Zero-Knowledge Accumulators and Set Operations

Esha Ghosh!, Olga Ohrimenko?, Dimitrios Papadopoulos®, Roberto Tamassia' and Nikos Triandopoulos*?

! Dept. of Computer Science, Brown University, Providence RI, USA
esha_ghosh@brown.edu, rt@cs.brown.edu
2 Microsoft Research, Cambridge, UK
oohrim@microsoft.com
3 Dept. of Computer Science, Boston University, Boston MA, USA
dipapadolbu.edu
4 RSA Laboratories, Cambridge MA, USA
nikolaos.triandopoulos@rsa.com

Abstract. Accumulators provide a way to succinctly represent a set with elements drawn from a given domain, us-
ing an accumulation value. Subsequently, short proofs for the set-membership (or non-membership) of any element
from the domain can be constructed and efficiently verified with respect to this accumulation value. Accumula-
tors have been widely studied in the literature, primarily, as an authentication primitive: a malicious prover (e.g.,
an untrusted server) should not be able to provide convincing proofs on false statements (e.g., successfully prove
membership for a value not in the set) to a verifier that issues membership queries (of course, having no access to
set itself). In essence, in existing constructions the accumulation value acts as a (honestly generated) “commitment”
to the set that allows selective “opening” as specified by membership queries—but with no “hiding” properties.

In this paper we revisit this primitive and propose a privacy-preserving enhancement. We define the notion
of a zero-knowledge accumulator that provides the following very strong privacy notion: Accumulation values
and proofs constructed during the protocol execution leak nothing about the set itself, or any subsequent updates
to it (i.e., via element insertions/deletions). We formalize this property by a standard real/ideal execution game.
An adversarial party that is allowed to choose the set and is given access to query and update oracles, cannot
distinguish whether this interaction takes place with respect to the honestly executed algorithms of the scheme or
with a simulator that is not given access to the set itself (and for updates, it does not even learn the type of update
that occurred—Iet alone the inserted/deleted element). We compare our new privacy definition with other recently
proposed similar notions showing that it is strictly stronger: We give a concrete example of the update-related
information that can be leaked by previous definitions.

We provide a mapping of the relations between zero-knowledge accumulators and primitives that are either
set in the same security model or solve the same problem. We formally show and discuss a number of implications
among primitives, some of which are not immediately evident. We believe this contribution is interesting on its
own, as the area has received considerable attention recently (e.g., with the works of [Naor et al., TCC 2015] and
[Derler et al., CT-RSA 2015]).

We then construct the first dynamic universal zero-knowledge accumulator. Our scheme is perfect zero-
knowledge and is secure under the g-Strong Bilinear Diffie-Hellman assumption.

Finally, building on our dynamic universal zero-knowledge accumulator, we define a zero-knowledge authen-
ticated set collection to handle more elaborate set operations (beyond set-membership). In particular, this primitive
allows one to outsource a collection of sets to an untrusted server that is subsequently responsible for answering
union, intersection and set difference queries over these sets issued by multiple clients. Our scheme provides proofs
that are succinct and efficiently verifiable and, at the same time, leak nothing beyond the query result. In particular,
it offers verification time that is asymptotically optimal (namely, the same as simply reading the answer), and proof
construction that is asymptotically as efficient as existing state-of-the-art constructions— that however, do not offer
privacy.

Keywords: zero-knowledge accumulators, cryptographic accumulators, secure set-operations, zero-
knowledge authenticated set collection, secure data outsourcing

1 Introduction

A cryptographic accumulator is a primitive that offers a way to succinctly represent a set X of elements by
a single value acc referred to as the accumulation value. Moreover, it provides a method to efficiently and
succinctly prove (to a party that only holds acc) that a candidate element x belongs to the set, by computing
a constant-size proof w, referred to as witness. The interaction is in a three-party model, where the owner of
the set runs the initial key generation and setup process to publish the accumulation value. Later an untrusted
server handles queries regarding the set issued by a number of clients, providing membership answers with
corresponding witnesses.

Accumulators were originally introduced by Benaloh and del Mare in [BdM94].
Since then, the relevant literature has grown significantly (see for example,
[Nyb96a,BP97,BLL00,CL02,CHKO08,DT08,CKS09,ATSM09,Lip12,CPPT14,DHS15]') with con-
structions in various models. At the same time, accumulators have found numerous other applications in the
context of public-key infrastructure, certificate management and revocation, time-stamping, authenticated
dictionaries, set operations, anonymous credentials, and more.

Traditionally in the literature, the security property associated with accumulators was soundness (or
collision-freeness), expressed as the inability to compute a witness for an element x ¢ X. Subsequently, accu-
mulators were extended to universal accumulators [LLX07,DT08,ATSMO09] that support non-membership
proofs as well. Soundness for universal accumulators expresses the inability to forge a witness for an ele-
ment, i.e., if x € X, it should be hard to prove x ¢ X and vice-versa. No notion of privacy was considered,
e.g., “what does an adversary that observes the client-server communication learn about the set X or “does
the accumulation acc reveal anything about the elements of X. It is clear to us that such a property would
be attractive, if not—depending on the application—crucial. For example, in the context of securing the Do-
main Name System (DNS) protocol by accumulating the set of records in a zone, it is crucial to not leak any
information about values in the accumulated set while responding to queries.”> As an additional example,
recently Miers et al. [MGGR13] developed a privacy enhancement for Bitcoin, that utilizes the accumulator
of [CLO2]. In such a context, it is very important to minimize what is leaked by accumulation values and
witnesses in order to achieve anonymity (for individuals and transactions).

Quite recently, de Meer et al. [dIMLPP12] and Derler et al. [DHS15] suggested the introduction of an
indistinguishability property for cryptographic accumulators, in order to provide some notion of privacy.
Unfortunately, the definition of the former was inherently flawed, as noted in [DHS15]3, whereas the later,
while meant to serve cryptographic accumulators that support changes in the accumulated set (i.e., element
insertion and deletion), did not protect the privacy of theses changes, as any adversary suspecting a particular
modification can check the correctness of his guess.

In this work, we propose the notion of zero-knowledge for cryptographic accumulators. We define this
property via an extensive real/ideal game, similar to that of standard zero-knowledge [GMRS85]. In the real
setting, an adversary is allowed to choose his challenge set and to receive the corresponding accumulation.
He is then given oracle access to the querying algorithm as well as an update algorithm that allows him
to request updates in the set (receiving the updated accumulation value every time). In the ideal setting,
the adversary interacts with a simulator that does not know anything about the set or the nature of the
updates, other than the fact that an update occurred. Zero-knowledge is then defined as the inability of the
adversary to distinguish between the two settings. Our notion of zero-knowledge differs from the privacy
notion of [DHS15], by protecting not only the originally accumulated set but also all subsequent updates.
In fact, we formally prove that zero-knowledge is a strictly stronger property than indistinguishability in the
context of cryptographic accumulators.

! We refer interested readers to [DHS15] for a comprehensive review of existing schemes.
2 See for example, https://tools.ietf.org/html/rfc5155.
3 Subsequently, the definition was strengthened in [SPB* 12], but it is still subsumed by that of [DHS15].

We provide the first zero-knowledge accumulator construction and prove its security. Our construc-
tion builds upon the bilinear accumulator of Nguyen [Ngu05] and achieves perfect zero-knowledge. Our
scheme falls within the category of dynamic universal cryptographic accumulators: It allows to not only
prove membership, but also non-membership statements (i.e., one can compute a witness for the fact that
x & X), and supports efficient changes in the accumulation value due to insertions and deletions in the set. It
is secure under the g-Strong Bilinear Diffie-Hellman assumption, introduced in [BB04]. In order to provide
non-membership witness computation in zero-knowledge, we had to deviate from existing non-membership
proof techniques for the bilinear accumulator ([DT08,ATSM09]). We instead used the disjointness tech-
nique of [PTT11], appropriately enhanced for privacy. From an efficiency perspective, we show that the
introduction of zero-knowledge to the bilinear accumulator comes at an insignificant cost: Asymptotically
all computational overheads are either the same or within a poly-logarithmic factor of the construction
of [Ngu05] that offers no privacy.

In general, a cryptographic accumulator can be viewed as special case of an authenticated data struc-
ture (ADS) [Mer80,Mer89,MTGS01,Tam03], where the supported data type is a set, and the queries are
set membership/non-membership for elements of this set. As a result, our zero-knowledge accumulator
has the same functionality as an authenticated set but with additional privacy property. Moreover, it falls
within the general framework of zero-knowledge authenticated data structures (ZKADS) introduced re-
cently in [GGOT15], where an underlying data structure supports queries such that the response to a query
is verifiable and leaks nothing other than the answer itself.

Beyond set-membership One natural question is how to build a ZKADS with an expanded supported func-
tionality that goes beyond set-membership. In particular, given multiple sets, we are interested in accommo-
dating more elaborate set-operations (set union, intersection and difference).* We propose zero-knowledge
authenticated set collection for the following setting. A party that owns a database of sets of elements
outsources it to an untrusted server that is subsequently charged with handling queries, expressed as set
operations among the database sets, issued by multiple clients. We provide the first scheme that provides not
only integrity of set operations but also privacy with respect to clients (i.e., the provided proofs leak nothing
beyond the answer). The fundamental building block for this construction is our zero-knowledge accumula-
tor construction, together with a carefully deployed accumulation tree [PTT15]. We note that if we restrict
the security properties only to soundness—as is the case in the traditional literature of authenticated data
structures—there are existing schemes (specifically for set-operations) by Papamanthou et al. [PTT11] for
the single-operation case, and by Canetti et al. [CPPT14] and Kosba et al. [KPP™ 14] for the case of multiple
(nested) operations. However, none of these constructions offer any notion of privacy, thus our construction
offers a natural strengthening of their security guarantees.

Contributions. Our contributions can be summarized as follows:

— We define the property of zero-knowledge for cryptographic accumulators and show that it is strictly
stronger than existing privacy notions for accumulators.

— We describe the complex relations between cryptographic primitives in the area. Specifically, we show
that zero-knowledge sets can be used in a black-box manner to construct zero-knowledge accumulators
(with or without trapdoors). We also show that zero-knowledge accumulators imply primary-secondary-
resolver membership proof systems [NZ14].

— We provide the first construction of a zero-knowledge dynamic universal accumulator (with trapdoor).
Our scheme is secure under the g-SBDH assumption and is perfect zero-knowledge.

— Using our zero-knowledge accumulator as a building block, we construct the first protocol for zero-
knowledge outsourced set algebra operations. Our scheme offers secure and efficient intersection, union
and set-difference operations under the g-SBDH assumption. We instantiate the set-difference operation

4 We stress that these operations form a complete set-operations algebra.

in the random oracle model to achieve efficiency and discuss how it can be instantiated in the standard
model with some efficiency overhead. Our construction (except for the update cost) is asymptotically as
efficient as the previous state-of-the-art construction from [PTT11], that offered no privacy guarantees.

Other related work. Our privacy notion is reminiscent of that of zero-knowledge
sets [MRKO03,CHL'05,CFM08,LY10] where set membership and non-membership queries can be
answered without revealing anything else about the set. Zero-knowledge sets are a stronger primitive
since they assume no trusted owner: Server and owner are the same (untrusted) entity. On the other hand,
accumulators (typically) yield more lightweight constructions with faster verification and constant-size
proofs, albeit in the three-party model’.

Very recently, Naor et al. [NZ14] introduced primary-secondary-resolver membership proof systems, a
primitive that is also a relaxation of zero-knowledge sets in the three-party model, and showed applications in
network protocols in [GNP 14]. Our definitions are quite similar, however since they define non-adaptive
security our zero-knowledge accumulators imply their definition. Moreover, their privacy notion is func-
tional zero-knowledge, i.e., they tolerate some function of the set to be leaked, e.g., its cardinality. Finally,
they only cater for the static case and have to rely on external mechanisms (e.g., time-to-live cookies) to han-
dle changes in the set. In contrast, our zero-knowledge definition also protects updates and our construction
has built-in mechanisms to handle them.

In Section 4 we discuss more extensively the relation between these three primitives.

Existing works for cryptographic accumulators (e.g., [CL02,Ngu05,ATSM09,L.LX07]) equip the prim-
itive with zero-knowledge proof-of-knowledge protocols, such that a client that knows his value x is (or is
not) in X, can efficiently prove to a third-party arbitrator that indeed his value is (resp. is not) in the set,
without revealing x. We stress that this privacy goal is very different from ours. Here we are ensuring that
the entire protocol execution (as observed by a curious client or an external attacker) leaks nothing.

Regarding related work for set operations, the focus in the cryptographic literature has been on the
privacy aspect with a very long line of works (see for example, [FNP04,KS05,BA12,HN12,HEK12]), some
of which focus specifically on set-intersection (e.g., [JL0O9,DSMRY09,CT10,DCW13]). The above works fit
in the secure two-party computation model and most are secure (or can be made with some loss in efficiency)
also against malicious adversaries, thus guaranteeing the authenticity of the result. However, typically this
approach requires multi-round interaction, and larger communication cost than our construction. On the
other hand, here our two security properties are “one-sided”: Only the server may cheat with respect to
soundness and only the client with respect to privacy; in this setting we achieve non-interactive solutions
with optimal proof-size. There also exist works that deal exclusively with the integrity of set operations,
such as [MBKKO04] that achieves linear verification and proof cost, and [ZX14] that only focuses on set-
intersection but can be combined with an encryption scheme to achieve privacy versus the server.

Another work that is related to ours is that of Fauzi et al. [FLZ14] where the authors present an efficient
non-interactive zero-knowledge argument for proving relations between committed sets. Conceptually, this
work is close to zero-knowledge sets, allowing also for more general set operation queries. From a security
viewpoint, this work is in the stronger two-party model hence it can accommodate our three-party setting
as well. Also, from a functionality viewpoint, their construction works for (more general) multi-set opera-
tions. However, they rely on non-falsifiable knowledge-type assumptions to prove their scheme secure, and
their scheme trivially leaks an upper-bound on the committed sets. Moreover, their construction cannot be
efficiently generalized for operations on more than two sets at a time, and they do not explicitly consider
efficient modifications in the sets.

We also note that recently other instantiations of zero-knowledge authenticated data structures have been
proposed, including lists, trees and partially-ordered sets of bounded dimension [GOT14,GGOT15].

> See however the discussion of accumulators versus trapdoorless accumulators in Section 3.

2 Preliminaries

In this section we introduce notation and cryptographic tools that we will be using for the rest of the paper.

We denote with A the security parameter and with v(A) a negligible function. A function f(A) is neg-
ligible if for each polynomial function poly(A) and all large enough values of A, f(A) < 1/(poly(L)). We
say that an event can occur with negligible probability if its occurrence probability can be upper bounded by
a negligible function. Respectively, an event takes place with overwhelming probability if its complement

takes place with negligible probability. The symbol & X denotes uniform sampling from domain X. We
denote the fact that a Turing machine Adv is probabilistic, polynomial-time by writing PPT Adv.

Bilinear pairings. Let G be a cyclic multiplicative group of prime order p, generated by g. Let also Gr be
a cyclic multiplicative group with the same order p and e : G x G — G7 be a bilinear pairing with the fol-
lowing properties: (1) Bilinearity: e(P?, Q") = e(P,Q)% for all P,Q € G and a,b € Z,; (2) Non-degeneracy:
e(g,8) # lg,; (3) Computability: There is an efficient algorithm to compute e(P,Q) for all P,Q € G. We
denote with pub := (p,G,Gr,e,g) the bilinear pairings parameters, output by a randomized polynomial-
time algorithm GenParams on input 1*. For clarity of presentation, we assume for the rest of the paper a
symmetric (Type 1) pairing e. We note though that both our constructions can be securely implemented in
the (more efficient) asymmetric pairing case, with straight-forward modifications (see [CM11] for a general
discussion on pairings).

Our security proofs makes use of the g-Strong Bilinear Diffie-Hellman (¢g-SBDH) assumption over
groups with bilinear pairings introduced by Boneh and Boyen in [BB04].

Assumption 1 (¢-Strong Bilinear Diffie-Hellman) For any PPT adversary Adv and for q being a param-
eter of size polynomial in A, there exists negligible function V() such that the following holds:

pub + GenParams(1%);s <—¢ Zy;

Pr
(2.Y) € Zy x Gr + Adv(pub, (', ...8")) : Y= e(g,8)"/ 1))

<v(A)].

Non Interactive Zero Knowledge proof of Knowledge Protocols (NIZKPoK). A non-interactive zero-
knowledge proof of knowledge protocol (NIZKPoK) for any NP language membership L proof system
operates in the public random string model, and consists of polynomial-time algorithms P and V that work
as follows: The algorithm P takes the common reference string 6 and values (x,w) such that x € L and w is
a witness to this. P outputs a proof 7. The algorithm V takes (o,x,T) as input and outputs accept or reject.
The security properties of a NIZKPoK are the following:

Competeness: For all x € L, for all witnesses w for x, for all values of random string ¢ and for all outputs
7 of P(G,x,w), V(0,x,T) = accept.

Soundness: For all adversarial prover algorithms P*, for a randomly chosen o, the probability that P* can
produce (x,) such that x ¢ L but V(G,x,T) = accept is negligible.

Knowledge Soundness with error 8: A zero-knowledge proof of knowledge protocol for any NP language
membership L has a stronger form of soundness that says that if a cheating prover P* convinces the
verifier that x € L with noticeable probability (i.e., more than the soundness error), then not only this
means that x € L but it actually means that P* “knows” a witness in the sense that it could obtain a
witness by running some algorithm. To put more formally, for every possibly cheating prover P*, and
every x, if P* produces 7 such that Pr[V (c,x,T) = accept] > 6+ p, (d is the soundness error) then there’s
a algorithm E (called a knowledge extractor) with running time polynomial in 1/p and the running time
of P*, that on input x outputs a witness w for x with probability at least 1/2.

Zero-Knowledge: There exist algorithms ZKSim-Setup and ZKSim-Prove, such that the following holds.
ZKSim-Setup takes the security parameter as input and outputs (G,s). For all x, ZKSim-Prove takes
(6,s,x) as input and outputs simulated proof ©5. Even for a sequence of adaptively and adversarially

picked (xj,...,x,) (where m is polynomial in the security parameter), if x; € L for i € [1,m], then the

simulated proofs 7,5, ...7,,5 are distributed indistinguishably from proofs 7, ..., T, that are computed

by running P(G,x;, w;) where w; is some witness that x; € L.
NIZKPoK protocol for Discrete Log (DL). Here we describe a NIZKPoK protocol based on DL as-
sumption, following the style of Schnorr protocols [Sch89]. The construction is non-interactive and uses
the Fiat-Shamir transformation [FS87] for efficiency and its security is provable in the random-oracle
(RO) model [BR93]. Informally, in the following protocol, the prover P proves to the verifier V that
it knows the discrete log of a given value in zero-knowledge. We succinctly represent this protocol as
PK = {(h,x) : h = g"*}. Let us denote the proof units sent by the prover P to the verifier V as PKproof.
We describe the protocol in the RO model in Figure 1, where # is a cryptographic hash function viewed as
a RO.

The protocol proceeds as follows:
— P picks arandom u € Z*, computes b + g'".
— Then P computes ¢ < H (b).
— P computes r < u+ cx and sets PKproof := (b,c,r).
— Finally P sends PKproof to the verifier.
The verification proceeds as follows:
— Parse PKproof as (b,c,r).
— Verify if ¢ = H(b). If not, return reject. Else proceed to next step.
— Verify if g’" = bh¢. If the verification fails, return reject. Else return accept.

Fig. 1: PK = {(h,x) : h=g""}

Characteristic Polynomial. A set X = {x;,...,x,} with elements x; € Z, can be represented by a polyno-
mial following an idea introduced in [FNP04]. The polynomial Chyx(z) = [T, (x; 4+ 2z) from Z,[z], where
z is a formal variable, is called the characteristic polynomial of X. In what follows, we will denote this
polynomial simply by Chy and its evaluation at a point y as Chx(y).

The following lemma characterizes the efficiency of computing the characteristic polynomial of a set
and of Extended Euclidian algorithm.

Lemma 1 ([PSL76]) Given a set X =xy,...,x, € ZZ, its characteristic polynomial Chy :=Y"_ ciz € Z, Z]
can be computed with O(nlogn) operations by FFT interpolation.

We will use the following Lemma while proving correctness of coefficients of a polynomial:

Lemma 2 (Schwartz-Zippel) Let p|z],q[z] be two d-degree polynomials from Z,|z]. Then for w & Ly, the
probability that p(w) = z(w) is at most d/ p, and the equality can be tested in time O(d).

If p € O(2%), it follows that the above probability is negligible, if d is poly()).

Complexity Model. To explicitly measure complexity with respect to the number of primitive cryptographic
operations, without considering the dependency on the security parameter, we adopt the complexity model
used in [PTT11]. The access complexity of an algorithm is defined as the number of memory accesses this
algorithm performs on the authenticated data structure stored in an indexed memory of n cells, in order for
the algorithm to complete its execution. We require that each memory cell can store up to O(poly(logn))
bits. The group complexity of data collection is defined as the number of elementary data objects contained
in that object. Whenever it is clear from the context, we omit the terms “access" and “group".

Given a collection of sets X;,, ... X; and their characteristic polynomial representation, we summarize a
characterization of the intersection of the sets in the following lemma.

Lemma 3 ([PTT11]) Set answer is the intersection of the sets X;,,...X;, if and only if there exists poly-
nomials qi[z,...qlz] such that ¥ jcj;, i1 q1[z)P1[2] = 1 where Pjlz] = Chx,\answer[2]- Moreover, computing
polynomials q;[z) where j € [i1,i] has O(Nlog? Nloglog N) complexity where N = Y jcliri 1 and nj = | Xj.

Accumulation tree: Given a collection of sets S = { X}, X2, ..., X }, let acc(X;) be a succinct representation
(constant size) of X; using its characteristic polynomial. We describe an authentication mechanism that does
the following. A trusted party computes m hash values h; := h(acc(X;)) (using collision resistant crypto-
graphic hash function) of the m sets of S. Then given a short public digest information of the current set
collection S, the authentication mechanism provides publicly verifiable proofs of the form “#; is the hash of
the i’ set of the current set collection S".

A popular authentication mechanism for proofs of this form are Merkle hash trees that based on a
single value digest can provide logarithmic size proofs and support updates. An alternative authentication
mechanism to Merkle trees, (specifically in the bilinear group setting) are accumulation trees [PTT15].
Intuitively, an accumulation tree can be seen as a “flat" version of Merkle trees.

An accumulation tree (AT) is a tree with (5 levels, where 0 < € < 1 is a parameter chosen upon setup,
and m leaves. Each internal node of T has degree O(m®) and T has constant height for a fixed €. Each leaf
node contains the /; and each internal node contains the hash of the values of its children. We will describe
the setup, query, update and verification of AT in the following algorithms. For simplicity, we skip an explicit
key generation phase and describe the keys needed for each algorithm as its input. We have 3 kinds of keys
for an AT: the secret key (sk), an evaluation key (ek) derivable from the secret key, which is used by the
AT Query algorithm for generating authentication paths, and finally a verification key (vk) corresponding to
the secret key, which is used for verification of an authentication path. An accumulation tree scheme AT
is defined as a tuple of 4 PPT algorithms: AT = (ATSetup, AT Query, ATUpdate, AT Verify). We describe
the input and output of each of the algorithms here. To capture the notion of the most recent set collection,
we use subscript ¢, i.e., S; denotes the set collection at time ¢. Though this subscript is not necessary to
describe these algorithms by themselves, we would need this index when using AT as a subroutine for our
zero-knowledge authenticated set collection scheme (ZKASC). A detailed construction from [PTT11] can
be found in Appendix A.

Setup: (auth(Sy),digest,) «+— ATSetup(sk, (acc(Xj),...,acc(X,))) ATSetup takes a secret key (sk) and a
set of accumulation values (acc(.Xj),...,acc(X,,)) for a set collection (Sp) and builds an AT on top of
it. This algorithm returns the authentication information for the set collection (auth(Sy)) and the root of
the AT as the digest (digesty).

Query: (IT;, o;) < ATQuery(ek;,i,auth(S;)) ATQuery takes the evaluation key ek,, authentication infor-
mation for the set collection auth(S;) and a particular index i of the set collection and returns the au-
thentication path for that set .X;, denoted as I1; and the accumulation value of that set as «;.

Update: (auth’,digest’,updinfo;) <— ATUpdate(sk,i,acc’(X;),auth(S;),digest,) ATUpdate is the update
algorithm that updates the accumulation value for a particular set X; to acc’(X;). This algorithm takes
the old the authentication information for the set collection auth(S;), and the root digest digest, as input
along with acc’(X;). It outputs the updated authentication information for the set collection auth’, the
updated digest digest’ and the update authentication information (in updinfo;).

For our construction, we will use a variant of the ATUpdate algorithm that allows for batch up-

dates. The batch update algorithm ATUpdateBatch takes a series of updated accumulation values

(i1,acc(X;,), ..., ix,acc'(X;,)) instead of one, along with the old authentication information auth(S,)

and root digest digest, as input. It outputs auth’, digest’ and a series of update authentication informa-

tion (in (updinfo, ,...,updinfo,)). We describe a construction for ATUpdateBatch from ATUpdate in
Appendix A.

Verify: (accept/reject) «— AT Verify(vk,digest,,i,I1;,0;) AT Verify is the verification algorithm that takes
the verification key of the scheme vk, digest of the set collection digest, and a particular set index i
along with its authentication path (Il;) and accumulation value (¢;) as input and returns accept if the o;
is indeed the accumulation value of the i set of the collection. It returns reject otherwise.

The following lemma summarizes its security and efficiency.

Lemma 4 [PTTI11] Under the g-SBDH assumption, for any adversarially chosen authentication path 11;
for y against an honestly generated digest, digest, such that AT Verify(vk,digest,i,I1;,y) returns accept,
it must be that y is the i"" element of the tree except for negligible probability. Algorithm ATQuery takes
O(mtlogm) and outputs a proof of O(1) group elements and algorithm AT Verify has access complexity
O(1) and algorithm ATUpdate has access complexity O(1).

3 Zero-Knowledge Universal Accumulators

A cryptographic accumulator is a primitive that allows one to succinctly represent a set X of elements from
a domain X, by a single value acc from a (possibly different) domain A, known as the accumulation value.
Moreover, it provides a way to efficiently and succinctly prove that a candidate element x belongs to the set,
(to a party that only holds acc) by computing a constant-size proof w, referred to as witness.

Accumulators were introduced by Benaloh and del Mare in [BAM94] as an alternative to cryptographic
signatures for timestamping purposes. The authors provided the first construction in the RSA setting. Later,
Baric and Pfitzmann [BP97] refined this construction by strengthening the security notion and Camenisch
and Lysyanskaya [CL02] added the property of efficiently updating the accumulation value. More recently,
Nguyen [Ngu05] and Camenisch et al. [CCs08] proposed constructions in the prime-order bilinear group
setting. Li et al. [LLX07], and Damgérd and Triandopoulos [DT08] extended the RSA and bilinear accumu-
lator respectively, adding the property to prove non-membership as well. Accumulators that achieve this are
referred to as universal.

Trusted/untrusted setup. All the above constructions —and the one we provide here— are in the trusted-setup
model, i.e., the party that generates the scheme parameters originally, holds some trapdoor information that
is not revealed to the adversary. E.g., for the RSA-based constructions, any adversary that knows the fac-
torization of the modulo can trivially cheat. An alternative body of constructions aims to build trapdoorless
accumulators (also referred to as strong accumulators) [Nyb96a,Nyb96b,San99,BL.L0O0,CHKOOS,Lip12],
where the owner is entirely untrusted (effectively the owner and the server are the same entity). Unfortu-
nately, the earlier of these works are quite inefficient for all practical purposes, while the more recent ones
either yield witnesses that grow logarithmically with the size of X or rely on algebraic groups, the use of
which is not yet common in cryptography. Alternatively, trapdoorless accumulators can be trivially con-
structed from zero-knowledge sets [MRKO03], a much stronger primitive. While a scheme without the need
for a trusted setup is clearly more attractive in terms of security, it is safe to say that we do not yet have a
practical scheme with constant-size proofs, based on standard security assumptions.

In this work we aim to construct a dynamic, universal accumulator that also achieves a very strong privacy
property. We formalize the required privacy property by defining Zero-Knowledge Universal Accumulators
(ZKUA). Informally, the zero-knowledge property ensures that an adversarial party that sees the accumula-
tion value as well as all membership and non-membership witnesses exchanged during the protocol execu-
tion learns nothing about the set, not even its size. This property even holds for adversarial clients that issue
queries hoping to learn additional information about the set. Zero-knowledge guarantees that nothing can be
learned from the protocol except for the answer to a query itself. In other words, explicitly querying for an
element is the only way to learn whether an element appears in the set or not.

Moreover, privacy should also hold with respect to updates (insertions or deletions) in the set. That is, an
adversary that observes the accumulation and witnesses both before and after an update should learn nothing
about the occurred changes, other than the fact that an update occurred —not even whether it was an insertion
or deletion.

In the rest of the section, we provide the definition for ZKUA and the corresponding security properties.

Note on definitional style. Traditionally in the literature, a cryptographic accumulator is defined as an
ensemble of families of functions, referring to the function f that takes as input a set and a seed accumulation
value and outputs a new accumulation value. At a high level, the requirements included the existence of an
efficient algorithm to sample from the ensemble and that f can be efficiently evaluated. Moreover, f had
to be quasi-commutative (i.e., after a series of invocations the final output is order-independent) which
yields an efficient way to produce witnesses. Informally, a witness for x € X consists of the evaluation of
f on all the other elements of the set (corresponding to the accumulation value of X \ x). Since f is quasi-
commutative, a client can evaluate it using the witness and x and check that it is equal to the set accumulation
value produced by the trusted owner. However, in this work we follow the more general definitional style
introduced in [FNO2], and more recently by [DHS15]. The cryptographic accumulator is described as a
tuple of algorithms which is more meaningful in the context of the applications discussed here. The quasi-
commutativity property (while satisfied by our construction) is purposely omitted, as there exist more recent
constructions of cryptographic accumulators that do not satisfy it but have alternative ways for witness
generation (e.g., hash-tree based construction).

A universal accumulator (UA) consists of four algorithms (GenKey, Setup, Witness, Verify) and it supports
queries of the following form: “is x € X?” for elements from a domain X. The response is of the form (b, w)
where b is a boolean value indicating if the element is in the set,i.e., b=1ifx€ X,b=0if x ¢ X and w is
the corresponding membership/non-membership witness for x.

Definition 1 (Universal Accumulator) A universal accumulator is a tuple of four PPT algorithms (GenKey,
Setup, Witness, Verify) defined as follows:

(sk,vk) < GenKey(1%)
This probabilistic algorithm takes as input the security parameter and outputs a (public) verification key
vk that will be used by the client to verify query responses and a secret key sk that is kept by the owner.
(acc, ek,aux) « Setup(sk, X)
This probabilistic algorithm is run by the owner. It takes as input the source set X and produces the
accumulation value acc that will be published to both server and client, and an evaluation key ek as well
as auxiliary information aux that will be sent only to the server in order to facilitate proof construction.
(b,w) < Witness(acc, X, x, ek, aux)
This algorithm is run by the server. It takes as input the evaluation key and the accumulation value
ek,acc generated by the owner, the source set X, a queried element x, as input. It outputs a boolean
value b indicating whether the element is in the set and a witness w for the answer.
(accept/reject) < Verify(acc,x,b,w, vk)
This algorithm is run by the client. It takes as input the accumulation value acc and the public key vk
computed by the owner, a queried element x, a bit b, the witness w and it outputs accept/reject.

The above definition captures what is known in the literature as static accumulator, where Setup has to be
executed again whenever change in X occurs. The following defines dynamic accumulators, by introducing
an algorithm Update that takes the current accumulation value and the description of an update (e.g., “insert
x” or “remove x”) and outputs the appropriately modified accumulation value, together with a possibly
modified ek’ and aux’. Of course, this can always be achieved by re-running Setup, but we also require that
the execution of Update is faster than that of Setup. Moreover, there must also exist a WitUpdate algorithm

that takes the accumulation value and witness before an update, together with the new accumulation value
after the update and produces a corresponding new witness.

Definition 2 (Dynamic Universal Accumulator) A dynamic universal accumulator is a tuple of five PPT
algorithms, DUA = (GenKey, Setup, Witness, Verify, Update) defined as follows:

(GenKey, Setup, Witness, Verify) as in Definition 1.

(acc’,ek’,aux’) < Update(acc, X, x, sk, aux, upd)
This algorithm takes as input the current set with its accumulation value and auxiliary information, as
well as an element x to be inserted to X if upd = 1 or removed from X if upd = 0. If upd =1 and
x € X, (likewise if upd = 1 and x ¢ X) the algorithm outputs | and halts, indicating an invalid update.
Otherwise, it outputs (acc’,ek’,aux’) where acc’ is the new accumulation value corresponding to set
XU{x} or X\ {x} (10 be published), ek’ is the (possibly) modified evaluation key, and aux' is respective
auxiliary information (both to be sent only to the server).

(upd,w’) + WitUpdate(acc,acc’,x,w,y,ek’,aux, aux’,upd)
This algorithm is to be run after an invocation of Update. It take as input the old and the new accu-
mulation values and auxiliary informations, the evaluation key ek’ output by Update, as well as the
element x that was inserted or removed from the set, according to the binary value upd (the same as
in the execution of Update). It also takes a different element y and its existing witness w (that may be
a membership or non-membership witness). It outputs a new witness W' for y, with respect to the new
set X' as computed after performing the update. The output must be the same as the one computable by
running Witness(acc’, X', y, ek’ aux’).

In terms of efficiency, the focus is on the owner’s ability to quickly compute the new accumulation value after
a modification in the set (typically with most existing constructions, the presence of the trapdoor information
makes this achievable with a constant number of group operations). Slightly more formally, the runtime of
Update must be asymptotically smaller than that of Setup on the updated set. An even more attractive
property is the ability to update existing witnesses efficiently (i.e., not recomputing them from scratch) after
an update occurs, with WitUpdate. As a last remark, we point out that the ability to do this for positive
witnesses is inherently more important than that of non-membership witnesses. The former corresponds to
the (polynomially many) values in the set whereas the latter will be exponentially many (or infinite). A
server that wants to cache witness values and update them efficiently can thus benefit more from storing
pre-computed positive witnesses than negative ones (that are less likely to be used again).

Early cryptographic accumulator constructions had deterministic algorithms; once the trapdoor was cho-
sen each set had a uniquely defined accumulation value. As discussed at the end of this section, the conse-
quent introduction of privacy requirements led to constructions where Setup and Update are randomized,
which, in turn, introduced the natural distinction of accumulators into deterministic and randomized. In fact,
any deterministic accumulator trivially fails to meet even weak privacy notions: An adversary that suspects
that set X is the pre-image of a given accumulation value can test this himself. In order to achieve the wanted
zero-knowledge property, our definition also refers to randomized schemes but, to simplify notation, we omit
randomness from the input (unless otherwise noted).

Another important point is which parties can run each algorithm. The way we formulated our definition,
Setup and Update require knowledge of sk to execute, Witness requires ek and Verify takes only vk. From
a practical point of view, the owner is the party that is responsible for maintaining the accumulation value at
all times (e.g., signing it and posting it to a public log); all changes in X should, in a sense, be validated by
him first. On the other had, in most popular existing schemes (e.g., the RSA construction of [CL02] and the
bilinear accumulator of [Ngu05]) setup and update processes can also be executed by the server (who does
not know the trapdoor sk) and the only distinction is that the owner can achieve the same result much faster
(utilizing sk). The same is true for our construction here, but in the following security definitions we adopt

10

the more general framework where the adversary is given oracle access to these algorithms, that captures
both cases.

3.1 Security Properties

The first property we require from a cryptographic accumulator is completeness, i.e., a witness output by
any sequence of invocations of the scheme algorithms, for a valid statement (corresponding to the state of
the set at the time of the witness generation) is verified correctly with all but negligible probability.

Definition 3 (Completeness) Let X; denote the set constructed after i invocations of the Update algorithm
(starting from a set Xy) and likewise for ek;,aux;. A dynamic universal accumulator is secure if, for all sets
Xo where | Xy| and and | > 0 polynomial in h and all x; € X, for 0 =1,...,1, there exists a negligible function
V(\) such that:

(sk,vk) < GenKey(1); (eko,acco,auxq) < Setup(sk, Xp);
Pr {(accit1,ekit1,aux;y1) < Update(acc;, X;, x;, sk, aux;, upd;) bo<i<i >1-v(A)
(b,w) < Witness(acc;, X;, x, ek;,aux;) : Verify(accy,x,b,w, vk) = accept

where the probability is taken over the randomness of the algorithms.

In the above we purposely omitted the WitUpdate algorithm that was introduced purely for efficiency gains
at the server. In fact, recall that we restricted it to return the exact same output as Update (run for the
corresponding set and element) hence the value w in the above definition might as well have been computed
during an earlier update and subsequently updated by (one or more) calls of WitUpdate.

The second property is soundness which captures that fact that adversarial servers cannot provide ac-
cepting witnesses for incorrect statements. It is formulated as the inability of Adv to win a game during
which he is given oracle access to all the algorithms of the scheme (except for those he can run on his own
using ek,aux —see discussion on private versus public setup and updates above) and is required to output
such a statement and a corresponding witness.

Definition 4 (Soundness) For all PPT adversaries Adv running on input 1* and all | polynomial in A, the
probability of winning the following game, taken over the randomness of the algorithms and the coins of
Adv is negligible:

Setup The challenger runs (sk,vk) < GenKey(1*) and forwards vk to Adv. The latter responds with a set
Xo. The challenger runs (ekg,accy,auxo) <— Setup(sk, Xo) and sends the output to the adversary.

Updates The challenger initiates a list L and inserts the tuple (accoy,Xy). Following this, the adversary
issues update x; and receives the output of Update(acc;, X;, x;, sk, aux;,upd;) from the challenger, for
i=0,...,1. After each invocation of Update, if the output is not L, the challenger appends the returned
(accit1,Xit1) to L. Otherwise, he appends (acc;, X;).

Challenge The adversary outputs an index j, and a triplet (x*,b*,w*). Let L[] be (acc;, X;). The adversary
wins the game if:

Verify(accj,x*,b*,w*,vk) = accept A ((x" € X; AD* =0)V (x" € X;AD* =1))

discussion on the winning conditions of the game is due here. This property (also referred to as collision-
freeness) was introduced in this format in [LLX07] and was more recently adapted in [DHS15] with slight
modifications. In particular, Adv outputs set X* and accumulation value acc* as well as the randomness
used (possibly) to compute the latter (to cater for randomized accumulators). It is trivial to show that the two
versions of the property are equivalent.

11

An alternative, more demanding, way to formulate the game is to require that the adversary wins if
he outputs two accepting witnesses for the same element and with respect to the same accumulation value
(without revealing the pre-image set): a membership and a non-membership one. This property, introduced in
the context of accumulators in [BLLOO], is known as undeniability and is the same as the privacy property of
zero-knowledge sets. Recently, Derler et al. [DHS15] showed that undeniability is a stronger property than
soundness. However, existing constructions for undeniable accumulators are in the trapdoor-less setting
(with the limitations discussed above); since our construction is the trusted setup setting, we restrict our
attention to soundness. This should come as no surprise, as undeniability allows an adversary to provide a
candidate accumulation value, without explicitly giving a corresponding set. In a three-party setting (with
trusted setup) the accumulation value is always maintained by the trusted owner; there is no need to question
whether it was honestly computed (e.g., whether he knows a set pre-image or even whether there exists one)
hence undeniability in this model is an “overkill” in terms of security (see also the related discussion in
Section 4.3).

The last property is zero-knowledge. As we already explained, this notion captures that even a malicious
client cannot learn anything about the set beyond what he has queried for. We formalize this in a way that is
very similar to zero-knowledge sets (e.g, see the definition of [CHL"05]) appropriately extended to handle
not only queries but also updates issued by the adversary. We require that there exists a simulator such that
no adversarial client can distinguish whether he is interacting with the algorithms of the scheme or with the
simulator that has no knowledge of the set or the element updates that occur, other than whether a queried
element is in the set and whether requested updates are valid.

Definition 5 (Zero-Knowledge) Let D be a binary function for checking the validity of queries and updates
on a set. For queries, D(query,x, X)) = 1 iff x € X. For updates D(update,x,c,X)) =1 iff (c=1Ax¢ X)
or(c=0ANx€X). Let ReaIAdv(lk), IdeaIAdV75im(1}‘) be games between a challenger, an adversary Adv and
a simulator Sim = (Simy,Simy), defined as follows:

Realagy (1%):

Setup The challenger runs (sk,vk) < GenKey(1*) and forwards vk to Adv. The latter chooses a set X,
with | Xy| € poly(k) and sends it to the challenger who in turn responds with accy output by running
the algorithm Setup(sk, Xp). Finally, the challenger sets (X ,acc,aux) < (Xo,accy,auxo).

Query Fori=1,...,I, where | € poly(A), Adv outputs (op,x;,c;) where op € {query,update} and
ci € {07 1}.‘

If op = query: The challenger runs (b,w;) < Witness(acc, X, x;, ek, aux) and returns the output to
Adv.
If op = update: The challenger runs Update(acc, X, x;, sk, aux, ¢;). If the output is not L he updates
the set accordingly to get X;, sets (X, acc, ek,aux) < (X;,acc;, ek;,aux;) and forwards acc to Adv.
Else, he responds with 1.
Response The adversary outputs a bit d.

Idealagy (1*):

Setup The simulator Simy, on input 1%, forwards vk to Adv. The adversary chooses a set Xy with
| Xo| € poly(A). Sim| (without seeing Xy) responds with accy and maintains state stateg. Finally, let
(X,acc) + (Xp,accy).

Query Fori=1,...,l1 Adv outputs (op,x;,c;) where op € {query,update} and c; € {0,1}:

If op = query: The simulator runs (b,w;) < Simy(acc, x;, states, D(query,x;, X)) and returns the
output to Adv.

If op = update: The simulator runs Simj(acc,stateg, D(update,x;,c;, X)). If the output of
D(update,x;,c;, X) is 1, let X < X; Ux; in the case ¢c; = 1 and X < X; \ x; in the case ¢y =0
—i.e., X is a placeholder variable for the latest set version at all times according to valid updates,

12

that is however never observed by the simulator. The simulator responds to Adv with acc'. If the
response acc’ is not | then acc < acc’.
Response The adversary outputs a bit d.

A dynamic universal accumulator is zero-knowledge if there exists a PPT simulator Sim = (Simy,Sim;)
such that for all adversaries Adv there exists negligible function v such that:

| Pr[Realagy (1*) = 1] — Pr[ldealag, (1*) = 1]| < v(A).

If the above probabilities are equivalent, then the accumulator is perfect zero-knowledge. If the inequality
only holds for PPT Adv, then the accumulator is computational zero-knowledge.

Observe that, even though Adv may be unbounded (in the case of statistical or perfect zero-knowledge) the
size of the set is always polynomial in the security parameter; in fact it is upper bounded by O(|Xp|+1). This
ensures that we will have polynomial-time simulation, matching the real-world execution where all parties
run in polynomial-time. Having computationally unbounded adversaries is still meaningful; such a party
may, after having requested polynomially many updates, spend unlimited computational resources trying to
distinguish the two settings.

While trying to provide a formal notion of privacy for cryptographic accumulators, the fact that the ac-
cumulation value computation must be randomized becomes evident. If Setup is a deterministic algorithm,
then each set has a uniquely defined accumulation value (subject to particular sk) that can be easily repro-
duced by any adversary even with oracle access to the algorithm. This observation has already been made
in [dMLPP12,dMPPS14,DHS15].

4 Relation to Other Definitions

In this section, we discuss the relation of zero-knowledge accumulators with the existing notion of indistin-
guishable accumulations as well as with other cryptographic primitives.

4.1 Zero-knowledge implies indistinguishability (for accumulators)

The notion of zero-knowledge defined here is a strengthening of the indistinguishability property introduced
in [DHS15]. There the authors introduce a notion similar to ours that also requires the accumulation value
produced by Setup to be randomized. If we restrict our attention to static accumulators, the effect of both
notions is the same, i.e., the clients see a randomized accumulation value and corresponding “blinded”
witnesses.

However, while the indistiguishability game entails updates, it inherently does not offer any privacy for
the elements inserted to or removed from the set, as the Update algorithm is deterministic. At a high level,
that notion only protects the original accumulated set and not subsequent updates. We believe this is an
important omission for a meaningful privacy definition for accumulators, as highlighted by the following
example. Consider, for example, a third-party adversary that observes the protocol’s execution before and
after an insertion (or deletion) update. If the adversary has reasons to suspect that the inserted (or deleted)
value may be y, he can always test that. A very realistic example of this behavior is a setting where the
accumulator is used to implement a revocation list. In that case an adversary may want to know if his fake
certificate (value y in the above case) has been “caught” yet.

We provide the following result®:

6 In [DHS15] the indistinguishability definition assumes that the adversary is also given access to the Setup algorithm arbitrarily
many times. This makes sense in their model, since they explicitly require that Setup is randomized whereas Update is deter-

13

Theorem 1 Every zero-knowledge dynamic universal accumulator is also indistinguishable under the defi-
nition of [DHS15], while the opposite is not always true.

Proof. We first show that every scheme that is zero-knowledge is also indistinguishable. Then we show that
the construction of [DHS15] is not zero-knowledge.

7ZK = IND: We prove this direction by contradiction. Assume there exists an accumulator that is zero-
knowledge but not indistinguishable. Then, there exists PPT adversary Adv that wins the indistinguisha-
bility game. Adv gives two sets Xp, X; to a challenger who flips a coin b and provides oracle access to
Adv for the algorithms with respect to X;,. By assumption, Adv can output a bit #’ correctly guessing b
with non-negligible advantage € over 1/2. The (natural) constraint is that Adv cannot issue a query (or
update request) that is trivially revealing the chosen set (e.g., if x € Xy and x & Xj, Adyv is not allowed to
query for x). We defer interested readers to [DHS15] for a formal definition of the indistinguishability
game.

We will now construct PPT adversary Adv’ that breaks the zero-knowledge property of the scheme as
follows. Adv’ on input 17‘, vk runs Adv with the same input and receives sets Xy, X;. He then forwards X;
as the challenge for the zero-knowledge game and receives accumulation value accy, which he forwards
to Adv. Consequently, he responds to all messages of Adv (queries and updates) with calls to the zero-
knowledge game interface and forwards all responses back to Adv. Finally, he outputs the output bit 4’
of Adv.

Firstly, observe that Adv’ is clearly PPT, since Adv is PPT. Now let us argue about his success proba-
bility in distinguishing between real and ideal interaction. Observe that, if AdV’ is interacting with the
algorithms of the scheme (i.e., is playing the real game), the interface he is providing to Adv is a per-
fect simulation of the indistinguishability game for » = 1. On the other hand, if he is interacting with
Sim, the view of the latter during this interaction is exactly the same independently of whether the set
chosen by Adv’ is Xy or X;. Hence, the view offered to Adv is the same in both cases, and therefore
Pr[b’ = 1] = Pr[b' = 0] = 1/2. Let E be the event that the AdV’ is playing the real game (and likewise
for the complement E€). From the above analysis (recall that Adv’ outputs the bit &’ returned by Adv),
it holds that Pr[p’ = 1|E] > 1/2 +¢ and Pr[b' = 1|E] = 1/2. This implies that Adv’ can distinguish
between the two executions with non-negligible probability, breaking the zero-knowledge property of
the scheme. The claim follows by contradiction.

IND % ZK: In the construction of [DHS15], given the accumulation acc of set X, the accumulation value

acc’ of set X Ux, for x € X, is computed via a deterministic Update algorithm, that is executable in
polynomial time even without access to the trapdoor (and similarly for a deletion).
Assume now an adversary Adv that simply observes query execution and the accumulation value
throughout the protocol, and wants to deduce whether value x is added to the set after a given update.
Adv proceeds as follows (assuming acc is the accumulation state pre-update and acc’ the one published
afterwards). After each update, run Update on input x, acc to receive acc”. Check whether acc” = acc’.
If so, deduce that x was inserted, otherwise not. This clearly violates zero-knowledge. Recall that in the
ideal game the simulator does not get access to the inserted (or deleted) element. Since the update algo-
rithm is deterministic, given acc and x there exists a unique output accumulation value, and the simulator
thus has negligible probability to emulate the real interaction.

This concludes our proof. |
ministic. Here this requirement is redundant since both processes may be randomized; any setup response can be emulated by a
series of update calls that shape the required set. To simplify the process, we assume that the indistinguishability adversary only

makes Update and Witness calls. We stress that this is not a limitation of the reduction. We could alternatively have chosen to
define our zero-knowledge game giving the adversary access to Setup and the result would still hold.

14

The indistinguishability property of [DHS15] is a strengthening of a notion introduced in [dMLPP12].
The latter was the first work to formally define a privacy property for cryptographic accumulators, however
their definition had inherent problems, e.g., it was easy to prove that deterministic accumulators —that clearly
were not private— satisfied it. Another technique for providing privacy to cryptographic accumulators was
proposed earlier in [LLX07], without a formalization. The idea is to simply produce a randomized accumu-
lation value for a set X by choosing at random an element x from the elements universe during Setup and
outputting the accumulation of set X U {x}. This generic mechanism will work for any static accumulator,
but will also not protect updates. Moreover it weakens soundness as an adversary could potentially produce
a membership witness for the element x ¢ X. Out approach does not suffer from such issues as there is no
additional element accumulated and the randomness r used to blind the accumulation value during Setup is
explicitly given to the server without compromising soundness.

Contrary to [DHS15], our zero-knowledge property provably protects not only the original set but also
all subsequent updates. In fact, the only thing that an adversary (client or third-party) learns is that an update
happened; not even whether the update was an insertion or deletion! Liskov in [Lis05] achieved a weaker
notion of privacy for updates (called update transparency), in the model of zero-knowledge databases, that
relies on assigning a pseudonym pattern N(x) to each element x and leaks not only the fact that an update
occurred but also an associated pseudonym. The author conjectures that the use of pseudonyms is unavoid-
able in order to achieve non-membership witnesses; here we show that this is not necessarily true, albeit in
the more restricted three-party setting of cryptographic accumulators.

Finally, Theorem 1 implies that our construction from Section 35, is also the only known algebraic con-
struction of a universal indistinguishable accumulator. The two schemes of [DHS15] are a black-box reduc-
tion from the stronger primitive of zero-knowledge sets, and a construction similar to ours that only offers
membership witnesses.

4.2 Relation to other primitives

Next we turn our attention to how zero-knowledge accumulators compare against other similar cryptographic
primitives. We present a mapping of the research literature for the construction of cryptographic proofs for
set-membership and non-membership, which has attracted significant attention lately. This is far from a
complete presentation of results in the area; we focus on the relation between those primitives that are
most closely related to the problem, avoiding general approaches (e.g., general-purpose zero-knowledge
protocols) or related models that address similar problems (such as group signatures, e.g., [ACJT00]).

The overall picture for the static case (i.e., without assuming changes in the set) can be seen in Figure 2.
Arrows denote implication, e.g., an arrow from A to B translates to “B can be built in black-box manner
from A”. Likewise, double-sided arrows denote equivalence of definitions, i.e., both can be constructed in a
black-box manner from each other.

Zero-knowledge sets are a stronger primitive than accumulators; they satisfy the same soundness prop-
erty with trapdoorless accumulators but they additionally offer privacy. Hence they are a starting point for
our mapping, since they can be used to build the other primitives.

In Section 3, we already discussed trapdoorless (or strong) accumulators. If a scheme is a trapdoorless
accumulator it is secure with an untrusted setup execution, therefore (and quite trivially) it is also secure
with a trusted setup, hence it is a also an accumulator.

As a mental exercise, let us now try to define the privacy-preserving counterparts of strong accumulators,
i.e., trapdoorless zero-knowledge accumulators. Quite informally, the completeness and zero-knowledge
definitions remain the same but the soundness property is replaced by the, strictly stronger, property of
undeniability (see, e.g., [Lip12] for a concrete definition), which is the same as the soundness property of
zero-knowledge sets: By “merging” the existing soundness guarantee of trapdoorless accumulators with our
zero-knowledge property (which, for the static case, is identical to that of zero-knowledge sets) we —quite

15

T-ACC =—————p ACC

/

ZKS

TZKACC —+(ZKACC — PSR

Fig.2: Relations among cryptographic primitives for proof of membership and non-membership
(static case). ZKS: zero-knowledge sets, T-ACC: trapdoorless accumulators, ACC: accumulators, T-
ZKACC: trapdoorless zero-knowledge accumulators, ZKACC: our zero-knowledge accumulators (circled),
PSR: primary-secondary-resolver membership proof systems.

unsurprisingly— ended up with zero-knowledge sets. We stress that latter exist in the common reference
string model (or the trusted parameters model) hence this must also be true for trapdoorless zero-knowledge
accumulators (e.g., a trusted authority runs the key-generation algorithm and publishes the result as a com-
mon reference string). On the contrary, this is not necessary for trapdoorless accumulators (without privacy)
since the security game there is one-sided; the client can perform key-generation himself. As a final note,
we point out, that zero knowledge (trapdoorless) accumulators imply (trapdoorless) accumulators since the
former satisfy a strict superset of the security properties of the latter.

This equivalence of zero-knowledge sets and trapdoorless zero-knowledge accumulators can be useful
in two ways: (i) more efficient (e.g., with smaller proof sizes) zero-knowledge sets may be achievable with
techniques borrowed from the accumulators literature, and (ii) an impossibility result in one of the two
models is translatable to the other. This holds, for example, in the case of the batch-update impossibility
for accumulators of [CH10] and the lower bound for online public-key operation of [GNP' 14]. We want to
stress that our construction in Section 5 is not trapdoorless; to the best of our knowledge, the best known way
to construct trapdoorless zero-knowledge accumulators is via a black-box reduction from zero-knowledge
sets.

Another related primitive are primary-secondary-resolver membership proof systems (PSR) introduced
in [NZ14]. Their privacy notion a relaxation defined as functional zero-knowledge, i.e., the simulator is
allowed to learn some function of the set (typically its size). Also, the games in the PSR definition are
non-adaptive in the following sense: Adv needs to declare its cheating set before he even receives the cor-
responding keys (ek,vk for soundness and only vk for zero-knowledge —using our terminology)’. For the
above reasons, while it is trivial that zero-knowledge accumulators imply PSR (where the leaked function
is void), the other direction is generally not true. We stress that the above distinction between adaptive and
selective security does not hold in the dynamic setting. There an adversary may declare a cheating set origi-
nally, receive the keys, and then modify his choice via a series of update calls (see, however, our discussion
for this setting in the next paragraph).

Our results here are complementary to the relations proven in [NZ14]. There, the authors prove that PSR
systems exist, if and only if, one-way functions exist, which in turn implies that zero-knowledge sets cannot
be built in a black-box manner from PSR.

7 One could possibly modify the PSR model —and the security games— significantly to make them adaptive, by separating the key
generation and setup algorithms. Indeed, to the best of our knowledge, the PSR construction of [GNPT 14] would probably satisfy
such a modified definition, assuming it was instantiated with an adaptively-secure signature scheme and an adaptively-secure
verifiable random function.

16

Dynamic setting. Once we move to the dynamic setting, where there exist efficient algorithms for modifi-
cations in the set, the relations are largely the same as in Figure 2, but some clarifications are in order.

Firstly, the only work addressing updatable zero-knowledge sets is [Lis05], where two notions of privacy
are introduced: opacity and transparency. The relations between definitions hold with respect to opacity. We
defer the interested reader to that work for an in-detail discussion of the two properties. Here, we will only
mention that an (efficient) construction for opaque zero-knowledge sets remains an open problem. On the
other hand, when restricted to the three-party model (i.e., with trusted setup), it can be shown that our
construction from Section 5 (with minor modifications) satisfies the opacity property.

Regarding the relation between zero-knowledge accumulators and PSR, matters are also straight-forward
as the latter are explicitly defined only for the static case. In [NZ14], the authors recommend the usage of
techniques from certificate-revocation lists [NNOO], as an additional external mechanism to accommodate
updates. Contrary to this, our definitional approach is to make update-handling mechanisms explicitly part
of the scheme. In this sense, zero-knowledge accumulators are a natural definitional extension of PSR in the
dynamic setting. That said, we explicitly require that clients can at all times access the latest accumulation
value, which would not be the case following the revocation scheme approach. We stress however that this
does not necessitate authenticated channels between owner and clients; in practice it is achievable with a
“timestamp-sign-and-publish” from the owner.

4.3 Relation to zero-knowledge authenticated data structures

Zero-knowledge accumulators can be seen as a straight-forward relaxation of zero-knowledge sets in the
three-party model, i.e., in a honest-committer setting. The set is at all times maintained by a trusted party
(the owner) that oversees insertions and deletions checking their validity. This is strongly reflected in the
security property: Soundness in zero-knowledge sets (ZKS) does not require that the prover produces a
commitment pre-image; indeed the prover may not even know such a set. On the other hand, soundness for
zero-knowledge accumulators (trapdoorless) is defined as the inability of an adversary to produce a particular
set and an element and a satisfying witness for a false statement. This stems from the fact that the trusted
owner “authenticates” that the accumulation value known to clients (corresponding to the commitment in
the case of ZKS) is indeed honestly computed, i.e., it corresponds to executing setup (and possibly update)
on a known set. With that observation in mind, we can say that zero-knowledge accumulators are, in a
sense, zero-knowledge authenticated sets. We note that a similar observation was made by [GOT14] who
addressed the problem of order queries on a list in both two-party and three-party settings. Their three-party
model (privacy-preserving authenticated list (PPAL)) is also a similar relaxation of their two-party model
(zero-knowledge list (ZKL)) .

This in turn, highlights the relation of zero-knowledge accumulators with the framework of zero-
knowledge authenticated data structures (ZK-ADS), recently introduced in [GGOT15].8 ZK-ADS extend
the well-known primitive of authenticated data structures (ADS) adding an additional zero-knowledge prop-
erty. The setting is the standard three-party model but now the supported type may be any kind of data
structure. The choice of data structure defines the kind of data stored and the type of supported queries.
In [GGOT15], the authors provided constructions for various types of data structures, in particular for a
zero-knowledge authenticated list (i.e., a data structure that supports “insert-after”, “delete” operations, as
well as “order” queries), a tree, and a partially-ordered set (poset) of bounded dimension. Consequently,
a zero-knowledge accumulator (or zero-knowledge authenticate set, as discussed above) is a type of ZK-
ADS where the data structure is a set of elements supporting —unordered- insertions and deletions, and
membership/non-membership queries.

The above constructions are the only ZK-ADS instantiations in the literature so far. One natural way
to extend zero-knowledge authenticated sets to accommodate more elaborate query types is by allowing

8 Though [GGOT15] uses the term Privacy-Preserving Authenticated Data Structures, we use ZK-ADS to fit our notation.

17

for set-operations beyond (non-)membership. In particular, consider a data structure, called set collection,
that consists of a collection of sets and accommodates operations among (a subset of) them. We stress
that a construction that accommodates set unions, intersection and differences, allows for a complete set-
operation algebra (building any possible “circuit” of set-operations”). In Section 6 we provide a definition
of zero-knowledge authenticated set collection, in the style of [GGOT15], and in Section 7 we provide the
corresponding construction (which naturally uses our zero-knowledge authenticated set construction from
Section 5 as a building block).

5 A Zero-knowledge accumulator from the g-Strong Bilinear Diffie-Hellman Assumption

In this section we present our construction for a zero-knowledge dynamic universal accumulator. It builds
upon the bilinear accumulator of Nguyen [Ngu05], adopting some of the techniques of [DHS15] that we
further expand to achieve zero-knowledge. It supports sets with elements from Z, \ {s} where p is prime
and p € O(2%) and s is the scheme trapdoor. Note that, the fact that the elements must be of log p bits each,
is not a strong limitation of the scheme; one can always apply a collision-resistant hash function that maps
arbitrarily long strings to Z,. The description of the scheme can be seen in Figure 3.

Observe that the key vk published from the key-generating algorithm, reveals nothing for the set itself.
The accumulation value produced by Setup is the standard bilinear accumulation value of [Ngu05] which
is now blinded by a random value r, also revealed to the server. Witness generation for both cases utilizes
this randomness r. For membership queries, the process is the same as in [Ngu05,DT08] with one additional
exponentiation with r for privacy purposes.

The major deviation occurs in the non-membership case. As previously discussed, there are existing
works [DTO08,ATSM09] that enhance the bilinear accumulator to provide non-membership witnesses. Their
technique is a complement of the one used for the membership case. At a high level, it entails proving that the
degree-one polynomial x + z does not divide Chx[z], by revealing the scalar (i.e., zero-degree polynomial)
remainder of their long division. Unfortunately, using this approach here entirely breaks the zero-knowledge
property: It essentially reveals r (multiplied by an easily computable query-specific value) to any client.
Instead, we adopt an entirely different approach. Our scheme uses the set-disjointness test, first proposed
by Papamanthou et al. [PTT11], in order to prove non-membership of a queried element x. In order to
prove that x € X, the server proves the equivalent statement X N {x} = 0. The different nature of the proved
statement allows us to use fresh query-specific randomness Y together with r to prove non-membership in
zero-knowledge.

Verification is also different in the two cases, but always very efficient. Finally, the way updates are
handled is especially important as it is another strong point of divergence from previous schemes that seek
to provide privacy. After each update, a fresh randomness 7’ is used to blind the new accumulation value.
Indeed this re-randomization technique that perfectly hides the nature of the change in X is what allows us
to achieve our strong notion of zero-knowledge. Observe that, at all times, the owner maintains a variable N
which is the maximum set-cardinality observed up to that point (through the original setup and subsequent
insertions). When an insertion occurs that increases N (by one), then the owner provides to the server one
additional ek component, that is necessary to the latter for subsequent witness generation. This is a slight
deviation from our notation in Section 3 where the new key produced from Update replaces the previous
ek. Instead the new evaluation key must be set to ek U ek’. This difference has no meaningful impact in the
security of our scheme; we could always have Update output the entire old key together with the additional
element. From an efficiency perspective though, that overly naive approach would require Update to run in
time linear to N.

9 In the computationally-bounded setting, a negation operation is infeasible unless the element domain is of polynomial size in the
security parameter. In that case, a negation can be instantiated as a set difference from the set that contains the entire domain.

18

Notation: The notation g[z] denotes polynomial g over undefined variable z and g(s) is the evaluation of the polynomial at
point s. All arithmetic operations are performed mod p. N is a variable maintained by the owner.
Key Generation (sk,vk) < GenKey(1*)

Run GenParams(1¥) to receive bilinear parameters pub = (p,G,Gr,e,g). Choose s & Z,. Return sk = s and vk =

(g°, pub).
Setup (acc, ek, aux) < Setup(sk, X)

Choose r & Zj,. Set value N = |.X|. Return acc = g"Chx(s) ef = (g,gs,gsz, e ,gSN) and aux = (,N).

Witness Generation (b,w) + Witness(acc, X, x, ek, aux)

If x € X compute w = (acc)ﬁ = g" 1w) and return (1, w).
Else, proceed as follows:
— Using the Extended Euclidean algorithm, compute polynomials g1 [z],¢2[z] such that g1 [2]Chx [2] + g2[z]Chy,y [z] = 1.
- Pick a random y& Zj, and set ¢/ [z] = q1[z] +7- Chyy [2] and gy [z] = ga2[z] — - Chx[z].
— Set W := g1 Wy = ¢%() and w := (W;,W5). Return (0, w).
Verification (ACCEPT /REJECT) < Verify(acc,x, b, w, vk)
If b = 1 return ACCEPT if e(acc,g) = e(w, g" - g*), REJECT otherwise. If b = 0 do the following:
- Parse w as (W, W)).
— Return ACCEPT if ¢(W;,acc)e(Ws, 8" - ¢°) = e(g,g), REJECT otherwise.
Update (acc’,ek’,;aux’) < Update(acc, X, x, sk, aux, upd)

Parse aux as (r,N). If (upd = 1 Ax € X) or (upd =0Ax ¢ X) output L and halt. Choose r/ & Zy. Ifupd =1
- Compute acc’ = acc(+H”
- If |[X|+1> N, set N = |X|+ 1 and compute ek’ =g

Else, compute acc’ = accs and ek’ = 0. In both cases, set aux’ := (r-#/,N) and return (acc’,ek’,aux’).
Witness Update (upd,w’) < WitUpdate(acc,acc’, x,w,y,ek’,aux,aux’, upd)
Parse aux,aux’ to get 7, 7.
— If wis a membership witness:
If upd = 1 output (1,w’ = (acc-w*)"). Else, output (0,w’ = (acc’~! w)df‘))
— If w is a non-membership witness:
Let X’ be the set produced after the execution of Update for element x (i.e., the currently accumulated set). Run
Witness(acc’, X', y, ek’ aux’) and return its output.

Fig. 3: Zero-knowledge Dynamic Universal Accumulator Construction

Regarding witness updates, observe that for the (more meaningful, as discussed in Section 3) case of
membership witnesses there indeed exists a fast method. On the other hand, for non-membership witness
updates, our scheme resorts to re-computation from scratch.

Efficiency. We discuss the asymptotic complexity of the algorithms of our construction. Let n be the car-
dinality of the set at any given time. GenKey runs in time poly(A). The algorithm Setup runs has access
complexity O(n) since a degree n polynomial can be evaluated in that many operations, and ek takes n
consecutive exponentiations. From Lemma 1, computing the characteristic polynomial of a set of size n
takes O(nlogn), hence this is the overall complexity for membership witness generation. Computing a
non-membership witness takes O(n log? nloglog n), due to the complexity of the Extended Euclidean al-
gorithm execution. The witnesses consist of O(1) elements from G and verification requires can be done
with O(1) operations. Finally, Update has access complexity O(1), membership witness updates can also
be achieved in O(1), and non-membership witness updates take as long as fresh witness generations, i.e.,
O(nlog®nloglogn).

One alternative way to run the scheme is to have the owner pre-compute all the membership witnesses
at no additional asymptotic overhead during Setup. In that case, the server can just use the cached member
witnesses and serve membership queries with O(1) lookups. Whenever an update occurs, the server can

19

take O(n) independent witness updates to update all his cached positive witnesses. However, he would still
need to compute the non-membership witnesses on the fly; pre-computation is impossible since there are
exponentially many non-members of X and updating any cached ones in not faster than generating them.
In terms of storage requirements, the client only needs to store vk and acc, i.e., a constant number of
bilinear group elements. The owner stores the set X, hence O(n) group complexity is trivially necessary.
From the description of Setup, Update, |ek| = n at all times. Hence, the server’s storage is also O(n).
Overall, a comparison with the bilinear accumulator of [Ngu05] which achieves the exact same sound-
ness property (under the same assumption), reveals that zero-knowledge is achieved by our construction with
no asymptotic overhead at all for membership queries and a very small additional cost for non-membership
queries. The above shows that the very strong privacy notion of zero-knowledge is achievable with minimal
additional overhead.
Proving (non-)membership in batch. Another important property of our construction is that it allows the
server to efficiently prove statements in batch. Assume a client holds an entire set 9 = (y,...,yn) and
wants to issue a query for each y;. One way to achieve this would be to provide a separate membership/non-
membership witness separately. This approach yields a proof that consists of O(m) group elements.
However, with our construction the server can produce a single membership witness for all y; € X and a
single non-membership witness for those ¢ X. The detailed construction for this case (as well as its practical
benefits) is presented in Section 7. We can now present our main result:

Theorem 1. The algorithms {KeyGen,Setup, Witness, Verify, Update, WitUpdate} constitute a zero-
knowledge dynamic universal accumulator that: (i) has perfect completeness, (ii) is perfect zero-knowledge,
(iii) is secure under the N-SBDH assumption, where N is the maximum set-size observed during the sound-
ness game. Let n be the cardinality of the set. Then, the runtime of GenKey is O(poly(\)) where A is the
security parameter, the access complexity of Setup is O(n), that of Witness is O(nlogn) for membership
witnesses and O(nlog? nloglogn) for non-membership witnesses, that of Verify is O(1), that of Update is
0(1), and that of WitUpdate is O(1) for membership witnesses and O(nlog® nloglogn) for non-membership
witnesses. Finally, witnesses consist of O(1) bilinear group elements.

Completeness follows by close inspection of the algorithms’ execution. We proceed to prove soundness and
zero-knowledge.

Proof of Soundness. Assume for contradiction that there exists PPT adversary Adv that on input 1* breaks
the soundness of our scheme with non-negligible probability. We will construct a PPT adversary Adv’ that
breaks the N-SBDH assumption. Adv’ runs as follows:

1. On input (pub, (g%,...,&")), run Adv on input (g, pub, 1*).

2. Upon receiving set Xp, choose ro < Zj. Use ry and (g%,....¢"") to compute accy = g0 M) =
g %) and respond with (eko = (g,8°,-.., g‘Y‘XO‘),acco, ro). Initiate list £ and insert triplet
(accy, Xo, o) as L[0] (i.e., the first element of the list). The notation L[i]; denotes the first part of the i-th
element of the list (e.g., £L][0]p = accy). Also set n = | Xp|.

3. Initiate update counter i = 0. While i < [proceed as follows. Upon receiving update upd;,x;, check
whether this is a valid update for X; = L[i]. If it is not, respond with | and re-append acc; = Llilo, X;, r;
to L. Otherwise, pick r/ & Z;, and set riyy = r;-r'. Update X; according to upd;,x; to get Xi;p. If
| Xit1| > n, setn = |X;;1| and ek; 1 = g". Else, ek; .1 = 0. Use riy; and (g°,... ,gsN) to compute acc; ;] =
g’i+1'ChXi+1 () — g(Cth)" and respond with (ek;;1,accii1,ri+1). Append triplet (acc;y 1, Xi+1,7i+1) to
L. In both cases, increase i by 1.

4. Upon receiving challenge index j and challenge triplet (x*,b*,w*) proceed as follows:
- If b* =1, then x* & X; yet Verify(acc;,x*, 1, vk) accepts. Compute polynomial g[z] and scalar ¢ such

that Chy,[2] = (x" +2)g[z] + . Output [x*, (e(w", g)7 e(g,g749)) .

20

- If b* =0, then x* € X; yet Verify(accj,x*,0,vk) accepts. Parse w* as (W;*, W,'). Compute polynomial
qlz] such that Chy, [z] = (x* +2)q[z]. Output [x", (e(Wy,g"719))e(Wy, g))].
First of all observe that Adv’ perfectly emulates the challenger for the DUA security game to Adv. This
holds since all accumulation values and witness are computable without access to trapdoor sk in polynomial
time. All the necessary polynomial arithmetic can be also run efficiently hence Adv’ is PPT.
Regarding its success probability, we argue for the two cases separately as follows:

b* =1 Since x* ¢ X;, it follows that (x* 4 z) JChy;[z] which guarantees the existence of ¢[z],c. Also observe
that c is a scalar (zero-degree polynomial) since it is the remainder of the polynomial division and it must

have degree less than that of (x* +z). Since verify accepts we can write:

e(w*,g" - g") = e(w*,)") = e(acc;, g)
= e(gr"“ChX./ (S)7g)
= e(g,g)" 1 W H)al)te)
from which it follows that:
e(w",g)") = (g, g) ¥ T e
(o) — 09
e(w*,g) le(gjg) q(s) _ e(g’g)c/(x*ﬂ)
(

b* =0 Since x* € Xj, it follows that (x* 4 z)|Chx;[z] which guarantees the existence of ¢g[z]. Since verify
accepts we can write:

e(W1*7aCCj) ()
e(Wl*’grj-Chxj (S))e(Wz*,g(x*+S)) —e
(W7 10)

[e(Wy', 8" 19)e(W5, g)] = e(g,8)"/ "+
Observe that in both cases the left hand of the above equations is efficiently computable with access to
pub,(g°,..., g“N),rj,Xj,x*,W*. Hence, whenever Adv’ succeeds in breaking the soundness of our scheme,

AdV' outputs a pair breaking the N-SBDH assumption. By assumption the latter can happen only with
negligible probability, and our claim that our scheme has soundness follows by contradiction. |

Proof of Zero-Knowledge. We define simulator Sim = (Sim,Sim;) as follows. At all times, we assume
stateg contains all variables seen by the simulator this far.

— Sim; runs GenParams to receive pub. He then picks s & Z:,, and sends g,g", pub to Adv. After Adv has

output his set choice X, Sim; picks r & Z.,, and responds with acc = g". Finally, he stores r initiates
empty list C.
— Fori=1,...,l upon input (op,x;,c;):

e If op = query, the simulator checks if x; € C. If not, then if D(query,x;, X) = 1, he computes k =
r-(x;+s)~! and responds with (b = 1,w = g¥). Else, if D(query, x;,c;,X) = 1 he computes q1,¢>
such that g1 - r+¢q> - (x;+s) = 1, picks y& Z;, and responds with (b= 1,w = (W; = g Hits) Wy, —
g%7")). In both cases, the simulator appends (x;,b,w) to C. Finally, if x; € C he responds with the
corresponding entries b, w.

21

e If op = update then the simulator proceeds as follows. If D(update,x;,c;, X) = 0 then he responds
with L. Else, he picks r/ & Z,, and responds with acc = g Finally he sets r <— r and C + 0.

The simulator Sim = (Simj,Sim;) produces a view that is identically distributed to that produced by the
challenger during Realaq,. Observe that random values r are chosen independently after each update (and
initial setup) in both cases. Once s, r are fixed then for any possible choice of X there exists unique r* € Z,,
such that g" = g’*'ChX (), 1t follows that the accumulation values in Real Adv are indistinguishable from the
(truly random) ones produced by Sim. For fixed s, r, given a set-element combination (X,x;) with x; € X,
in each game there exists a unique membership witness w that satisfies the verifying equation. For negative
witness w = (W, W5), given a set-element combination (X, x;) with x; ¢ X, for each possible independently
chosen value of v, in both games there exists only one distinct corresponding pair W, W, that satisfies the
verifying equation.

It follows that the probabilities in Definition 5 are equivalent and our scheme is perfect zero-knowledge.
|

6 Zero-Knowledge Authenticated Set Collection (ZKASC)

Zero-knowledge accumulators presented so far provide a succinct representation for maintaining a dynamic
set and replying (non-)member queries in zero-knowledge. As we described in Section 4.3, zero-knowledge
accumulators (without trapdoor) can also be viewed as zero-knowledge authenticated sets (ZK-AS) where
authenticated zero-knowledge membership/non-membership queries are supported on an outsourced set. In
this section, we generalize this problem to a collection of sets and study verification of outsourced set algebra
operations in zero-knowledge, which we refer to as zero-knowledge authenticated set collection (ZKASC).
In particular, we consider a dynamic collection S of m sets Xj,. .., X, that is remotely stored on an untrusted
server. We then develop mechanisms to answer primitive queries on these sets (is-subset, intersection, union
and set difference) such that the answers to these queries can be verified publicly and in zero-knowledge.
That is, the proofs of the queries should reveal nothing beyond the query answer. In addition, we require the
verification of any set operation to be operation-sensitive, i.e., the required complexity depends only on the
(description and outcome of the) operation, and not on the sizes of the involved sets.

The sets collection data structure S, consists of m sets, denoted with S = {Xj, X3, ..., X, }, each contain-
ing elements from a universe X. A set does not contain duplicate elements, however an element can appear
in more than one set. The abstract data type for set collection is defined as S with two types of operations
defined on it: immutable operations Q() and mutable operations U (). Q(S, q) takes a set algebra query ¢ as
input and returns an answer and a proof and it does not alter S. The queries are defined with respect to the
indices of a collection of sets S = {Xj, Xa,..., X, }. U(S,u) takes as input an update request and changes
S accordingly. It then outputs the modified set collection S'. An update u = (x,upd,) is either an insertion
(if upd = 1) of an element x into a set X; or a deletion (if upd = 0) of x from X;. The following queries are
supported on S:

Subset The query g takes a set of elements A and a set index i as input and returns answer where answer = 1
if AC X; € S, and answer = 0, otherwise.
Set Difference The query ¢ takes two set indices #; and i, and returns answer = X;, \ X, .

Intersection The query ¢ takes a set of indices (ij,...,i) as input and returns answer = X; N.X;, N...NX,.
Union The query g takes a set of indices (i1, ...,i) as input and returns answer = X; UX;, U...UX;,.
6.1 Model

ZKASC can be seen as the traditional authenticated data structure (ADS) model with the added requirement
of privacy (zero-knowledge). Indeed, ZKASC follows the model of zero-knowledge authenticated data struc-
ture [GGOT15] instantiated for a set collection and set algebra queries. In particular, ZKASC is a tuple of six

22

probabilistic polynomial time algorithms ZKASC = (KeyGen, Setup, Update, UpdateServer, Query, Verify).
We note that zero-knowledge authenticated set also follows the zero-knowledge authenticated data struc-
ture [GGOT15] model where the data structure consists of a single set and the supported queries are mem-
bership and non-membership queries.

We first describe how the algorithms of ZKASC are used between the three parties of our model and then
give their APL. The owner uses KeyGen to generate the necessary keys. He then runs Setup to prepare Sy
for outsourcing it to the server and to compute digest for the client and necessary auxiliary information for
the server. The owner can update his set collection and make corresponding changes to digest using Update.
Since the set collection and the information of the server need to be updated on the server as well, the owner
generates an update string that is enough for the server to make the update herself using UpdateServer. The
client can query the data structure by sending queries to the server. For a query, the server runs Query and
generates answer. Using the auxiliary information, she also prepares a proof of the answer. The client then
uses Verify to verify the query answer against proof and the digest he has received from the owner after the
last update.

(sk,vk) + KeyGen(lx) where 1* is the security parameter. KeyGen outputs a secret key (for the owner) and
the corresponding verification key vk.

(So,auth(Sy), digest,, eko,auxg) < Setup(sk,vk,Sp) where Sy is the initial set collection and sk, vk are the
keys generated by KeyGen. Setup computes the authentication information auth(Sy) for Sy, a short
digest digest, for Sy, an evaluation key eko and auxiliary information auxg. digest, is public, while
auth(Sy), eko and auxg are sent to the server. These units lets the server compute proofs of query answer
of the clients.

(Si+1,auth(S;41),digest, , 1,aux;+1,ek;41,updinfo,) <— Update(sk,S;,auth(S;),digest,,aux;,ek;, SID;,u;)
where u, = (x,upd,i) is an update operation to be performed on S;. SID; is set to the output of a
function f on the queries invoked since the last update (Setup for the 0" update). Update returns the
updated set collection, S, = U(S;,u), the corresponding the authentication information auth(S,),
the evaluation key ek, and auxiliary information aux,;, the updated public digest digest,, ;, and an
update string updinfo, that is used by the server to update her information. Note that the evaluation key
is a part of the information the server requires to compute proofs of answers to the client queries. The
secret key and the verification key do not change throughout the scheme.

(ekis1,Si+1,auth(Se11),digest, | |,aux,41) < UpdateServer(ek;,S;,auth(S;), digest,, aux,,u, updinfo,)
where updinfo, is used to update auth(S;), digest,, aux; and ek, to auth(S;;), digest,;, aux,y; and
ek, 1 respectively. u; is used to update S; to S; 1.

(answer, proof) «— Query(ek,,aux,,auth(S;),S;,q) where g depends on the exact set algebra operation. In
particular, for subset query ¢ = A,i where A denotes a set of elements and i denotes the set index of S;.
For intersection and union queries ¢ =iy, ..., iy where iy,. .., i are set indices of S, and for set difference
q =i1,I>. where i1, i are indices of S;. The algorithm outputs the query answer answet, is its proof proof.

(accept/reject) < Verify(vk, digest,,answer, proof) where input arguments are as defined above. The out-
put is accept if answer = Q(S;,), and reject, otherwise.

We leave function f to be defined by a particular instantiation. An example could be making f return the
cardinality of its input. Once defined, f remains fixed for the instantiation. Since the function is public,
anybody, who has access to the (authentic) queries since the last update, can compute it.

6.2 Security Properties

A zero-knowledge authenticated data structure [GGOT15] has three security properties: completeness,
soundness and zero-knowledge. Our ZKASC adapts these properties as follows.

23

Completeness dictates that if all three parties are honest, then for a set collection, the client will always
accept an answer to his query from the server. Here honest behavior implies that whenever the owner updates
the set collection and its public digest, the server updates the set collection and her authentication and
auxiliary information accordingly and replies client’s queries faithfully w.r.t. the latest set collection and
digest.

Definition 6 (Completeness) For an ZKASC (Sy,Q,U), any sequence of updates ug,uy, ... ,ur, on the set
collection Sy, and for all queries g on Si:

Pr[(sk,vk) < KeyGen(1*); (So,auth(Sp), digest,, eko,auxq) < Setup(sk, vk, So);

{(S,H ,auth(S;41),digest, 1,aux,+1,ek;11,updinfo,)
Update(sk,S;,auth(S;),digest,,aux;, ek, SID;, u,);

(ekit1,Si+1,auth(Syy1),digest, 1,aux,41) <— UpdateServer(ek,;,S;,auth(S;), digest,,aux;, u;, updinfo,); }O<t<L

(answer, proof) <— Query(eky,aux;,auth(S.),S;,q) :
Verify(vk, digest; , answer, proof) = accept A answer = Q(Sg,q)] = 1.

where the probability is taken over the randomness of the algorithms.

Soundness protects the client against a malicious server. This property ensures that if the server forges the
answer to a client’s query, then the client will accept the answer with at most negligible probability. The
definition considers adversarial server that picks the set collection and adaptively requests updates. After
seeing all the replies from the owner, she can pick any point of time (w.r.t. updates) to create a forgery.

Since, given the authentication and auxiliary information to the server, the server can compute answers
to queries herself, it is superfluous to give Adv explicit access to Query algorithm. Therefore, we set input
of f to empty and SID to L, as a consequence, in algorithm Update.

Definition 7 (Soundness) For all PPT adversaries, Adv and for all possible valid queries g on the set

collection S; of an abstract data type (S;,Q,U), there exists a negligible function v(.) such that, the proba-

bility of winning the following game is negligible, where the probability is taken over the randomness of the
algorithms and the coins of Adv:

Setup Adv receives vk where (sk,vk) < KeyGen(1*). Given vk, Adv picks (So,Q,U) and receives
auth(Sy),digesty, eko,auxg for So, where (Sp,auth(Sy), digest, eko,auxp) <— Setup(sk, vk,Sp).

Query Adv requests a series of updates uy,uy,...,u;, where L = poly(A), of its choice. For ev-
ery update request Adv receives an update string. Let S;i| denote the state of the set collec-
tion after the i'" update u; and updinfo; be the update string corresponding to u; received by the
adversary, i.e., (Siy1,auth(S;y1),digest;, |,aux;;1,ek;;1,updinfo;) <— Update(sk,S;,auth(S;), digest;,
aux;, ek;, SID;, u;) where SID; = L.

Response Finally, Adv outputs (S;,q,answer,proof), 0 < j < L, and wins the game if the following holds:

answer # Q(S;,q) A Verify(vk, digest ;, answer, proof) = accept.

Zero-knowledge captures privacy guarantees about the set collection against a malicious client. Recall that
the client receives a proof for every query answer. Periodically he also receives an updated digest, due to
the owner making changes to the set collection. Informally, (1) the proofs should reveal nothing beyond the
query answer, and (2) an updated digest should reveal nothing about update operations performed on the

24

set collection. This security property guarantees that the client does not learn which elements were updated,
unless he queries for an updated element (deleted or replaced), before and after the update.

The definition of the zero-knowledge property captures the adversarial client’s (Adv) view in two games.
Let £ be a ZKASC scheme. In the RealgAdv(l?‘) game (A is the security parameter), Adv interacts with the
honest owner and the honest server (jointly called challenger), whereas in the IdealgAdv’S;m(lx) game, it
interacts with a simulator, who mimics the behavior of the challenger with oracle access to the source set
collection, i.e., it is allowed to query the set collection only with client’s queries and does not know anything
else about the set collection (except its cardinality, which is a public information) or the updates.

Adv picks Sy and adaptively asks for queries and updates on it. Its goal is to determine if it is talking to
the real challenger or to the simulator, with non-negligible advantage over a random guess.

We note that here SID need not be used explicitly in the definition, since the challenger and the simulator
know all the queries and can compute f themselves.

Let D be a binary function for checking the validity of queries and updates on a set collection. For
queries, D(S;,q) = 1 iff the query indices in ¢ are valid set indices of S;. For updates, D(S;,u = (x,upd,i)) =
1 iff i is a valid set index of S; and u is a valid update on X; € S;.

Definition 8 (Zero-Knowledge) Let £ be a ZKASC scheme. Realg agy and |dealg aqy sim be defined as
follows where, the simulator always checks the validity of an update or query using oracle access to the
function D() as defined above.

Realz agy (1*):
Setup The challenger runs KeyGen(ll) to generate sk,vk and sends vk to Adv,. Given vk, Adv picks
(So,0,U) of its choice and receives digest’ corresponding to Sy from the real challenger C who
runs Setup(sk, vk, Sp) to generate it. Adv| saves its state information in statey.
Query Adv; has access to states and requests a series of queries {op;,0p,,...,0py }, for M = poly(X).
If op = u is an update request: C runs function D() to check if the update request is valid. If not it
returns L. Else, C runs Update algorithm. Let S; be the most recent set collection and digest,
be the public digest on it generated by the Update algorithm.
C returns digest, to Advs.

If op = g, is a query: C runs function D() to check if the query is valid. If not it returns L. Else,
C runs Query algorithm for the query with the most recent set collection and the corresponding
digest as its parameter.
C returns answer and proof to Adv;.

Response Adv, outputs a bit b.
Idealf,Adv,Sim(lx):

Setup Initially Sim| generates a public key, i.e., (vk,states) < Sim;(1*) and sends it to Adv;.
Given vk, Adv; picks (So,Q,U) of its choice and receives digest, from the simulator Simy, i.e.,
(digesty, states) <— Simj (stateg). Adv; saves its state information in statey.

Query Advy, who has access to statey, requests a series of queries {op;,0py,...,0py}, for M =
poly(M).

Sim, is given oracle access to the the most recent set collection and is allowed to query the set

collection oracle only for queries that are queried by Adv. Let S,_| denote the state of the data

structure at the time of op. The simulator runs (stateg,a) < Simlz)’s’*1 (1*, states, D(S;_1,0p;)) and

returns answer a to Adv, where:

If D(S;—1,0p;) = 1 and op; is an update request: a = digest,, the updated digest.

If D(S;—1,0p;) = 1 and op; is a query: a = (answer, proof) corresponding to the query q;.
Response Adv, outputs a bit b.

25

A ZKASC E is zero-knowledge if there exists a PPT algorithm Sim = (Simy,Sim;) s.t. for all malicious
stateful adversaries Adv = (Advy, Advy) there exists a negligible function V(.) s.t.

| Pr[Realz agy (1*) = 1] — Pr{ldealz ady.sim (1*) = 1] < V(A).

7 Zero-Knowledge Authenticated Set Collection Construction

In this section, we give an efficient construction for ZKASC. Our construction relies on two basic primitives:
zero-knowledge dynamic universal accumulator introduced in Section 3 and accumulation tree described in
Section 2. The sets collection data structure consists of m sets, denoted with S = {Xj, X3, ..., X, }, each con-
taining elements from a universe X!'°. We use our zero-knowledge accumulator construction from Section 5
to represent every set in the set collection succinctly using acc(X;). Our construction, similar to [PTT11],
relies on accumulation trees to verify that acc(X;) is indeed a representation of the i’ set of the current set
collection. We note that accumulation tree presents an optimal choice when considering several parameters,
including digest size, proof size, verification time, setup and update cost, and storage size.

Given the above representation of a set collection, we develop techniques for efficiently and authen-
tically proving zero-knowledge set algebraic queries and performing updates on S. We note that the au-
thors of [PTT11] also consider authenticated set algebra. Unfortunately, since privacy was not an objective
of [PTT11], their techniques for authentic set queries cannot be trivially extended to support our strong
privacy notion (zero-knowledge).

We organize the description of our construction as follows. The setup and maintenance of the dynamic
set collection S is given in the next section. These phases instantiate and update zero-knowledge accumula-
tors and authentication tree used to store and update the sets in the collection. We then develop algorithms
for verifiable zero-knowledge query and verification algorithms. The query and verify algorithms invoke a
subroutine for each individual operation, namely, is-subset, intersection, union and set difference. We de-
scribe two algorithms for each set operation: an algorithm executed by the server to construct a proof of an
answer on S and a verification algorithm executed by the client to verify the answer and the proof. For each
algorithm we analyze its efficiency as we go. We then compare the asymptotic performance of the ZKASC
algorithms with that of [PTT11], which offers no privacy guarantee, in Figure 4. Finally, we prove that the
construction described in this section meets the security properties of ZKASC.

7.1 Setup and Update Algorithms

Here we describe and give pseudocode for the algorithms GenKey, Setup, Update, and UpdateServer. We
recall that the first two algorithms are used by the owner to prepare keys, collection S and relevant data
structures before outsourcing them to the untrusted server. The owner runs Update to make efficient updates
to S, while the server executes UpdateServer to propagate these updates. Each algorithm is described below.

The GenKey algorithm (Algorithm 1) takes the security parameter as input and generates the secret key
sk and the corresponding verification key vk for the scheme. As part of the algorithm, it also initializes our
zero-knowledge accumulator from Section 3. For simplicity, we refer to it as DUA.

The Setup algorithm (Algorithm 2) takes the secret key, the verification key and the set collection as
input and generates the authentication information for the set collection, a short public digest, the evaluation
key and some auxiliary information for the set collection. Among the output objects, only the digest is public
and is accessible by the client. The rest of the output are only sent to the server. The server uses them to
generate proofs for client queries.

10 Without loss of generality we assume that our universe X is the set of nonnegative integers in the interval [m+ 1,p — 1] as in
[PTTI1].

26

Algorithm 1 (sk,vk) <— GenKey(1%)

1: Run GenParams(1*) to receive bilinear parameters pub = (p,G,Gr,e,g).

2: Pick a cryptographic hash function # which will be viewed as a Random Oracle and append pub with #.
%9 will be viewed as a Random Oracle for set difference only.

3: Invoke DUA.GenKey(1%). Let DUA.GenKey(1*) = (s,g°).

4: return (s, (g%, pub)).

Algorithm 2 (Sy,auth(Sy), digest, eko,auxq) < Setup(sk, vk, Sp)

. Let So ={Xi,..., X} Invoke DUA.Setup(s, X;) for each X; € Sp. Let DUA.Setup(s, X;) = (acc(X;), ek;, aux;).

: Let |.X;| = n;. Set ekg := (g, 8%, .- ,gSN) where N = Yic(1 m) i

: Parse aux; corresponding to X; as (r;,n;) forall i € [1,m].

: Setauxg = ((r; | X; €Sp),N).

. Invoke AT.ATSetup(sk, (acc(Xj),...,acc(Xy,))) and let AT.ATSetup(sk, (acc(X)),...,acc(Xy))) = (auth(Sp), digesty).
: return (Sp,auth(Sy), digesty,ekg,auxp)

AN B W =

Update (Algorithm 3) algorithm takes as input an update string u, = (x,upd,i) where x denotes the
element, upd, as in DUA, is a boolean indication if an insert or delete is to be preformed and i denotes the
index of the set in which the update is to be performed. This algorithm updates the corresponding set in
the set collection and accordingly updates the authentication information, the auxiliary information and the
public digest.

As described so far, the accumulation value of the set updated due to u;, is regenerated with fresh random-
ness (in DUA.Update), which causes a subsequent change in the digest for S. However, this is not enough
to achieve zero-knowledge. If a client queries wrt some set j # i before and after u, was performed, and sees
that acc(.X;) has not changed, then he learns that X; is not affected by the update. This will also imply that
the proofs that the client holds wrt X; between updates are still valid, i.e, they are not ephemeral.

Zero-knowledge property implies that even an adversarial client does not learn anything beyond the
fact that an update has occurred (unless his query explicitly returns some updated element) and none of
the proofs that a client holds should not be valid after an update. We set f to be a function that takes the
client queries since the last update and returns the indices of the sets accessed by them; therefore SID;
has the indices of the sets touched by queries since the (z — l)m update u, | (we consider setup as the 0"
update). To achieve zero-knowledge property, Update needs to use the subroutine refresh, which picks fresh
randomness to refresh accumulation values of all the set indices in SID,. Update algorithm also produces a
string updinfo, that the server can use to update its authentication and auxiliary information. Note that, SID,
used for efficiency. The non-efficient way of achieving zero-knowledge would be to refresh accumulation
values of all the sets in the collection.

Next we describe UpdateServer algorithm which is run by the server to propagate the update on the set
collection and its authentication information using updinfo, generated by the owner corresponding to the
t"" update. Informally, this algorithm updates the relevant set and updates all the authentication paths corre-
sponding to the sets whose accumulation value has been changed or refreshed by the owner. The algorithm
also updates its evaluation key and the auxiliary information.

Efficiency We analyze the access complexity of each algorithm. Let M = Y, | X;| where S = {Xj,..., X, }

and let L = |SID;| for update u;.

GenKey: The complexity of this algorithm is O(poly(1)).

Setup: For the Setup algorithm, DUA.Setup is called for all m sets. Therefore, the complexity of this step
is O(M). Setting up the AT has complexity O(m). Therefore, the total complexity of Setup is O(M +m).

27

Algorithm 3 (S,;,auth(S;11),digest, |,aux;;1,ek;+1,updinfo,) < Update(sk,S;,auth(S;),digest;,
aux;,ek;, SID;, u;) where u, = (x,upd,)

16:
17:
18:
19:

20:
21:
22:

: Initialize set W := 1.

: uy = (x,upd, i) to be done on set X;.

: If (upd =1Ax € X;) or (upd =0Ax ¢ X;) return _L. Else proceed to next step.

: Parse aux; as ({r; | Xj € S;},N) and set aux; = (rj,N) for all j € [1,m].

: Call DUA.Update(acc(X;), X;,x,s,aux;,upd). Let DUA.Update(acc(X;), X;,x, s, aux;,upd) = (acc’(X;), ek}, aux})
: Replace old X; with the updated X; to obtain Sy, .

i LetM =Y x,cs,,, [Xj|. Set N := M.

: If M > N do the following:

Set N :=M.
Update N in aux].

Set ek, 11 :=ek; UgSN and ekupdate := g“N.

: Else

Set ek;1 := ek, and ekupdate := ¢

: Update W <+ W Ui.
: Call refresh(s,SID;,(Vj € SID; : (acc(Xj),aux;)). Let refresh(s,SID;,(Vj € SID; : (acc(X;),aux;)) = (Vj € SID; :

(acc/(X;),aux’)), where aux; = (r;,N)
Update W <~ W U j for all j € SID;.

Set aux;1 := ((r}-r;| j€W),N)

Call ATUpdateBatch to update the accumulation tree for all leaves corresponding to X; for j € W.

Let auth’ be the updated authentication information, digest’ be the updated root and a list of updinfo j containing the updated
authentication paths for each set X;.

Set auth(S;41) := auth’ and digest, | := digest’

Set updinfo, := (W, (_Lacc’()(j),aux;-,updinfoj) | j € W,ekupdate)

return (S;;1,auth(Syy1),digest, 1,aux.i1,eks11,updinfo,).

Algorithm 4 (Vi € SID; : (acc/(X;),aux})) < refresh(sk,SID,, (Vi € SID; : (acc(X;),aux;))

1:
2
3:
4
5:

For every i € SID;:

Pick r{ « Z5,.

Compute acc’(X;) <+ acc(X;)".

Parse aux; as (r;,N) and compute aux; < (r; - r;,N).
return (Vi € SID; : (acc’(X;),aux}))

Algorithm 5 (ek/y1,S;11,auth(S;41),digest,,;,aux,+1) < UpdateServer(ek;,S;,auth(S;),digest,,
auxy, u;, updinfo,) where u, = (x,upd, i)

—_

— OV XN U A WN =

: Update X; with u;.

: Replace old X; in S; with the updated X; to obtain S, .

. Parse updinfo, as (W, (j,acc’(Xj),aux;-,updinfoj) | j € W,ekupdate).
: For all j € W do the following:

Parse aux’ as (77, N).
Replace r; with 7; and update N in aux; to generate aux; 1.
Using updinfo; update the authentication path of acc(Xj) in the accumulation tree.

Update the authentication path of acc(X;) in auth(S;) to obtain auth(S,1)

: Set the updated root of the accumulation tree as digest, , |
: If ekupdate = ¢, then set ek, | := ek;. Else set ek, | := ek; Uekupdate.
: return (ek;y1,S,4+1,auth(S,1),digest, |, aux.y1).

Update: This algorithm takes constant time for the update and constant time for refreshing each accumula-

tor value for the sets whose indices are in SID;. From Lemma 4, updating each authentication path has
complexity O(1). Hence the total complexity of this algorithm is O(L).

UpdateServer: This algorithm has access complexity similar to Update, i.e., O(L).

28

7.2 Set Algebra Query and Verify Algorithms

We proceed with verifiable zero-knowledge set algebra operations that use data structures described in the
previous section. Query and Verify algorithms let the server construct a proof of a response to a query
and the client verify it, respectively. Since ZKASC supports several set operations, we describe each algo-
rithm in terms of modular subroutines as follows. Algorithm Query takes the query arguments along with
an indicator flag indicator that denotes the type of the input query (is-subset, intersection, union, differ-
ence) and invokes the appropriate subroutine that we describe subsequently. In particular, we annotate query
g with indicator. If indicator = S, Query invokes subsetQ (Section 7.3), if indicator = I, Query invokes
intersectionQ (Section 7.4), if indicator = U, Query invokes unionQ (Section 7.5) and if indicator = D,
Query invokes differenceQ (Section 7.6). Similarly, we annotate the input argument of Verify with the flag
indicating which verification algorithm should be used.

Query and Verify algorithms for each set algebra operation are given in the next four sections along with
the analysis of their efficiency.

7.3 Subset Query

A subset query is parametrized by a set of elements A and an index i of a set collection, i.e., g = (A,i).
Given g, the subset query returns a boolean as the answer. In particular, answer =1 if A C X; and answer =0
if A ¢ X;. This query can be seen as a generalization of Witness algorithm for DUA where membership/non-
membership query is supported for a batch of elements instead of a single element. The proof technique
is similar to the membership and non-membership proof generation for a single element using Witness
algorithm. We give the pseudocode for subset query in Algorithm 6 and verification Algorithm 7.

Algorithm 6 Subser: (answer, proof) <— SubsetQ(ek,,aux,,auth(S;),S,,q = (A,i))

1: Let A= {x1,...,x} and [ay, . ..,a] be the coefficients of the polynomial Chy [z].
2: HAC X;:

3: Set answer =1
4: Compute Wy x; < g’iCth*A“).
5: Else when A ¢ X;:
6: Set answer =0
7: Using Extended Euclidian Algorithm, compute polynomials g1 [z] and ¢»[z] such that ¢ [z]Cha [z] + g2[z]Ch . [z] = 1.
8: Pick a random yﬁ Z;, and set ¢/ [z] = q1[z] +YChx;[z] and g5 [z] = (r7 Y (qalz) —YChalz]).
9: Compute F g’/l) and F, « g‘/z(s).
10: Set Wp x, := (F1,).

11: Invoke AT.ATQuery(ek;,i,auth(S;)). Let (IT;, o) < AT.ATQuery(ek,,i,auth(S;)).
12: Set proof = ([ao,...,ak],{gs,...,gsk},WA,X,,H,-,(x,‘).
13: return (answer, proof)

Efficiency We analyze the run time of the query and the verification algorithms and the size of the proof
below. Note that |A| = k in Algorithm 6 and 7.

Query: Let us analyze the complexity of each of the steps. Step 1 has complexity O(klogk) by Lemma 1.
Step 4 has complexity O((|X;| — k)log(|X;| —k)) by the same lemma. In case of non-membership, in
Step 7, by Lemma 3, this step has complexity O(N log?> NloglogN) where N = |X;| 4 k. The complexity
of Step 9 is O(NlogN). The complexity of Step 11 is O(m®logm) by Lemma 4, where m = |S|. Hence
the overall complexity of the query algorithm is O(klogk -+ (|.X;| — k) log(| X;| — k) +Nlog? NloglogN +
NlogN +mlogm) = O(Nlog® Nloglog N + mElogm).

29

Algorithm 7 Subset Verification: (accept/reject) <— SubsetV(vk, digest,, answer, proof)

1: Parse proof as ([ao...‘,ak].,{gs,...,gsk},WA’XI,H,’,(x,-).

2: Certify the validity of [a, . . .,ay] by picking w & Zj, and verifying that }c(o,A] aw' = [Ticjo,a) (xi +w) where A= {xy,...,x;}.
If the verification fails, return reject. Else proceed to next step.

: Invoke AT Verify(vk, digest,, i, IT;, o;) If verification fails return reject. Else proceed to next step.

: If answer = 1:

Check if e(gCha(s), Wia,x,)) = e(acc(X;), g). If verification fails return reject. Else return accept.

: Else if answer = 0:

Parse W, x,) as (F1,F2)

Check if e(F}, g " 8))e(Fy,acc(X;)) = e(g, g) If verification fails return reject. Else return accept.

Verification: Verification in Step 2 takes time O(k) by Lemma 2. By Lemma 4, Step 3 has complexity
O(1). Computing g“"2() takes time O(k). Therefore Step 5 has complexity O(k). Finally Step 9 involves
requires 5 bilinear map computations and one multiplication and hence has complexity O(1). Therefore,
the overall complexity of verification is O(k).

Proof size: The proof size is O(k).

7.4 Set Intersection Query

Set intersection query ¢ is parameterized by a set of indices of the set collection, ¢ = (i1, ...,i). The answer
to an intersection query is a set of elements which we denote as answer and a simulatable proof of the
correctness of the answer. If the intersection is computed correctly then answer = X; N.X;, N...NX;,. We
express the correctness of intersection with the two following conditions as in [PTT11]:

Subset condition: answer C X; Aanswer C X;, A...Aanswer C X;,. This condition ensures that the returned
answer is a subset of all the queried set indices, i.e., every element of answer belongs to each of the sets
Xj for j € [il,ik];

Completeness condition: (X; —answer) N (X;, —answer) N...N (X;, —answer) = 0. This is the complete-
ness condition, that ensures that answer indeed contains all the common elements of X;,,..., X, i.e.,
none of the elements have been omitted from answer.

To prove the first condition, we will use subset query as a subroutine. Proving the second condition is more

trickyj; it relies on the fact that the characteristic polynomials for the sets X; — answer, for all j € [ij,],

do not have common factors. In other words, these polynomials should be co-prime and their GCD should
be 1 (Lemma 3). Since the proof units should be simulatable, we cannot directly use the technique as in

[PTT11]. To this end, we randomize the proof units by generalizing the randomization technique in Section 5

used to prove non-membership in a single set. We present the pseudocode for the set intersection query in

Algorithm 8 and its verification in Algorithm 9.

Efficiency We analyze the run time of the query and the verification algorithms and the size of the proof
below.

Query: Let us analyze the complexity of each of the steps. Let m = [S|, N = ¥ ;c(;, i nj> nj = |X;| and k
is the number of indices in the query. Note that N is an upper bound on p. Let us denote p = p Step 3
has complexity O(plogp) by Lemma 1. By Lemma 3, Step 5 has complexity O(Nlog® NloglogN).
Step 7 has complexity O(NlogN) (by Lemma 1). Finally, Step 9 has complexity O(km®logm) by
Lemma 4. Therefore, the overall complexity is O(plogp + Nlog? NloglogN + NlogN + kmElogm) =
O(Nlog® NloglogN + kmtlogm)

Verification: For the verification algorithm, let us look at each of the verification steps individually. Step 2
has complexity O(p) by Lemma 2. Step 3takes has complexity O(k) by Lemma 4. In Step 4, computing
gChanswer(8) has complexity O(p) and then there are 2k bilinear map computations. Therefor this step has

30

Algorithm 8 Set Intersection: (answer, proof) <— IntersectionQ(ek;, aux,,auth(S;),S;,q = (i1,...,i))

1: Let answer = X;, N.X;, N...NX;, and WLOG let us assume k is even.

2: Let Chanswer be the charactersitic polynomial for answer.

3: Let [ap, . ..,ap) be the coefficients of the polynomial Chypswer.

4: Let Pj[z] = Chy,\answer for all j € [i1, ix] where ; is the random number used as the blinding factor for X;.

5: Using Extended Euclidian Algorithm, compute polynomials g;[z] such that ¥;c(;, 71 ¢;[z]Pj[z] = 1.

6: Pick a random y& Zj, and set q; [z] := (i’fll)(q,-l (2] + P, [2]) and g}, [z] := qi, 2] —¥P;, [2], ¢},[2) == (ri;l)(qi3 [z] +YP,[z]) and
), [d = qi [= ¥P,[2), ... q},_ (e == ;")(qi,_, [+ ¥P,[2]) and g, [2] := qi [] — VP;, , [2]-

7: Compute Fj = g% forall j e [i1, i)

8: Invoke Subset query with subsetQ(ek;,aux;,auth(S;),S;,p, j) for all j € [i1,i]. Let subsetQ(ek;,aux;,auth(S;),S;,p, j) =
(17Wanswer,X/-)

9: Invoke AT.ATQuery(ek;, j,auth(S;)) for all j € [i1,i]. Let (TI1;,a;) <— AT.ATQuery(ek;, j,auth(S;)).

10: Set proof = ([ap, . ..,ao],{g", . ,gsp},{Fj,W(answerﬁxj),l'lj,ocj}je[il_ik]), where |answer| = p.

11: return (answer, proof)

Algorithm 9 Set Intersection Verification: (accept/reject) <— IntersectionV (vk, digest,, answer, proof)

1: Parse proof as ([am s 700]7 {gsv cee 7gsp }7 {Fij(answerA,Xj)vHj7a,i}j6[i1,ik]) where |answer| =p.

2: Certify the validity of [ap,...,ap] by picking w & Zj, and verifying that Yo o) aiw' = [Tiepo,p) (i +w) where answer =
{x0,...,xp}. If the verification fails, return reject. Else proceed to next step.

3: For all j € [i1,] invoke AT Verify(vk,digest,, j,II;,o;) If verification fails for at least one o}, return reject. Else proceed to
next step.

4: For each j € [iy,iy] verify that: e(gCha"Swef(S),W(answer‘xj)) = e(acc(state;),g). If verification fails for at least one a.;, return
reject. Else proceed to next step. '

5: Check the completeness condition by checking if [T;e[, ;] e(Fj, W(answer.)(_f)) = e(g,g). If verification fails return reject. Else

6: return accept

complexity O(p + k). Finally, Step 4 requires k + 1 bilinear map computations, k — 1 products and hence
has complexity O(k). Therefore, the overall complexity of verification is O(p + k).
Proof size: The proof size is O(p +k).

7.5 Set Union

Set union query, like intersection, is parameterized by a set of indices of the set collection, g = (iy,...ix).
The answer to an union query contains a set of elements, denoted as answer = X; UX;, U...UX,, and a
simulatable proof of the correctness of the answer.

We introduce a technique for checking correctness of union operation based on the following conditions:

Superset condition: X; C answer A X;, C answer A ... A X;, C answer. This condition ensures that no ele-
ment has been excluded from the returned answer.

Membership condition: answer C U where U = X;, W.X;, W...W.X;,. W denotes multiset union of the
queries sets, i.e., W preserves the multiplicity of every element in the union. This condition ensures that
every element of answer belongs to at least one of the sets X;,,...,X;,.

The query algorithm generates the query answer along with proofs for both the conditions mentioned here.
The first condition can be checked by using the subset proof developed in Section 7.3. The second condition
should be proved carefully and not reveal (1) whether an element belongs to more than one of the sets in the
query, and (2) which set an element in the union comes from. For example, returning U in the clear trivially
reveals the multiplicity of every element in answer. Instead, the server returns acc(U/) which equals g&ho)
blinded with randomness in the exponent. In order to prove that the server computed acc(U) correctly, we
introduce a union tree.

31

A union tree (UT) is a binary tree computed as follows. Corresponding to the k queried indices,
acc(X;,),...,acc(X;,) are the leaves of UT. The leaves are computed bottom up. Every internal node is
computed as follows: For each internal node v, let v; and v, be its two children. The (multi)set associated
with v is the multiset M = M| WM, where M| and M, are (multi)sets for v; and v, respectively. Let r; and r;
be the corresponding blinding factors. Then the node v stores value "2 () Finally, the server constructs
proof of subset for answer in . We give the pseudocode for the set union query in Algorithm 10 and its
verification in Algorithm 11.

Algorithm 10 Ser Union: (answer, proof) <— unionQ(ek;, aux;,auth(S;),S;, (i1,...,ix))
1: Letanswer = X;, UX;, U...UX,.

2: Let [ap, . ..,ap) be the coefficients of the polynomial Chypswer.
3: Let U = X WX, W... WX, where & denotes multiset union, i.e., & preserves the multiplicity of every element in the union.
Chanswer (s)

4: For each index j € [i1, ix] compute W(x, answer) = & ERE

5: Build a binary tree on k leaves (representing the k indices in the query) bottom-up as follows: For a leaf node, let a(v) =
acc(X;) = g’ Chy; (S), For each internal node v, let v and v, be its two children. The (multi)set associated with v is the multiset
M = M| &M, where M| and M, are (multi)sets for v; and v, respectively. Let r; and r, be the corresponding blinding factors.
Then a(v) = g""2Chu(s),

Wieliy.ig] 7))

6: Compute Wi, ger) <~ g omwer®

7: Invoke AT.ATQuery(ek;, j,auth(S;)) for all j € [if,i]. Let (I1;,o;) < AT.ATQuery(ek;, j,auth(S;)).

8: proof := ([ap,. -~ua0]7{g57-~'7gxp},{a(V)}veV(UT)7W(answer,ﬁ)v{W(X/,answer)>Hj70cj}j€[i|.,i/‘])v where |answer| = p.

9: return (answer, proof)

Algorithm 11 Set Union: (accept/reject) < unionV(vk, digest,, answer, proof)

1: Check that answer has no repeated elements. If not, return reject.
P
2: Parse proof as ([ap,...,a0],{g*,...,&" }, {a(v)}VGV(UT)7W(answer,l7)? {W(X,-,answer)7vaaj}j€[i1,ik]) where |answer| = p.

3: Certify the validity of [ap,...,ap] by picking w & Zj, and verifying that ¥c(o o) aw' = [Ticjo,p) (xi +w) where answer =
{x1,...,xp}. If the verification fails, return reject. Else proceed to next step.

4: For all j € [iy,i] invoke AT Verify(vk,digest,, j,I1;, o ;) If verification fails for at least one o, return reject. Else proceed to
next step.

5: For each j € [i1,i] verify that: e(0tj, W(x, answer)) = e(gChamswer () o) Tf verification fails for at least one o ;» return reject. Else
proceed to next step.

6: For each given node v in UT, verify that e(a(v),g) = e(a(vy),a(v2)), where v;,v; are children of v. If verification fails for at
least one node, return reject. Else proceed to next step.

7: Let root of UT be denoted as acc(U). Verify that e(W(answer’U),gCha"Swef(s>) = e(acc(U),g). If the verification fails, return
reject. Else

8: return accept.

Note: Previously developed techniques for verifiable set union cannot be used for the following reasons.
The proof of membership condition in [PTT11] does not satisfy zero-knowledge property since it reveals
which particular set an element in answer comes from. Moreover, it is inefficient as pointed out in [CPPT14].
On the other hand, the union proof in [CPPT14] relies on non-falsifiable knowledge assumption and it is not
zero-knowledge as it requires set intersection of [PTT11] as a subroutine.

Efficiency We analyze the run time of the query and the verification algorithms and the size of the proof
below.

Query: Letm=[S|,N =¥ jcj;, ;) > nj = |X;| and k is the number of indices in the query. Note that N = |U|

and N is an upper bound on p. We will analyze the complexity in each step. By Lemma 1, Step 2 has

32

complexity O(plogp). By the same lemma, Step 4 has complexity O(kplogp). Now let us analyze the
complexity of computing the union tree in Step 5. Computing all the nodes at a level has complexity
O(NlogN) (by Lemma 1) and the tree has logk levels. So the overall complexity in computing the union
tree is O(NlogNlogk). In Step 6, computing the member witness takes time O((N — p)log(N —p))
which is bounded by O(NlogN). Finally, Step 7 takes time O(km®logm). So the overall complexity
of unionQ is O(plogp + kplogp + NlogNlogk + NlogN + km®logm) = O(kplogp + NlogNlogk +
kmflogm).

Verification: For the verification algorithm, let us look at each of the verification steps individually. Step 1
takes time O(p). Step 3 takes time O(p) by Lemma 2. By Lemma 4, Step 4takes total time O(k). In
Step 5, computing ghanswer(5) takes time O(p) and then there are 2k bilinear map computations. Therefor
this step runs in time O(p + k). Verifying the correctness of the union tree in Step 6 requires 2 bilinear
map computation for each internal node of the tree and therefore takes time O(k), where k is the number
of nodes in the union tree. Finally, Step 5 takes O(1) time since gChanswer(8) hag already been computed.
Therefore, the total time at verification is O(p + 2k) = O(p + k).

Proof size: The proof size is O(p +k) = O(p + k).

7.6 Set Difference Query

Set difference query g is parameterized by two set indices of the set collection ¢ = (i,i3). The answer to a set
difference query is answer = X;, — X;, and a proof of correctness of the answer. We express the correctness
of the answer using the following condition (answer = X;, — X;,) <= X;, — (X;, —answer) = X;, N.X;,. This
condition ensures that (1) all the elements of answer indeed belongs to X;, and (2) all the elements of X;, that
are not in X;, are contained in answer. In other words, the union of answer and the intersection / = X; N .X;,
equals X;, .

The condition is tricky to prove for the following reasons. The server cannot reveal neither X;, — answer
nor X;, N X, to the client, since this reveals more than the set difference answer the client requested for
(hence, breaking our zero-knowledge property).!! Hence, we are required to provide blinded accumulators
corresponding to these sets. Unfortunately, the blinded version of X;_; — (X;, — answer) and X;, N.X;,, even
if the server computed the answer correctly, would be different. This is caused by different blinding factors
used for these accumulators, even though the exponent that corresponds to the elements of the sets is the
same. We use this fact and let the server prove that the non-blinded exponents are the same.

Our solution relies on an NIZKPoK protocol as described in Section 2. We use the NIZK version of the
Y-protocol in the random oracle model (standard Fiat Shamir transformation) as described in Figure 1. We
would like to note that there are alternative methods [GMY03,MY04] to make X-protocols NIZK that do
not rely on the random oracle model. Unfortunately, these methods come with some performance penalty.
We give the pseudocode for the set difference query in Algorithm 12 and its verification in Algorithm 13.

Efficiency We analyze the run time of the query and the verification algorithms and the size of the proof
below.

Query Let us analyze the complexity of each of the steps. Let m = [S|, N = ¥ ;c(;, i, 1j> n; = |X;| and
k is the number of indices in the query. Note that N is an upper bound on p. Step 2 has complexity
O(plogp) by Lemma 1. By Lemma 1, Step 3 has complexity O((X;, — p)log(Xi, —p)). By the same
lemma, Step 5 has complexity O(|I|1og|I|). By the analysis for set intersection, we know that Steps 7-
11 has complexity O(Nlog? NloglogN). From Figure 1, we see, computing PKw takes time O(1) in
Step 12. Finally, Step 13 has complexity O(m®logm) by Lemma 4. Therefore, the overall complexity
is O(plogp + (X;, —p)log(X;, —p) +|I|log|I| +Nlog? NloglogN + mtlogm) = O(Nlog> NloglogN +
m&logm).

T We note that the sets are revealed to the client in [PTT11] where privacy is not a concern.

33

Algorithm 12 Set Difference: (answer, proof) < differenceQ(ek;,aux;,auth(S;),S;, (i1,i2))

]

AN AW N =

8:

9:
10:
11:
12:
13:
14:
15:

: Compute membership witness for answer in X;, using the subset algorithm. Let Wansper, X,)
: Compute I < X; NX;,

: Let answer = X;, — X;, = {x1,...,%p}.
: Let [ap,...,ag] be the coefficients of the polynomial Chanswer-

”iChx,-] —answer (S)

8

: Pick a random y & Z;, and compute acc(I) - g" i Y
: Let Pjlz] = Chy,— for all j € [i1, ia].

Py)

: Compute Wy y;, g "

Piy (5)
Compute Wy x;, g "
Using Extended Euclidian Algorithm, compute polynomials ¢;(z] such that ¥ ;c(;, i, ¢;(2]Pj[z] = 1.
. $
Pick a random B < Z;’ and set q;} [Z} = (riZ’Y) (Qil [Z] + BPlz [ZD and qu [Z] = (rizy) (qiz M - BPH [Z])
Compute Fj = gqi(s) forall j € [i, ig].
Compute PKproof by invoking PK with h = acc(I), g’ = Wanswer. X, and x = ry,Y.
Invoke AT.ATQuery(ek;, j,auth(S;)). Let (IT;, ;) < AT.ATQuery(ek;, j,auth(S;)) for j € [i,i2].
Set proof := ([ap,...,a0],{&’,. .. ,gsp}.,W(answe,_Xil),acc(I),{Fj,W(,’X/_),Hj,(xj}je[,»l_[z], PKproof) where where |answer| = p.
return (answer, proof)

Algorithm 13 Set Difference Verification: (accept/reject) < differenceV (vk, digest,, answer, proof)

1:
2:

3:

Parse proof := ([ap,...,ap],{g’, .. ,gsp}7W(answe,,)C_] y.ace(l) {Fj, Wi x,), 11,0} jefi, ir], PKproof) where [answer| = p.

Certify the validity of [ap,...,a] by picking w & Zj, and verifying that ¥;c(op) aw' = [Ticjo,p) (xi +w) where answer =
{x1,...,xp}. If the verification fails, return reject. Else proceed to next step.

For all j € [i1,i] invoke AT Verify(vk,digest,, j,I1;,a;) If verification fails for at least one o, return reject. Else proceed to
next step.

: Verify Wianswer, ;) by checking e(Wianswer, X,) gChanswer(8)) = ¢(0y;, g). If the verification fails return reject. Else proceed to

next step.

: Parse PKproof as (b, c,r) and run the verification steps as in Figure 1 with h = acc(I), 8 = Wanswer, x, - If the verification fails

return reject. Else proceed to next step.

o Verity if e(W(; x;),acc(l)) = e(aj,g) for j € [i1,i2]. If verification fails for at least one o;, return reject. Else proceed to next

step.

o Check if [Tjefi, i, €(Fj, Wir x;)) = e(g,8)- If verification fails return reject. Else
: return accept

Verification: For the verification algorithm, let us look at each of the verification steps individually. Step 2

takes time O(p). By Lemma 2. Step 3 has complexity O(1) by Lemma 4. In Step 4 computing g©hanswer(s)
has complexity O(p). Step 6, 5 and 7 has complexity O(1) each. Therefore, the overall complexity of
verification is O(p).

Proof size: The proof size is O(p).

7.7 Efficiency Comparison with the Scheme of [PTT11]

We compare the asymptotic complexity of the algorithms of our ZKASC scheme with that of [PTT11]
in Figure 4. Recall that our ZKASC scheme satisfies both authenticity and privacy (in particular, the strong
notion of zero-knowledge property) for set algebra queries, while [PTT11] provides only authenticity and
trivially reveals information about the set collection S = {Xj,..., X, } beyond query answers. We show that
our setup, query and verify algorithms have the exact same asymptotic performance as those of [PTT11].
The update algorithms are more expensive compared to that of [PTT11]. At a high level, the extra cost is
due to zero-knowledge property we achieve in return. We require all the proofs to be ephemeral, i.e., proofs
should not hold good between updates. Hence, every set for which the client has received a proof between

34

the updates has to be refreshed. Finally, we note that the construction of [CPPT14] offers faster union queries
(roughly by a multiplicative k/log N factor) but its security relies on non-falsifiable type assumptions.

[PTT11]\ This paper
Setup Mim
Update Owner I\L
Server I\ L
Subset Que?,ry : Nlog? NloglogN + m¢logm
Verity/Proof size k
log? Nlogl €]
Instersection Que?ry : Nlog”NloglogN +km"logm
Verity/Proof size p+k
1 €]
Union Quejry : kNlogN + km*logm
Verify/Proof size p+k
log? NloglogN + m¢1
Difference Quefry : Nlog”NloglogN +m"logm
Verify/Proof size p

Fig. 4: This table compares the access complexity of each operation with that of [PTT11]. When only one
value appears in the last column, it applies to both constructions. We note that the access complexity of
Union Query was originally mistakenly reported as O(NlogN) in [PTT11].

Notation: m = [S|, M = Y;c,,, | Xi[, nj = [X;|, N = ¥ jeji, i, j» k is the number of group elements in the query
input (for the subset query it is the cardinality of a queried subset A and for the rest of the queries it is the
number of set indices), p denotes the size of a query answer, and L is the number of sets touched by queries
between updates u,; and u,, and O < € < 1 is a constant chosen during setup. The reported complexities are
asymptotic.

7.8 Security Proofs

In this section, we will prove that our ZKASC construction satisfies the security properties of soundness
(Definition 7) and zero-knowledge (Definition 8). Completeness (Definition 6) directly follows from the
constructions as described with the respective algorithms. We first prove a short lemma that we will use in
our soundness proof.

Lemma 5 For any adversarially chosen proof I1;, if algorithm AT Verify(vk, digest,,i,I1;, o) accepts, then
o; = acc(X;) with probability Q(1 — V(L))

Proof The lemma is identical to Lemma 5 in [PTT11]. The only difference is that now each set is repre-
sented using a randomized accumulator instead of a general accumulator. We will show a reduction from
Lemma 5 in [PTT11] to this lemma. For the sake of contradiction, let us assume that there exists an ad-
versary Adv that outputs IT; such that AT Verify(vk, digest,,i,I1;,0,) = accept and o; # acc(X;). Then there
exists an adversary A that does the following:

— Initially 4 sends the public key vk to Adv.

— Adv comes up with a set collection So = {X,..., X}

— A picks random elements ry, ..., 7y, & Z;, and sets Sy ={X1Ur1,...,XuUry}., where r; ¢ X;. Otherwise
A picks a fresh randomness for that set.

35

— A4 forwards all the authentication units to Adv. Note that, from Adv’s perspective, the blinding factor
used for X; is s+ ;.

— A4 forwards all the update requests to its challenger and forwards the challenger’s responses to Adv.
Note that, if Adv requests to insert element r; is X;, A4 aborts. But this happens only with probability \Zlﬁ
which is negligible in the security parameter A.

— Finally 4 outputs Adv’s forgery I1; and inherits Adv’s success probability.

Therefore, 4 breaks Lemma 5 in [PTT11]. |}

Proof of Soundness: In this section we prove that the ZKASC construction satisfies the soundness property.
Formally, we prove Lemma 6.

Lemma 6 Under the g-SBDH assumption, the ZKASC scheme is sound as per Definition 7.

Proof Let g be some polynomial in the security parameter of the scheme such that g is an upper bound on
the maximum size the adversarial set collection can grow to. Since the adversary has to come with a set
collection that is poly(A), and is allowed to ask a polynomial (in A) number of queries, this upper bound
exists. We will give a reduction to g-SBDH assumption. Let A4 be the reduction which receives a g-SBDH
tuple (g,g°,...,g") as input. The reduction does the following:

Recall the soundness game where the adversary Adv sees the vk, then comes up with a set collection
Sp = Xi,...,Xx. and then sends it to 4. A4 runs all the steps of Algorithm 2 where it computes the proof units
using (g,g°,...,&") instead of the secret key s and sends (Sy,auth(Sy),digest, eko,auxp). Note that all the
steps can be executed using the tuple (g,g°,...,g"). For an update query, 4 runs the steps of Algorithm 3
and uses (g,g°,...,g") instead of s as before.

If Adv outputs a succesful forgery, it has to forge proof for at least one of the following queries: subset,
set intersection, set union or set difference. Let us define the following events:
Event A;: The adversary outputs a forged subset proof.
Event A,: The adversary outputs a forged set intersection proof.
Event A3: The adversary outputs a forged set union proof.
Event A4: The adversary outputs a forged set difference proof.

The probability that Adv outputs a successful forgery is Pr{A; UA, UA3 UA4] < Pr[A;] + Pr[A;] +
Pr[As] 4 Pr[A4]. We will individually bound the probability of success of each of the events individually.

Lemma 7 Under the qg-SBDH assumption, there exists a negligible function V() such that Pr[A;] < Vv(\)

Proof If Adv outputs a succesful forgery, it has to forge on at least one of the following steps: Step 2, 3,
and 5 or 8 in Algorithm subsetQ. Let us denote the corresponding events as E; for i € [1,4] respectively and
bound the probability of each event. By Lemma 2 we know that there exists a negligible function v; such
that Pl”[El] < VIO“)'
By Lemma 5 Pr[E»] <V, (A) for some negligible function v;.
Next we analyze the probability of forging a membership proof, i.e., Pr[E3].
— The equation e(gChA(S),W(A x)) = e(acc(X;), g) verified to be true but A ¢ X;. This implies there exists
at least one element y € A such that y ¢ X;.
— Therefore there exists polynomial P[z]and a scalar ¢ such that Chx[z] = (y+z)P[z] +c.
— 4 computes polynomial P[z] and scalar ¢ using polynomial long division.
- A outputs [y, (e(W(ax) g™ 1) De(g,g)]
Therefore, using a forged witness W(, x), A can break the g-SBDH assumption with the same success
probability. Hence it must be the case that Pr[E3] < v3(A) for some negligible function vs.
Therefore, the probability of successfully forging a membership proof is Pr[E| A E; A Es] < PrlE;] +
Pr[Ez] + PrlE3] < vi(A) +Va(A) +v3(A) < V(L) for some negligible function V'

36

Now let us look at the probability of forging a non-membership proof, i.e., Pr[E4].
Ey is the event when e(Fj, g ®))e(Fy,acc(X;)) = e(g,g) but A C X;. This implies for all y € A, y € X;.
Therefore for any y € A there exists a polynomials P[z] such that Chx[z] = (y+2)P[z].
Compute polynomial P[z] using polynomial long division.
Compute e(Fy,g " ~6))e(F, g"F8)) which equals e(g,g)ﬁ
Output [y, e(Fy, g~ 0))e(Fy, gP1)))]
Therefore using F;’s, A4 can break the g-SBDH assumption with the same success probability. Hence it
must be the case that Pr[E4] < v4()) for some negligible function vy.

Therefore, the probability of successfully forging a membership proof is Pr[E| A E; A Es] < PrlE;] +
Pr|Ez] + PrlEs] < Vvi(A) +Va(A) +va(A) < V'(A) for some negligible function v/. |}

Lemma 8 Under the q-SBDH assumption, there exists a negligible function V() such that Pr[A;] < Vv(\)

Proof If Adv outputs a succesful forgery, it has to forge on at least one of the following steps:
Step 2, 3, 4 and 5 in Algorithm insertQ. Let us denote the corresponding events as E; for i € [1,4] re-
spectively and bound the probability of each event.

By Lemma 2 we know that there exists a negligible function v; such that Pr[E;] < v()).

Next we bound Pr[E;]. By Lemma 5, the probability that for some set X;, o; # acc(X;) < vi(A) for some
negligible function v'. Let V(L) be the maximum of the negligible functions V() for i € [1,k]. Note that
all the v functions are independent of each other by By Lemma 4. Therefore, by union bound, Pr[E;] <
kv(A) = vo(A) for some negligible function v; since k = poly(A). Therefore, we have, Pr[E;] < va(A).
Now let us bound Pr|E3].

At least for one j, it must be the case that e(gChanswer(s), Wianswer,x;)) = e(acc(state;), g) but answer Z X;;.
This in turn implies, there exists at least one element y € answer such that y ¢ X;.

This implies (y+z) does not divide Chy; [z]. Therefore there exists a polynomial ¢[z] and a scalar ¢ such
that Chy,[z] = (y+2)q(z] +c.

Use polynomial long division to compute g[z] and c.

— Output [’(e(W(answer,Xj)agCh{answerf".}(s))r;le(gvgiq(s)))fl]

Therefore, using a forged witness Wanswer, x;)» A can break the ¢g-SBDH assumption with the same
success probability. Hence it must be the case that Pr[E3] < v3() for some negligible function vs.

Now we look at Pr[E4].

— Eq4 is the event when [Tjcj;, i) €(Fj, Wanswer,x;)) = €(g,g) but the intersection (X;, — answer) N (X;, —
answer) N...N (X, —answer) # ¢, i.e., there exists at least one element y that belongs to all the sets
(X; —answer) for j € [i, ix].

Therefore, there exists polynomials P;(z] such that Chx, _answer[z] = (y +2)P;[2] for j € i, i].
Compute polynomial P;[z] using polynomial long division.

Compute Hje[il,ik] e(Fj,g’ipf(s)) which equals e(g,g).v%
Output [y, [Tjefi, iy e(Fj,g""i)]
Therefore using F;’s, A4 can break the g-SBDH assumption with the same success probability. Hence it must
be the case that Pr[E,4] < v4(A) for some negligible function vg.

Therefore, we have Pr[E| AEy AE3 AE4] < Pr(E]+ Pr[Ey] 4+ Pr[E3] 4+ Pr[E4] < Vvi(A)+Vv2(A) +Vv3(A)+
v4(A) < V/(A) for some negligible function v'. |}

Lemma 9 Under the q-SBDH assumption, there exists a negligible function V(M) such that Pr[Az] < V(1)

Proof If Adv outputs a succesful forgery, it has to forge on at least one of the following steps:
Step 3, 4, 5, 6 and 8 in Algorithm unionQ. Let us denote the corresponding events as E; for i € [1,5]
respectively and bound the probability of each event.

37

By Lemma 2 we know that there exists a negligible function v; such that Pr[E;| < v;(A).

Now let us look at Pr[E>]. By Lemma 5, we have that the probability that for some set X;, o; # acc(X;) <
vi (L) for some negligible function v'. Let v(1) be the maximum of the negligible functions vi()) for i € [1,4].
Note that all the V' functions are independent of each other by By Lemma 4. Therefore, by union bound,
Pr|E;] < kv(A) = vo(A) for some negligible function v, since k = poly(\). Therefore, we have, Pr[E;] <
V2 (7\,)

Now let us bound Pr[E3].

At least for one j, it must be the case that e(0t;, W(x; answer)) = e(gChanswer(s) g but X; ¢ answer.

This in turn implies, there exists at least one element y € X; such that y ¢ answer.

This implies (y+z) does not divide Chanswer|z]. Therefore there exists a polynomial g[z] and a scalar ¢
such that Chanswer[z] = (v +2)¢q[z] +c.

Use polynomial long division to compute ¢[z] and c.

Output [y, (e(Wi, answen) 8) Ie(g.g71)¢]

Therefore, using a forged witness W(x, answer)» A can break the g-SBDH assumption with the same
success probability. Hence it must be the case that Pr[E3] < v3() for some negligible function vs.

Now we look at Pr[Ey].

Forgery for some node v in the tree with children vy, v, implies e(a(v),g) = e(a(vi),a(v2)) but a(v;)
is not the correct accumulation value at v; or a(v;) is not the correct accumulation value at v, (or both).
Since the verification happens bottom up, and by definition, a(v) = g"172Chu(s) therefore, it must be the
case that for some leaf node v;, a(v;) was not the correct accumulation for the corresponding set (say, X;),
i.e., a(v;) # acc(X;). But by Lemma 4, this probability is negligibly small. Therefore, following the same
argument as for Ep, we have Pr[E4] < v4(A) for some negligible function v4.

Now let us estimate the probability of Pr[Es|. We will show that if e(W,newer,):
e(acc(U),g), but answer ¢ U, then, 4 can break the g-SBDH assumption with non-negligible probabil-
ity.

— Since answer §Z U it must be the case that there exists at least one element y € answer such that y ¢ U.

— This implies (y+z) does not divide Chy;[z]. Therefore there exists a polynomial ¢[z] and a scalar ¢ such
that Chy[z] = (y+2)glg] +c.

— Use polynomial long division to compute ¢z and c.

— Output | ’(e(W(answenU)7gCh{answer—y}(S))(H_ie[n‘ik] r}‘)e(&gfq(S)))fl]

Therefore, using a forged witness W,neuer,7), A can break the g-SBDH assumption with the same suc-
cess probability. Hence it must be the case that Pr|Es] < vs(A) for some negligible function vs.

Therefore, we have PI’[El NEyNE3 N Ey /\Es] < Pl"[E]] +PF[E2] +PF[E3] —|—Pr[E4] —‘rPl"[ES] <vi (7\,) +
Va(A) +va(A) +va(X) +vs(A) < V/'(A) for some negligible function v'. |}

gChanswer (5)) —

Lemma 10 Under the q-SBDH assumption, there exists a negligible function v(\) such that Pr[A4] < Vv())

Proof If Adv outputs a successful forgery, it has to forge on at least one of the following steps:
Step 2, 3, 4, 5, 6 and 7 in Algorithm differenceQ. Let us denote the corresponding events as E; for i € [1,6]
respectively and bound the probability of each event.

By Lemma 2 we know that there exists a negligible function v such that Pr[E;] < vi(A).

Now let us look at Pr[E;]. By Lemma 5, we have that the probability that for some set .X;, o; # acc(X;) <
V() for some negligible function v'. Let V(1) be the maximum of the negligible functions vi()) for i € [1,k].
Note that all the V' functions are independent of each other by By Lemma 4. Therefore, by union bound,
Pr|E;] < kv(A) = vo(A) for some negligible function v, since k = poly(\). Therefore, we have, Pr[E;] <
va(A).

By the soundness of subset query, there exists negligible functions v3,v4 such that Pr[E3] < v3(A) and
PV[E4] < V4(7\,).

38

Therefore, by the soundness of the zero knowledge protocol PK there exists negligible functions v4 such
that Pr[Es] < va()).

In Step 4, the soundness of Wanswer, X, has been verified and in Step 5, it has been verified that acc([) is
Wanswer, X, raised to some exponent that the prover has knowledge of. By the knowledge soundness of PK,
there exists an efficient extractor that can extract the exponent. Let us call this exponent x and let Y= x/r;,. 4

X;, —answer (Y)

1, S Chy,
can us the extractor and compute acc(/)* "1 . acc(I)* "1 can be though of as g~ . Now 4 can

compute polynomial Q[z] and scalar ¢ such that Chy, = (y+2)Q[z] + ¢ and output

[, (e(Wi g,y (g, g~ @0)) ') = [y, e(g,) 7] (where ' is (i1,i2) \ j). This breaks the g-
SBDH assumption. Hence we conclude that Pr[Es| < vs(A) for some negligible function vs.
Finally, we Pr[Es]. Using Y as above, A4 can use forged Fj, j € [i1,i2] as in the proof of set intersection to

come up with [y, e(g,g) ﬁ] which breaks the g-SBDH assumption. Therefore using F;’s, 4 can break the g-
SBDH assumption with the same success probability as Adv. Hence it must be the case that Pr[Eg] < v¢(A)
for some negligible function vg.

Therefore, we have Pl’[E] NEy NE3s NE4 N Es A E(,] < Pl’[E]] + Pr[Ez] + PF[E3] + PF[E4] + PF[E5] +
PrlEs] <Vi(A)+V2(A) +Vi(A) +Va(A) +vs(X) +ve(L) < V(L) for some negligible function v'. |}

Therefore, by Lemma 7, Lemma 8, Lemma 9 and Lemma 10 we have Pr[A; UA; UA3 UA4] < v(A) for
some negligible functionv. |

Proof of Zero-Knowledge: We prove that the ZKASC construction satisfies the zero-knowledge property.
Formally, we prove Lemma 11.

Lemma 11 The ZKASC scheme satisfies zero-knowledge property as per Definition 8.

Proof We write a simulator Sim that acts as follows:
— It first runs GenParams(1%) to receive bilinear parameters pub = (p,G,Gr,e,g)

— Then it picks s & Z,,, and sends vk := g*, pub to Adv and saves s as its secret key in its state informa-
tion stateg.
— Given vk, Adv comes up with a set collection Sy of its choice. Sim is given |Sy| = m which is the public
information of the scheme.
— Sim picks m random numbers r; & Z, for i € [1,m] and computes acc(X;) & g"" and saves all the r;’s in
its state information.
— Then Sim invokes AT.ATSetup(sk, (acc(Xi),...,acc(Xy))). Let
AT.ATSetup(sk, (acc(Xj),...,acc(Xy))) = (auth(Sp),digesty).
— Sim saves auth(Sy), digest, in stateg and sends digest to Adv.
After this, when Adv adaptively asks for op. Sim maintains a list of previously asked queries and uses
the proof units used by the Sim. If a query is repeated by Adv between two updates, then Sim uses the same
proof units. Otherwise Sim does the following:

If op = update: Sim makes oracle call to D() to check the validity of update. If D() returns 0, Sim outputs
L. Otherwise, for all indices i € [1,m], Sim looks up its state information to see if any query touched
index i since the last Update. Let [ij,.. .,] be the set of indices. Let S; is the most recent set collection

— For all the indices j € [i1, ..., i], Sim picks fresh random elements 7/, & Z,.

— It updates sets acc(X;) < g/ "} and updates rj with ;7 in its state information.
— Then it calls AT .ATUpdate(sk, j,acc’(X;),auth(S;), digest,). Let
AT.ATUpdate(sk, j,acc’(X;),auth(S;),digest,) = (auth’, digest’, updinfo,).
Return digest, | to Adv.

39

If op = subsetQ for (A,i) Sim makes oracle call to D() to check the validity of subsetQ. If D() returns 0,
Sim outputs L. Otherwise, it makes oracle call to S; (where S; 1s the most recent set collection) and

gets answer. Let answer = 1. Then Sim computes Wy state; < gChA Else if answer = 0, Sim does the
following:
— let A= {xi,...,x:}. Compute coefficients [ap, . ..,ax| of the polynomial Ch,.
Now let x = GCD(r;,Chalz]).
Using Extended Euclldlan algorithm, compute g1, g, such that ¢, (Chalz]/x) + g2(ri/x) = 1.

Pick a random y & L.
Set ¢} [] := 41[Z]+er and ¢} 7] := q[z]— “{ChA[Z}'
Compute F; + gql() P ng().
- Set WAJG = (Fl,Fz)
Set proof = ([ao, ..., ar],Wa x;,IT;, ;) Return (answer, proof) to Adv.
If op = IntersectionQ for indices /1, ...,ix: Sim makes oracle call to D() to check the validity of
IntersectionQ. If D() returns 0, Sim outputs L. Otherwise, it makes oracle call to S, (where S; is the
most recent set collection) and gets answer. Let answer = {xi,...,xp}. Now Sim does the following:

— Compute coefficients [ap, ...,ao| of the polynomial Chapswer-

— For each index j € [i1, k] compute Wianswer,x;) <= gm.

- Now let x = GCD(r;) for j € [i,i] and let us denote as 7j = r;/x.

— Note that 7;’s are co-prime. Using Extended Euclidian algorithm, compute ¢g;’s such that
Yjelii 477 = 1.

— Pick a random y < Z;, and set ¢j[z] := (q; + (Yartrg)) Chanswerld]

,YChanswer[Z} X

— Compute Fj gl
— Invoke AT.ATQuery(ek;,j,auth(S;)) for all j € [ij,ix]. Let AT.ATQuery(ek;,j,auth(S;)) =
(I, a)).
— Set Set proof = ([ap, - .., a0], {Fj; Wanswer,x;)> ILj; 0 } jeir.i])-
Return (answer, proof) to Adv.
If op = unionQ for indices ij,...,i: Sim makes oracle call to D() to check the validity of unionQ. If D()
returns 0, Sim outputs | . Otherwise, it makes oracle call to S; (where S; is the most recent set collection)

and gets answer. Let answer = {x1,...,xp}. Now Sim does the following:
— Compute coefficients [ap, ..., ao] of the polynomial Ch,pswer-
Chanswer (s)

— For each index j € [i1, ix] compute Wix, answer) <= &
— Build a binary tree on & leaves (representing the & indices in the query) as follows: For a leaf node,
let a(v) = acc(X;) = g". For each internal node, a(v) = g"'"> where r| and r, are the corresponding

blinding factors for v and v, respectively.
[eliy ig] /)
— Compute W(answer,U) 4= g Chanswer(s)
— Invoke AT.ATQuery(ek,j,auth(S;)) for all j € [i1,i]. Let AT.ATQuery(ek,, j,auth(S;)) =
(Hj,ocj).
- pI’OOf = ([aP7 s 7a0]7 {a(v)}VEV(UT)7W(answer,l7)7 {W(Xj,answer)vnﬁ aj},ie[ihik])
Sim returns (answer, proof) to Adv.
If op = differenceQ for indices i;,i,: Sim makes oracle call to D() to check the validity of differenceQ. If
D() returns 0, Let answer = {xi,...,x,}. Now Sim does the following:
— Compute coefficients [ap, ..., ao] of the polynomial Ch,pswer-

)ll
— Compute Wanswer, X, < g Chanswer(s) |
iy Tig ¥

- Picky & Zy, and set acc([) 1= g Chanswerls]

40

1
— Compute Wy x;, +— g"™2"
1

— Compute W x;, < g

— Now let x = GCD(r;,,r;,) and let us denote as 7j = r;/x for j € [ij,i].

— Note that 7;’s are co-prime. Using Extended Euclidian algorithm, compute ¢;’s such that
Yiclini) 47 = 1-

- Pick a random & Z,.

— Set g, [2] == (i, [¢] + Brip) 2.

- Set g [¢] := (gile] — Bro) 2.

— Compute F; < g%,

— Compute PKproof by invoking PK with & = acc(I), g = Wanswer. x, and the exponent as ;Y.

— Invoke AT.ATQuery(ek;,j,auth(S;)) for all j € [ij,ir]. Let AT.ATQuery(ek,, j,auth(S;)) =
(I}, 05)-

— Set proof := ([ap7'"7“0]7W(answer,X,'1)7acc(1)7{Fj7W(I7Xj)7Hj7aj}je[il,iz]v PKproof).

Return (answer, proof) to Adv

It is easy to see that all the verification steps are satisfies. Observe that random values r are chosen
independently after each update (and initial setup) in both cases and all the units of proof and digest have a
one random blinding factor in the exponent. Hence they are distributed identically to random elements. This
follows from a simple argument. Let x, y,z € Zj, where x is a fixed element and z =x+y or z = xy. Then z is
identically distributed to y in Zj, in both cases. In other words, if y is picked with probability v, then so is z.
The same argument holds for elements in G and Gr.

Thus simulator Sim produces a view that is identically distributed to that produced by the challenger
during Realpg, ¢ and the simulation is perfect. [

We summarize the efficiency and the security properties of the ZKASC scheme in Theorem 2.

Theorem 2 The ZKASC = (KeyGen,Setup, Update, UpdateServer, Query, Verify) scheme satisfies the
properties of completeness (Definition 6), soundness (Definition 7), and zero-knowledge (Definition 8). Let
S={Xi,..., X} be the set original set collection. Define M = ¥c,, | Xi|, nj = |Xj|, and N =¥ jcj;, ;1) Let
k be the number of group elements in the query input (for the subset query, it is the cardinality of a queried
subset, and for the rest of the queries it is the number of set indices). Let p be the size of a query answer,
L be the number of sets touched by the queries between updates u,_| and u;, and 0 < € < 1 be a constant
chosen at the time of setup. We have:

— KeyGen has access complexity O(1);
Setup has complexity O(M +m);
Update and UpdateServer have complexity O(L);
Query and Verify have the following access complexity:
e For is-subset, the access complexity is O(Nlog® NloglogN + mflogm). The proof size is O(k) and
the verification has complexity O(k).
e For set intersection, the access complexity is O(N log> NloglogN + km¢ logm). The proof size is
O(p + k) and the verification has complexity O(p + k).
e For set union, the access complexity is O(kplogp + NlogNlogk + km®logm). The proof size is
O(p + k) and the verification has complexity O(p + k).
o For set difference, the access complexity is O(Nlog® NloglogN + mElogm). The proof size is O(p)
and the verification has complexity O(p).

41

8 Conclusion

In this work, we have introduced zero-knowledge as a privacy notion for cryptographic accumulators. Zero-
knowledge is a very strong security property that requires that witnesses and accumulation values leak
nothing about the accumulated set at any given point in the protocol execution, even after insertions and
deletions. We have shown that zero-knowledge accumulators are located between zero-knowledge sets and
the recently introduced notion of primary-secondary-resolver membership proof systems, as the they can
be constructed (in a black-box manner) from the former and they can be used to construct (in a black-box
manner) the latter.

We have then provided the first construction of a zero-knowledge accumulator that achieves computa-
tional soundness and perfect zero-knowledge. Using this construction as a building block, we have designed
a zero-knowledge authenticated set collection scheme that handles set-related queries that go beyond set
(non-)membership. In particular, our scheme supports set unions, intersections, and differences, thus offer-
ing a complete set algebra.

There are plenty of future research directions in the area that, we believe, can use this work as a step-
ping stone. For example, our construction is secure under a parametrized (i.e., g-type) assumption. It would
be interesting to develop an alternative construction from a constant-size assumption (such as RSA). An-
other interesting research direction would be to come up with an alternative protocol for the set-difference
operation, since the one we present here utilizes a X-protocol and, in order to make it non-interactive zero-
knowledge, without compromising on efficiency, we must rely on the Fiat-Shamir heuristic. Finally, the
relations between primitives presented here complement the related results of [NZ14], but are far from be-
ing complete; we believe there exist plenty of other directions to be explored.

Acknowledgments

We would like to thank Leonid Reyzin and Asaf Ziv for helpful discussions and comments. Research sup-
ported in part by the U.S. National Science Foundation under CNS grants 1012798, 1012910, and 1228485.

References

[ACJTO0] Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A practical and provably secure coalition-resistant
group signature scheme. In Proceedings of the 20th Annual International Cryptology Conference on Advances in
Cryptology, CRYPTO 00, pages 255-270, London, UK, UK, 2000. Springer-Verlag.

[ATSMO09] Man Ho Au, Patrick P. Tsang, Willy Susilo, and Yi Mu. Dynamic universal accumulators for DDH groups and
their application to attribute-based anonymous credential systems. In Topics in Cryptology - CI-RSA 2009, The
Cryptographers’ Track at the RSA Conference 2009, San Francisco, CA, USA, April 20-24, 2009. Proceedings, pages
295-308, 2009.

[BA12] Marina Blanton and Everaldo Aguiar. Private and oblivious set and multiset operations. In Proceedings of the 7th
ACM Symposium on Information, Computer and Communications Security, ASTACCS ’12, pages 40-41, New York,
NY, USA, 2012. ACM.

[BB04] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Advances in Cryptology - EUROCRYPT
2004, International Conference on the Theory and Applications of Cryptographic Techniques, Interlaken, Switzerland,
May 2-6, 2004, Proceedings, pages 56—73, 2004.

[BdM94] Josh Benaloh and Michael de Mare. One-way accumulators: A decentralized alternative to digital signatures. In
Workshop on the Theory and Application of Cryptographic Techniques on Advances in Cryptology, EUROCRYPT
’93, pages 274-285, Secaucus, NJ, USA, 1994. Springer-Verlag New York, Inc.

[BLLOO] Ahto Buldas, Peeter Laud, and Helger Lipmaa. Accountable certificate management using undeniable attestations.
In Proceedings of the 7th ACM Conference on Computer and Communications Security, CCS *00, pages 9-17, New
York, NY, USA, 2000. ACM.

[BP97] Niko Baric and Birgit Pfitzmann. Collision-free accumulators and fail-stop signature schemes without trees. In
Proceedings of the 16th Annual International Conference on Theory and Application of Cryptographic Techniques,
EUROCRYPT’97, pages 480-494, Berlin, Heidelberg, 1997. Springer-Verlag.

42

[BR93]

[CCs08]

[CFMOS]

[CH10]

[CHKOO08]

[CHL*05]

[CKS09]

[CLO2]

[CM11]

[CPPT14]

[CT10]

[DCW13]

[DHS15]

[dMLPP12]

[dMPPS14]

Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In
Proceedings of the 1st ACM Conference on Computer and Communications Security, CCS ’93, pages 62-73, New
York, NY, USA, 1993. ACM.

Jan Camenisch, Rafik Chaabouni, and abhi shelat. Efficient protocols for set membership and range proofs. In
Proceedings of the 14th International Conference on the Theory and Application of Cryptology and Information
Security: Advances in Cryptology, ASIACRYPT *08, pages 234-252, Berlin, Heidelberg, 2008. Springer- Verlag.
Dario Catalano, Dario Fiore, and Mariagrazia Messina. Zero-knowledge sets with short proofs. In Proceedings
of the Theory and Applications of Cryptographic Techniques 27th Annual International Conference on Advances in
Cryptology, EUROCRYPT’ 08, pages 433-450, Berlin, Heidelberg, 2008. Springer-Verlag.

Philippe Camacho and Alejandro Hevia. On the impossibility of batch update for cryptographic accumulators. In
Michel Abdalla and PauloS.L.M. Barreto, editors, Progress in Cryptology, LATINCRYPT 2010, volume 6212 of Lec-
ture Notes in Computer Science, pages 178—188. Springer Berlin Heidelberg, 2010.

Philippe Camacho, Alejandro Hevia, Marcos Kiwi, and Roberto Opazo. Strong accumulators from collision-resistant
hashing. In Tzong-Chen Wu, Chin-Laung Lei, Vincent Rijmen, and Der-Tsai Lee, editors, Information Security,
volume 5222 of Lecture Notes in Computer Science, pages 471-486. Springer Berlin Heidelberg, 2008.

Melissa Chase, Alexander Healy, Anna Lysyanskaya, Tal Malkin, and Leonid Reyzin. Mercurial commitments with
applications to zero-knowledge sets. In EUROCRYPT, pages 422-439, 2005.

Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. An accumulator based on bilinear maps and efficient
revocation for anonymous credentials. In StanisACaw Jarecki and Gene Tsudik, editors, Public Key Cryptography,
volume 5443 of Lecture Notes in Computer Science, pages 481-500. Springer Berlin Heidelberg, 2009.

Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to efficient revocation of anonymous
credentials. In Advances in Cryptology - CRYPTO 2002, 22nd Annual International Cryptology Conference, Santa
Barbara, California, USA, August 18-22, 2002, Proceedings, pages 61-76, 2002.

Sanjit Chatterjee and Alfred Menezes. On cryptographic protocols employing asymmetric pairings - the role of
revisited. Discrete Applied Mathematics, 159(13):1311-1322, 2011.

Ran Canetti, Omer Paneth, Dimitrios Papadopoulos, and Nikos Triandopoulos. Verifiable set operations over out-
sourced databases. In Public-Key Cryptography - PKC 2014 - 17th International Conference on Practice and Theory
in Public-Key Cryptography, Buenos Aires, Argentina, March 26-28, 2014. Proceedings, pages 113-130, 2014.
Emiliano De Cristofaro and Gene Tsudik. Practical private set intersection protocols with linear complexity. In Fi-
nancial Cryptography and Data Security, 14th International Conference, FC 2010, Tenerife, Canary Islands, January
25-28, 2010, Revised Selected Papers, pages 143-159, 2010.

Changyu Dong, Liqun Chen, and Zikai Wen. When private set intersection meets big data: an efficient and scalable
protocol. In Proceedings of the 2013 ACM Conference on Computer and Communications security, CCS ’13, pages
789-800, New York, NY, USA, 2013. ACM.

David Derler, Christian Hanser, and Daniel Slamanig. Revisiting cryptographic accumulators, additional properties
and relations to other primitives. Cryptology ePrint Archive, Report 2015/087, 2015.

Hermann de Meer, Manuel Liedel, Henrich C. Pohls, and Joachim Posegga. Indistinguishability of one-way accumu-
lators. In Technical Report MIP-1210, Faculty of Computer Science and Mathematics (FIM), University of Passau,
2012.

Hermann de Meer, Henrich C. Pohls, Joachim Posegga, and Kai Samelin. Redactable signature schemes for trees
with signer-controlled non-leaf-redactions. In Mohammad S. Obaidat and Joaquim Filipe, editors, E-Business and
Telecommunications, volume 455 of Communications in Computer and Information Science, pages 155-171. Springer
Berlin Heidelberg, 2014.

[DSMRY09] Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Moti Yung. Efficient robust private set intersection. In

[DTO8]

[FLZ14]

[FNO2]

[FNPO04]

[FS87]

[GGOT15]

Proceedings of the 7th International Conference on Applied Cryptography and Network Security, ACNS 09, pages
125-142, Berlin, Heidelberg, 2009. Springer-Verlag.

Ivan Damgérd and Nikos Triandopoulos. Supporting non-membership proofs with bilinear-map accumulators. Cryp-
tology ePrint Archive, Report 2008/538, 2008.

Prastudy Fauzi, Helger Lipmaa, and Bingsheng Zhang. Efficient non-interactive zero knowledge arguments for set
operations. In Financial Cryptography and Data Security - 18th International Conference, FC 2014, Christ Church,
Barbados, March 3-7, 2014, Revised Selected Papers, pages 216-233, 2014.

Nelly Fazio and Antonio Nicolosi. Cryptographic accumulators: Definitions, constructions and applications. In
Technical Report. Courant Institute of Mathematical Sciences, New York University, 2002.

Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching and set intersection. In Advances
in Cryptology - EUROCRYPT 2004, International Conference on the Theory and Applications of Cryptographic Tech-
niques, Interlaken, Switzerland, May 2-6, 2004, Proceedings, pages 1-19, 2004.

Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature problems. In
Proceedings on Advances in cryptology—CRYPTO ’86, pages 186—194, London, UK, UK, 1987. Springer-Verlag.
Esha Ghosh, Michael T. Goodrich, Olga Ohrimenko, and Roberto Tamassia. Fully-dynamic verifiable zero-knowledge
order queries for network data. ePrint Report 2015/283, 2015.

43

[GMRSS]

[GMY03]

[GNPT14]
[GOT14]

[HEK12]

[HN12]

[JLO9]

[KPPT14]

[KSO05]

[Lip12]

[Lis05]

[LLX07]

[LY10]

[MBKKO04]

[Mer80]

[Mer89]

[MGGR13]

[MRKO3]

[MTGSO01]

[MY04]

[Ngu05]
[NNOO]

[Nyb96a]

Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof-systems (ex-
tended abstract). In Proceedings of the 17th Annual ACM Symposium on Theory of Computing, May 6-8, 1985,
Providence, Rhode Island, USA, pages 291-304, 1985.

Juan A. Garay, Philip MacKenzie, and Ke Yang. Strengthening zero-knowledge protocols using signatures. In Pro-
ceedings of the 22Nd International Conference on Theory and Applications of Cryptographic Techniques, EURO-
CRYPT’03, pages 177-194, Berlin, Heidelberg, 2003. Springer-Verlag.

Sharon Goldberg, Moni Naor, Dimitrios Papadopoulos, Leonid Reyzin, Sachin Vasant, and Asaf Ziv. NSECS: Prov-
ably preventing DNSSEC zone enumeration. Cryptology ePrint Archive, Report 2014/582, 2014.

Esha Ghosh, Olga Ohrimenko, and Roberto Tamassia. Verifiable order queries and order statistics on a list in zero-
knowledge. ePrint Report 2014/632, 2014. To appear in ACNS 2015.

Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are garbled circuits better than custom proto-
cols? In 19th Annual Network and Distributed System Security Symposium, NDSS 2012, San Diego, California, USA,
February 5-8, 2012, 2012.

Carmit Hazay and Kobbi Nissim. Efficient set operations in the presence of malicious adversaries. J. Cryptology,
25(3):383-433, 2012.

Stanislaw Jarecki and Xiaomin Liu. Efficient oblivious pseudorandom function with applications to adaptive OT and
secure computation of set intersection. In Theory of Cryptography, 6th Theory of Cryptography Conference, TCC
2009, San Francisco, CA, USA, March 15-17, 2009. Proceedings, pages 577-594, 2009.

Ahmed E. Kosba, Dimitrios Papadopoulos, Charalampos Papamanthou, Mahmoud F. Sayed, Elaine Shi, and Nikos
Triandopoulos. TRUESET: faster verifiable set computations. In Proceedings of the 23rd USENIX Security Sympo-
sium, San Diego, CA, USA, August 20-22, 2014., pages 765-780, 2014.

Lea Kissner and Dawn Xiaodong Song. Privacy-preserving set operations. In Advances in Cryptology - CRYPTO
2005: 25th Annual International Cryptology Conference, Santa Barbara, California, USA, August 14-18, 2005, Pro-
ceedings, pages 241-257, 2005.

Helger Lipmaa. Secure accumulators from euclidean rings without trusted setup. In Proceedings of the 10th Inter-
national Conference on Applied Cryptography and Network Security, ACNS’12, pages 224-240, Berlin, Heidelberg,
2012. Springer-Verlag.

Moses Liskov. Updatable zero-knowledge databases. In Proceedings of the 11th International Conference on Theory
and Application of Cryptology and Information Security, ASTACRYPT’05, pages 174-198, Berlin, Heidelberg, 2005.
Springer-Verlag.

Jiangtao Li, Ninghui Li, and Rui Xue. Universal accumulators with efficient nonmembership proofs. In Applied
Cryptography and Network Security, 5th International Conference, ACNS 2007, Zhuhai, China, June 5-8, 2007, Pro-
ceedings, pages 253-269, 2007.

Benoit Libert and Moti Yung. Concise mercurial vector commitments and independent zero-knowledge sets with
short proofs. In Proceedings of the 7th International Conference on Theory of Cryptography, TCC’10, pages 499—
517, Berlin, Heidelberg, 2010. Springer-Verlag.

Ruggero Morselli, Samrat Bhattacharjee, Jonathan Katz, and Peter J. Keleher. Trust-preserving set operations. In
Proceedings IEEE INFOCOM 2004, The 23rd Annual Joint Conference of the IEEE Computer and Communications
Societies, Hong Kong, China, March 7-11, 2004, 2004.

Ralph C. Merkle. Protocols for public key cryptosystems. In IEEE Symposium on Security and Privacy, pages
122-134, 1980.

Ralph C. Merkle. A certified digital signature. In CRYPTO, pages 218-238, 1989.

Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. Zerocoin: Anonymous distributed e-cash from
bitcoin. In 2013 IEEE Symposium on Security and Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013, pages
397-411, 2013.

Silvio Micali, Michael O. Rabin, and Joe Kilian. Zero-knowledge sets. In 44th Symposium on Foundations of Com-
puter Science (FOCS 2003), 11-14 October 2003, Cambridge, MA, USA, Proceedings, pages 80-91, 2003.

Roberto Tamassia Michael T. Goodrich and Andrew Schwerin. Implementation of an authenticated dictionary with
skip lists and commutative hashing. DARPA Information Survivability Conference and Exposition I, pages 68 — 82,
2001.

Philip MacKenzie and Ke Yang. On simulation-sound trapdoor commitments. In Christian Cachin and JanL. Ca-
menisch, editors, Advances in Cryptology - EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science,
pages 382—-400. Springer Berlin Heidelberg, 2004.

Lan Nguyen. Accumulators from bilinear pairings and applications. In Proceedings of the 2005 international confer-
ence on Topics in Cryptology, CT-RSA’05, pages 275-292, Berlin, Heidelberg, 2005. Springer-Verlag.

Moni Naor and Kobbi Nissim. Certificate revocation and certificate update. IEEE Journal on Selected Areas in
Communications, 18(4):561-570, 2000.

Kaisa Nyberg. Commutativity in cryptography. In Ist International Trier Conference in Functional Analysis. Walter
Gruyter & Co, 1996.

44

[Nybo6b]
[NZ14]
[PSL76]

[PTT11]

[PTT15]
[San99]

[Sch&9]

[SPB*12]

[TamO3]

[ZX14]

Kaisa Nyberg. Fast accumulated hashing. In Fast Software Encryption, Third International Workshop, Cambridge,
UK, February 21-23, 1996, Proceedings, pages 83-87, 1996.

Moni Naor and Asaf Ziv. Primary-secondary-resolver membership proof systems. Cryptology ePrint Archive, Report
2014/905, 2014.

EP. Preparata, D.V. Sarwate, and ILLINOIS UNIV AT URBANA-CHAMPAIGN COORDINATED SCIENCE LAB.
Computational Complexity of Fourier Transforms Over Finite Fields. DTIC, 1976.

Charalampos Papamanthou, Roberto Tamassia, and Nikos Triandopoulos. Optimal verification of operations on dy-
namic sets. In Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryptology Conference, Santa Barbara, CA,
USA, August 14-18, 2011. Proceedings, pages 91-110, 2011.

Charalampos Papamanthou, Roberto Tamassia, and Nikos Triandopoulos. Authenticated hash tables based on crypto-
graphic accumulators. Algorithmica, pages 1-49, 2015.

Tomas Sander. Efficient accumulators without trapdoor. In In Second International Conference on Information and
Communication Security ICICS’99, pages 252-262. Springer, 1999.

Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Advances in Cryptology - CRYPTO ’89,
9th Annual International Cryptology Conference, Santa Barbara, California, USA, August 20-24, 1989, Proceedings,
volume 435 of Lecture Notes in Computer Science, pages 239-252. Springer, 1989.

Kai Samelin, Henrich C. Poehls, Arne Bilzhause, Joachim Posegga, and Hermann De Meer. Redactable signatures for
independent removal of structure and content. In Proc. Int. Conf. on Information Security Practice and Experience
(ISPEC), volume 7232 of LNCS. Springer, 2012.

Roberto Tamassia. Authenticated data structures. In Proc. European Symp. on Algorithms (ESA), volume 2832 of
LNCS, pages 2-5. Springer, 2003.

Qingji Zheng and Shouhuai Xu. Verifiable delegated set intersection operations on outsourced encrypted data. JACR
Cryptology ePrint Archive, 2014:178, 2014.

A The Accumulation Tree of [PTT11] with Extension to Batch Updates

Here we provide the detailed construction of the accumulation tree of Papamanthou et al. [PTT11]. Ad-
ditionally, we discuss how to extend the update algoithm to support a batch of updates efficiently. These
algorithms are called as subroutines during the execution of our authenticated set collections construction
of Section 7.

45

Setup: (auth(Syp),digesty) < ATSetup(sk, (acc(X),...,acc(X;,))) Recall thatAT Setup takes a secret key (sk) and a set of
accumulation values (acc(X)),...,acc(Xy,)) for a set collection (S;) and builds an AT on top of it. This algorithm returns
the authentication information for the set collection (auth(S;)) and the root of the AT as the digest digest,. The algorithm
works as follows:

1. Pick a constant 0 < € < 1 and build an accumulation tree T as follows:

2. If v is a leaf corresponding to set X;, then set d(v) = acc(X;)Sk™. Otherwise, set d(v) = gllweco)(Sk+A(d(W)) where
C(v) denotes the children of node v.

3. Setauth(S;) ={d(v)|lveV(T)}

4. Let root be the root of T. Set digest, := d(root)

5. Return (auth(S;),digest,)

Query: (IT;, ;) < ATQuery(ek;,i,auth(S;)) Recall that AT Query takes the evaluation key ek,, authentication information
for the set collection auth(S;) and a particular index of the set collection and returns the authentication path for that set,
denoted as I1; and the accumulation value of that set as o;. The algorithm works as follows:

1. Letleaf vy = acc(X;) and vy, ..., v; be the leaf to root path in 7.

Letw;_1 ;= gletcopyn Skt g oy .

Letm; = (d(vj-1),wj-1,)

Set IT; := {m;} je 1)

Set o; := acc(X;).

6. (H,‘, OC,‘)

Update: (auth’,digest’, updinfo;) <~ AT Update(sk,i,acc’(X;),auth(S;),digest,) Recall that ATUpdate is the update algo-
rithm that updates the accumulation value for a particular set .X;, the authentication information for the set collection
auth(S), and the root digest digest,. This algorithm outputs the updated authentication information auth’, the updated
digest digest’ and the update authentication information (in updinfo). The algorithm works as follows:

1. Let vy be the node corresponding to X; and let vg,vy,...,v; be the leaf to root path in T'. Set &’ (vg) := acc(X;)

2. For each node v; on the path (i.e., j=1,...,1), setd'(v;) = g(skd(vn)) ! (sktd' (v-1)) where d(vj1) is the old value

and d'(v;_) is the updated value.

Set updinfo; = {d'(vj-1)} jep1.

Set digest’ := d’(v).

Set auth’ := auth(Sy) = {d(v;—1)}jep +{d' (vi-1)} jepa-

6. (auth’,digest’, updinfo;).

Batch Update: (auth’,digest’,updinfo) <— ATUpdateBatch(sk,ij,acc'(X;,),...,i,acc’(X;,),auth(S,),digest,) This
algorithm is an extension of AT Update to support batch updates efficiently. Note this extension is our contribution.

1. The accumulation tree needs to be updated bottom-up starting at the leaf level. All the updates on a level have to be
completed before proceeding to the next level. The update procedure is the same as AT Update with the difference
that instead of updating one leaf, here all the leaves are updated together.

2. At the leaf level, update all the leaves with acc’(X;) where acc’(X;) is the new accumulated value for X;, for
J € [ir,ix].

3. Proceed to update the levels bottom up as described in AT Update.

4. At the end of update, return the updated authentication information auth’, the updated root digest’ and updinfo that
contains the updated authentication path for each updated leaf X;.

Verify: (accept/reject) < AT Verify(vk,digest,;,i,I1;,a;) Recall that AT Verify is the verification algorithm that takes the
verification key of the scheme vk, digest of the set collection digest, and a particular set index i along with its authenti-
cation path (I1;) and accumulation value (¢;) as input and returns accept if the o; is indeed the accumulation value of the
i set of the collection. It returns reject otherwise. The algorithm works as follows:

1. ParseIT; as {my,...,m}.

2. Parseasm; as (B;,Y)).

3. reject if any of the following is true:

(@) e(B1,g) # e(a, (vk)g')
(b) For some j € [2,1]: (Bj,g) # e(yj—1, (vk)g"Pi-1))
(©) e(digest;,g) # e(y, (vk)g"P)

4. accept otherwise.

bl el

oW

46

