=2, G=128, P=7).

Supported Commands. To simplify the implementation of homomorphic evaluation algorithms (see
Section 5) and to abstract away implementation details we support a specific set of instructions to store
or load groups or constants and to compute the C-NTT on such stored groups. A complete set of available
commands is provided in Table 3. These commands could also be used to implement other homomorphic
schemes and they can be directly used to realize polynomial multiplication in Zq[X]/(Xn + 1) and
Zq′ [X]/(Xn + 1).

Each command consists of a name, which is mapped to an opcode, and zero, one, or two parameters
that define the source or destination of data to be transferred or the buffer on which a computation should
be performed. A command either blocks Dram0, Dram1, or NttCore and commands can be executed in
6 With only one epoch the cached-NTT becomes the standard Cooley-Tukey NTT and the cache contains all n
coefficients.

9



parallel, in case no resource conflict happens. Memory transfer and computation commands do not
interfere due to the dual-buffering. Additionally, commands can be configured for specific situations.
For commands operating on Dram0 or Dram1 the configuration describes how a storage operation should
be performed. Supported modes are a continuous burst transfer ([burst]), or bit-reversal of coefficients
([bitrev]), and/or cached-NTT reordering ([reorder]) during a write or read operation. The [q] and [q′]
configuration determines whether transfers operate on polynomials modulo q or polynomials modulo q′.
When a homomorphic operation has to be performed the top-level state machine also has to provide
the base address of the inputs and the base address of the result memory block. Each command also
supports a specific maximum burst transfer size, which is discussed in the next paragraph.

The commands itself are described in Table 3. As an example, the load-group[burst](t,x) command
loads groups x to x+K−1 from the DRAM at base-address of t into a buffer using the DRAM’s fast burst
mode. The store-group[reorder, bitrev](t,x) command stores the groups x to x+K−1 in the DRAM at
base-address of t but performs the reordering of the cached-NTT and also a bit-reversal. An example of a
command used to load constants is the load-twiddles[fwd,q](x, y) command that loads the twiddle factors
required to compute groups x to x+K−1 in epoch y using burst mode. While the previous commands can
be used to implement general polynomial multiplication, we also provide the YASHE specific load-group-
expand, load-chunk, and store-chunk commands. The reason is that the KeySwitch algorithm requires
the expansion of one polynomial into `w,q polynomials (from now on also referred to as chunks). For
efficiency reasons, the computations are thus performed in parallel on all decomposed polynomials and
the larger amount of data to be transferred is handled by the previously mentioned commands. The
width of the data ports of DataDualBuf and ConstDualBuf is q′

2 bits so that we can either store one
coefficient modulo q in one position or half of a coefficient modulo q′. As a consequence, the minimal size
of D-BRAM0 and D-BRAM1 is dlog2 q

′e·K·n·`w,q

2G bits.

Fig. 3: Usage of burst mode when performing the reordering when writing coefficients from the internal
buffer to the external DRAM for a cached-NTT with parameters (n = 64, E = 2,G = 8) and K = 4.

Usage of Burst Transfers. A significant advantage of storing multiple groups is that this allows
the usage of the DRAM’s burst mode. In case memory is written or read continuously ([burst]) it
is straightforward to see that KC coefficients can be handled in one burst transfer. But also when
performing the cached-NTT reordering ([reorder]) the simultaneous reordering of multiple groups allows

10



Table 3: Commands that are used to implement YASHE with HomomorphicCore. Depending on the
configuration of each memory transfer command, different burst widths can be realized.

Command Param. p1 Param. p2 Resource Configuration Entries each Max. burst entries[
log2 (q′)

2

]
bits each

[
log2 (q′)

2

]
bits

load-group-expand DRAM address group Dram0 [burst] Kn/G Kn/G

Loads groups p2 to p2 + K − 1 using p1 as base address, performs the decomposition Decw,q(c̃mult) =

([(c̃mult)i]w)
`w,q−1

i=0 into `w,q polynomials, and stores the decomposed polynomials in the DataDualBuf buffer.
store-chunks DRAM address group Dram0 [burst,q] `w,qKn/G `w,qKn/G

[burst,q′] 2Kn/G 2Kn/G

Saves groups p2 to p2+K−1 of all `w,q decomposed polynomials ([q]) or spitted coefficients modulo q′ ([q′]) stored
in DataDualBuf at base address p1.

load-chunks DRAM address group Dram0 [burst,q′] 2Kn/G 2Kn/G
[reorder,q′] 2Kn/G 2K

[reorder,bitrev,q′] 2Kn/G 2n/G
[reorder,q] `w,qKn/G `w,qK

Equivalent to store-chunks.
store-group DRAM address group Dram0 [burst] Kn/G Kn/G

[reorder,bitrev] Kn/G n/G
[reorder] Kn/G K

Saves groups p2 to p2+K−1 of the polynomial stored in DataDualBuf at base address p1.
load-group DRAM address group Dram0 [burst] Kn/G Kn/G

[bitrev] Kn/G 1

Equivalent to store-group.
load-twiddles group G epoch E Dram1 [(fwd|inv),q] n/(2G) n/(2G)

[(fwd|inv),q′] n/G n/G

Loads the precomputed forward or inverse twiddle factors for modulus q or q′ for groups p1 to p1 + K and epoch
E = p2 into ConstDualBuf using burst read.

load-psis group G - Dram1 [q] n/G n/G
[q′] 2n/G 2n/G

Loads the powers of ψ−1 for groups p1 to p1 +K − 1 and moduli q or modulus q′ from DRAM using burst read and
saves them in ConstDualBuf.

load-evks DRAM address group Dram1 - `w,qn/G `w,qn/G

Loads the `w,q different evaluation key parts for groups p2 to p2 +K − 1 stored at base address p1 into ConstDualBuf
using burst read. Evaluation keys are always modulo q.

ntt-on-buffer chunk - NttCore [(q|q′)] - -

Computes the C-NTT on chunk p1 stored in DataDualBuf using either modulus q or modulus q′ and requiring Pn
2G

multiply accumulate (MAC) operations.
mul-psi chunk - NttCore [q] - -

[q′,round] - -

Multiplies chunk p1 stored in DataDualBuf by powers of ψ−1 stored in ConstDualBuf. If configured with [round] the
YASHE rounding operation is performed after the NTT.

mul-evk chunk - NttCore - - -

Multiplies chunk p1 in DataDualBuf by the evaluation keys stored in ConstDualBuf. Operates only on polynomials
modulo q.

accumulate chunk - NttCore - - -

Adds chunks p1 to chunk 0 stored in DataDualBuf. Operates only on polynomials modulo q.
mul-point-wise - - NttCore [(q|q′)] - -

Point-wise multiplication of two polynomials in ConstDualBuf.
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Fig. 4: Usage of burst transfers between the internal cache (BRAM) and the main memory (DRAM) with
cached-NTT parameters (n = 64, E = 2, G = 8) and a memory transfer command using [reorder,bitrev].

better utilization of burst operations7. In Figure 3 the cache can hold K = 4 groups and it becomes
evident this allows to write K coefficients using burst mode. In this example coefficient 0 (group 0),
coefficient 8 (group 1), coefficient 16 (group 2), and coefficient 24 (group 3) will be saved in a continuous
memory region after reordering (burst 0). Thus in general, by iterating over the groups and then over
the addresses we can write K coefficients using burst mode and thus reduce memory transfer times
significantly. Note that the non-continuous access to memory in D-BRAM0 dos not introduce a performance
bottleneck as the memory is implemented using BRAMs that do not cause a performance penalty when
being accessed non-continuously.

Another improvement is visualized in Figure 4 which shows the combination of the bit-reversal with
the reordering procedure of the cached-NTT ([reorder,bitrev]). When computing Bitrev(Reorder(addr))
it becomes evident that the content of each group can be transferred continuously. It is thus possible to
write a whole group (C = n/G coefficients) using burst mode. In this case it is only necessary to read the
coefficients in non-continuous order from the BRAM and to compute an offset to store them using burst
mode. From this analysis it can be seen that it is even preferable to compute the reordering together
with the bit-reversal instead of only the reordering, as the size of the burst write is even larger in this
case for relevant parameters (i.e., n/G instead of G).

4.2 Computation of the C-NTT on the Cache

The C-NTT is computed on each group in the cache (see the black box in Figure 1) and requires arithmetic
operations that dominate the area costs of our implementation. Each C-NTT on a group requires Pn

2G

multiplications in Zq (or Zq′) and the whole cached-NTT requires EGPn
2G = n log2(n)

2 multiplications
in Zq (or Zq′). The number of stages or passes of the C-NTT, which are the recursive divisions into
sub-problems, is P = log2(n/G). The address generation in NttCore, which implements the C-NTT, is
independent of the group or epoch that is processed. This allows a simple data-path and also testability
independently of the memory transfer commands. To saturate the pipelined butterfly unit of the NTT,
two reads and two writes are required per cycle and we use the well-known fact that the buffer can be
split into two memories, one for even and one for odd addresses (see [42]). While this approach might
lead to wasted space in block memories if small polynomials do not fill a whole block RAM, as in [43]
and optimized in [1, 46], it is not a concern for the large parameter sets we are dealing with. The only
input to the NTT, besides the actual polynomial coefficients, that depend on the current group or epoch
are the constants like twiddle factors, powers of ψ−1, or the evaluation key evk. We decided to store each
constant in a continuous memory region and load them into the TWID-RAM or EVK-RAM buffers depending
on the current group or epoch. While it would also be possible to compute the twiddle factors on-the-fly
(as in [46]) this approach would require an additional expensive q′ × q′ multiplier and modulo unit.
Additionally, we do not exploit redundancies in twiddle factors or other tricks so that we are able to

7 In the following we only discuss the case of writing coefficients from the FPGA (BRAM) into the external
memory (DRAM) in reordered or reordered and bit-reversed fashion. However, the same ideas can be also
applied for loading from the DRAM and writing into the BRAM on the FPGA.
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load constants using the fast burst mode. The only important observation is that when E = 2 the same
twiddle factors are used for the computation of all groups of the first epoch of the NTT.

Large Integer Multiplication. For best performance of the NTTq our architecture requires a pipelined
NTT butterfly that is able to compute a log2 (q) × log2 (q) multiplication, modular reduction, and two
accumulations per cycle. For the butterfly of the NTTq′ , execution in one clock cycle is not necessary as
the maximum data width of the ConstDualBuf and DataDualBuf components is q′

2 . Thus at least two
cycles are needed to load a coefficient from the buffer in which one coefficient modulo q′ is split into
chunk 0 and chunk 1. For the design of the log2 (q) × log2 (q) multiplier we tried to be flexible enough
for eventual changes of parameters and future extension and designed two 576 × 576-bit multipliers
matching the range of the 576-bit DRAM interface so that we eventually could support KeySwitch only
with dlog2(q)e = 576. Currently, the largest required bit width is 1040

2 ×
1040
2 -bits, when the multiplier is

used in time-shared mode to implement a pipelined q′ × q′-bit multiplication in four cycles.
To instantiate the multiplier we used a traditional RTL design (MULRTL) that uses four pipelined

72× 72-bit multipliers generated using the Altera MegaWizard to instantiate a 144× 144-bit multiplier.
The instantiation of four 144×144-bit multipliers yields a 288×288-bit multiplier and finally a pipelined
576×576-bit multiplier. We also did experiments with DSP Builder Advanced Blockset (MULDSP) which
runs within the Simulink environment. A standalone instantiation of MULDSP allowed higher clock rates
than MULRTL but when we used MULDSP in our core the synthesis and fitting time increased and final
resource consumption was unchanged.

Solinas Reduction. For modular reduction common methods are Barrett reduction [5], Montgomery
reduction [40], and reductions based on special prime numbers [49]. However, for very large values, general
methods like Barrett or Montgomery modular reduction require a large number of additions or even a
large multiplier and are thus expensive, slow, and also hard to write generically. As a consequence, we
restrict the moduli q and q′ to Solinas primes [47] of the form 2y − 2z + 1 for y, z ∈ Z and y > z. A
modular reduction circuit can then be configured by providing the input bit width and the values y and
z as generics/parameters. The implementation only requires a few shifts and few additions/subtractions
to perform a modular reduction. To achieve timing a sufficient number of registers has been inserted
between adders and shifters in the RTL design.

5 Configuration of our Core for YASHE

For our prototype we have implemented YASHE’s homomorphic evaluation operations Add and Mult
using the architecture described in Section 4. As space is limited we only cover the RMult and KeySwitch
functions in detail, which are essential for the implementation of Mult. All homomorphic evaluation
operations use the hardware architecture described in Section 4 and the commands provided in Table 3.
The commands are executed by a large state machine implemented in HomomorphicCore, which is also
responsible for interaction with the Catapult shell and host PC.

5.1 Implementation of RMult

For RMult, a standard integer polynomial multiplication in Zq′ [X]/(Xn + 1) is required after which the
result is rounded and reduced modulo q. Selecting q′ > nq2 guarantees that the product c1c2 of two
polynomials c1, c2 ∈ Zq[X]/(Xn + 1) is computed over the integers and not being reduced before it is
rounded. Instead of using a single routine for RMult, the host server can make separate calls to a single
forward transformation c̄i = RMultFwd(ci) so that polynomials to be multiplied with multiple other
polynomials have to be transformed only once into the NTT domain. The c̃mult = RMultInv(c̄1, c̄2) routine
then takes two transformed polynomials c̄1, c̄2 as input and computes the product by performing point-
wise multiplication, the inverse NTT, and rounding of the result. While we give up some efficiency (e.g.,
merging of forward transformation and point-wise multiplication) by this approach, it seems beneficial
to provide this additional flexibility when computing homomorphic circuits.

The (simplified) sequence of executed commands for RMultFwd is provided in Algorithm 3, but for
the actual implementation load/store operations and NTT computations are executed in parallel to
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make use of the double-buffer capability of the DataDualBuf and ConstDualBuf components. In step 5
of RMultFwd the input polynomial is expected to be saved in bitreversed order already. This is either
ensured by the user when the polynomial is initially transferred to the device or by our implementation
in the last step of KeySwitch. The only execution of a reordering load operation is performed in step 11
and all other loads or stores use the burst mode. Thus the second reordering is delayed till the pointwise
multiplication in RMultInv which is given in Algorithm 4. In RMultInv the first block of operations (step 3
to 7) is responsible for the pointwise multiplication. Note that the Add operation of YASHE is basically
this loop but mul-point-wise is exchanged by a command for addition in Zq. The first NTT-related load is
performed in step 11 in which the final reordering of the forward transform together with the bitreversal
step is performed. The final rounding operation

[⌊
t
q t2

⌉]
q
is included into the mul-psi[q′, round] command.

After that the result c̃mult is in Zq[X]/(Xn + 1).

Algorithm 3 Forward transformation of an input
polynomial in RMult
1: func RMultFwd(ci)
2: //Epoch 0
3: load-twiddles[fwd,q′](0, 0)
4: forall groups x ∈ 0 . . . G/K − 1:
5: load-group[burst](ci, Kx)
6: ntt-on-buffer[q′](0)
7: store-chunks[burst,q′](t, Kx)
8: //Epoch 1
9: forall groups x ∈ 0 . . . G/K − 1:
10: load-twiddles[fwd,q′](Kx, 1)
11: load-chunks[reorder,q′](t, Kx)
12: ntt-on-buffer[q′](0)
13: store-chunks[burst,q′](c̄i, Kx)
14: return c̄i
15: end func

Algorithm 4 Pointwise multiplication and in-
verse transformation in RMult
1: func RMultInv(c̄1, c̄2)
2: //Pointwise multiplication
3: forall groups x ∈ 0 . . . G/K − 1:
4: load-chunks[burst,q′](c1, Kx)
5: load-chunks[burst,q′](c2, Kx)
6: mul-point-wise[q′]()
7: store-chunks[burst,q′](t1, Kx)
8: //Epoch 0
9: load-twiddles[inv,q′](0, 0)
10: forall groups x ∈ 0 . . . G/K − 1:
11: load-chunks[reorder,bitrev,q′](t1, Kx)
12: ntt-on-buffer[q′](0)
13: store-chunks[burst,q′](t2, Kx)
14: //Epoch 1
15: forall groups x ∈ 0 . . . G/K − 1:
16: load-twiddles[inv,q′](Kx, 1)
17: load-psis[q′](Kx)
18: load-chunks[reorder,q′](t2, Kx)
19: ntt-on-buffer[q′](0)
20: mul-psi[q′, round](0)
21: store-group[reorder,bitrev](c̃mult, Kx)
22: return c̃mult

23: end func

5.2 Implementation of KeySwitch

The control-flow used to implement KeySwitch based on the commands introduced in Section 4 and
Equation 1 is given in Algorithm 5. For the forward transformation (step 2 to step 19) the coefficients of
the input polynomial c̃mult can be loaded using the burst mode as they have already been stored in bitre-
versed representation in RMultInv. The decomposition Decw,q(c̃mult) = ([(c̃mult)i]w)

`w,q−1
i=0 is performed

on-the-fly inside the FPGA using the load-group-expand[burst] command. The NTT is then performed on
all `w,q decomposed polynomials in the buffer. As the twiddle factors are identical for each polynomial we
only have to load and storeK sets of twiddle factors into the ConstDualBuf component (each set contain-
ing P · `w,q/2 coefficients). During the NTT computation on all polynomials the results are accumulated
(step 18) and then stored (step 19). The relatively slow reordering operation load-chunks[reorder, q] is
performed at the beginning of the second epoch and not after the first epoch as the accumulation and
multiplication with the evaluation keys takes additional time so that we can balance the time required
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for memory transfers and computation. As the forward transformed polynomials are already stored in
the correct order, we just have to perform a burst read at the beginning of the inverse transformation
in step 24. Additionally, the computation is much less involved as we only have to compute one INTTq
and not `w,q computations of NTTq caused by the decomposition. It is not possible to merge the mul-
tiplication by powers of ψ−1 into the NTT twiddle factors for the inverse transformation [46] as we use
the Cooley-Tukey butterfly. The multiplication by powers of ψ−1 is performed by the mul-psi command
and the constants are loaded into the memory space reserved for the evaluation key during the forward
transformation by load-psis. The multiplication by the scalar n−1 is merged into the ψ−1 values.

Algorithm 5 Key switching in YASHE
1: func KeySwitch(c̃mult, ¯evk)
2: //Fwd. transform and accumulation:
3: load-twiddles[fwd,q](0, 0)
4: //Epoch 0
5: forall groups x ∈ 0 . . . G/K − 1:
6: load-group-expand[burst](c̃mult,Kx)
7: forall chunks y ∈ 0 . . . `w,q − 1:
8: ntt-on-buffer[q](y)
9: store-chunks[burst,q](t1,Kx)
10: //Epoch 1
11: forall groups x ∈ 0 . . . G/K − 1:
12: load-twiddles[fwd,q](Kx, 1)
13: load-evk( ¯evk,Kx)
14: load-chunks[reorder, q](t1,Kx)
15: forall chunks y ∈ 0 . . . `w,q:
16: ntt-on-buffer[q](y)
17: mul-evk[q](y)
18: accumulate(y)
19: store-group[reorder, bitrev](t2,Kx)

20: //Inverse transform:
21: load-twiddles[inv,q](0, 0)
22: //Epoch 0
23: forall groups x ∈ 0 . . . G/K − 1:
24: load-group[burst](t2,Kx)
25: ntt-on-buffer[q](0)
26: store-group[reorder](t1,Kx)
27: //Epoch 1
28: forall groups x ∈ 0 . . . G/K − 1:
29: load-twiddles[inv,q](Kx, 1)
30: load-psis[q](Kx)
31: load-group[burst](t1,Kx)
32: ntt-on-buffer[q](0)
33: mul-psi[q](0)
34: store-group[reorder, bitrev](cmult,Kx)
35: return cmult

36: end func

6 Results and Comparison

In this section we provide post place-and-route (post-PAR) results and performance measurements of
our implementation on the Catapult board [44] equipped with an Altera Stratix V (5GSND5H) FPGA
and two 4 GB DRAMs.

6.1 Resource Consumption and Performance

The resource consumption of our implementation is reported in Table 4. Achieving a high clock frequency
for parameter Set II is challenging. One reason seems to be that, due to our design choices, we have to
deal with extremely large structures like several thousand bit wide adders and a large integer multiplier.
Such structures are tedious to manually optimize and it is hard to determine an optimal pipeline length.
Another reason is that the design is congested and that placement and fitting have to satisfy strict
constraints imposed by the PCIe and DRAM controllers in the Catapult shell. Still, switching to larger
devices to reduce congestion would also increase costs. In our core the critical path is currently in
the pipelined rounding circuit required for RMult and we instantiated our design using the MULRTL
multiplier which allows faster simulation and synthesis compared to the MULDSP design provided by the
DSP Builder. However, higher clock frequencies in future work might be easier to achieve with automated
tools like the DSP Builder and the resulting MULDSP design.

Cycle counts for evaluation operations are given in Table 5 and are obtained using the PerfMonitor
component that logs cycle counts and transfers them to the host server over PCIe, if requested. The usual
approach of obtaining cycle counts from simulation is not possible as we are using an external DRAM
without a cycle accurate simulation model. Note that the Mult operation requires to execute RMult and
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Table 4: Resource consumption of our implementation (including communication).

Implementation ALM FF DSP BRAM Bits MHz

Set I (n=4096,K= 8) 69,058 (40 %) 144,747 144 (9 %) 8,031,568 (19 %) 100

Set II (n=16384,K=4) 141,090 (82 %) 391,773 577 (36 %) 17,626,400 (43 %) 66

KeySwitch. Also note that the runtime does not simply scale for higher clock frequencies as the DDR
memory interface is running in its own clock domain and thus the memory bandwidth is not significantly
increased by higher clock frequencies of the HomomorphicCore component.

A good indicator for the efficiency of our memory addressing is the saturation of the log(q) ×
log(q) modular multiplier. One NTT requires n

2 log2(n) multiply-accumulate (MAC) operations so that
KeySwitch operating on G groups and two epochs takes at least CKS(`w,q, n) = (`w,q + 1)(n2 log2(n) +n)
cycles assuming one clock cycle per MAC (`w,q forward and one inverse NTT, see Equation 1). For pa-
rameter Set II we get CKS(8, 16384) = 1,179,648 as lower bound on the number of cycles for KeySwitch
which is close to the measured 1,372,519 cycles. For RMult approx. CRM(n) = 3(4n2 log2 n)+2(4n) cycles
are required (three transformations, point-wise and ψ−1 multiplication; four cycles per MAC) and the
saturation of the MAC unit is CRM(16384)

1,839,987 = 0.84.

Table 5: Cycle counts and runtimes for the different evaluation algorithms of YASHE measured on the
Catapult board.

Implementation Mult Add KeySwitch RMult RMultFwd RMultInv

Set I (n=4096) cycles 675,326 19,057 478,911 196,415 160,693 157,525
100 MHz (K=8) time 6.75 ms 0.19 ms 4.79 ms 1.96 ms 1.61 ms 1.58 ms

Set II (n=16384) cycles 3,212,506 61,775 1,372,519 1,839,987 587,664 664,659
66 MHz (K=4) time 48.67 ms 0.94 ms 20.80 ms 27.88 ms 8.90 ms 10.07 ms

6.2 Comparison with Previous Work

Cao et al. [13] describe an implementation of the integer-based FHE scheme by Coron et al. [20] on a
Virtex-7 FPGA (XC7VX980T) but unlike our work they explicitly do not take into account the bottleneck
that may be caused by accessing off-chip memory. The integer multiplication is realized with the integer-
FFT algorithm from [27] and a large Barrett reducer that uses Virtex-7 DSPs. Their implementation
achieves a speed up factor of 11.25 compared to a software implementation but for large parameter
sets, which might promise even higher speed ups (e.g., 44), the design does not fit on current FPGAs
anymore and only synthesis results are given. An FPGA implementation of an integer multiplier for the
Gentry-Halevi [31] FHE scheme is proposed by Wang and Huang in [53]. The architecture requires about
462,983 ALUs, and 720 DSPs on a Stratix-V (55GSMD8N3F45I4) and allows 768K-bit multiplications
implemented using a 64k-point FFT. It is reported to be about two times faster than an implementation
on an NVIDA C2050 GPU using a similar approach. Another 768K-bit multiplication architecture was
proposed by Wang et al. in [54] targeting ASICs and FPGAs. An outline of an implementation of a
homomorphic encryption scheme is given in [21] using Matlab/Simulink and the Mathwork HDL coder.
It uses the Chinese remainder theorem (CRT) and the NTT but the used tools limit the available basic
multiplier width to 128 bits and the design approach would require multiple FPGAs in order to deal
with large vector lengths up to n = 214.

An ASIC implementation of a million-bit multiplier for integer-based FHE schemes has been presented
by Doröz et al. in [26]. It uses the Schönhage–Strassen algorithm and the NTT, which operates on an
on-chip cache. The computation of the product of two 1,179,648-bit integers takes 5.16 million clock
cycles. Synthesis results for a chip using the TSMC 90 nm cell library show a maximum clock frequency
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of 666 MHz and thus a runtime of 7.74 ms for this operation. The whole chip requires 26.7 million gates
where 26.5 million gates are attributed to the 768 Kbyte cache and the runtime is equivalent to a software
implementation. This shows, similar to our result, that the biggest challenges in the implementation of
homomorphic cryptography in hardware are the large ciphertext sizes that do not fit into block RAMs
(our case) or caches instantiated with the standard library (Doröz et al. [26]).

Wang et al. [52] presented the first GPU implementation of an FHE scheme and provide results
for the Gentry-Halevi [31] scheme on an NVIDIA C2050 GPU. The results were subsequently improved
in [50] as all computations are carried out in the FFT-domain. A GPU implementation of the leveled fully
homomorphic encryption scheme by Brakerski et al. [12] is given in [51]. In more recent work [23] Dai et al.
provide an implementation of the DHS [25] NTRU-based fully homomorphic scheme based on the scheme
by López-Alt, Tromer and Vaikuntanathan (LTV) [38]. For the parameter set (n = 16384, log(q) = 575)
that supports the evaluation of the 24 level deep decryption circuit of the Prince block cipher [6], they
require 0.063 seconds for multiplication and 0.89 seconds for relinearization (key switching) on a 2.5
GHz Xeon E5-2609 equipped with an NVIDIA GeForce GTX 690. While the parameters for polynomial
arithmetic and the DHS scheme are similar to YASHE, in DHS one basically sets `w,q = dlog2(q)e (i.e.,
the evaluation key consists of dlog2(q)e polynomials) and thus far more forward transformations are
required for key switching. However, their reported performance of RMult is almost the same as in our
implementation.

A software library that implements the Brakerski-Gentry-Vaikuntanathan (BGV) [11, 12] scheme is
described in [34] and freely available. In [37] a software implementation of YASHE is reported which
for the parameter set (n = 4096, q = 2127 − 1, w = 232) executes Add in 0.7 ms, RMult in 18 ms, and
KeySwitch in 31 ms on an Intel Core i7-2600 running at 3.4 GHz. So our hardware implementation can
evaluate Mult on a parameter set supporting 9 levels in 48.67 ms while a software implementation requires
49 ms for a parameter set supporting only 1 multiplicative level.

In concurrent work Roy et al. [45] proposed an implementation of YASHE with parameter n = 215

and a modulus of log2(q) = 1228 bits. Because of the larger parameter set they can support evaluation
of the decryption circuit of the SIMON-64/128 block cipher. Moreover, their implementation does not
require to set f(X) = Xn + 1 when operating in the polynomial ring Zq[x]/〈f〉 so that SIMD operations
on homomorphic ciphertexts are supported. On the other hand they also use a much larger next gen-
eration FPGA (Virtex-7 XC7V1140T) from a different vendor so that a comparison is naturally hard -
especially regarding the economical benefits of using FPGAs. We see the biggest contribution of the work
by Roy et al. in their efficient implementation of independent processors that use the CRT to decom-
pose polynomials. This approach avoids large integer multiplier and simplifies routing and performance
tuning. When we designed our core, the added complexity and the need to lift polynomials from CRT to
natural representations in hardware appeared to be too expensive. However, the authors of [45] do not
consider the costs of moving data between external memory and the FPGA but just assume unlimited
memory bandwidth. This naturally simplifies the design and placement but does not appear to be a
realistic assumption. Especially, when taking into account that DRAM or PCIe cores will also require
logic resources on the device, occupy clock domains, and could cause timing problems. In our work a
considerable amount of time was spent to implement efficient memory transfers and to optimize the
algorithms in this regard. However, we see our work and the work of Roy et al. as a first step towards
an efficient accelerator.

All in all, currently not enough data points exist (also due to the vast amount of different schemes)
to decide whether GPUs, ASICs, or FPGAs are the most suitable platform for FHE/SHE accelerators.
However, huge area costs for caches and long design and manufacturing times do not favor ASICs.
FPGAs and GPUs (based on [25]) appear to achieve similar performance. Given that datacenters are a
prime candidate for homomorphic encryption, the advantages in scale and total cost of ownership (TCO)
described in [44] suggest that FPGAs might not only be competitive with GPUs, but even preferable.
This work shows that FPGAs are competitive on performance, and are a viable alternative.

6.3 Software Performance

Our software implementation of YASHE was mainly written to generate test vectors and to prototype
and test the optimized algorithms. In Table 6 we provide performance numbers for our implementation
of YASHE. However, the implementation is not optimized for the CPU architecture but resembles the
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execution flow of the hardware implementation. A direct comparison with our hardware implementation
does not seem fair but we still provide the results to give a rough estimate on performance in software.

We have also implemented the RMult algorithms using Nussbaumer’s method [7,41] (denoted RMultNb)
and achieved better performance than with the NTT using q′. But as a fast software implementation
is not in the scope of this work we did not investigate the root cause for the better performance but
consider a detailed comparison of both algorithms as valuable future work. In Table 7 we also report
implementation results of an open-source implementation by Lepoint and Naehrig [37]. Their implemen-
tation has received more optimization efforts, performs better, but is also benchmarked on a faster CPU
architecture.

Table 6: Software performance of our prototype implementation YASHE of the evaluation operations
as described in Section 5. Experiments were executed on an Intel Core i7-2760 QM CPU running at 2.4
GHz and 8 GB RAM.

Parameter Set RMultNTT RMultNb KeySwitch Add RMultFwd RMultInv

Set I (n = 4096, `w,q = 2) 190 ms 83 ms 70 ms 0.24 ms 76 ms 75 ms

Set II (n = 16384, `w,q = 8) 6.21 s 1.73 s 5.04 s 0.0013 s 1.62 s 2.34 s

Table 7: Software performance of an implementation of YASHE obtained from [37]. Experiments were
performed using an Intel Core i7-2600 at 3.4 GHz with hyper-threading turned off and over-clocking
(‘turbo boost’) disabled.

Parameter Set KeyGen Encrypt Decrypt Mult KeySwitch Add

(n = 4096, `w,q = 4) 3.4 s 16 ms 15 ms 18 ms 31 ms 0.7 ms

7 Conclusion and Future Work

In this work we have shown the potential of FPGAs to accelerate somewhat homomorphic encryption
despite the large size of ciphertexts and keys. We provided a generically applicable polynomial multiplier
and an implementation of the evaluation steps of the YASHE somewhat homomorphic encryption scheme.
Our evaluation shows a speedup of roughly 100 times over the software implementation provided in [37]
or in other words we can support a n = 16384 parameter set (roughly 9 levels) in hardware with a
running time equivalent to a n = 4096 parameter set in software (only one level).

While implementing the scheme we encountered several challenges that might also be a good start
for future work. A big issue was verification and simulation time due to the large problem sizes. While
parameter Set I can be verified in several minutes it takes more than half an hour to verify Mult and
Add for parameter set II on a standard desktop computer using Questasim 10.4. As a consequence, it
is extremely important to develop an implementation using generic structures so that verification and
debugging can be performed on small and fast to simulate parameter sets. Additionally, we were not
able to build a fully pipelined 1040x1040 multiplier that fits onto the target device. While the amount
of DSPs would theoretically be sufficient to construct such a multiplier, we ran out of ALUs for internal
adders in our experiments. In general the large parameter sizes in Set II were also challenging, as the
design of pipelined arithmetic was time consuming due to long synthesis cycles.

Possible future work is further design space exploration and implementation of even larger parameter
sets. Moreover, it might make sense to investigate the applicability of the Chinese remainder theorem
(CRT) in combination with the cached-NTT. Another interesting future direction for better FPGA
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utilization and removal of bottlenecks caused by external memory might be the design of a custom PCB
with one or more suitable FPGAs connected to a maximum amount of external memory units. A huge
performance boost for SHE/FHE schemes would also be possible if the costly rounding and non-modulo
q multiplication could be removed or if all operations could be carried out directly in the frequency/NTT
domain.
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