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Strongly Secure Authenticated Key Exchange from

Ideal Lattices

Xiaopeng Yang and Wenping Ma

Abstract

In this paper, we propose an efficient and practical authenticated key exchange (AKE) protocol from ideal

lattices, which is well-designed and has some similarity to the HMQV protocol. Using the hardness of the graded

discrete logarithm (GDL) problem and graded decisional Diffie-Hellman (GCDH) problem, the proposed protocol

is provably secure in the extended Canetti-Krawczyk model.

Index Terms
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I. INTRODUCTION

Key Exchange (KE) is an elementary cryptographical original, which permits any two participants

to negotiate a shared session key over an open network. In other words, the adversary controls entire

communications over the whole network. Because a common session key between any two participants is

fundamental to hide the transferred data in an open channel, KE gradually becomes one extensively applied

cryptographical instrument in constructing secure networks. In 1976, Diffie and Hellman proposed the

wonderful Diffie-Hellman KE Protocol. The KE protocol fall into two categories: one is non-authenticated

key exchange protocol; the other one is authenticated key exchange (AKE).

The authors are with the State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an 710071, China(e-mail:

xp yang89xidian@126.com, wp ma@mail.xidian.edu.cn )



2

For AKE, every participant owns certain public information, namely a static public key (SPK), which

is issued by a trusted third party, such as public key infrastructure (PKI), or certification authority, and the

homologous secret information, namely, a static secret key (SSK). During the execution of the agreement,

each participant first generates his own ephemeral secret key (ESK) and concomitant ephemeral public

key, and exchanges the ephemeral public key (EPK). Then, each participant uses their static public keys,

the static secret keys, the ephemeral public keys, and the ephemeral secret keys to compute certain session

state. Finally, each participant derives a common session key by using a robust extractor.

How to evaluate a cryptographic protocol is an important study of cryptography. Bellare and Rogaway

first presented a security model of AKE called BR model, which was based on the indistinguishability

between the real common session key and any random key uniformly chosen from the same distribution.

This model is the most widely used security model considered as it is robust enough for some practical

applications. In 2001, Canetti and Krawcyk projected CK security model. Moreover, their key exchange

protocol realize authentication with message authentication code (MAC), which adds extra computation

and communication overheads.

The traditional KE protocols include: KE based on discrete logarithm problems, KE based on RSA

problems, KE based on key encapsulation mechanism (KEM), AKE based on bilinear pairings, and

KE based on signature or MAC, etc. The design of efficient cryptographic KE protocol is among the

core content of the research of cryptography. Especially, with the development of quantum computing

technology, it is inspiring to design new alternatives based on other problems, which are recognized to

have resistance to quantum attacks.

Menezes, Qu, and Vanstone put forward the MQV protocol. Due to its prominent security properties, the

MQV protocol has been selected by National Security Agency (NSA) as the key exchange mechanism

preferred to safeguard US government information. In 2001, Canetti and Krawcyk projected Canetti-

Krawcyk (CK) security model. Moreover, it pointed that a combination of symmetrical encryption, message

authentication code (MAC), and common session key contributes to build a secure channel for Internet.
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But Krawczyk pointed that the MQV protocol is not resistant to some attacks such as unknown key

share (UKS) attacks, key compromise impersonation (KCI) attacks, and disclosure of DH exponents.

Besides, the MQV protocol lacks perfect forward secrecy (PFS). Thus, he proposed HMQV protocol that

is resistant to the above attacks. This protocol utilized the Exponential Challenge-Response Signatures to

realize authentication. In, LaMacchia et al. provided a security model called extended CK (eCK) model

where more capabilities are granted to the adversaries. Specifically, it differentiate the exposure of static

secret key and ephemeral private key and permits the exposure of ephemeral private key of test session.

Meanwhile the first protocol (NAXOS) that is secure in eCK model is given as well as the new security

model. Berkant Ustaoglu projected CMQV protocol, which captures the high performance of HMQV and

security in eCK model.

Recently, cryptographic schemes based on lattices have appeared as a prospective replacement to more

traditional ones based on the factoring and discrete logarithm problem. Moreover, lattice-based cryptogra-

phy has several fascinating features. From a security perspective, the best attacks for quantum adversaries

on the potential problems require exponential time in the primary security parameter. In addition, strong

average-case/worst-case security reductions support security proofs in lattice-based cryptography. Lattice-

based cryptography computations should be greatly simple, fast and parallelizable in the name of efficiency.

Especially, public key encryptions from LWE and identity-based encryptions from LWE are widely used.

But, AKE schemes based on LWE are only provably secure in BR model. In this paper, we build AKE

from ideal lattices, which is secure in eCK model.

II. PRELIMINARIES

A. Notations

In this paper, C,R,Z,Q denote the set of complex numbers, the set of real numbers, the set of integers

and the set of rational numbers, respectively.For q ≥ 1, define Zq = Z/qZ. Let λ be the security parameter,

if a algorithm A runs in polynomial time (PT) of λ, then it is efficient. If a function f(λ) = o(n−c),
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where c > 0, then it is negligible. We make use of the Landau notations. For the algorithm A, if

|Pr[A(X)] − Pr[A(Y )]| ≤ negl(λ), then these two distributions are computationally indistinguishable.

A lattice L ⊆ Rn is a discrete additive subgroup of Rn. For each lattice, there exists a set of linearly

independent vector {bi}mi=1 satisfying L = {
∑m

i=1 zibi}, we say this vector set is the basis of the lattice

L.

B. Gaussian Sampler and Gaussian Function

For real σ > 0, each x ∈ Rn, define the spherical gaussian function with parameter σ as

ρσ(x) = exp{−π∥x∥2/σ2}.

For a rank-n matrix S ∈ Rn, the ellipsoid Gaussian function on Rn with parameter S is defined by

ρS(x) = exp{−πxT (STS)−1x}.

For each x ∈ L, the ellipsoid discrete Gaussian distribution over lattice L with parameter S is

DL,S(x) = ρS(x)/ρS(L).

For m linearly independent vectors xi ← DL,S , we denote X = (x1| · · · |xm)
T . We consider the

distribution DX,σ, included by choosing an integer vector v from a discrete Gaussian over Zn with

parameter σ and outputting y = XT · x, εX,σ
.
= {X tv : v ← DZm,σ}. Agrawal proved that with high

probability over the choice of X , the distribution DX,σ is statistically close to the ellipsoid Gaussian

DL,σX , and the singular values of X are of size roughly σ
√
m.

Theorem 1. Let L be a full-rank lattice over Rn and B a matrix whose columns form a basis of L. Let

M ∈ Rn×n be a full rank matrix, and denote S = M(BT )−1, s1 = σ1(S), sn = σn(S), and χ = s1/sn. Let

ϵ be negligible in n and m, s′ be parameter satisfying m ≥ 10 log(8(mn)1.5s1χ) and s′ ≥ 4mnχ ln(1/ϵ).

If sn ≥ ηϵ(Zn), then when choosing the rows of an m-by-n matrix X from the ellipsoid Gaussian over

L, X ← (DL,M)m, we obtain with all but probability 2−O(m) over the choice of X , that the statistical

distance between εX,s′ and the ellipsoid Gaussian DL,s′,X is at most 2ϵ.
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C. Cyclotomic Field, Cyclotomic Ring and Ideal Lattices

For positive integer m, let K = Q(ζm) represent the m-th cyclotomic field, let R = Z[ζm] represent

the m-th cyclotomic ring, where ζm is an m order element. The unique monic polynomial f(X) ∈ Q[X]

of minimal degree having ζm as root is called the m-th cyclotomic polynomial. Its complex roots are in

the form of ωi
m, where i ∈ Z∗

m, ωm = exp(2πi/m) ∈ C. So, [R : Z] = φ(m), R ∼= Z[X]/(Φm(X)), where

Φm(X) ∈ Z[X]. Specially, {ζjm}
φ(m)−1
j=0 is a Z-basis of R = Z[ζm].

For n a power of 2, let the 2n-th cyclomic polynomial ring R = Z[X]/(Xn + 1). For u ∈ R, we

identify it with its coefficient vector of the degree n − 1 integer polynomial that represent u. Let Rq =

R/qR = Zq[X]/(Xn+1). For g ∈ R, ⟨g⟩ represents the ideal in R that is generated by g. We denote it as

⟨g⟩ = {g ·u : u ∈ R}, and call it an ideal lattice. Let B(g) = {g, Xg, X2g, · · · , Xn−1g} denote the basis

of the ideal lattice ⟨g⟩. For u ∈ R, [u]g represents the unique element u′ ∈ R satisfying u−u′ ∈ ⟨g⟩ and

u′ =
∑n−1

i=1 αiX
ig, where all the αi’s are in the interval [−1

2
, 1
2
). Similarly, [t]p represents the reduction

of t mod p into the interval [−p
2
, p
2
), for integers t, p.

D. Encoding Thought

In this subsection, we present our encoding thought, which has some similarity to GGH’s Graded

Encoding Scheme. In fact, our encoding thought is a self-contained design. Let the cyclotomic Ring

R = Z[X]/(Xn + 1), and let Rq = R/qR. We samples a short vector g← DZn,σ with σ = Õ(
√
n). The

choice of the generator g guarantees g and g−1 are short in K = Q[X]/(Xn + 1). We samples z ∈ Rq

uniformly at random. Let a quotient ring R/I . For each coset e+ I ∈ R/I , we encode it as follows:

The level-zero encoding of e + I ∈ R/I is to draw a random short vector in R, namely, d ← DZn,σ.

The level-one encoding of e + I ∈ R/I is a element of the form c/z ∈ Rq with c ∈ e + I is short. For

i = 0, 1, we define the set of level-zero or one encodings as follows:

Si = {c/z ∈ Rq : ∥c∥ < q1/8} and S
(e+I)
i = {c/zi ∈ Rq : c ∈ e+ I, ∥c∥ ≤ q1/8}.

We introduce the graded encoding system below in detail.
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System Generation. params = (n, q,y, {xi}mi=1, s)← InstGen : and a zero testing parameter Pzt =

[hz/g]q with h ← DZn,
√
q, where g is the generator of the ideal lattice ⟨g⟩. y is the level-one encoding

of 1 + I , namely, we sample a ← D1+I,σn, and compute y = [a/z]q. The specific method of doing this

is sampling y′ ← DJ ′,s with J ′ = 1
z
+ J and J = ⟨g/z⟩ ⊆ K, then computing a = y′ · z, finally setting

y = [a/z]q. A set of m vectors {xi}mi=1 is used for re-randomization, which are the level-one random

encodings of the coset 0+I , namely, we sample bi ← DI,σn, and then compute xi = [bi/z]q. The specific

method of doing this is sampling a vector x′
i ← DJ,s from the fractional ideal J = ⟨g/z⟩ ⊆ K with

s = σn2/q, and then computing x′
i = bi/z, finally setting xi = [bi/z]q.

Sampling Level-zero Encodings. d ← samp(params) : For arbitrary coset, its level-zero encoding

is d ← DZn,σn with σ′ = nσ. Since σ′ > η2−λ(I), the distribution of the samples is statistically close to

the uniform distribution with an overwhelming advantage. Observe that the size of the level-zero encoding

is at most σ′√n.

Encoding at level-one. u1 ← enc(params,1,d) : Given the level-zero encoding d, we multiply y

by d to compute u1 = [yd]q = [da/z]q, where da ∈ d+ I .

re-Randomizations. u′
1 ← reRand(params, 1,u1) : We denote X = (x1| · · · |xm)

T and B =

(b1| · · · |bm)
T . In order to obtain re-randomization of level-one encoding u1 = [c/z]q with ∥c∥ ≤ γ,

we sample r← DZm,σ∗ with σ∗ = 2λσ, then compute and output u′
1 = [u1 +

∑m
i=1 rixi]q = [

c+
∑

i ribi

z
]q :.

Observe that since ∥bi∥ ≤ σn4, then ∥Br∥ ≤ σ∗σ
√
mn4. If ∥c∥ ≤ γ, then ∥c+Br∥ ≤ γ + σ∗σ

√
mn4 <

σ∗σ
√
mn4(1 + 2−λ).

Adding Encodings. add(params, 1,u1,u2) : For a level-one encoding u1 of e1+ I and the level-one

encoding u2 of e2 + I , we compute u1 + u2 = [y · (d1 + d2)]q = [a(d1 + d2)/z]q, which indicates that

the level-one encoding of the coset (e1+ e2)+ I . This action means that adding an encodings obtains the

encoding of the sum of two cosets.

Type One of Multipying Encodings. mult(params, 1, a,u1) : For an integer a ∈ Z+, a level-one

encoding u1 of the coset e1 + I , we compute [a · y · d1]q = [a · ad1/z]q.
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Type Two of Multipying Encodings. mult(params, 1,u0,u1) : For a level-zero encoding u0 of the

coset c0 + I , a level encoding u1 of the coset c1 + I , we compute u = u0 · u1 = [c0 · c1/z]q.

Zero Testing. isZero(params,Pzt,u1) : We compute w = [Pzt · u1]q. If ∥w∥ ≤ q3/4, then this can

explain that u1 is a level-one encoding of the coset ) + I . Otherwise, not.

Robust Extractor. s ← ext(params,Pzt,u) : We compute w = [u · Pzt]q, and then collect the

log2 q
4
−λ most-significant bits of each coefficient of the result, finally apply a strong randomness extractor

to the colllected bits.

E. Hard Assumptions

In this subsection, we review some helpful hard assumptions for our authenticated key exchange (AKE)

protocol.

Graded Discrete Logarithm. For an adversary A and parameters λ, κ and vzt, consider the following:

1. (params,Pzt)← InstGen(1λ, 1κ,vzt);

2. (a, b)← samp(params);

3. (u1, b1)← reRand(params, e1, enc(params, 1, (a, b)));

4. Run the adversary to obtain a′ ← A(params,Pzt, (u1, b1), . . . , (ut, bt)).

A is considered successful if a′ − a ∈ S
(0)
0 , namely, a′ and a belong to the same encoding set S(α)

0 .

In our applications, the adversary can see the public parameters params = (y, {xi}mi=1), where y =

[a/z]q is a level-one encoding of 1+ I , and each xi = [bi/z]q is a level-one encoding of 0+ I . Review

I = ⟨g⟩ with ∥g∥ = qo(1), and a level-one encoding of the coset α+I is an element of the form u = [c/z]q,

where c ∈ α + I is short with ∥c∥ = qo(1). Also, the adversary can see the zero-testing parameter

Pzt = [hz/g]q with ∥h∥ = q1/2+o(1). Consider the following procedure, on parameters n, λ, q, κ = 1, σ =

poly(n), σ∗ = σ · 2λ:

• (y, {xi}mi=1,Pzt)← InstGen(1n, 1κ);

• For i = 0, 1,
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1) sample ei ← DZn,σ, and sample fi ← DZn,σ, where ei ∈ ηi + I , and fi ∈ ϕi + I;

2) set ui = [ei · y +
∑

rijxij]q.

• set v = [e0ui]q // encoding of the real product

• set v′ = [f0ui]q // encoding of a random product

GCDH. The Graded Computational Diffie-Hellman Assumption is, on input ((y, {xi}mi=1,Pzt),u0,u1)

to output a level-one encoding of (e0+I)(e1+I), particularly w ∈ Rq satisfying ∥[Pzt(v−w)]q∥ < q3/4.

GDDH. The Graded Decisional Diffie-Hellman Assumption is to distinguish between v and v′. More

specifically, the adversary can differentiate between the distributions

DGDDH{(y, {xi}mi=1,Pzt),u0,u1,v} and DRAND{(y, {xi}mi=1,Pzt),u0,u1,v
′}.

F. Extended Canetti-Krawczyk Model

In this section, we review the extended Canetti-Krawczyk (eCK) model. Let κ be the security parameter.

Each party has a static secret key and a homologous static public key, which are guaranteed by a certificate

authority.

Session. Each party is activated by an incoming message to execute the protocol Π. Each party is

modeled as a probabilistic polynomial time (PPT) Turing machine. An execution of protocol is called a

session. Suppose party Â and party B̂ are the session initiator and the session responder, respectively.

Then party Â is activated by the outside call (Â, B̂) or (Â, B̂, Y ). When activated by (Â, B̂), then

party Â computes its ephemeral public key X and stores its session state. The session identifier in

Â is initialized with (Â, B̂,X, ∗, init). When activated by (Â, B̂, Y ), then the session identifier in Â

is updated to (Â, B̂,X, Y, init). Similarly, party B̂ is activated by (B̂, Â,X). When activated, B̂ also

computes its ephemeral public key Y and stores its session state. In this case, the session identifier in B̂

is (B̂, Â, Y,X, resp). A session (B̂Â, Y,X, resp) is called to be matching to the session (Â, B̂,X, Y, init).

For (Â, B̂, ∗, ∗, role), Â is the owner of the session while B̂ is called the peer of the session. If the owner

of the session has computed the session key, then we said the session is complete.
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Adversary. Adversary A is modeled as a PPT machine, which dominates the whole networks. Specif-

ically, it is allowed to make the following queries:

1. Establish party Ĉ: A registers an arbitrary party Ĉ, whose static public key is on A;s own choice. We

say this kind of new registered parties dishonest. We need that when A makes this query, the certifying

center should verify the submitted static public key is in the suitable group and the proof that A knows

the corresponding static private key.

2. Send (Â,m): A sends a message m to Â. Once Â is activated by m, then A obtains the outgoing

message of Â.

3. Ephemeral key reveal (Â): A obtains the ephemeral private key of the session sid.

4. Static key reveal (Â): A obtains the static secret key of party Â. In this case, we call Â is dishonest.

5. Session key reveal (sid): A obtains the session key of the session if the session is completed.

6. Test (sid): A can make this query only once. After receiving this query, oracle randomly chooses bit

b ∈R {0, 1}. For b = 0, A acquires session key of sid. Otherwise, it gets random key, which is selected

from the same distribution of real key.

Experiment. We permit A to send any series of above mentioned queries. Finally, outputs guess b′.

When b′ = b, we say A win this game.

Definition 1(Freshness). Let sid be a complete session, owned by honest Â with honest peer B̂. If the

matching session of sid exists, let sid∗ be the session identifer of its matching session. We say sid is to

be fresh, when none of the following events occurs:

1. A makes Session key reveal (sid∗) query or Session key reveal sid∗ if sid∗ exists;

2. If sid∗ exists, A makes either of the following quires:

(1). Both static key reveal (Â) and ephemeral key reveal (sid), or

(2). Both static key reveal (B̂) and ephemeral key reveal (sid∗).

3. if sid∗ does not exist, A makes either of the following quires:

(1). Both static key reveal (Â) and ephemeral key reveal (sid), or
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(2). Static key reveal (B̂).

Definition 2(eCK Security). Define the advantage of A as follows:

AdvAKE
Π (A) = |Pr[b′ = b]− 1

2
|.

We say AKE protocol is secure, when the following situations satisfy:

1. If two honest parties finish matching sessions, then they compute an identical session key with an

overwhelming probability;

2. For any PPT adversary A, its adversary is negligible.

III. THE PROTOCOL

We present our AKE protocol via Encoding ideal in this section. Let H be a hash function. Party

Â computes a ← samp(params), and serves it as party Â’s static secret key, and computes A ←

reRand(params, 1, enc(params, 1, a)) and uses it as his own static public key. Similarly, Party B̂

computes b ← samp(params), and serves it as party B̂’s static secret key, and computes B ←

reRand(params, 1, enc(params, 1,b)) and uses it as his own static public key. From here on, we

omit the notation of params in each encoding operation, for convenience. Our protocol is shown in

figure 1.

Initiate.(Â, B̂) : Party Â computes x← samp(params), and computes X← reRand(1, enc(1,x)),

finally builds the local session identical (Â, B̂,X) and sends (Â,X) to party B̂. Meanwhile, party B̂

computes y ← samp(params), and computes Y ← reRand(1, enc(1,x)), finally builds the local

session identical (Â, B̂,Y) and sends (B̂,Y) to party B̂.

Respond.(Â, B̂,Y) : Party Â first checks whether Y is a level-one encoding of 0 + I or not. If it

is, then party Â computes and outputs X, and builds the local session identical (Â, B̂,X,Y), finally

computes its own session key sÂ ← ext(Pzt, zÂ). Simultaneously, party B̂ also checks whether X is a

level-one encoding of 0 + I or not. If it is, then party B̂ computes and outputs Y, and builds the local

session identical (Â, B̂,X,Y), finally computes its own session key sB̂ ← ext(Pzt, zB̂).
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Complete.(Â, B̂,X,Y) : Party Â checks whether Y is a level-one encoding of 0+I , and whether there

exists a session identical (Â, B̂,Y). If any of two conditions fails, then Â ignores this activation. Otherwise,

Â builds the local session identical (Â, B̂,X,Y), and computes its own session key sÂ ← ext(Pzt, zÂ).

Fig. 1. Our AKE from Ideal Lattices

IV. CHALLENGE-RESPONSE ENCODING SCHEME

We first put forward a new notion of the challenge-response encoding scheme in this section, which is the

primary constructing foundation in the design and analysis of our AKE protocol from ideal lattices. Each

coder has a pair of ephemeral static key and ephemeral secret key that are used for generating and verifying

each encoding. Our challenge-response encoding scheme is different from ordinary encoding schemes.

Compared with general encoding schemes, our challenge-response encoding scheme is interactive and

demands the receiver of the scheme to send a challenge to the coder, and then the coder can generate the

corresponding encoding on a given message. A secure challenge-response encoding scheme has guaranteed

that no one other than the coder can generate a encoding that will convince the challenge to accept it as

a valid. In addition, the challenge also can verify the legitimacy of the generated encoding.

Definition 3(Challenge-Response Encoding.) We use B̂ to denote the coder, who owns a public key
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B← reRand(1, enc(1,b)) and a secret key b← samp(params). Meanwhile, we use Â to denote the

challenge, who provides a message m and a challenge X to the coder, where X← reRand(1, enc(1,x)),

and x← samp(params). Utilizing challenge X, B̂ codes message m to (Y,mult(params,X,mB̂2
)),

where mult(params,H(Y,m),b) = mB̂1
. The challenger Â accepts encoding (Y,m) as valid if and on-

ly if Y is not a level-one encoding of 0+I , and mult(params,mÂ2
,x) = σ, where add(params,y,mÂ1

) =

mÂ2
, and mult(params,H(Y,m),B) = mÂ1

.

Remark 1. Given message m, challenge X, define a procedure of computing the encoding EncodeB̂(Y,m,X)

as follows:

1) compute mult(params,H(Y,m),b) = mB̂1
;

2) compute add(params,y,mB̂1
) = mB̂2

;

3) compute mult(params,X,mB̂2
) = EncodeB̂(Y,m,X).

Definition 4(Security of the challenge-response encoding scheme.) We say a challenge-response en-

coding scheme is secure, if there does not exist a polynomial time turning F which can win the game

below with non-negligible probability.

The encoding forger F in Definition

1) F is given values B and X0, where B← reRand(params, 1, enc(params, 1,b))

2) F is given to an encoding oracle B̂ (representing a coder B̂ with private key b and public

key B) that on query (X,m) outputs an encoding pair (Y,EncodeB̂(Y,m,X)), where Y ←

reRand(1, enc(1,y)), and y← samp(params) is chosen by B̂ renewedly with each query.

3) F is permitted a polynomial number of queries to B̂, while each query is chosen adaptively by B̂.

4) F halts with a symbol ”fail” or with a guess (Y0,m0, σ). This guess is called ’forgery’, if it satisfies

the following two conditions:

a) The pair (Y0, σ) is a valid challenge-response encoding on message m0 with regard to challenge

Y0. That is, Y0 is not an encoding of ) + I , and σ = EncodeB̂(Y0,m0,X0).

b) The pair (Y0,m0) did not present in any response of B̂ to F’s queries.
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We say that F win the game, if it outputs a successful encoding forgery.

Theorem 2 Under the GCDH assumption, the proposed challenge-response encoding scheme is secure

in the random oracle model.

Proof. Given an efficient valid forgery F against the challenge-response encoding scheme, now we can

construct an efficient solver C for the GCDH problem. That is, C obtains ((y, {xi}mi=1,Pzt),u0,u1,v),

and then with a non-negligible probability outputs a level-one encoding w ∈ Rq of (e0 + I) · (e1 + I)

satisfying ∥[Pzt · (v−w)]q∥ ≤ q3/4. Our idea is that if F can output a successful encoding forgery with

input (Y0,m0) and a given value (H(Y0,m0)), then F can also output a successful encoding forgery

even though H(Y0,m0) is set to be a random value. We construct C such that after running F twice, C

with a non-negligible probability obtains two different encoding forgery with respect to (Y0,m0) but with

two different random values H(Y0,m0). Utilizing these two encoding forgery, C can solve the GCDH

problem. Observe that in the run of F under C, all the queries to oracle B̂ are responded by C without

knowledge of B̂’s private key b. C simulates the response in Step1-Step3. Y is computed by C, and

is a re-randomization of a level-one encoding. According to theorem 1, with overwhelming probability

over the choice of the randomizers x′
i, the distribution of

∑
i rix

′
i is statistically close to an ellipsoid

Gaussian distribution over the fractional ideal J = ⟨g/z⟩. We select a parameter σ∗ to ensure that the

width of the distribution of
∑

i rix
′
i is much larger than the size of c/z, guaranteeing the distribution of

c′/z+
∑

i rix
′
i is almost irrelevant to the distribution of c/z. Namely, the re-randomization of a level-one

encoding is independent of the initial level-one encoding. then the probability that the the random value

(Y,m) queried from H(·) is at most Q/|I|, where Q is an upper bound on the number of queries to H(·)

that happens in the run of C. Thus, the probability that F outputs a successful encoding forgery in the

interaction with C is almost identical with, up to a negligible difference, the probability that F outputs a

successful encoding forgery in the real run.

Constructing a solver C for the GCDH problem from the encoding fogery F

Setup. Given a successful encoding forgery F , we construct a GCDH solver C. On input (y, {xi}mi=1,Pzt,u0,u1),
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C outputs a level-one encoding w ∈ Rq satisfying ∥[Pzt · (v −w)]q∥ ≤ q3/4.

C ’s Actions. C sets B = u1 and X0 = u0, then runs F on input (B,X0) against encoding oracle B̂

with public key B. C provides a random tape for F and offers random answers to H(·) queries. If each

query to H(·) is identical, then each answer from C is the same as the first one. Each time F queries B̂

for an encoding on message (X,m), C answers queries as follows:

• Simulation 1. C samples s← samp(params), and samples e ∈ {0, 1}ℓ;

• Simulation 2. C computes Y′ ← reRand(1, enc(1, s)), and computes Y′′ ←mult(params, e,B);

• Simulation 3. C sets Y = Y′ + (−Y′′);

• Simulation 4. C sets H(Y,m) = e. If H(Y,m) has been defined by a previous query to H(·),

then C halts and outputs ’fail’. C responses to F with an encoding value (Y,mult(params, s,X)).

When F halts its run, C verifies whether the following conditions hold:

1) F outputs a guess (Y0,m0, σ), where Y0 is not a level-one encoding of 0+ I .

2) (Y0,m0, σ) was not used as the response in the previous encodings generated by B̂.

3) The value H(Y0,m0) was queried from the random oracle H.

If these three conditions hold, then C executes the following repeat experiment. Otherwise, C halts and

outputs ”fail”.

Repeat experiment. C runs F again for the second time using the same inputs (B,X0) and the same

random coins for H and B̂. The differency between the two runs is that all queries to H executed before

the H(Y0,m0) query are answered identically with the first run. But when F answers the query to

H(Y0,m0), F chooses e′ ∈ {0, 1}ℓ afresh.

Output. If the second run finishes, F outputs guess (Y0,m0, σ
′) with e′ = e, then C computes W0 and

outputs it as a guess for the GCDH problem. Now we give the calculation procedure for W0 as follows:

1) Compute mult(params, e,B) = σ11;

2) Compute add(params,Y, σ11) = σ12;

3) Compute mult(params,x0, σ12) = σ;
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4) Compute mult(params, e′,B) = σ′
11;

5) Compute add(params,Y, σ′
11) = σ′

12;

6) Compute mult(params,x0, σ
′
12) = σ′;

7) Compute σ − σ′;

8) Compute mult(params, (σ − σ′), (e− e′)−1).

V. DUAL CHALLENGE-RESPONSE ENCODING SCHEME

Definition 5(Dual Challenge-Response Encoding Scheme.) Let Â and B̂ be two party with public

key A ← reRand(1, enc(1, a)) and B ← reRand(1, enc(1,b)) respectively. Let m1 and m2 be two

messages. The dual challenge-response encoding by Â and B̂ on message m1 and m2 is defined as X,

Y and DEncodeÂ,B̂(m1,m2,X,Y). The special calculation steps is shown as follows:

• Â samples x ← samp(params), and computes X ← reRand(1, enc(1,x)). B̂ samples y ←

samp(params), and computes Y ← reRand(1, enc(1,y)).

• Â computes d = H(X,m1), and computes mult(params,d, a) = m11.

• Â computes add(params,X,m11) = m12.

• B̂ computes e = H(Y,m12), and computes mult(params, e,b) = m21.

• B̂ computes add(params,y,m12) = m22.

• Computes mult(params,m12,m22) = m3.

• Computes enc(params, 1,m3) = σ.

• Computes sσ ← ext(params,Pzt,m3).

After exchanging X and Y, party Â and party B̂ can compute the same encoding EncodeÂ,B̂(m1,m2,X,Y).

The Security of Dual Challenge-Response Encoding Scheme. A dual encoding is dual challenge-

response encoding by Â on message m1, under challenge ωÂ = add(params,Y, σÂ), and at the

same time another dual encoding is dual challenge-response encoding by B̂ on message m2, under

challenge ωB̂ = add(params,X, σB̂). If there is no efficient algorithm that can win the Encoding

forgery game, then we say this dual challenge-response encoding scheme is secure. We will change the
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original encoding forgery game as follows: In Step 2, the query to B̂ is (X,m,m1), while the encoding

generated by B̂ is (Y,EncodeB̂(Y,m, ωB̂)), where Y ← reRand(1, enc(1,y)), y ← DZn,σ, and

ωB̂ = add(params,X, σ
B̂
). (Y0,m0) satisfies the condition (b) in the definition of forgery F , where

message m1 is chosen randomly by F . For any random A ← reRand(1, enc(1, a)), the challenge-

response encoding scheme is secure, then we say the dual challenge-response encoding by B̂ is secure.

Theorem 3 Let Â and B̂ be two party with public key A and B respectively. Under the GCDH

assumption, the dual challenge-response encoding by B̂ with respect to A is secure, even if the forgery

F has obtained the private key a of Â.

Proof. The dual challenge-response encoding by B̂ contains d = H(X0,m1), where m1 is chosen by

F , autonomously. m1 chosen by F before the repeat experiment is different from m1 during the repeat ex-

periment. There exist two different random values d and d′, which corresponds to two encodings σ and σ′.

In addition, we redefine the calculation procedure for W as follows (the inputs of the GCDH problem are

u1 = X, u0 = B): (1) compute mult(params,d, a) = w11; (2) compute mult(params, e,B) = w12;

(3) compute add(params,Y, w12) = w13; (4) compute mult(params, w12, w13) = w14; (5) compute

σ + (−w14); (6) compute mult(params,d′, a) = w21; (7) compute mult(params, e′,B) = w22; (8)

compute add(params,Y, w22) = w23; (9) compute mult(params, w22, w23) = w24; (10) compute

σ′ + (−w24) = w25; (11) compute w15 + (−w25) = w3; (12) compute mult(params, w3, (e− e′)−1).

The rest of the proof is similar to the proof of theorem 2.

VI. THE BASIC SECURITY OF OUR PROTOCOL

The session between Â and B̂ contains two level-one encodings X ← reRand(1, enc(1,x)) and

Y ← reRand(1, enc(1,y)), and session key s← ext(params,Pzt, π), where π = DEncodeÂ,B̂(m1 =

B̂,m2 = Â,X,Y) is the dual encoding by Â or B̂. Below, we denote

π(Â, B̂,X,Y) := DEncodeÂ,B̂(m1 = B̂,m2 = Â,X,Y).

In this section, we show the proposed protocol is secure in CK model.
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Theorem 4 Under the GCDH assumption, our AKE protocol captures SK security.

Proof. This proof should use the following two lemmas.

Lemma 1 If Â and B̂ have finished the session, then they derive the same session key.

Proof. We analyze the calculations of session key for Â and B̂ particularly. For example, party Â samples

a← DZn,σn and uses it as his own static secret key. Party Â computes y = [a/z]q, u1 = [yd]q = [da/z]q,

A = [u1+
∑m

i=1 rixi]q = [
da+

∑m
i=1 ribi

z
]q, and uses A as his own static public key. Â samples x← DZn,σn,

and uses it as his ephemeral private key. Â computes X = [
xa+

∑m
i=1 ribi

z
]q,and uses X as his ephemeral

public key.

After receiving (Y, B̂), party Â computes e = H(Y, Â) ∈ Z, σÂ = [
e·b·a+e·

∑m
i=1 ribi

z
]q, ωÂ = [

(e·b+y)·a+
∑m

i=1 ribi

z
]q,

d = H(X, B̂) ∈ Z, τÂ = d · a, vÂ = x+ d · a, zÂ = [
(x+d·a)·(e·b+y)·a+(x+d·a)·(e+1)(

∑
i ribi)

z
]q, Pzt · zÂ = [hz

g
·

(x+d·a)·(e·b+y)·a+(x+d·a)·(e+1)(
∑

i ribi)

z
]q. Similarly, we can obtain Pzt·zB̂ = [hz

g
· (x+d·a)·(e·b+y)·a+(y+e·b)·(d+1)(

∑
i ribi)

z
]q.

Obviously, party Â and party B̂ encode the same level-one encoding of (x+ d · a) · (e · b+ y) · a.

Lemma 2 Under the GCDH assumption, there is no PPT adversary which can distinguish the real

session key of a unexposed session with a non-negligible probability.

Proof. Given a successful KE attacker A, we can build an encoding forgery for dual encoding scheme.

Combining with theorem ?, we can obtain the existence of a solver for the GCDH problem. But there is

a contradiction between this existence and the hardness of the GCDH problem. We use π(Â, B̂,X,Y) to

represent the session encoding of (Â, B̂,X,Y), while we use (Â, B̂,X0,Y0) represent the test session.

Accordingly, its session encoding is the test encoding. Observe that the session key of (Â, B̂,X,Y)

is generated by computing s ← ext(params,Pzt, π(Â, B̂,X,Y)). Then adversary A can distinguish

between a real session key and a random key through the following two attacks.

1) Forging attack. The adversary computes a successful test encoding, and derives its session key.

2) Key-replication attack. The adversary enforce a non-testing session such that this session has the

same session key as the test session. The adversary only query the session key with the same key

without knowing the special value of the test encoding.
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We will analyze the infeasibility of above-mentioned two attacks concretely in the following two subsec-

tion.

A. infeasibility of forging attack

Let A be the adversary. A acts as KE adversary, and outputs ”fail” or (sid,guess), where sid is

the session identifier, guess is the guess for the session encoding of sid. We say A is successful, if A

successfully outputs a correct guess for a session encoding of unexposed session. Let (Â, B̂,X0,Y0) be

the test session, and let π = (Â, B̂,X0,Y0) be the test encoding. The generation of Y0 send to Â by A

can fall into one of the following four cases:

1) Case 1. Y0 was never output by B̂ as its outgoing value in any of the sessions activated at B̂, or

B̂ outputted Y0 as its outgoing value for certain session but it never computed the session key.

2) Case 2. Y0 was generated by B̂ in session (B̂, Â,Y0,X0).

3) Case 3. Y0 was generated by B̂ during a session (B̂, Â∗,Y0,X
∗) with Â∗ ̸= Â, and arbitrary X0.

4) Case 4. Y0 was generated by B̂ during a session (B̂, Â∗,Y0,X
∗) with Â∗ = Â and X∗ and X0

are not the same encodings.

Since we have assumed that A succeeds with a non-negligible probability in forging attack, then at

least one case of the above cases happens with a non-negligible probability, and satisfies this property:

If A succeeds with a non-negligible probability in Case i, then F makes a successful forgery against

Case i.

Forgery F for Case 1-Case 3. We first exhibit forgery F for the first three cases, which with a non-

nebligible probability makes a successful forgery, given any one case of the first three cases. In the

description below, we assume when the session is exposed, then A obtains the encoding values of session

rather than the session key. F’s actions are as follows:

1. The inputs of F contain challenge X0, public key B0, and the dual encoding by oracle B̂ under

public key B0. F outputs either the encoding forgery of the dual encoding, or ”fail”.
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2. F runs the protocol under A.

3. When the session of B̂ is activated, then F uses its own encoding oracle to determine the actions

of B̂. In particular, when A activates B̂’s session, either as initiator or responder, with peer Â and input

X0, then F provides Â as the message to be encoded and A as the public key of Â with respect to which

the dual encoding of B̂ is to generated to encoding oracle B̂. In response, F obtains the output message

Y from B̂. Then, F gives Y to A.

4. When A sends state reveal or session key reveal, then F returns session encoding to A accordingly.

5. Once all the parties are corrupted by A except B̂, then F provides its static secret key and local

session state to A. In this case, this corrupted party is completely controlled by A.

6. When A activates a session of Â, if the peer is not B̂, then F halts. Otherwise, F provides X0 to

A.

7. In the following situations, F halts: (1) A halts the test session of non-guessing session; (2) A

corrupts Â or B̂; (3) A exposes the guess session via sending state reveal or session key reveal; (4) A

exposes the matching session of the guess session via sending state reveal or session key reveal.

8. If A halts with the guess-session as its test session (the test session has identifier (Â, B̂,X0,Y0))

with a guess π0 for test encoding, then F outputs (Â,Y0, π0) as a encoding forgery of B̂’s dual challenge-

response encoding on message m = Â. If A outputs ”fail”, then F outputs ”fail”.

Lemma 3 When any one of Case 1−Case 3 holds, suppose that A makes a successful encoding forgery

with a non-negligible probability, then the forgery mentioned above can makes a successful encoding

forgery of dual encoding generated by B̂,with a non-negligible probability.

Proof. Let A be the adversary who makes a successful encoding forgery with a non-negligible proba-

bility in any one of Case 1−Case 3, then there exists an adversary controlled under F who generates a

successful encoding forgery of dual encoding generated by B̂,with a non-negligible probability. By fixing

each random value for A, each party, and random oracle H(·), we get the determinate execution of the

protocol. These determinate values completely determine A’s actions and its views. F provides all of
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the random coins for A and all of the parties in the protocol except for party B̂. We say a run of A

controlled under F is perfect, if it is identical with the real run of A under the same coins set by F and

by B̂. Firstly, consider the simulation by F with respect to uncorrupted parties rather than B̂. Since F

is aware of all the information of these parties except for B̂, it runs all their actions identically with in a

real interaction with A.

But there exists a possible deviation. Namely, when A activates the guess-session at Â, F uses X0 as the

output value, instead of X← reRand(1, enc(1,x)). The distribution of X0 and that of X is statistically

indistinguishable. In particular, if F does not halt the guess-session, then F fails to any action to obtain

the corresponding level-zero encoding. Since F knows nothing about the private key b of B̂, F uses

the encoding oracle as a black box. Since the corruption of B̂ will lead to forgery termination. Thus,

F only need to simulate B̂’s actions with respect to the session initiation and the exposure of session

key. According to the construction, every time A under F completes and outputs the guess π0 for the

test encoding π0 = π(Â, B̂,X0,Y0), F outputs an encoding forgery against B̂’s encoding. Specially, on

input a challenge x0, F outputs the forgery (m = Â,Y0, π0). If π0 and π0 are encodings of the same

coset, then this forgery is correct. What should be proven is that Y0 is not an encoding of 0 + I , and

(m = Â,Y = Y0) never appeared in the encoding generated by B̂, where B̂ is invoked by F . Suppose

that Y0 is an encoding of 0+ I , then Â would have rejected to take Y0 as the incoming message of the

guess-session. Assume π0 = π0, we verify its validity in any case of the following two cases C1,C2.

C1. Y0 never appeared in the encodings issued by B̂, thus (m = Â,Y0, π0) is a valid forgery.

C2. Y0 appeared in the session (B̂, Â,Y0,X0), which has never been queried by A. F never queries

the session encoding corresponding to a session of B̂, except if this session has been queried by A via

state reveal or session-key reveal. Since Y0 only appears in above mentioned session, (m = Â,Y0, π0)

is valid.

In conclusion, if A successfully outputs a valid guess of the test encoding with a non-negligible

probability, then F successfully outputs a valid forgery against the DEncode generated by B̂.
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Forgery F ′ for Case 4. If there is adversary A who initiates a successful forgery attack with with a

non-negligible probability, then we define a successful forgery F ′ against the DEncode generated by

B̂. When A successfully outputs a valid guess π0 of the encoding of the test session (Â, B̂,X0,Y0), and

Y0 is generated by B̂ in another session (B̂, Â,Y0,X
∗) with X∗ ̸= X0. With this list below we will

construct the forgery F ′ as follows:

1) In addition to choosing random values i, j, t as F does, F ′ also selects l ∈R {0, 1}. We use Â and

B̂ to denote Pi and Pj respectively. The choices of i, j, t represent that which test session will be

chosen to act as the t-th session by F ′ for A. The choice of l represents the l-th session activated

at B̂.

2) F ′ halts, if the peer of the l-th session at B̂ is not Â or it has X∗ = X0, and the incoming value

provided by A to Â in its t-th session is different to the output value Y0 in B̂’s l-th session.

3) The subsequent actions of F ′ is identical to F’s, except for in the l-th session activation of B̂, F ′

chooses a random encoding Y0, and feeds it to A. If at any time A queries session (B̂, Â,Y0,X
∗)

via state reveal or session-key reveal, then F ′ selects a random bit string from {0, 1}n(log2(q/4)−λ),

and uses this random bit string to answer the query from A.

4) If A halts without querying session (B̂, Â,Y0,X
∗), then F ′ halts with the same results as A outputs.

That is, if A fails, then F ′ fails. If A outputs a guess of π(Â, B̂,Y0,X
∗), then F ′ outputs (Â,Y0, π0)

as forgery of B̂’s encoding on message m = Â under challenge X0.

5) If A halts after querying (B̂, Â,Y0,X
∗), then F ′ selects a random bit b′ and executes:

a) When b = 0, F ′ halts. Its output is decided by Step 4.

b) When b = 1, recoiling step: F ′ recoilsA to its state at the timeA queries session (B̂, Â,Y0,X
∗).

In this case, F ′ randomly chooses one answer c of queries to H(·) by A instead of answering

a random value, and uses H(c) to response the query to session (B̂, Â,Y0,X
∗).

Lemma 4 Assume A outputs a successful guess of the test encoding with a non-negligible probability

in Case 4, then F ′ makes a successful encoding forgery against B̂’s DEncode with a non-negligible
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probability.

Proof. We say a run of A is type-Case 4, if A outputs a guess of the session encoding of the unexposed

session (Â, B̂,X0,Y0), where Y0 is generated in session (B̂, Â,Y0,X
∗) with X∗ ̸= X0. Assume A

runs type-Case 4 successfully with a non-negligible probability. We use s0 to denote the test session

(Â, B̂,X0,Y0), and let s∗ denote (B̂, Â,Y0,X
∗). π0 denotes the test encoding of π = (Â, B̂,X0,Y0). π∗

denotes the test encoding of (B̂, Â,Y0,X
∗). π0. We say A queries s∗ if A queries s∗ via state-reveal or

session-key reveal. We differentiate the runs of type-Case 4 into the following three classes:

1) A does not query session s∗.

2) A queries s∗ but not π∗.

3) A queries s∗ and π∗.

In the non-aborting run of F ′, the simulations dominated by F ′ is perfect, except for the response to

the query to s∗ if the query is sent by A, and the subsequent recoiling step that is performed by A under

F . In runs in which A queries s∗ before it queries H(·) on π∗, the probability that A queries H(·) on π∗

is identical whether the response to s∗ was the real H(π∗) or a random value. In class one, the run of A

under F ′ is identical to the real run of A. If b = 0, then A under F ′ is identical to the real run. Since as

long as A does not query π∗, then the random value answered by F ′ to the query to s∗ is undistinguishable

with any other random value. In class two, when b = 1, F ′ just chooses to query c = π∗. In sum, the run

of A under F ′ is identical to the real run, and happens with a non-negligible probability.

When A under F ′ outputs a correct guess π0 of session (Â, B̂,X0,Y0), F ′ outputs a valid encoding

forgery of encoding of (m = Â,Y0, π0) by B̂ with challenge X0. Since Y0 is not an encoding of 0+ I ,

and (m = Â,Y0,X0) did not appear in the encodings issued by B̂. Suppose that Y0 is an encoding of

0+ I , then Â rejects to accept it as the incoming value in the guess-session. B̂ uses Y0 only in session

s∗ = (B̂, Â,Y0,X
∗). But F ′ did not query this session. In fact, even if A queries this session, F ′ answers

a random value or a previous output value. Thus, A under F ′ outputs valid encoding forgery against B̂’s

encoding.
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B. infeasibility of key-replication attack

Lemma 5 If there is an efficient adversary A which can initiate a key-replication attack with a non-

negligible probability, then F or F ′ can output a successful encoding forgery against the DEncode scheme

with a non-negligible probability.

Proof. Assume A initiates a successful key-replication attack against session (Â, B̂,X0,Y0). That

is, A builds a session s′ = (Â′, B̂′,X′,Y′), which has the same session key as session s. Consider

Case 1-Case 4 which have to do with the generation of Y0 in session s. In at least one case of these

four cases, A will initiate a key-replication attack with a non-negligible probability. Suppose, this non-

negligible probability of success holds for any of Case 1-Case 3, and consider F constructed above and

its interaction with the key-replication attacker A. F provides the session encoding of the unexposed

session to A. Therefore, if A initiates a successful key-replication attack, then A can obtain the test

encoding π(Â, B̂,X0,Y0) without exposing the test session or its matching session. In this case, F can

successfully output a valid encoding forgery of the encoding generated by B̂.

In Case 4, F ′ provides the test encoding rather than (B̂, Â,Y0,X
∗) to A. Similarly, if A initiates a

successful key-replication attack, then F ′ can successfully output a valid encoding forgery of the encoding

generated by B̂.

VII. CONCLUSIONS

In this paper, we propose an efficient and practical authenticated key exchange (AKE) protocol from

ideal lattices. Compared with the current lattice-based AKE schemes, our protocol not only possesses

some graceful characteristics and innovations of HMQV more naturally, but also enjoys many excellent

properties of lattice-based cryptography.
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