Fault Tolerant Infective Countermeasure for
AES

Sikhar Patranabis, Abhishek Chakraborty, and Debdeep Mukhopadhyay

Department of Computer Science and Engg.
IIT Kharagpur, India
sikharpatranabis@gmail.com, abhishek_cky@yahoo.co.in, debdeep@cse.iitkgp.ernet.in

Abstract. Infective countermeasures have been a promising class of
fault attack countermeasures. However, they have been subjected to sev-
eral attacks owing to lack of formal proofs of security and improper
implementations. In this paper, we first provide a formal information
theoretic proof of security for one of the most recently proposed infective
countermeasures against DFA, under the assumption that the adversary
does not change the flow sequence or skip any instruction. Subsequently,
we identify weaknesses in the infection mechanism of the countermeasure
that could be exploited by attacks which change the flow sequence. We
propose suitable randomizations to reduce the success probabilities of
such attacks. Furthermore, we develop a fault tolerant implementation
of the countermeasure using the x86 instruction set to make such attacks
which attempt to change the control flow of the algorithm practically in-
feasible. All the claims have been validated by supporting simulations
and real life experiments on a SASEBO-W platform. We also compare
the performance and security provided by the proposed countermeasure
against that provided by the existing scheme.

Keywords: Infective Countermeasure, AES, Randomization, Instruc-
tion Skip, Fault Attack, Fault Tolerant

1 Introduction

The demonstration of fault attacks by Dan Boneh et.al [1] on the RSA cryp-
tosystem has triggered an extensive study of fault analysis with respect to all
popular cryptosystems, including symmetric key systems such as the DES and
the AES. Active Fault Analysis (FA) involves injection of faults into crypto-
graphic systems and analysis under different fault models to retrieve the secret
key. A multitude of fault attacks have been proposed in recent literature - some
may require a pair of faulty and fault-free ciphertexts [2-7] while others may
require only faulty ciphertexts [8]. Differential Fault Analysis (DFA) of AES ex-
ploits the relation between faulty and fault-free ciphertext pairs, and may require
as few as a single fault injection to recover the entire key [9].

With fault attacks now being an established threat to the security of cryp-
tosystems, sound countermeasures are needed to protect them. Recent research
has demonstrated two major flavors of countermeasures - detection and infec-
tion. Detection countermeasures such as time and hardware redundancy [10,

11], that use the duplicate and compare principle, are vulnerable to attacks to
the comparison step itself. Infective countermeasures avoid the use of compar-
ison by diffusing the effect of the fault to render the ciphertext unexploitable.
However, deterministic diffusion based infective countermeasures are vulnera-
ble to attacks as demonstrated by Lomné et.al [12]. A random variation of the
infective countermeasure was proposed by Gierlichs et.al [13]. However, the in-
fection method employed by this countermeasure has a number of shortcomings,
as demonstrated by Battistello and Giraud [14], and in greater detail by Tup-
samudre et.al [15]. Tupsamudre et.al have also proposed an improved infective
countermeasure that avoids all the pitfalls of [13] and thwarts DFA. However, no
formal proof of security has been provided for the proposed scheme. Moreover,
fault attacks that allow an adversary to change the flow sequence of an algorithm
by methods such as instruction skips have also not been considered.

Recent research on microcontrollers and embedded processors has revealed
that a fault model in which an attacker can skip an instruction is practically ob-
servable on various architectures [16, 17] using different fault injection techniques
[18-20]. Hence, such a fault model is a realistic threat to embedded applications.
We demonstrate in this paper that the instruction skip fault model reveals a
major drawback of the infective countermeasure scheme proposed in [15]. In
particular, it allows an adversary to disturb the number of cipher rounds being
effectively executed. This reveals outputs of intermediate rounds, allowing easy
key recovery. Thus, it is important to make any implementation of the infective
countermeasure immune to instruction skip fault attacks. A formally verified
software countermeasure against instruction skip attacks was proposed by Hey-
demann et. al [21] that provides a fault-tolerant replacement sequence for several
instructions of the Thumb2 instruction set. The countermeasure scheme assumes
that it is difficult to skip two instructions separated by few clock cycles.

Contribution: In this paper, we present a formal information theoretic proof
of the security for the infective countermeasure scheme proposed by Tupsamu-
dre et.al [15], under the assumption that an adversary cannot change the flow
sequence or skip instructions. We then investigate in detail the threats posed
to this countermeasure by the instruction skip fault model and incorporate nec-
essary randomization in the existing algorithm to reduce the probability of an
instruction skip fault attack. Finally, we propose a secured implementation of
the augmented infective countermeasure scheme using x86 instructions that re-
places compiler generated instruction sequences with fault tolerant ones. All the
claims have been validated by supporting simulations and real-life experiments
on a SASEBO-W platform that compare the different versions of the infective
countermeasures both in terms of performance and security.

Table 1: Notations Used

RoundFunction The round function of AES128 block cipher
which operates on a 16 byte state matrix and 16 byte round key
S The SubByte operation in the RoundFunction
SR The ShiftRow operation in the RoundFunction
MC The MixColumn operation in the RoundFunction
n The total number of computation rounds (n = 11 for AES128)
t The total number of rounds for the infective algorithm
I’ The 16 byte input to the i round of AES128, where i € {0,...,10}
K The 16 byte secret key used in AES128
2 The 16 byte matrix that represents (j — 1)" round key,
je€{1,...,11}, derived from the main secret key K
8 The 16 byte secret input to the dummy round
kY The 16 byte secret key used in the computation of dummy round
rstr A ‘t’ bit random binary string,

consisting of (2n) 1’s corresponding to AES rounds
and (¢t — 2n) 0’s corresponding to dummy rounds
BLFN A Boolean function that maps a 128 bit value to a 1 bit value
(0 input is mapped to 0; all other inputs are mapped to 1)
A one bit comparison variable to detect fault injection in AES round

|2

A one bit comparison variable to identify a fault injection in dummy round
A multiplication operation
A bitwise logical AND operation
A bitwise logical OR operation
A bitwise logical NOT operation
A bitwise logical XOR operation

®|1l<|>|-

2 Preliminaries

2.1 Notations Used

Table 1 summarizes the notations used in the rest of this paper. For the descrip-
tion of the infective countermeasure proposed by Tupsamudre et.al [15], we use
the same notations used in the original paper.

The following points are to be noted :

1. In a RoundFunction, the SubByte, ShiftRow and MixColumn transforma-
tions are applied successively on the state matrix, followed by the KeyXor
operation. AES128 has 10 rounds in addition to the initial Key Whitening
step, which we refer to as the 0*” round.

2. The 16 bytes (myg...my5) of the state and key matrices are arranged in 4 X
4 arrays and follow a column major order.

3. BLFN maps 0 to 0 and all other nonzero inputs to 1.

We next explain in brief the countermeasure for AES128 proposed in [15].

2.2 The Infective Countermeasure

Algorithm 1 depicts the infective countermeasure proposed in [15] for AES128.
In the event of a fault in any of the computation rounds (redundant or cipher),
the algorithm detects the difference in values of Ry and R; during the execution

of the cipher round. The value of Ry is then set to Ry as described in step
11 of the algorithm. If, on the other hand, the adversary attacks the dummy
round, (R @) evaluates to 1 and Ry is once again set to Rg. In the event of
undisturbed execution, the algorithm outputs the correct ciphertext.

Algorithm 1 Infective Countermeasure [15]

Inputs : P, k? for j € {1,...,n}, (B, k°), (n = 11) for AES128
Output : C = BlockCipher(P, K)

1. State Ry < P, Redundant state R; < P, Dummy state Ry < 8
2. i+ 1,g+ 1

3. rstr + {0,1}* // #1(rstr) = 2n, #0(rstr) =t — 2n

4. while ¢ < t do

5. A« rstr(qg] // XA = 0 implies a dummy round

6. K< (1 AX) @ 2(-A)

7. ¢+ X [i/2] // ¢ is actual round counter, 0 for dummy
8. R, <+ RoundFunction(R,, kc)

9. vy X—(iAN1))- BLFN(Ry ® R1) // check if i is even
10. 5« (=A) - BLFN(R2 @ f8)
11. Ro < (=(vV) Ro)® ((vV9)- Ra2)
12. P41+ A
13. g+ q+1
14. end

15. return(Rp)

In the following section, we present a information theoretic proof of the fact
that, given the adversary cannot alter the number of executed rounds via in-
struction skip or affecting the state of the variables.

3 Information Theoretic Evaluation of the Infective
Countermeasure

In Differential Fault Analysis (DFA), the adversary compares the response of
a cipher with and without fault injection by obtaining both faulty and fault-
free ciphertexts. The basic assumption underlying the DFA principle is that the
differential of the correct and faulty ciphertext must contain some information
about the secret key used in the algorithm. The adversary then infers the key by
analyzing the fault propagation under the assumption of a fault model. However,
if the differential provides no additional information about the key, then obtain-
ing the faulty ciphertext does not give the adversary any advantage at all. Thus,
the capability of a countermeasure scheme to thwart DFA, can be evaluated by
the extent of mutual information between the differential and the key. The
lesser the mutual information, the stronger is the countermeasure scheme.

In this section, we first describe in greater detail the aforementioned infor-
mation theoretic security evaluation methodology for countermeasures. We then
evaluate the infective countermeasure depicted in algorithm 1 using this frame-
work and verify that the countermeasure indeed thwarts DFA successfully. Table
2 summarizes some of the notations used in this section.

Table 2: Notations Used

X A discrete random variable
T; A specific value that X may take
Pr(X = z) or Pr(z)|The probability that a random variable X takes a value x
Pr(z|y) The conditional probability that X = z given Y =y
H(X) The entropy of random variable X
H(X|Y) The conditional entropy of X given Y’
I(X]Y) The mutual information of random variables X and Y’
K The secret key used by AES
A The differential of the fault-free and faulty ciphertexts
N The total number of possible values for K and A
{ki,ka, -+ kn} The sample space from which K takes its values
{A1,Ag, -+ AN} Sample space from which A can take its value

3.1 The Evaluation Methodology

Definition 1 In information theory, the mutual dependency of two random vari-
ables can be measured using the concept of mutual information. The mutual
information of two discrete random variables X and Y is defined as:

I(X;Y) = H(X) - H(X|Y) 8

where H(X) denotes the entropy of the random variable X and H(X|Y') denotes
the conditional entropy of X given Y .

Again, entropy and conditional entropy are represented using the following
formulations:

N
H(X) =Y Pr(z;)log(Pr(z:)) (2)
=1
N N
H(X)= Y5 Pr(y;)Pr(z; | y;) log(Pr(z: | y;)) (3)

i=1j=1

Using this information theoretic measure, we can compute how much mutual
information a differential fault attacking technique provides in revealing the key,
for a given fault model.

Let A is the fault observed at the output of a block cipher and K is the key
used in the encryption. Then I(K; A) provides the mutual information between
A and K. Using formulations 1, 2 and 3, we have :

N N N
I(K;A) =Y "> " Pr(A;)Pr(ki | A;)log Pr(ki | A;) — > Pr(k;)log Pr(k;) (4)
i=1j=1 i=1
where A and K can take values from the sets { Ay, Ay, -+, Ay} and {k1, ko, -+ ,kn}

respectively.
Further, using Bayes’ Theorem, we have :

Pr(Aj | ki)Pr(k;)

Priki | 4;) = Pr(4;)

For details of how to compute Pr(k; | A;) via simulation for a given fault
model, please refer Appendix A.

Thus, using the information theoretic measure, one can evaluate the security
of a countermeasure scheme against DFA. We next perform this analysis for the
infective countermeasure in the forthcoming discussion.

3.2 Evaluating the Security of the Infective Countermeasure
against DFA

Assumptions about the fault model: In the information theoretic evalu-
ation of the security of the infective countermeasure, we make the following
assumptions about the fault model:

1. The flow sequence of the algorithm, that is, the order in which the redun-
dant, cipher and dummy computations are executed for various rounds is
determined solely by the sequence of bits in rstr and does not change during
the course of execution of the algorithm via instruction skip or any other
methodology.

2. The number of rounds of execution of the algorithm is not in any way af-
fected, that is, we have exactly 11 pairs of redundant and cipher computa-
tions, with the redundant computation always preceding the cipher compu-
tation.

3. The values of internal variables and registers other than the state registers
Ry, Ry and Ry are not updated except as required by the algorithm.

We now use the mutual information formalism to evaluate the security of the
infective countermeasure proposed by Tupsamudre et.al. Before delving into a
rigorous analysis, we make an important observation about the algorithm.

Observation 1 In the event of a fault injection into a single round of the al-
gorithm, the entire cipher state is affected and is in fact replaced by a random
matriz B which is entirely independent of the key K.

A single fault injection could occur in either a redundant computation round,
or a cipher computation round, or a dummy round. The correctness of observa-
tion 1 can be easily verified by considering each scenario individually.

1. Redundant round affected: In this case, R; stores the faulty output
after the redundant round computation. When the computation of the cor-
responding cipher round takes place, Ry stores a value different from the
current content of Ry. Hence Ry @ R1 evaluates to 1 in step 9 of the algo-
rithm. Hence v is 1 and Ry is replaced by (.

2. Cipher round affected: In this case, Ry stores the faulty output after
the original round computation, while R; stores the correct output. Hence
Ry @ R1 evaluates to 1 in step 9 of the algorithm. Hence 7 is 1 and Ry is
replaced by .

3. Dummy round affected: In this case, Ry stores the faulty output after
the original round computation, which is different from . Hence Rs &
evaluates to 1 in step 9 of the algorithm. Hence ¢ is 1 and Ry is once again
replaced by .

In discussing the outcome of fault injection in all of the above scenarios, we
have assumed single fault injection. Additionally, even if the adversary were to
inject multiple faults, it could only go undetected if the same fault was introduced
in a redundant-cipher round pair. However, the presence of random intermediate
dummy rounds implies that even if the adversary had the ability to inject the
same fault twice, she could never be sure which rounds to inject the faults into.
This makes such an attack probability very low. It is also interesting to note that
while fault injections in the cipher and dummy rounds are detected immediately
in the same round itself, a fault injection in the redundant round is detected
subsequently, during the execution of the corresponding cipher round.

Since the outcome of fault injection in any of the rounds is thus essentially the
same, we present a common analysis for all three scenarios. Assuming that the
adversary cannot affect the number of rounds of computation, a fault injection
must be detected and the infection will occur. Consequently, the output differ-
ential is of the form A = C @ 3, for fault injection into either the redundant,
cipher or dummy rounds, C' being the fault free ciphertext output and B being
a random 128 bit matrix. Since B and K are independent random variables, we

have: o o
Pr(B =Pk | K =ki)=Pr(B=Pk) (6)

Consequently , the conditional probability Pr(A; | k;) takes the form :
Pr(A; | ki) =Pr(B=24; ®C | k)

=Pr(B=4,®C) (7
= Pr(4,

N

Formulations 5 and 7 together establish the conditional independence of K

and A as:

Substituting Pr(k;) in equation 4 yields the following:
N

Pr(A;)Pr(k; | Aj)log Pr(k; | A;) =Y Pr(k:)log Pr(k;)

=1

I(K; A)

I
-
M=

Il
R
<.

Il
A

N
Pr(A;)Pr(k;)log Pr(k;) — > Pr(k;)log Pr(k;) ©
i=1

I
M-
M=

s
Il
—
<.
Il
—

N
Pr(k;)log Pr(k;) — > Pr(ki)log Pr(k;)
1

i=1

I
M=

I
o ~
Il

Thus the countermeasure scheme ensures that the mutual information of the
differential and the key is 0 and thus the adversary gains no information about
the key once the infection affects the entire cipher state. However, an important
assumption for this analysis was that the adversary cannot in any way disturb

the order in which the rounds are erecuted. If the adversary chooses to mount
an attack that, instead of affecting the cipher state, disturbs the round counter
and prevents the infection from affecting the cipher state, she could gain access
to intermediate cipher state values and exploit it to decipher the key. In the
next section, we show that the instruction skip fault model indeed allows such
an attack that exploits the vulnerability of the round counter.

4 Threats to the Infective Countermeasure

We now look in detail at the threat posed to Algorithm 1 by the instruction
skip fault model. We begin by looking at possible threats to the infective coun-
termeasure other than traditional DFA attacks, on of which is the instruction
skip attack. We next introduce in brief the instruction skip fault model, followed
by a description of how the instruction skip fault model could be used by the
adversary to disturb the number of executed rounds in Algorithm 1. Finally we
focus on the loopholes in the algorithm that allow the adversary to mount such
an attack.

4.1 Possible Attacks on the Infective Countermeasure : Affecting
Flow Sequence

The formal proof of security of the infective countermeasure 1, presented in
section 3, makes some assumptions about the fault model of the adversary. One
of these is that the number of rounds and the order of their execution are not
affected by the adversary. However, in a practical implementation of the infective
countermeasure, the adversary could attack the round counter itself to try and
upset the normal execution of the algorithm. As demonstrated in [22, 23], round
reduction and fault round modification allow the adversary to obtain the key
with a relatively small number of computations. Thus, although Algorithm 1
thwarts traditional DFA, it could be vulnerable to this flavor of attacks where
the adversary could play around with the number of effectively executed rounds.

One of the major drawbacks of the infective countermeasure depicted in
Algorithm 1 is that there is no validation check for the round counters ¢ and i.
If the value of either of these counters is affected by the adversary, the algorithm
would not be able to detect the fault, which in turn would affect the order of
round execution. There are many ways in which the adversary could inject such
a fault. One approach is to affect the state of either the counter variables ¢ and
1, or other variables affecting them, such as A. The stuck-at fault model makes
such attacks practically feasible. Alternatively, the adversary could choose to
simply skip the round counter updation step(s), that is, steps 12 and/or 13 of
Algorithm 1. Such attacks come under the purview of the instruction skip fault
model. In the forthcoming discussion, we look in greater detail at the threat
posed by the instruction skip fault model, as well the loopholes in the infective
countermeasure scheme that make such an attack possible.

4.2 The Instruction Skip Fault Model

The instruction skip fault model is a subset of the more general instruction re-
placement fault model, in which the adversary is able to replace one instruction
by another. Previous research has shown that it is possible to perform instruc-
tion replacement on embedded processors by a variety of fault injection means
[24, 18]. However, precise control over instruction replacement demands very ac-
curate fault injection means and is not of much practical significance. However,
a specific category of instruction replacement is the instruction skip fault model,
in which the adversary replaces an instruction by another one that does not af-
fect any useful register [21] and has the same effect as a NOP. Instruction skips
have been achieved by a number of fault injection schemes on a variety of ar-
chitectures - via clock glitches [16, 18] and electromagnetic glitches [19] on 8-bit
AVR microcontroller, via voltage glitches on a 32-bit ARM9 processor [17] and
via laser shots on a 32-bit ARM Cortex-M3 processor [20]. Hence, instruction
skips are considered as a practically achievable fault model and have been used
for cryptanalysis in recent research [25, 26].

We now look into how the adversary may use the instruction skip fault model
to attack Algorithm 1.

4.3 Instruction Skip Attack on the Infective Countermeasure

The attack presented here exploits the fact that a redundant round computation
in Algorithm 1 does not involve any infection to the state of the cipher Ry. The
adversary targets skipping instruction 12 of algorithm 1 after the execution of
the last redundant round. As a result of this attack, the final cipher round is
replaced by another redundant computation round. Since a redundant round
does not involve any infection and does not affect the output register Ry, the
algorithm simply returns the output of the penultimate cipher round, that is
the output of round 9. The adversary can then exploit this faulty ciphertext to
recover the key by making hypotheses over each key byte.

Let e be the event that the adversary performs a succesful instruction skip in
the nt" redundant round by attacking the ¢*" loop of algorithm 1. The probability
Pr(e) is thus the probability that the bit string rstr has (2n — 2) positions set
to 1 among the first ¢ — 1 positions, has the ¢** bit set and exactly 1 more bit
(sn2)(1%)

(Ztn)
be further augmented to Pr(e,r) by repeating the fault injection experiment
independently r times, such that Pr(e,7) = 1— (1 — Pr(e))". Note that Pr(e,r)
is essentially the probability of obtaining at least one useful faulty ciphertext in
r fault injections.

set among the remaining ¢t — ¢ bits, given by . Moreover, Pr(e) could

4.4 The Loopholes in the Infective Countermeasure : A Closer Look

There are two major loopholes in the countermeasure that allow the adversary
to mount the aforementioned attack :

Table 3: Computation of Algorithm 1

Step|Redundant Round Cipher Round Dummy Round

5. A=1,1is odd A=1,1is even A=0

6. |k 1 K0 K42

7. |¢ < Ti/2] ¢« /2] C0

8. |Ri + RoundFunction(Ry,k*)|Ro < RoundFunction(Ro, k*)|Rs < RoundFunction(Ra, k")
9. |y«0 5 < BLFN(Ro @ R1) v+ 0

10. |6+ 0 60 6 < BLFN(R: ®)

11. |Ro ¢ Ro Ry = (=(7) - Ro) ® ((7) - R2) |Ro = (=(8) - Ro) & ((9) - R2)
12, i+ i+1 i+ 1 i i+0

13. |[g+q+1 qg—q+1 qg+—q+1

1. An inherent drawback of the infective countermeasure is the inability to im-
mediately detect a fault injection in the redundant round. The algorithm
must wait until the corresponding cipher round in order to detect the pres-
ence of the fault. On the other hand, a fault injection in a cipher round or
a dummy round is detected immediately. After a faulty redundant round,
Ry still contains the output of the previous round and is not infected. The
phenomenon is made clear in the highlighted row of Table 3 that captures
the execution flow of the algorithm in the redundant, cipher and dummy
rounds respectively.

2. The execution of the redundant round is merely decided by the fact that
the variable 7 is odd and A = 1. There is no way to verify if the redundant
round being executed is indeed a valid one. This makes the round counter
vulnerable to attacks by a malicious agent who can manipulate the value of
the internal variables, as done in the aforementioned attack via an instruction
skip, and trick the algorithm into believing that the round to be executed is
a redundant one. This allows the adversary to skip the final cipher round,
and thus avoid fault detection and infection altogether.

An interesting observation about Algorithm 1 is that the order of the redun-
dant and cipher rounds is fixed. For a given round, the redundant computation
always precedes the cipher computation. This is because both the redundant
and the cipher rounds are denoted by a set bit in the bit vector rstr and are
distinguished by the oddity of i. The randomness is thus limited to the occur-
rence of the dummy rounds in between, represented by the 0’s in rstr. Thus the
adversary is guaranteed to obtain the output of the penultimate round if she
can skip the last cipher round and replace it by a redundant round. If, on the
other hand, the relative ordering of the redundant and cipher computations cor-
responding to a single round could also be randomized and the output masked,
then the adversary would have to perform additional instruction skips to get the
unmasked output of the penultimate round. In the following section, we present
a modified version of Algorithm 1 that achieves this randomization.

5 A Modified Infective Countermeasure

In this section we present a modified infective countermeasure algorithm. The
idea is to reduce the probability of the instruction skip attack by making it more

uncertain as to whether the fault is introduced in the redundant or cipher round
of computation. Unlike in the original scheme where the redundant round always
precedes the corresponding cipher round, in the modified version, the order of
the redundant and cipher rounds is scrambled and is encoded by an additional
bit string cstr of length 2n. Each 1 bit in c¢str corresponds to a redundant round
and each 0 bit corresponds to a cipher round. Since cipher and redundant pair
of computations are still necessary for each round, cstr is a sequence of (1,0)
and (0, 1) pairs. The cstr vector may be populated by randomly filling out the
odd positions with 0 or 1 and then setting each even position to the negation of
its preceding odd position. Additionally, in the modified algorithm, both Ry and
R; are masked at the end of each odd computation round and unmasked at the
beginning of the corresponding even computation round. The mask m is a 128
bit vector and is generated randomly at the beginning of each odd computation
round. Algorithm 2 details the steps of the modified countermeasure, while Ta-
ble 4 summarizes the functioning of algorithm 2.The major differences between
algorithms 1 and 2 are summarized below:

1. In algorithm 1 no infection occurs during the redundant round since the
redundant round always occurs prior to the cipher round. On the other
hand, in algorithm 2, the infection occurs (upon fault detection) in the round
that occurs later, which may be either cipher or redundant, depending on
the content of cstr. This makes the treatment of the redundant and cipher
rounds more symmetric.

2. In algorithm 2 both Ry and R; are masked in the end of an odd round and
unmasked in the beginning of the corresponding even round computations.
This ensures that neither Ry nor R; exposes the output of the previous
round after the end of an odd computation round.

3. In algorithm 1 between each pair of redundant and cipher computations, Ry
retains the unmasked output of the previous round, which could be exploited
by an adversary. On the other hand, in algorithm 2, Ry holds the masked
output of a previous round only if the bit pair in cstr corresponding to the
current round is (1,0), the probability of which is 3.

Note: The formal proof of security presented for algorithm 1 in Section 3
also holds good for algorithm 2 under the same assumptions that the attacker
cannot alter the flow sequence or skip instructions.

A security analysis for the bit string cstr is presented in Appendix B. We
now analyze the impact of the instruction skip fault model on algorithm 2 as
well as corresponding attack probabilities.

5.1 Instruction Skip Attack on the Modified Algorithm

We now analyze in greater detail the probability that the adversary can still
mount the same instruction skip attack on algorithm 2 and obtain the output
of the penultimate round. Note that the adversary would have to skip step 13
of algorithm 2, which corresponds to the increment of the variable 7. Since the

Algorithm 2 Modified Infective Countermeasure

Inputs : P, k7 for j € {1,...,n}, (B, k:o), (n = 11) for AES128
Output : C = BlockCipher(P, K)

1. State Ro < P, Redundant state Ry <— P, Dummy state Ry < 3
2. 14+ 1,g+ 1
3. rstr + {0,1}° // #1(rstr) = 2n, #0(rstr) =t — 2n
4. estr « {0,1}°" /] #1(cstr) = n, #0(cstr) =n
5. while ¢ < t do
6. A <+ rstr(q] // XA = 0 implies a dummy round while A = 1 implies a computation
round
7. K < (X-cstrli]) @ 2(—A) // k = 0 or 1 depending on cstr[i]
8. ¢+ X [i/2] // ¢ is actual round counter, 0 for dummy
9. m <+ (=(A) - m)d - (((=(tA1) - m)®((iA1).RAND()))) // new m if X is 1 and
4 is odd
10. R, + RoundFunction(R. & (—=(i A1) -m),kS) // unmask if i is even
11. ¥ X—(iAN1))- BLFN(Ro ® R1 ® (—(i A1) - m)) // unmask if ¢ is even
12. 5« (=A) - BLFN(R2 @)
13. Ro + (m(vVd) - (Ro®d ((:A1)-m))) B ((y V) - Rz) // mask if i is odd
14. Ri < (m(AN) Ri)®A-(R1®((:A1)-m))) // mask if i is odd and X is 1
15. i i+ A
16. g+ qg+1
17. end
18. return(Rp)
Table 4: Computation of Algorithm 2
Step|Computation Round 1 Computation Round 2 Dummy Round
6. |A=1,4isodd A=1,1is even A=0
7. k<1 K0 K42
8. |¢« [i/2] ¢+ [i/2] 0
9. |m <« RAND() m < m m<—m
10. |Restrfi] < RtmndFunction(Rcstr[i],kc) Reseri) < RoundFunction((Restrii) @m), k)| R < RoundFunction(Rz, k°)
11. |y« 0 v <+ BLFN(Ro ® R1 ®m) v+ 0
12. |6+ 0 50 0 < BLFN(R: &)
13. |Ro < Ro &m Ro (=(7) - Ro) & ((7) - Rz) Ro (=(9) - Ro) & ((9) - R2)
14 |Ri+<Riém R+ R R+ R
15. Ji+i+1 i i+1 i 1i+0
16. |g<q+1 qg—q+1 qg—q+1

order of redundant and cipher rounds is now random, we simply assume that
the adversary skips instruction 15 in the penultimate computation round, which
could be either a redundant or cipher round. It is to be noted that irrespective
of whether a cipher or redundant round is targeted by the adversary, the value
of i corresponding to this round is odd(as it is the penultimate round). So at
the beginning of this round, a new random value of mask m is generated, and
both Ry and R; are thus masked at the end of this round. Thus, we have the
following scenarios:
Scenario 1: The penultimate computation is redundant computation
If the instruction is skipped during the redundant computation, then the the
last round comprises two consecutive redundant rounds. Thus, in this scenario,
the adversary gets a ciphertext which is the output of the penultimate round
XOR-ed with two distinct random values of m generated in the two consecutive
redundant rounds. Thus, the obtained ciphertext gives the adversary no extra
information about the key.
Scenario 2: The penultimate computation is cipher computation
In this scenario, the last round comprises of two consecutive cipher rounds. Thus,
the obtained ciphertext is the output of an extra cipher round, but again XOR-
ed with two distinct random values of m generated during the two consecutive
cipher rounds. Hence, even in this scenario, the ciphertext so obtained gives the
adversary no information about the key.
Note that the masking step is important otherwise in either scenario, the attacker
would get the key easily, either from the output of the penultimate cipher round
or the output of the additional cipher round. In the presence of the masking
step,the only way for the adversary to get the output of the penultimate or the
extra round is to also skip the masking step in the second redundant/cipher
round. Thus, if the instruction skip attacks are now made 1in rounds ¢ alnd q, the
i fm i
new probability of a successful attack Pr(é) becomes (23“(2,),()) X (;’1’71) which

2n 2n
is less than the original attack probability. Moreover, even if the attacker skips

the instructions, the output so obtained is either the output of the penultimate
round or the ouput of the additional round with probability % This adds to the
computational complexity of the attack.

6 Instruction Level Fault Tolerant Implementation of the
Infective Countermeasure

As evident from Section 5, algorithm 2 uses a combination of randomization
and masking to reduce the probability of a specific instruction skip attack in
which the attacker is able to skip targeted instructions, thus affecting the flow
sequence of the final redundant and cipher rounds. However, it is not able to
entirely obliterate the possibility of the attack. Using a stronger fault model
that allows to perform stuck-at faults on consecutive bits of the bit string cstr,
the adversary could easily set the bit pair corresponding to the last round to
(1,0) with a probability of 1. In such a scenario, a single skip of the masking

instruction in the last computation round causes algorithm 2 to have precisely
the same vulnerability to the instruction skip attack as 1. Moreover, while the
assumed fault model focuses on only a single instance of the instruction skip
attack, there are other variations of such attacks that could be mounted on the
infective countermeasure. Hence, it is necessary to adopt stronger schemes that
protect the countermeasure against instruction skip attacks in general.

A formal treatment of a countermeasure scheme at the machine instruction
level against instruction skip fault attacks was presented by Heydemann et. al
in [21]. The scheme is based on the assumption that while it is easy to inject
identical faults in independent executions of an algorithm, introducing faults
in two instructions separated by a few clock cycles is significantly harder. The
scheme involves rewriting each individual instruction by a sequence of instruc-
tions that are immune to single instruction skips. The target architecture for
their fault tolerant scheme is the Thumb2 instruction set which is a successor
for both ARM and Thumb instruction sets. In this section we adopt a simi-
lar approach for the x86 instruction set. We briefly explain the equivalent fault
tolerant scheme for x86 by first classifying the entire instruction set, and then
explaining fault tolerant strategies for each category of instructions. Finally, we
take a compiler generated machine level representation of the high level descrip-
tion of Algorithm 2 and rewrite the entire code using the fault tolerant scheme.
Please note that henceforth, any reference to the x86 instruction set assumes
only 32 bit instructions.

6.1 Instruction Classification

We use the classification scheme proposed in [21] to classify the entire x86 in-
struction set into 4 categories as follows:

1. Idempotent Instructions : Instructions that only need to be duplicated to
achieve fault tolerance.

2. Separable Instructions : Instructions that can be replaced by a set of idem-
potent instructions followed by duplication to achieve fault tolerance.

3. Specific Instructions : Instructions that require specific replacement sequences
to achieve fault tolerance.

4. Non-replaceable and Partially Replaceable Instructions : Instructions that
either cannot be replaced by a fault tolerant sequence or can at best be
replaced by a suitable combination of idempotent and non-idempotent in-
structions that is more fault tolerant than the original instruction.

Next, we present a few examples for each class of instructions from the x86
instruction set and demonstrate how each of them can be re-written to achieve
fault tolerance.

Idempotent Instructions: As defined in [21], idempotent instructions have a
disjoint set of source and destination operands, and the value of the destination
operand after the execution of an instruction is independent of the location of

the instruction in a code. Hence, they only need to be duplicated to achieve fault
tolerance. Table 5a presents a few instances of idempotent instructions from the
x86 instruction set along with their corresponding fault tolerant replacement
sequences. It is interesting to note here that unlike in Thumb2, the add instruc-
tion addl %eax,%ebx is not an idempotent instruction for the x86 instruction
set. This is because, for the addl instruction, the destination operand is also a
source operand. While this leads to an optimal usage of registers, it also leads to
loss of idempotence for the addl instruction. For details of the leal instruction,
please refer Appendix C.

Separable Instructions: This category of instructions are not idempotent by
themselves due to fact that for these instructions, the destination register is also
a source register. But these instructions can be replaced by a sequence of idem-
potent instructions, which can in turn be duplicated to achieve fault tolerance.
However, such a replacement warrants the availability of one or more dead or
idle register at this location in the code [21]. Table 5b illustrates how the addl
%eax,%ebx, the pushl %eax and the popl %eax instructions respectively
can be replaced by fault tolerant instruction sequences. The pushl %eax is
equivalent to the set of instructions subl %esp, $4 ; movl (%esp), %eax. On
the other hand , the popl %eax is equivalent to the set of instructions movl
(%esp), Y%eax; addl %esp, $4. When writing the replacement sequence for
the pushl %eax instruction, we assume that a register %rx stores the value of
—4 in two’s complement notation.

Table 5: Instruction Replacement Sequences

b.Replacement Sequences for Separable Instruc-

tions
Instruction |Replacement Sequence
a.Replacement Sequences for Idempotent Instruc- addl %eax,%ebx|movl Y%eax, %ecx
tions movl %eax, %ecx
leal %eax, [Yoebx + Y%ecx]
leal %eax, [Yoebx + %ecx]
Instruction Replacement Sequence pushl %eax |movl %esp, %ebx
movl %eax,%ebx movl %eax,%ebx movl %esp, %ebx
(copies eax to ebx) movl %eax, Y%ebx leal %esp, [Yebx + %rx]|
movl %eax,-4(%ebp) movl %eax,-4(%ebp) leal %esp, [%oebx + %rx|
(stores %eax at the address ebp-4) movl %eax,-4(%ebp) movl %eax, (%esp)
movl -8(%ebp),%eax movl -8(%ebp),%eax movl %eax, (%esp)
(loads the value at the address ebp-8 to eax) movl -8(%ebp),%eax popl %eax |movl (%esp), %eax
leal %esi, [ebx + 8*cax + 4] leal %esi, [ebx 4 8*eax + 4] movl (%esp), %eax
(stores (ebx + 8*eax + 4) in esi) leal %esi, [ebx + 8*eax + 4] movl %esp, %ebx
movl %esp, %ebx
movl $4, %ecx
movl $4, %ecx
leal %esp, [Yoebx + Yecx]
leal %esp, [%obax + %ecx]

Detailed descriptions of special, non-replaceable and partly replaceable in-
structions are presented in Appendices D and E respectively. We also present an

analysis of the average code size increase for the countermeasure on incorporat-
ing fault tolerance in the compiler generated code in Appendix F.

7 Simulation and Experimental Results

In this section, we present results of performed instruction skip attacks mounted
on the three different versions of the infective countermeasures for AES128 -
algorithms 1 and 2, as well as the fault tolerant version of 2. The experiments
were divided in two broad categories. The first category of experiments were
performed on C implementations of the infective countermeasures, where random
instruction skips were simulated on the equivalent machine level representation
of each countermeasure. The second category of experiments were performed on
infective countermeasure circuits implemented using a Xilinx MicroBlaze soft-
core processor in Spartan 6 FPGA of SASEBO-W board. For this category of
experiments, the instruction skips were achieved via timing violations at high
clock frequencies.

7.1 Simulation Results

T T T T
—— Algorithm 1 [
—a— Algorithm 2 /
1,500 | —e— Algorithm 2(Fault Tolerant) ’,"’ R

1,000 |-]

500

Average Number of Fault Injections per Success

Number of Random Dummy Rounds

Fig. 1: Simulation Results : Impact of Number of Dummy Rounds on the Fault Attack Efficiency

The simulation experiments involved inflicting random instruction skips on
10, 000 runs of C implementations of each countermeasure scheme for fixed num-
ber of dummy rounds. The 128 bit plaintext and the 128 bit key were both
randomly chosen, but the same input-key pair was used across all countermea-
sure schemes for normalization of results. For algorithm 1, a particular instance
of the instruction skip attack was deemed to be successful if the faulty cipher-
text matched with the output of the 9*" round. For the naive and fault tolerant
implementations of algorithm2, the instruction skip attack was deemed to be
successful if the output of the countermeasure matched with the output of the

9t* round or an extra 11** round. We refer to the output of a successful fault
attack as a useful ciphertext. Finally, the average number of fault injections to
get a single useful faulty ciphertext was plotted against the number of faulty
bits for each scheme.

Figure 1 summarizes the results thus obtained. We note that for the same
number of dummy rounds, the number of fault injections required by algorithm
2 is approximately double the number of fault injections required for algorithm
1. This is in accordance with the fact that the probability of a successful fault
injection in algorithm 2 is % the corresponding probability for algorithm 1. The
fault tolerant implementation of algorithm 2 requires a much higher number of
fault injections per success as compared to algorithm 2, and the ratio increases
as the number of dummy rounds increases.

7.2 Fault Injection Set-up on SASEBO-W

Figure 3a describes our set up for instruction skip fault injection in the infec-
tive countermeasure for AES128. The set up consisted of an FPGA (Spartan-6
XC6SLX150) on a SASEBO-W platform, Xilinx SDK and an external arbitrary
function generator (Tektronix AFG3252). The FPGA had a DUT (Device Under
Test) block, which consisted of an infective countermeasure implementation for
AES128 on a Xilinx MicroBlaze softcore processor. Instruction skip faults were
injected in the DUT using clock glitches. The external clock signal clke,: was
supplied from the function generator. The high frequency clock signal clk s Was
then derived from the clk..; signal via a Xilinx Digital Clock Manager (DCM)
module and supplied to the DUT. Comparisons between the three different ver-
sions of infective countermeasures were made by setting the the appropriate
countermeasure implementation as the DUT and subsequently collecting sets of
faulty ciphertexts at different clock frequencies.

Fig. 2: Practical Experiments
-10*

T T T
61 —e— Algorithm 1)
SPARTAN 6 —m— Algorithm 2

8 5 |-| —@— Fault Tolerant N
ES
Arbitrary Function i Xilinx DCM ol o

Generator ast 4 4+ -
Tektronix AFG3252 l s
O

Device Under Test 3 3+ —
(oum) 5
Microblaze g

m @ Implementation of El 2F b
Infective Z

Countermeasure
for AES-128
1k B
Il Il Il Il Il Il Il
0 5 10 15 20 25 30
Number of Random Dummy Rounds
a.Instruction Skip Fault Injection Setup b.Impact of Number of Dummy Rounds on the

Number of Clock Cycles

7.3 Experimental Results

We first compared the average number of clock cycles required for each version of
the countermeasure against the number of dummy rounds. Figure 3b summarizes
the results. It is interesting to note that there is only a slight increase in the
number of cycles when one compares the performance of algorithm 2 with that
of algorithm 1. The slight overhead could be attributed to the use of an extra bit
string and the additional computations required for masking and to compute the
values of 7. On the other hand, we observe a significant performance overhead for
the fault tolerant version of algorithm 2. It is quite evident that the additional
instructions necessary for achieving fault tolerance leads to a degradation in
performance of the countermeasure in terms of number of clock cycles required.

Next, we inflicted instruction skip attacks on each of the three infective coun-
termeasure implementations by causing critical path violations using clk fos;. Our
alm was to compare the number of fault injections required per useful faulty ci-
phertext for each of the countermeasure schemes. We compared the results at
six different clky,s: frequencies and for the number of the dummy rounds set at
0, 10, 20 and 30 respectively. We performed the fault injection trials in a range
of clkyqs frequencies such that the faulty ciphertexts thus obtained were use-
ful ones. Table 6 summarizes the experimental results. There are two essential
observations in this regard:

1. The number of fault injections per useful ciphertext increases with an in-
crease in the number of dummy rounds for each version of infective counter-
measures.

2. The number of fault injections per useful ciphertext decreases with an in-
crease in clkyqs frequency. This leads to the conclusion that a higher clock
frequencies lead to greater probabilities of achieving instruction skip faults.

8 Conclusions

The paper shows that a recently proposed infective countermeasure is formally
secure against DFA under the assumption that an attacker cannot subvert the
control flow or skip instructions. The work identifies that such threats against
the countermeasure exist because the scheme has a fixed ordering of the re-
dundant and cipher rounds, leading to the fact that a fault in the redundant
round is detected in the subsequent cipher round. This leads to the exposure
of the previous round output which can lead to trivial attacks. Furthermore,
the validity of a redundant round is not checked in the proposal. In order to
reduce the attacker’s success probability, the paper proposes suitable random-
izations in the ordering of the redundant and cipher rounds, along with masking
the previous round outputs. Subsequently, we implement the countermeasure
using x86 instructions by rewriting the instructions in a fault tolerant manner.
We propose several replacement sequences of the compiler generated code that
makes use of idempotent instructions to reduce the probability of successful in-
struction skip attacks. Detailed simulations and real life experiments have been

Table 6: Experimental Results : Impact of Number of Dummy Rounds on the Fault Attack Efficiency

| Fault Injections per useful faulty ciphertext ‘

clksast (MHz) Number of dummy rounds‘Algorithm 1[Algorithm 2[Algorithm 2(Fault Tolerant)]
0 150 250 2000
10 225 600 5000
128.0 20 100 1000 1x 107
30 1500 5000 4.5 x 10”
0 80 150 500
128.4 10 125 500 2500
20 200 750 5000
30 800 3000 1.5 x 10”
0 51 92 205
128.8 10 80 140 480
20 120 250 750
30 500 855 9.5 x 107
0 35 82 289
129.2 10 65 109 368
20 98 179 544
30 420 635 5.2 x 107
0 23 71 185
129.6 10 52 95 275
20 87 145 369
30 254 524 3.8 x 107
0 15 39 82
130.0 10 27 56 159
20 42 89 245
30 159 355 1.4 x 107

performed on a MicroBlaze implementation of the countermeasure schemes on a
SASEBO-W board, injected with faults via clock glitches. The experiments have
demonstrated that the overall resistance to fault attacks is significantly higher
for the proposed fault tolerant infective countermeasure scheme as compared to
the already existing scheme.

References

10.

11.

12.

13.

Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the Importance of
Checking Cryptographic Protocols for Faults. In Walter Fumy, editor, Advances
in Cryptology — EUROCRYPT 1997, volume 1233 of Lecture Notes in Computer
Science, pages 37-51. Springer, 1997.

Eli Biham and Adi Shamir. Differential Fault Analysis of Secret Key Cryptosys-
tems. In Burton S. Kaliski Jr., editor, Advances in Cryptology — CRYPTO 1997,
volume 1294 of Lecture Notes in Computer Science, pages 513—-525. Springer, 1997.
Christophe Giraud. DFA on AES. In Hans Dobbertin, Vincent Rijmen, and Alek-
sandra Sowa, editors, Advanced Encryption Standard — AES, volume 3373 of Lec-
ture Notes in Computer Science, pages 27—41. Springer, 2005.

Gilles Piret and Jean-Jacques Quisquater. A Differential Fault Attack Technique
against SPN Structures, with Application to the AES and Khazad. In Colin D.
Walter, Cetin K. Ko(, and Christof Paar, editors, Cryptographic Hardware and
Embedded Systems - CHES 2003, volume 2779 of Lecture Notes in Computer Sci-
ence, pages 77-88. Springer, 2003.

Debdeep Mukhopadhyay. An Improved Fault Based Attack of the Advanced
Encryption Standard. In Bart Preneel, editor, Progress in Cryptology —
AFRICACRYPT 2009, volume 5580 of Lecture Notes in Computer Science, pages
421-434. Springer, 2009.

Yang Li, Kazuo Sakiyama, Shigeto Gomisawa, Toshinori Fukunaga, Junko Taka-
hashi, and Kazuo Ohta. Fault sensitivity analysis. In Cryptographic Hardware and
Embedded Systems-CHES 2010, pages 320-334. Springer, 2010.

Chong Hee Kim. Differential fault analysis against aes-192 and aes-256 with min-
imal faults. In Fault Diagnosis and Tolerance in Cryptography (FDTC), 2010
Workshop on, pages 3-9. IEEE, 2010.

Thomas Fuhr, Eliane J aulmes, Victor Lomné, and Adrian Thillard. Fault Attacks
on AES with Faulty Ciphertexts Only. In Wieland Fischer and Jérn-Marc Schmidt,
editors, Fault Diagnosis and Tolerance in Cryptography — FDTC 2013, pages 108
118. IEEE Computer Society, 2013.

Michael Tunstall, Debdeep Mukhopadhyay, and Subidh Ali. Differential fault anal-
ysis of the advanced encryption standard using a single fault. In Information Se-
curity Theory and Practice. Security and Privacy of Mobile Devices in Wireless
Communication, pages 224-233. Springer, 2011.

Tal G Malkin, Frangois-Xavier Standaert, and Moti Yung. A comparative
cost/security analysis of fault attack countermeasures. In Fault Diagnosis and
Tolerance in Cryptography, pages 159-172. Springer, 2006.

Paolo Maistri and Régis Leveugle. Double-data-rate computation as a countermea-
sure against fault analysis. IEEE Transactions on Computers, 57(11):1528-1539,
2008.

Victor Lomné, Thomas Roche, and Adrian Thillard. On the Need of Random-
ness in Fault Attack Countermeasures - Application to AES. In Guido Bertoni
and Benedikt Gierlichs, editors, Fault Diagnosis and Tolerance in Cryptography —
FDTC 2012, pages 85-94. IEEE Computer Society, 2012.

Benedikt Gierlichs, Jérn-Marc Schmidt, and Michael Tunstall. Infective Compu-
tation and Dummy Rounds: Fault Protection for Block Ciphers without Check-
before-Output. In Alejandro Hevia and Gregory Neven, editors, Progress in Cryp-
tology — LATINCRYPT 2012, volume 7533 of Lecture Notes in Computer Science,
pages 305-321. Springer, 2012.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Alberto Battistello and Christophe Giraud. Fault Analysis of Infective AES Com-
putations. In Wieland Fischer and Jorn-Marc Schmidt, editors, Fault Diagnosis
and Tolerance in Cryptography — FDTC 2013, pages 101-107. IEEE Computer
Society, 2013.

Harshal Tupsamudre, Shikha Bisht, and Debdeep Mukhopadhyay. Destroying fault
invariant with randomization. In Cryptographic Hardware and Embedded Systems—
CHES 2014, pages 93-111. Springer, 2014.

J Schmidt and Christoph Herbst. A practical fault attack on square and multiply.
In Fault Diagnosis and Tolerance in Cryptography, 2008. FDTC’08. 5th Workshop
on, pages 53-58. IEEE, 2008.

Alessandro Barenghi, Guido M Bertoni, Luca Breveglieri, and Gerardo Pelosi. A
fault induction technique based on voltage underfeeding with application to attacks
against aes and rsa. Journal of Systems and Software, 86(7):1864-1878, 2013.
Josep Balasch, Benedikt Gierlichs, and Ingrid Verbauwhede. An in-depth and
black-box characterization of the effects of clock glitches on 8-bit mcus. In Fault
Diagnosis and Tolerance in Cryptography (FDTC), 2011 Workshop on, pages 105—
114. TEEE, 2011.

Amine Dehbaoui, J-M Dutertre, Bruno Robisson, and Assia Tria. Electromagnetic
transient faults injection on a hardware and a software implementations of aes.
In Fault Diagnosis and Tolerance in Cryptography (FDTC), 2012 Workshop on,
pages 7-15. IEEE, 2012.

Elena Trichina and Roman Korkikyan. Multi fault laser attacks on protected crt-
rsa. In Fault Diagnosis and Tolerance in Cryptography (FDTC), 2010 Workshop
on, pages 75-86. IEEE, 2010.

Karine Heydemann, Nicolas Moro, Emmanuelle Encrenaz, and Bruno Robisson.
Formal verification of a software countermeasure against instruction skip attacks.
In PROOFS 2013.

Hamid Choukri and Michael Tunstall. Round reduction using faults. FDTC, 5:13—
24, 2005.

J-M Dutertre, A-P Mirbaha, David Naccache, A-L Ribotta, Assia Tria, and Thierry
Vaschalde. Fault round modification analysis of the advanced encryption standard.
In Hardware-Oriented Security and Trust (HOST), 2012 IEEE International Sym-
posium on, pages 140-145. IEEE, 2012.

Nicolas Moro, Amine Dehbaoui, Karine Heydemann, Bruno Robisson, and Em-
manuelle Encrenaz. Electromagnetic fault injection: towards a fault model on a
32-bit microcontroller. In Fault Diagnosis and Tolerance in Cryptography (FDTC),
2013 Workshop on, pages 77-88. IEEE, 2013.

J Schmidt and Marcel Medwed. A fault attack on ecdsa. In Fault Diagnosis and
Tolerance in Cryptography (FDTC), 2009 Workshop on, pages 93-99. IEEE, 2009.
Alessandro Barenghi, Luca Breveglieri, Israel Koren, and David Naccache. Fault
injection attacks on cryptographic devices: Theory, practice, and countermeasures.
Proceedings of the IEEE, 100(11):3056-3076, 2012.

A Computing Pr(k; | 4;)

For a given differential value A; and key hypothesis k; for any cipher, the con-
ditional probability k; | A; can be written as follows using Bayes’ Theorem

Pr(4;)

Pr(k; | A7) = 27 (10)

Pr(A; | k;) can be naively calculated by the following steps:

1. The first step is to enumerate all possible input differentials corresponding
to the output differential A; and key hypothesis k;. This can be done by
taking each possible input differential value and checking if the corresponding
output differential, obtained using the given key k;, matches that target
output differential A;.

2. Next, from the enumerated differential values, only those input differentials
that are possible with respect to the fault model are retained, and the rest
are discarded. For example, if the fault model is a single bit fault model.
then a 2 bit input differential will not be considered as a possible case even
if it leads to an output differential A;. Let the pruned set of valid input
differentials be of size D.

3. The value of Pr(4; | k;) is now calculated as £ where N is the number of
possible values A; can take.

However a more efficient technique to compute the probability is to compute
Pr(A; | k;) for all possible output differentials A; simultaneously. We consider
each input differential possible under the fault model, and check the correspond-
ing output differential value for the key hypothesis k;. If the output differential
corresponds to Aj, the score for A; is incremented by 1. Finally the score of the
output differential is normalized by N to obtain the desired probability. This
takes much fewer number of computations.

The total probability Pr(A;) can then be simply calculated as Ziil Pr(4; |
k;).

B Security of the Bit String cstr

Note that in algorithm 2, cstr is a sequence of 01 and 10 pairs, because the
countermeasure must duplicate the computation of each round for fault detec-
tion. It is only the order of the redundant and cipher computations for each
round that is scrambled using cstr. An adversary might therefore try to upset
the order of round execution by performing bit flips or stuck-at fault attacks on
cstr. A single bit flip in cstr would result in either two consecutive redundant
rounds or two consecutive cipher rounds. In either scenario, the same register
would be updated twice in both rounds - R; for redundant or Ry for cipher

round respectively. The algorithm will automatically detect the fault in the sec-
ond computation, as one of Ry or R; will contain the output of the current
round while the other still contains the output of the previous round. Thus as
long as the variable ¢ is incremented appropriately after each round computa-
tion, the algorithm is fault-tolerant to single bit upsets on cstr. However, the
adversary could reverse the order of the redundant and original computations
corresponding to a round r by flipping the (2r — l)th’ and (21")“” bits. In such a
scenario, the algorithm cannot detect the fault. In that case, the adversary must
make sure that both the bits of cstr that are flipped correspond to computations
for the same round, which demands slightly greater precision than a naive two
bit flip attack. For the naive attack, the probability of appropriate bit flips is
(n —1)/(5), which is much smaller than the single bit flip probability.

C The leal instruction:

The load effective address instruction is a 32 bit instruction of the x86 instruc-
tion set that is meant for performing memory addressing calculations without
actually accessing the memory content. This instruction can be used to add not
only memory addresses but also any pair of 32 bit registers. Although originally
meant for directly mapping high level memory references, leal is essentially an
arithmetic instruction with two major advantages over the addl instruction,
namely - the ability to perform addition with either two or three operands and
the ability to store the result in any register (which is not necessarily a source
operand).

D Special Instructions:

A large number of instructions cannot be easily replaced by a sequence of idem-
potent instructions. However, some of these instructions can still be broken down
into an alternative sequence of instructions, not necessarily idempotent. These
instructions can still be duplicated to achieve the desire fault tolerance. Table 7
demonstrates how the call <function> instruction can be made fault tolerant.
In x86, the function call mechanism involves pushing the return address onto
the stack followed by an unconditional jump. This idea is exploited to rewrite
the call instruction as follows. First, the return address is computed by adding
1 to the address of the returnlabel and is pushed onto the stack. This is fol-
lowed by two successive unconditional jump instructions. It is interesting to note
that although the unconditional jump is not an idempotent instruction, the se-
quencing of the instructions ensures that both jump instructions can never be
executed sequentially even if no fault occurs. When writing the replacement se-
quence, we replace the pushl %eax instruction by its equivalent fault tolerant
sequence, with the assumption that register %rx stores the value of —4 in two’s
complement notation.

Table 7: Replacement Sequence: call <function>

movl %ebx, <returnlabel>
movl %ebx, <returnlabel>
movl $1, %ecx

movl $1, %ecx

leal %eax, [Yoebx + %ecx]
leal %eax, [Yoebx + %ecx]
movl %esp, %ebx

movl %esp, %ebx

leal %esp, [Yoebx + %rx]
leal %esp, [Yobax + %rx]
movl (%esp), Y%eax

movl (%esp), %eax

jmp <function>

jmp <function>
returnlabel:

E Non-replaceable and Partially Replaceable Instructions
in the x86 Instruction Set

There are a large number of instructions in the x86 instruction set that cannot
be replaced by an equivalent fault tolerant sequence of instructions. An example
of a non-replaceable instruction is the jne (jump if not equal) instruction. For
such instructions, fault detection schemes are the only possible solution. There
are also partially replaceable instructions such as the subl instruction that can
be written by a combination of several idempotent instructions and a few non-
idempotent ones. This helps reduce the probability that the attacker can skip
precisely the non-idempotent instructions.

Table 8: Replacement Sequence: subl %eax,%ebx

Instruction |Replacement Sequence
subl %eax,%ebx|compl %eax, %rx
movl 81, %ry
movl $1, %ry
leal %rz, [Yorx + %ry]
leal %rz, [Yorx + %ry]
movl %eax, %ecx
movl %eax, %ecx
leal %eax, [Yoecx + %rz]
leal %eax, [Yoecx + %rz)

The instruction set for x86 is highly optimized with respect to the usage of
registers. Consequently, for most arithmetic instructions, such as the addl and
subl instructions, the destination operand is also a source operand. While the

addl instruction can be replaced by the idempotent leal instruction, it is not
possible to make any such idempotent replacement for the subl instruction. For
the subl instruction, the best we can do is replace the single instruction by a
sequence of instructions, a large fraction of which are idempotent. This reduces
the probability that the few remaining non-idempotent instructions are skipped
by the adversary. The concept is elucidated by a possible replacement sequence
for the subl as shown in Table 8. We first compute the two’s complement of
%ebx and add it to Y%eax. The compl instruction used is non-idempotent,
however the probability that the attacker skips precisely this instruction among
all instructions in this replacement sequence is 1—10, as compared to 1 for a single
subl instruction. Thus the idea is to reduce the proportion of non-idempotent
instructions as far as possible to achieve greater fault tolerance.

F Fault Tolerant Implementation of the Infective
Countermeasure for AES

Our next step is to write the infective countermeasure scheme presented in al-
gorithm 2 in the aforementioned fault redundant framework. We first translate
a high level implementation of the algorithm in C into a sequence of machine
level instructions. The translation is done using a GNU GCC compiler on a 32-
bit Intel processor. It generates a sequence of 32 bit x86 instructions. We then
replace each instruction by a fault tolerant sequence of instructions, provided
such a sequence exists for the corresponding instruction. Table 9 summarizes
the various categories of instructions in the original machine level representation
of algorithm 2 and also presents the average blowup due to each category.

Table 9: Fault Tolerant Infective Countermeasure : Blowup at the Instruction level

Instruction Category Original Number of Instructions|Percentage Blowup
Idempotent 368 100.0
Separable 160 332.2
Special 68 847.4
Non-replaceable & Partially replaceable 570 50.0
Overall 1166 132.1

