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Abstract. This paper reports on a number of conceptual and technical contributions to the currently very
lively field of two-party computation (2PC) based on garbled circuits. Our main contributions are as follows:
1. We propose the notion of an interactive garbling scheme, where the garbled circuit is generated

through an interactive protocol between the garbler and the evaluator. The garbled circuit is correct
and privacy preserving even if one of the two parties was acting maliciously during garbling. The
security notion is game based.

2. We show that an interactive garbling scheme combined with a Universally Composable (UC) secure
oblivious transfer protocol can be used in a black-box manner to implement two-party computation
(2PC) UC securely against any probabilistic polynomial time static and malicious adversary. The
protocol abstracts many recent protocols for implementing 2PC from garbled circuits and will al-
low future designers of interactive garbling schemes to prove security with the simple game based
definitions, as opposed to directly proving UC security for each new scheme.

3. We propose an instantiation of interactive garbling by designing a new protocol in the LEGO family
of protocols for efficient garbling against a malicious adversary. The new protocol is based on several
new technical contributions and optimizations, for example making it possible to get distinct output
to both parties with minimal overhead. The scheme makes black-box usage of a XOR-homomorphic
commitment scheme, an authentic, private and oblivious garbling scheme and a 2-correlation-robust
and collision-resistant hash function. When comparing our resulting 2PC protocol to previous works
in the same setting we see a noticeable reduction in the communication that directly depends on the
size of the circuit (e.g. 33% for circuits larger than 501,271 AND gates).

Keywords: Secure Computation, XOR-Homomorphic Commitments, Garbled Circuits, Interactive
Garbling Scheme, Oblivious Transfer, Universal Composability, Standard Assumptions, Large Circuits.

1 Introduction

Secure two-party computation (2PC) is the area of cryptography concerned with two mutually distrusting
parties who wish to securely compute an arbitrary function f with private output based on their respective
private inputs. We say that A has the input x, B the input y, and they wish to learn the output (zA,zB)←f(x,y)
without B learning anything about x and without A learning anything about y. Here zA and zB denotes the
private output of A and B, respectively.

This area was introduced in 1982 by Andrew Yao [Yao82, Yao86], specifically for the semi-honest case,
where all parties are assumed to follow the protocol and only try to compromise security by analyzing their own
views of the protocol execution. Yao showed how to prevent this using a technique referred to as the garbled
circuit approach. This approach entails one party (the constructor), say A, encrypt, or “garble”, a Boolean
circuit f computing the desired function. This is achieved by choosing two random keys for each wire in the
circuit, one representing a value of 0 and another representing a value of 1. Each gate of f is then garbled such
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that B (the evaluator), given exactly one key for each input wire, can compute exactly one key for the output
wire, namely the key corresponding to the bit that the gate is supposed to output (for example, the logical AND
of the two input bits). A sends the garbled circuit to B and, using an oblivious transfer (OT) protocol, B also
learns one key for each input wire corresponding to his own input, without A learning which one. For the input
wires corresponding to A’s input, she sends the keys directly to B along with some auxiliary information for
decoding the output wires of the circuit. Now, given the input keys, B will evaluate the garbled circuit, without
knowing which bits flow on the wires. Finally, when he reaches the output keys he uses the auxiliary information
to learn which bits the keys encode. See [LP09] for a thorough description of Yao’s approach.

If one considers amalicious adversary, where a corrupt party might deviate from the protocol in an arbitrary
manner, then Yao’s approach is no longer secure. One of the major issues is that B cannot be sure that the
garbled circuit he receives from A has been garbled correctly. To cope with this issue, the cut-and-choose
approach can be used: Instead of sending a single circuit, A sends several independently garbled versions of
the circuit to B. B then randomly selects a subset of these, called the check circuits, which are opened by A,
allowing B to verify that they correspond to the correct function f . If this is the case, he is guaranteed that
a majority of the remaining circuits, called evaluation circuits, are garbled correctly.

However, the cut-and-choose approach introduces other issues that have to be dealt with in order to obtain
malicious security, e.g. ensuring consistent inputs in all evaluation circuits. Another prominent issue when
considering malicious adversaries is the selective failure attack [MF06, KS06]: Because A supplies B with keys
in correspondence with his input bits through an OT, A is free to input garbage for one of the keys, e.g, the
0-key for the first bit of B’s input. If B now aborts the protocol, A will know that the first bit of his input is
0 as he cannot evaluate a garbled circuit when one of the input keys is garbage. On the other hand, if no abort
occurs then A learns that his first bit must be 1.

Solutions to the above attack and several other attacks on the cut-and-choose approach, along with sev-
eral optimizations have led to a plethora of work on cut-and-choose protocols including, but not limited to,
[LP07, PSSW09, LP11, sS11, HEKM11, KSS12, Bra13, FN13, HKE13, Lin13, MR13, sS13, HMSG13, RT13,
FJN14, AMPR14].

Related Work. Considering a garbled circuit as a modular construction, consisting of many connected garbled
gates, has led to a new approach to cut-and-choose called LEGO. In this approach, cut-and-choose is not
done on several circuits, but rather on individual and independent garbled gates. The idea is that if none of
the garbled gates that are checked are incorrect, then, with overwhelming probability, at most a few of the
remaining garbled gates are maliciously constructed. The remaining gates are then shuffled and soldered into
fault tolerant buckets computing a specific Boolean functionality, such as AND. The fault tolerance comes as
the buckets are constructed to output the majority of the output of its individual gates. Thus, since only a few
maliciously constructed gates remain after the cut-and-choose step, the probability that a majority of these
are combined in the same bucket is overwhelmingly small, even for buckets consisting of only a few garbled
gates. These buckets can then be soldered together to form an entire garbled circuit which will compute the
correct output with overwhelming probability. This “gate-level” approach to cut-and-choose makes it possible
to achieve an asymptotic increase in efficiency of the logarithm of the size of the circuit to compute, compared
to the protocols based on cut-and-choose of whole garbled circuits.

The LEGO approach was introduced by Nielsen and Orlandi in [NO09]. In that paper the soldering of garbled
gates was based on additive homomorphic commitments, making it possible to obliviously “transform” the key
on one wire to the key with similar semantics (whether it represents the bit 0 or 1) on another wire. Specifically
the additively homomorphic Pedersen commitments were used. Unfortunately, these commitments require
heavy computational operations in the form of exponentiations of elements in a group. Furthermore, as the key
commitments worked on group elements this also required the keys of the garbled gates to be group elements
under certain constraints. Unfortunately, this ruined the possibility to use several optimizations of garbled
gates which requires the keys to be random bitstrings. One such optimization is the celebrated “free-XOR”
optimization [KS08] which makes it possible to construct and evaluate XOR gates for “free” (free meaning that
no cryptographic operations or communication is needed).

In [FJN+13] the authors introduced an XOR-homomorphic commitment scheme based on OT and error
correcting codes. Using this scheme they constructed a new LEGO protocol, called MiniLEGO, which eliminated
the need of group exponentiations for each commitment. The usage of XOR-homomorphic commitments on bit-
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strings also eliminated all the constraints previously needed on the gate keys, and thus their protocol works with
most gate garbling optimizations. Unfortunately, the error correcting code used to construct the commitments
introduced a rather large concrete increase in the communication complexity of each garbled gate. So while Mini-
LEGO asymptotically performs better than circuit cut-and-choose protocols, for practical parameters and circuit
sizes the protocol is not competitive. In practice the XOR-homomorphic commitments can be approximated to
be at least 40 times the size of the message committed to. This has the effect that the asymptotic saving LEGO
achieves only becomes substantial at impractically large circuits. Thus for realistic circuits the MiniLEGO
protocol induces too much overhead compared to the fastest protocols for cut-and-choose of garbled circuits.

Finally, it should be noted that recent results [LR14, HKK+14] combine the idea of cut-and-choose of
garbled circuits and the LEGO approach to achieve protocols asymptotically more efficient in the amortized
(batched) setting than any protocol based on cut-and-choose of garbled circuits. Ignoring the details, their
idea is to construct many garbled circuits computing the same functionality, do cut-and-choose to check some
fraction of these, and then put the remaining circuits into slots (buckets using LEGO lingo). When the parties
wish to do a secure computation it then suffices to use a single slot of circuits. We stress that these protocols
only apply to the batched setting, where one is interested in computing the same function many times. In this
work we look at the single function evaluation setting, which is more general than the batched setting.

Motivation. Efficient protocols for maliciously secure two-party computation based on garbled circuits are often
extremely complex. The corresponding proofs of security are no better and often hinges on subtle interconnected
(seemingly ad-hoc) elements of the entire protocol in order to go through. Due to this complexity it is also
highly non-trivial to modify these protocols and reason about what new security guarantees hold. One would
usually have to go through the time-consuming task of reproving the modified construction in order to have
full confidence in a design change. This leaves a lot to be desired in terms of flexibility if one wants to trim a
protocol for a particular application. As an example, if the full power of the original protocol is not needed
it can be a daunting task to identify which elements can be safely left out without losing all security guarantees.

In this work we take a step towards solving this issue by introducing a new abstraction in the area of garbled
circuits. Much inspired by the work of Bellare et al. [BHR12] we present similar definitions of security, however
in an interactive setting considering a malicious adversary. Next, we show that our proposed security notions
for an interactive garbling scheme imply UC-secure 2PC in the FOT-hybrid model with both parties receiving
output. By abstractly defining each distinctive security property separately (as opposed to all in one using an
ideal functionality) the primitive is modular and can be weakened (or strengthened) for a particular application
without having to reprove all security properties from scratch.

Our Contribution. We present a new abstraction for achieving efficient malicious and static secure 2PC based
on garbled circuits. Our contributions includes:

– We introduce a fully generic framework for interactive garbling and define notions of security in an interactive
setting considering a malicious adversary. We then show that our notion of an interactive garbling scheme
suffices for UC-secure 2PC in the FOT-hybrid model with both parties receiving output.

– Next we show how to realize such an interactive garbling scheme. Our instantiation is based on the LEGO
techniques of [NO09, FJN+13, LR14] along with several optimizations. One of our optimizations include
only requiring a single “correct” gate in each bucket (as opposed to a majority), which is made possible
using what we call wire authenticators.1 Another is the possibility of distinct output to both parties without
the need of circuit augmentation or any other add-ons.

– Finally, we instantiate our scheme with the commitment scheme of [FJNT15] and give a detailed comparison
with current state-of-the-art protocols and see that our construction compares favorably. As expected the
LEGO technique becomes more competitive as the size of the circuit being garbled increases. For example, for
a circuit with at least 501,271 AND gates and 40-bit statistical security we reduce communication with 33%
compared to previous protocols in the same setting. The details of our comparison can be found in Section 7.

1 For the readers familiar with the LEGO protocol of [NO09], these are very similar to the key check gadgets. However
we only require about half the amount of them, compared to [NO09].
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2 Preliminaries

Notation. We will use as shorthand [n] = {1,2,...,n} and [i;n] = {i,i+1,i+2,...,n} for i≤ n. We write e∈R S
to mean: sample an element e uniformly at random from the set S. We write y← P (x) to mean: perform
the (potentially randomized) procedure P on input x and store the output in variable y. We use ‖ to denote
concatenation of vectors. We sometimes (when the semantic meaning is clear) use subscript to denote an index
of a vector, i.e., xi denotes the i’th bit of a vector x. We use k to denote the computational security parameter
and s to represent the statistical security parameter. Technically, this means that for any fixed s and any
polynomial time bounded adversary, the advantage of the adversary is 2−s+negl(k) for a negligible function
negl. i.e., the advantage of any adversary goes to 2−s faster than any inverse polynomial in the computational
security parameter. If s=Ω(k) then the advantage is negligible. For two ensembles X = {Xk,z}k∈N,z∈{0,1}∗
and Y ={Yk,z}k∈N,z∈{0,1}∗ of binary random variables we say these are indistinguishable, denoted by X c

≈Y ,
if for all z it holds that |Pr[Xk,z=1]−Pr[Yk,z=1]|≤negl(k). Finally an overview of the various variables and
parameters along with their meaning is given in Section 9.

Garbling Schemes. We assume A is the party constructing the garbled gates and call her the constructor.
Likewise, we assume B is the party evaluating the garbled gates and call him the evaluator. Furthermore, we
say that the functionality they wish to compute is (zA,zB)← f(x,y), where A gives input x, B gives input y,
A, receives the output zA and B receives the output zB. We assume (w.l.o.g.) that f is described only using
NOT, XOR and AND gates. The XOR gates are allowed to have unlimited fan-in, while the AND gates are
restricted to fan-in 2, and NOT gates have fan-in 1. All gates are allowed to have unlimited fan-out. We denote
the bit-length of x as |x|=nA, the bit-length of y as |y|=nB and let n=nA+nB. We will denote the bit-length
of the output zA as |zA|=mA, the bit-length of zB as |zB|=mB and m=mA+mB. Furthermore, we assume that
the first nA input wires are for A’s input and the following nB input wires are for B’s input.2 Similarly, the first
mA output wires are for A’s output and the following mB output wires are for B’s output.

We define the semantic value of a wire-key of a garbled gate to be the bit it represents. We will use Xb
j to

denote the j’th wire key representing bit b. Sometimes, when the context allows it, we will let Lblg , Rbrg , and
Obog denote the left, right, and output key respectively for garbled gate g representing the bits bl, br and bo
respectively. When the bit represented by a key is unknown we simply omit the superscript, e.g. Xj or Lg.

In this work circuits are handled in a similar fashion as to [FJN+13], but we adopt the notation of [BHR12]
with some minor syntactic modifications which make it possible to handle NOT and XOR gates implicitly.
Thus, a circuit is a 7-tuple f = (nA,nB,mA,mB,q,lp,rp) where n=nA +nB and n≥ 2 is the number of inputs,
m = mA +mB and m ≥ 1 is the number of outputs and q is the number of AND gates. Thus w = n+ q is
the total number of wires in the circuit, as XOR and NOT gates are handled implicitly as described below.
We let Wires = {1,...,w}, Inputs = {1,...,n}, Gates = {n+1,...,w} and Outputs = {w−m+1,...,w}. The maps
lp,rp :Gates→{{Wires\Outputs}∪{1}}∗ define the topology of the circuit, mapping from gates to their respec-
tive left and right input wire. We also require that for all g∈Gates and ∀l∈ lp(g),∀r∈ rp(g) it holds that l≤r<g.
We say that the set lp(g) (resp. rp(g)) is the left (right) parents of gate g and we let the left (right) input key
of gate g be

⊕
j∈lp(g)O

bj
j . In this way all XOR and NOT gates of f are defined by lp,rp. The special symbol

1 denotes an “implicit” key with semantic values 1. It is used in order to support NOT gates, by the simple
observation that a NOT gate is logically equivalent to an XOR where one of the inputs is the constant 1.

We define a garbling scheme to be a 5 tuple of poly-time algorithms G= (Gb,En,De,Ev,ev). Gb denotes a
randomized algorithm, taking as input a security parameter and a function description f , while producing
as output a triple consisting of a garbled circuit F , input encoding information e along with output decoding
information d. That is Gb(1k,f)→ (F,e,d). The function En can then be used to construct the garbled input
X when given e and x‖y. That is, En(e,x‖y)→X. The garbled input X can then be evaluated by the garbled
circuit F using the function Ev, yielding the garbled output Z. That is, Ev(F,X)→Z. The garbled output
Z can then be decoded to the plain output z using the decoding information d and the function De. That is,
De(d,Z)→z. Finally, it is possible to evaluate the plain function f using the plain input x‖y to the plain output

2 For ease of presentation we restrict our attention to circuits with fan-out 1 input-wires only. This is not a major
restriction as one can always augment the circuit with identity gates on the input layer. Each of these gates then
takes one input wire as input and is allowed unlimited fan-out.
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z using the algorithm ev. That is, ev(f,x‖y)→z, or, abusing notation f(x‖y)=f(x,y)=z=zA‖zB =(zA,zB). For
convenience we define implicit functions fA and fB such that fA(x‖y)=fA(x,y)=zA and fB(x‖y)=fB(x,y)=zB.

We have some further requirements on the output of the algorithms. It must be the case that |F |,|e| and
|d| only depend on k,n,m and |f |. We also have the length condition; if n= n′, m=m′ and |f |= |f ′| when
(F,e,d)←Gb(1k,f), (F ′,e′,d′)←Gb(1k,f ′) then it must hold that |F |= |F ′|, |e|= |e′| and |d|= |d′|. Finally we
have the correctness requirement that if f ∈{0,1}∗, k∈N, x‖y∈{0,1}n and (F,e,d)←Gb(1k,f) then it must
hold that De(d,Ev(F,En(e,x‖y)))=ev(f,x‖y).

We require both secrecy and authenticity of the garbling scheme we use. Bellare et al. [BHR12] discusses two
types of secrecy, privacy and obliviousness. For privacy the demand is that a party learning (F,X,d) does not
learn anything besides some allowed leakage and the output z (for example by computing De(d,Ev(F,X))). The
interpretation of this notion is that the semantic values on the internal wires remain private towards the party
who has garbled the circuit. The allowed leakage is captured through a side-information function Φ, which
is queried on the plain function f and returns the allowed leakage when a party is in possession of (F,X,d)
(when F ←Gb(1k,f)). In the case of obliviousness we assume the evaluating party does not know the plain
function f nor the decoding information d, and thus is only in possession of (F,X). We then wish that he does
not learn anything about f,x‖y or z, and thus only learns what is permitted by Φ. The interpretation of this
notion is that everything about the function and inputs remain secret to the evaluator. Like obliviousness we
define the notion of authenticity towards a party which is only given F and X. We wish that he is not able
to construct a garbled output Z∗ 6=Ev(F,X) such that De(d,Z∗) 6=⊥. The interpretation of this notion is that
one cannot construct permissible garbled output different from what is dictated by X and F . We define these
notions formally in the indistinguishability based games in Fig. 1.

We let the advantage of a PPT adversary A playing game G using the garbling scheme G with security
parameter k and potentially an auxiliary function tuple η be denoted by AdvG,η

G (A,k). For the games in Fig. 1
the advantages are defined as follows:

Advprv.ind,Φ
G (A,k)=2Pr[PrvIndAG,Φ(1k)=>]−1 ,

Advobl.ind,Φ
G (A,k)=2Pr[OblIndAG,Φ(1k)=>]−1 ,Advaut,Φ

G (A,k)=Pr[AutAG (1k)=>] .

Game PrvIndAG,Φ(1k). Property prv.ind.

1. Run A(1k) to produce (f0,f1,x0,x1).
2. If {x0,x1} 6⊆ {0, 1}f0.n, Φ(f0) 6= Φ(f1) or

ev(f0,x0) 6=ev(f1,x1) then output ⊥.
3. Sample uniformly random bit b∈R {0,1}.
4. Run (F,e,d)←Gb(1k,fb).
5. Compute X←En(e,xb).
6. Let b′←A(F,X,d).
7. If b′=b, then output >, otherwise output ⊥.

Game OblIndAG,Φ(1k). Property obl.ind.

1. Run A(1k) to produce (f0,f1,x0,x1).
2. If {x0,x1} 6⊆ {0,1}f0.n or Φ(f0) 6= Φ(f1) then

output ⊥.
3. Sample uniformly random bit b←{0,1}.
4. Run (F,e,d)←Gb(1k,fb).
5. Compute X←En(e,xb).
6. Let b′←A(F,X).
7. If b′=b, then output >, otherwise output ⊥.

Game AutAG (1k). Property aut.

1. Run A(1k) to produce (f,x).
2. If x 6∈{0,1}f.n then output ⊥.
3. Run (F,e,d)←Gb(1k,f).
4. Compute X←En(e,x).
5. Let Z←A(F,X).
6. If De(d,Z) 6=⊥ and Z 6=Ev(F,X) then output >, otherwise output ⊥.

Fig. 1. Security games for garbling schemes

We also use the notion of a projective garbling scheme as introduced by Bellare et al. [BHR12]. Informally
speaking a garbling scheme is projective if it is possible to parse the encoding information e as

(
X0

1 ,X
1
1 ,...,X

0
n,X

1
n

)
,
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two for each of the n input wires. We generalize this notion to the output wires as well, and thus define a garbling
scheme to be output projective if there are exactly two possible tokens associated with each of the m circuit
output wires, where one represents the 0-bit and the other the 1-bit of the wire. Specifically, for z ∈{0,1}m
we have a unique set

(
Z0

1 ,Z
1
1 ,Z

0
2 ,Z

1
2 ,...,Z

0
m,Z

1
m

)
and Ev(F,X)→ (Zz1

1 ,Zz2
2 ,...,Zzmm ). More formally we demand

that for all f with x,x′ ∈ {0,1}n, k ∈ N and i,j ∈ [m] where z← ev(f,x),z′← ev(f,x′), (F,e,d)← Gb
(
1k,f

)
,

X = En(e,x), and X ′= En(e,x′) that Ev(F,X)→Z and Ev(F,X ′)→Z ′ we have that Z = (Z1,Z2,...,Zm) and
Z ′=(Z ′1,Z ′2,...,Z ′m) are m element vectors, |Zi|= |Z ′i|= |Zj |= |Z ′j | and Zi=Z ′i iff zi=z′i.

We say a scheme has projective coding if both e and d are projective as defined above. As a consequence of
this the encoding and decoding algorithms, En and De contain subalgorithms En and De, respectively, working
on individual elements. A bit more formally we can define the algorithms as follows:

En(e,x)→X:
1. Parse (e1,...,en)←e and (x1,...,xn)←x.
2. For i∈ [n] let Xi=En(ei,xi).
3. Set (X1,...,Xn)→X and return X.

De(d,Z)→z:
1. Parse (d1,...,dm)←d and (Z1,...,Zm)←Z.
2. For i∈ [m] let zi=De(di,Zi).
3. Set (z1,...,zm)→z and return z.

3 Interactive Garbling Schemes

We introduce the notion of a (projective) interactive garbling scheme.Our notion extends the notion of a projective
garbling scheme from [BHR12] to allow the garbling algorithm to be a two-party protocol. In Section 2 we intro-
duced a simplified version of the syntax, notational conventions and security notions from [BHR12]. In terms of
[BHR12] the definitions below are for the leakage functionΦxor(f), i.e., the evaluator is allowed to learn the topol-
ogy of f and which gates are XOR gates. Furthermore, we work with a unified notion of secrecy that captures both
privacy and obliviousness in the two party setting where both parties are supposed to learn some private output.

Syntax. An interactive garbling scheme consists of a six-tuple Gπ = (Gbπ,Enπ,Deπ,Evπ,evπ,Veπ). The first
component, called the garbling protocol, is a two party protocol. The remaining components are deterministic
algorithms. All components are poly-time (in k). The evaluation function evπ takes two inputs, a function
description f and an input x for f . A string f , the original function, by definition describes a function
evπ(f,·) :{0,1}n→{0,1}m, which is the function we want to garble. We will often not distinguish between the
description of the function and the function, i.e., we write f(x) to mean evπ(f,x). We assume that the input
lengths f.nA, f.nB, f.n=f.nA+f.nB and the output length f.mA, f.mB, f.m=f.mA+f.mB can be computed
in linear time from f . The garbling protocol Gbπ is executed between two parties, the constructor C (played
by A) and the evaluator E (played by B). To be concrete, we assume it is a protocol in the UC framework.
We assume that the parties send no messages directly to each other, instead all communication is through
ideal functionalities. This is without loss of generality, as we can always introduce an ideal functionality for
communication. The input to both parties is

(
1k,f

)
, where k∈N is the security parameter and f is a function

description. The output of C is (F,e,d), where F is the garbled function, e is the input encoding function, and
d is the output decoding function. The output of E is a garbled function F ∈{0,1}∗ and a verification function v.

We let Evπ be the garbled evaluation function, working like the evaluation function in a regular garbling
scheme. That is, it takes as input F and X where F has been constructed using Gbπ and X using the encoding
algorithm Enπ on e and input x. Evπ outputs a garbled output Z which can then be used in Deπ along with d
to restore the plain output z.

The algorithm Veπ is extra compared to [BHR12]. This verification algorithm uses the verification function
v to verify that a wire token encodes a particular bit. Like the algorithms En and De defined for projective coding
in Section 2, this algorithm works element wise. A bit more specifically we require that v can be parsed into
individual elements vi. Veπ then takes as input a verification element vi, a garbled value Xi, and a bit xi. It
then outputs true (>) or false (⊥). Intuitively, it uses vi to judge whether Xi has been constructed consistently
with the bit xi. We capture the security requirements of Veπ via the tok.com property in Fig. 3 in the following.

Defining Security. In defining security we will require the existence of some auxiliary algorithms. For clarity
we will consider them part of an extended scheme. An extended interactive garbling scheme has the form
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Gπ=(Gbπ,Enπ,Deπ,Evπ,evπ,Veπ,ExC,ExE,De−1
π ,En−1

π ). Here ExC is a deterministic poly-time algorithm called
the constructor extractor. After a run of Gbπ between C and E, where C might deviate from the protocol, it
is applied to the view of C, i.e., inputs (1k,f) of C plus the messages sent to the ideal functionalities of Gbπ by C
and the messages sent to C by the ideal functionalities. It outputs (ê,d̂). The intuition is that ê is a well-formed
encoding function and that d̂ is a well-formed decoding function. We call ê the implicit input encoding function
and we call d̂ the implicit output decoding function. The reason is that we will sometimes need that even a
cheating constructor knows well-defined encoding and decoding functions. The evaluator extractor ExE works
the same way but is applied to the view of a possibly cheating E and it outputs an implicit garbled function
F̂ . As we discuss later, we sometimes need that even a cheating evaluator knows a well-defined garbled function.
The deterministic poly-time algorithm En−1

π is called the de-encoder. It takes as input the encoding function
ei and an encoded input Xi. It outputs an input xi, which is supposed to be the xi encoded by Xi. It is used
to guarantee that even a malicious constructor has a well-defined input. The deterministic poly-time algorithm
De−1

π is called the de-decoder. It takes as input the decoding function dj and an output zj . It outputs an encoded
input Zj . For now, simply think of it as the inverse of the decoding algorithm. We will now define security
notions of an extended scheme. Each security notion is defined via a game, GameAGπ , between an extended
scheme Gπ and an adversaryA. If the game outputs > it means thatA won. If the game outputs ⊥ it means that
A lost. If the name of the game defining property prop contains the sub-string Ind, then we say that the game
is indistinguishability based, and we define the advantage as follows Advprop

Gπ (A,k)=2Pr[GameAGπ (1k)=>]−1.
Otherwise, we define the advantage as Advprop

Gπ (A,k)=Pr[GameAGπ (1k)=>]. In both cases we say that Gπ has
the property prop if it holds for all PPT adversaries A that Advprop

Gπ (A,k) is negligible in k.
Below we informally describe the security properties of our notion of an interactive garbling scheme. These

properties are formally captured in Fig. 2 and Fig. 3.

Projective Schemes. We require that the scheme has projective coding as defined in Section 2, meaning that the
encoding and decoding functions can be semantically tokenized into individual bitstrings of equal length. As
a consequence of this the above-mentioned “reverting” algorithms En−1

π and De−1
π are directly defined as they

simply select the corresponding semantic value and output token, respectively. We now describe the de-encoder
En−1

π and de-decoder De−1
π in more detail. Let (e1,e2,...,en)← e. For any i ∈ [n], on input Xi and ei we let

En−1
π (ei,Xi)=⊥ if ei cannot be parsed as (X0

i ,X
1
i ), it can be parsed this way but X0

i =X1
i or |X0

i | 6= |X1
i | or if

there does not exist a xi∈{0,1} such that Xi←Enπ(ei,xi). Otherwise let xi be this value from {0,1} and return
xi. Likewise let (d1,d2,...,dm)←d. For any j∈ [m], on input zj and dj let De−1

π (dj ,zj)=⊥ if dj cannot be parsed
as (d0

j ,d
1
j ), it can be parsed this way but d0

i =d1
i or if zj 6∈{0,1}. Otherwise let Zj be the unique value such that

zj←Deπ(dj ,Zj) and let De−1
π (dj ,zj)→Zj . If a scheme satisfies the above we say that it has the property proj.

Correctness. We define correctness (property name: corr) as in [BHR12], except that now the material is
generated interactively. We also add the requirement that the verification algorithm must be correct.

Secrecy. We define secrecy (property name: sec.ind.act) like obliviousness in [BHR12] for the first mA output
bits and like privacy in [BHR12] for the lastmB output bits. That is, we require that for the firstmA output bits,
by seeing a garbling and an encoding of one of two inputs x0 and x1 along with decoding information for the last
mB output bits, the evaluator cannot guess which input was used, under the constraint that fB(x0)=fB(x1).
As an addition we let the adversary B play the role of E in the garbling protocol. We furthermore allow B to
deviate from the garbling protocol. This gives a notion of malicious security. One can define a relaxed notion
by requiring that B only gets to see the randomness of E, but we do not need this notion in this work.

Authenticity. We define authenticity (property name: aut.act) as in [BHR12], to mean that the evaluator, given a
garbling and an encoded input can compute the unique output encoding that will be accepted by the constructor,
except that we again let the adversary participatemaliciously in the garbling protocol. In [BHR12] it was sufficient
to require that only the unique correct garbled output can be returned. However, when the scheme is interactive
and the adversary participates in the garbling protocol, we also need to require that the generated circuit is
correct, as it does notmake sense to reason about the correct garbled output, if the output itself is not correct. This
means authenticity is extended to include also robustness of the garbling protocol against a corrupted evaluator.
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Game CorrAGπ (1k). Property corr.

1. Run A(1k) to produce (f,x).
2. If x 6∈{0,1}n then output ⊥.
3. Run Gbπ between C(1k,f) and E(1k,f). If any party outputs ⊥, then output >. Otherwise, denote

the output of C by (F,e,d) and the output of E by (F ′, v) and let (v1,...,vnB ,vnB+1,...,vnB+mB ) ← v,
(e1,...,en)←e and (d1,...,dm)←d. If F ′ 6=F , then output >.

4. Compute Xi←Enπ(ei,xi) and let X=(X1,...,Xn).
5. Compute Z←Evπ(F,X) and z←evπ(f,x) and let Z=(Z1,...,Zm).
6. If Veπ(vi,XnA+i,xnA+i)=⊥ for any i∈ [nB] then output >.
7. If Veπ(vnB+j ,ZmA+j ,zmA+j)=⊥ for any j∈ [mB] then output >.
8. If Deπ(dj ,Zj) 6=zj for any j∈ [m] then output > otherwise output ⊥.

Game SecIndActBGπ (1k). Property sec.ind.act.

1. Run B(1k) to produce (f0,f1,x0,x1).
2. If any of the following are true, then output ⊥.

(a) x0,x1 6∈{0,1}n.
(b) x0,i 6=x1,i for i∈ [nA+1;n].
(c) Φxor(f0) 6=Φxor(f1).
(d) z0,j 6= z1,j for any j ∈ [mA +1;m] when we

let z0 =evπ(f0,x0) and z1 =evπ(f1,x1).
3. Sample uniformly random b∈R {0,1}.
4. RunGbπ betweenC(1k,fb) andB. IfC outputs⊥,

output ⊥. Otherwise, denote the output of C by
(F,e,d) where (e1,...,en)←e and (d1,...,dm)←d.

5. Compute Xi ← Enπ(ei, xb,i) and let
X=(X1,...,Xn).

6. Give X and dB = (dmA+1,...,dm) as input to B
and run B to get an output b′.

7. If b′=b, then output >, otherwise output ⊥.

Game AutActBGπ (1k). Property aut.act.

1. Run B(1k) to produce (f,x).
2. If x 6∈{0,1}n then output ⊥.
3. Run Gbπ between C(1k,f) and B. If C outputs⊥,

output ⊥. Otherwise, denote the output of C by
(F,e,d) where (e1,...,en)←e and (d1,...,dm)←d.

4. Compute Xi ← Enπ(ei, xi) and let
X=(X1,...,Xn).

5. Compute Z ← Evπ(F, X) and let
Z=(Z1,...,Zm).

6. Let zj ← Deπ(dj , Zj) for j ∈ [m] and
z=(z1,...,zm). If z 6=evπ(f,x), then output >.

7. GiveX as input to B and run B to get an output
Z′A←

(
Z′1,...,Z

′
mA

)
.

8. If Deπ(dj , Z′A,j) 6= ⊥ and Z′A,j 6= Zj for any
j∈ [mA] output >, otherwise output ⊥.

Game KnoFBGπ (1k). Property knof.

1. Run B(1k) to produce f .
2. Run Gbπ between C(1k,f) and B. If C outputs ⊥, output ⊥. Otherwise, denote the output of C by (F,e,d).
3. Run ExE on B to compute F̂ .
4. If F̂ 6=F , then output >, otherwise output ⊥.

Fig. 2. Security games for interactive garbling scheme – part 1.

Knowledge of F . We also need that even a cheating evaluator knows F (property name: knof). The reason
why we need this is that knowing F means that the evaluator can compute and hence knows the correct
Z←Evπ(F,X). This in turn means that if the scheme has authenticity, then the evaluator knows that all Z ′ 6=Z
will be rejected by the constructor and Z ′=Z will be accepted. Hence, whether or not the constructor rejects
a given Z ′ cannot be used to leak any information on the input of the constructor.

Robustness Against the Constructor. We also define a notion of correctness against the constructor (property
name: rob.con). We ask that even if C is malicious in the garbling protocol, the produced material computes
correctly. To define this we need that the constructor knows an explicit input encoding function and an explicit
output decoding function.

Uniqueness of Input Encoding. We also need that there are unique input encodings (property name: unqie) even
when the constructor is cheating. We only require uniqueness for encodings which make the garbled evaluation
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Game RobConAGπ (1k). Property rob.con.

1. Run A(1k) to produce f .
2. Run Gbπ between A and E(1k,f). If E outputs ⊥, output ⊥. Otherwise E outputs some (F,v).
3. Run ExC on A to extract ê=(ê1,...,ên) and d̂=

(
d̂1,...,d̂m

)
.

4. Run A to produce x=(x1,...,xn).
5. Let X̂i←Enπ(êi,xi) for i∈ [n] and Ẑ←Evπ(F,X̂) where X̂=

(
X̂1,...,X̂n

)
.

6. Let zj←Deπ(d̂j ,Ẑj) for j∈ [m] and z=(z1,...,zm). If evπ(f,x) 6=z, then output >, otherwise output ⊥.

Game UnqIEAGπ (1k). Property unqie.

1. Run A(1k) to produce f .
2. Run Gbπ between A and E(1k,f). If E outputs
⊥, output ⊥. Otherwise E outputs some (F,v)
where (v1,...,vnB ,vnB+1,...,vnB+mB )←v.

3. Run ExC on A to extract ê = (ê1,...,ên) and
d̂=
(
d̂1,...,d̂m

)
.

4. Run A to produce X=(X1,...,Xn).
5. If Evπ(F,X) 6=⊥ and Enπ(êi,En−1

π (êi,Xi)) 6=Xi
for any i∈ [n] then output>, otherwise output⊥.

Game UnqOEAGπ (1k). Property unqoe.

1. Run A(1k) to produce f .
2. Run Gbπ between A and E(1k,f). If E outputs
⊥, output ⊥. Otherwise E outputs some (F,v)
where (v1,...,vnB ,vnB+1,...,vnB+mB )←v.

3. Run ExC on A to extract ê = (ê1,...,ên) and
d̂=
(
d̂1,...,d̂m

)
.

4. Run A to produce X=(X1,...,Xn).
5. Compute Z←Evπ(F,X). If Z=⊥, then output
⊥. If De−1

π (d̂j ,Deπ(d̂j ,Zj)) 6=Zj for any j∈ [m],
then output >, otherwise output ⊥.

Game TokComAGπ (1k). Property tok.com.

1. Run A(1k) to produce f .
2. Run Gbπ between A and E(1k,f). If E outputs ⊥, output ⊥. Otherwise E outputs some (F,v) where

(v1,...,vnB ,vnB+1,...,vnB+mB )←v.
3. Run ExC on A to extract ê=(ê1,...,ên) and d̂=

(
d̂1,...,d̂m

)
.

4. Run A to produce X=(X1,...,Xn), x′=(x′1,...,x′n), and z′=(z′1,...,z′m).
5. Compute Z←Evπ(F,X) and zj←Deπ(d̂j ,Zj) for j∈ [m] and let xi←En−1

π (êi,Xi) for i∈ [n]. If any zj =⊥
or xi=⊥ output ⊥.

6. If there is an i∈ [nB] such that Veπ(vi,XnA+i,x
′
nA+i)=> and xnA+i 6=x′nA+i or there is an j∈ [mB] such

that Veπ(vnB+j ,ZmA+j ,z
′
mA+j)=> where zmA+j 6=z′mA+j then output >, otherwise output ⊥.

Fig. 3. Security games for interactive garbling scheme – part 2.

succeed. We need this to ensure that the values the evaluator learns are valid 0- or 1-keys. This is true for the
output of each gate, if it is true for the input. Therefore we need this property to start this “induction”.

Uniqueness of Output Encoding. Similarly we require that all outputs have a unique encoding, even if the
constructor is cheating during Gbπ. We call this uniqueness of output encoding (property name: unqoe). The
reason for this requirement is that if there were several alternative encodings, then the particular encoding
of the output might conceivably be used to signal information extra to the output that is encoded.

Token Commitment. Finally we need a notion of token commitment (property name: tok.com). It essentially
just says that the verification algorithm is correct even if the constructor is cheating, i.e., if a token for an opened
position is claimed to be a token for the bit b, then this is indeed the case.

4 Interactive Garbling Scheme implies UC-secure 2PC

The ideal functionality FfSFE which our protocol realizes is given in Fig. 4. It has been designed to not prevent A
from mounting a selective failure attack, which is needed to achieve a full malicious secure protocol – A can make
a guess at some input bits of B and if she guesses correct, then she will be told, and the attack goes unnoticed. If
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she guesses incorrect, B is informed of the attack. This reflects that garbling allows such attacks if not dealt with
explicitly. However, such selective attacks can be mitigated easily and efficiently using off-the-shelf constructions,
such as the ones in [LP07, sS13]. This is done by a small extension of the function to compute. Which technique
is best depends on context, so we consider it cleaner to not make a choice and instead analyze the protocol
allowing selective errors.

Setup: We denote the two parties of the protocol by A and B. The parties agree on k and f and as shorthand
we let nA =f.nA, nB =f.nB, mA =f.mA, mB =f.mB, and m=mA+mB.

Input A: The ideal functionality takes exactly one input x∈{0,1}nA from A.
Input B: The ideal functionality takes exactly one input y∈{0,1}nB from B.
Abort: If any corrupted party inputs abort, then output abort to the other party and terminate.
Corrupt A: On input corrupt from A before evaluation, let her be corrupt. She can then specify a set {(i,βi)}i∈I ,

where I ⊆{1,...,nB} and βi ∈{0,1}. If βi = yi for i∈ I, then output correct! to A. Otherwise, output abort to
both parties and terminate.

Evaluation: If both parties gave input, then on input evaluate from B, compute zB←fB(x,y) and zA←fA(x,y).
Then output zB to B and wait. If B inputs deliver send zA to A and terminate. If instead receiving abort from
B and B is corrupt, output abort to A and terminate.

Fig. 4. Ideal Functionality FfSFE.

Wepresent our generic protocolπIGCO forUC-realizingFfSFE in Fig. 5. It abstracts and generalizes the protocols
in [NO09] and [FJN+13] using our new notion of an interactive garbling scheme. However unlike the previous
protocols, πIGCO allows both parties to learn distinct outputs which is also reflected in the description of FfSFE.

The protocol is phrased in the FDOT-hybrid model, a notion of OT which we call delayed OT. It is a
one-out-of-two OT of κ-bit strings and it runs in two phases, as follows: First the receiver inputs a choice bit
c. In response to this the sender receives the string chosen. If later the sender inputs (m0,m1)∈{0,1}κ×{0,1}κ,
then the receiver receives mc. Delayed OT can be based on normal OT by first transferring uniformly random
pads and then later use these to one-time-pad the messages to be transferred.

The parties first run a setup phase in which the function f and security parameter k are determined. Next
B sends its input y to FDOT where-after the parties run an interactive garbling Gbπ of f with A playing the role
of C and B playing the role of E. Thus the output of A from Gbπ is (F,e,d) and the output of B is (F,v). After
learning the input encoding function e, A encodes its input x and sends this to B. It also sends the decoding
information dB that is associated with B’s designated output. Next it sends the input encodings for B’s input
to FDOT which delivers the input keys to B in correspondence with the earlier choice. Using the verification
information v, B checks that it received consistent input keys for its input y. B then evaluates the encoded
function F on the encoded input X to obtain an encoded output Z. Using the decoding information dB, B
decodes its output to zB which he verifies using the verification information v. If everything checks out he sends
back the encoded output ZA to A which uses the decoding information d to obtain her final output. Theorem 1
shows that the protocol πIGCO UC-realizes the functionality FfSFE in the FDOT-hybrid model.

Theorem 1. If Gπ is an extended interactive garbling scheme and has the properties proj, corr, sec.ind.act,
aut.act, knof, rob.con, unqoe, unqie, and tok.com, then πIGCO UC-securely realizes FfSFE against any PPT static
and malicious adversary corrupting any number of parties.

Proof. The case of no corruptions follows easily using the properties proj, corr and sec.ind.act, using a subset of
the proof arguments below. If both parties are corrupted, there is nothing to show. The statement then follows
directly from Lemma 1 and Lemma 2.

Lemma 1. If Gπ is an extended interactive garbling scheme and has the properties, sec.ind.act, aut.act, knof,
and proj, then πIGCO UC-securely realizes FfSFE against any PPT static and malicious adversary corrupting B.

Proof. If B is corrupted and A is honest, let B denote the adversary controlling B. We can assume without
loss of generality that this is the UC environment. We prove security through a series of hybrids based on the
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Setup: We denote the two parties of the protocol by A and B. The parties agree on k and f and as shorthand we let
nA =f.nA, nB =f.nB, n=nA+nB, mA =f.mA, mB =f.mB, and m=mA+mB. We assume that the parties have
access to nB copies of the ideal functionality for delayed OT for κ-bit strings. We denote them by F1

DOT,...,F
nB
DOT.

It is B that inputs the selection bits.
Input B, I: Denote the input of B by y ∈ {0,1}nB . For i= 1,...,nB, B inputs yi to F iDOT and A waits for output

chosen from F iDOT.
Garbling: Run Gbπ with A playing C and B playing E. Each party inputs

(
1k,f

)
. The output to A is (F,e,d) and

the output to B is (F,v). Furthermore, A sends dB =(dmA+1,...,dm) to B.
Input A: Denote the input of A by x∈{0,1}nA . A parses e as

(
eA

1 ,...,e
A
nA ,e

B
1 ,...,e

B
nB

)
. Then A lets Xxi

i ←Enπ(eA
i ,xi)

for i∈ [nA] and sends
(
Xx1

1 ,...,X
xnA
nA

)
to B.

Input B, II: For i=1,...,nB, A lets Y bi ←Enπ(eB
i ,b) for b∈{0,1} and inputs

(
Y 0
i ,Y

1
i

)
to F iDOT and B waits for output

(Y yii ) from F iDOT. Then B lets X =
(
Xx1

1 ,...,X
xnA
nA ,Y y1

1 ,...,Y
ynB
nB

)
and Y =

(
Y y1

1 ,...,Y
ynB
nB

)
. If Veπ(vi,Yi,yi) =⊥

for any i∈ [nB] then B outputs abort and terminates.
Evaluation: B computes Z←Evπ(F,X) and zB,j←Deπ(dB,j ,ZmA+j) for j ∈ [mB] and outputs abort if Z=⊥ or

zB,j =⊥. Furthermore, if Veπ(vnB+j ,ZmA+j ,zB,j)=⊥ for any j∈ [mB] then B outputs abort and terminates.
Output: B sends ZA = (Z1,...,ZmA ) to A and outputs zB← (zB,1,...,zB,mB ). A computes zA,j←Deπ (dj ,ZA,j) for

j∈ [mA]. If any zA,j =⊥ then A outputs abort. Otherwise, A outputs zA←(zA,1,...,zA,mA ).

Fig. 5. Generic Protocol πIGCO for 2PC using an Interactive Garbling Scheme in the FDOT-hybrid model.

properties sec.ind.act, aut.act, knof, and proj such that if an adversary can distinguish between a pair of the
hybrids, then he can break at least one of the properties.

The first pair of hybrids are induced by the bit flipped by the secrecy game SecIndActBGπ(1k). Specifically
the bit flipped in the game will define one of two possible simulators as follows, denoting the simulator as T
in general and T b where the bit flipped in the game is b.

The simulator runs a copy of the protocol and lets it interact with B as in the real world. In particular, it
simulates the ideal functionalities to B by running them honestly. If B ever inputs abort or an honest A would
input abort, then T inputs abort to FfSFE. The simulation runs with the following modifications from the protocol:

1. In Input B, I, inspect the OTs to learn the choice bits y1,...,ynB of B and define y=y1···ynB .
2. Input y to FfSFE on behalf of B, along with the command evaluate and receive back zB←fB(x,y).
3. Let x′=0nA denote a dummy input and let z′=f(x′,y). Now define f ′ as f , but if an output zB,j 6=z′j for
j∈ [mA+1;m] then replace the j’th outputANDgatewith aNANDgate. Notice thismakes f ′B(x′,y)=fB(x,y).
T then instantiates the game SecIndActBGπ (1k) on input (f,f ′,x‖y,x′‖y), playing the role of the adversary,
where x is the real input of A which it gets by cheating and looking into FfSFE. During the execution of Gbπ
we have T relay B’s input in the simulation directly into the game execution. If the game outputs ⊥ then
T inputs abort to FfSFE. At the end of the game T knows (F,v,X,dB) and B has learned (F,v) as part of the
execution of Gbπ. The simulator then sends dB to B as an honest A would.

4. In Input A, parse (X1,...,Xn)←X and send (X1,...,XnA) to B.
5. In Input B, II, simulate FDOT, and return Y yii =XnA+i for i∈ [mB] to B.
6. Continue the protocol as an honest A until receiving Z ′A =

(
Z ′A,1,...,Z

′
A,mA

)
from B in the Output step.

7. Apply the algorithm ExE to compute from the communication of B a garbled function F ′ and let
Z ′←Evπ(F ′,X). If Z ′A,j 6=Z ′j for any j∈ [mA], then input abort to FfSFE on behalf of B.

8. Finally input deliver to FfSFE on behalf of B which results in the functionality outputting zA←fA(x,y) to A.

It is easy to see that if the SecIndAct game samples bit b=1, then the simulator,T 1 induced by this game iswell-
defined. That is, it does not do anything it is not allowed to. In more detail, Step 3 is simply computed as follows:

3. Let x′=0nA denote a dummy input and let z′←f(x′,y). Now define f ′ as f , but if an output zB,j 6=z′j for
j∈ [mA+1;m] then replace the j’th outputANDgatewith aNANDgate. Notice thismakes f ′B(x′,y)=fB(x,y).
Then run the protocol Gbπ as an honest constructor C with B. If C would ever abort then input abort to FfSFE.
Let the output of C in this garbling be (F,e,d). Then compute Xi←Enπ(ei,(x′‖y)i) and let X=(X1,...,Xn).
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However, if the bit sampled is 0, then the simulator is cheating.Wewill now remove this cheating through a series of
hybrids, where the properties sec.ind.act, aut.act and knof ensures that each pair of hybrids are indistinguishable.
Finally, we argue that the last hybrid induces a view to B that is indistinguishable from a real world execution.

First notice that it is clear that no adversary can distinguish between playing with T 0 or T 1 except with
negligible probability. This follows from everything in the simulation not coming from the game SecIndAct is
constructed in exactly the same manner independent of the bit flipped by SecIndAct. Thus, if an adversary could
distinguish with non-negligible probability, then he could also win the game with non-negligible probability.

In the following we will take our departure in the hybrid where the bit flipped by SecIndAct is 0 (which
we call the first hybrid). A bit more specifically this means that Step 3 can be described as follows for T 0:

31. Cheat and inspect FfSFE to learn x. Then run the protocol Gbπ as an honest constructor C with B. If C
would ever abort then input abort to FfSFE. Let the output of C in this garbling be (F,e,d). Then compute
Xi←Enπ(ei,(x‖y)i) and let X=(X1,...,Xn).

Now consider the second hybrid where we replace Step 7 by the following:

71. Let Z←Evπ(F,X). If Z ′A,j 6=Zj for any j∈ [mA], then input abort to FfSFE on behalf of B.

By the security property, knof, the first and second hybrids are indistinguishable to B. The reduction is
trivial. Consider then the third hybrid where we replace Step 7 and Step 8 by this:

72. Let Z←Evπ(F,X). If Deπ(dj ,Z ′A,j)=⊥ for any j∈ [mA], then input abort to FfSFE on behalf of B.
81. Cheat and replace zA,j stored in FfSFE by z′A,j←Deπ(dj ,Z ′A,j) for j ∈ [mA]. Then input deliver to FfSFE on

behalf of B which results in the functionality outputting z′A =
(
z′A,1,z

′
A,2,...,z

′
A,mA

)
to A.

At this point the values (F,e,d) and Z ′A are generated exactly as in game AutAct. It therefore follows from
the property aut.act that the probability of Deπ(dj ,Zj) =⊥ 6= zj when (z1,...,zm)← evπ(f,x‖y) is negligible.
From this we can also conclude that for any j∈ [mA] the probability of Deπ(dj ,Z ′A,j)=⊥ is negligibly close to
the probability that Z ′A,j 6=Zj . Hence the change to Step 7 is indistinguishable to B. When Z ′A,j =Zj for j∈ [mA]
it again follows from the property aut.act that the probability of Deπ(dj ,Z ′A,j) 6=zA,j for j∈ [mA] is negligible
and hence the change to Step 8 is indistinguishable.

Finally see that the values (F,e,d) and Z ′A are now computed in the same way in the last hybrid and in the
generic protocol. Furthermore, the output of FfSFE is patched to be Deπ(dj ,Z ′A,j) for j∈ [mA] and in the protocol
A also outputs Deπ(dj ,Z ′A,j). Hence the last hybrid is indistinguishable from the protocol in the view of B.

This concludes the proof.

Lemma 2. If Gπ is an extended interactive garbling scheme and has the properties, rob.con, unqie, unqoe,
tok.com, and proj, then πIGCO UC-securely realizes FfSFE against a static and malicious corruption of A.

Proof. If A is corrupted and B is honest, let A denote the adversary controlling A. We can assume without loss
of generality that this is the UC environment. The simulator S for corrupt A then proceeds as follows.

1. InGarbling, simulate an honest E in the execution of Gbπ withA unless another behavior is specified below.
2. If an honest E would abort in the execution of Gbπ, then abort A (i.e., input abort to the ideal functionality

on behalf ofA). Otherwise, let (F,v) denote the output to B. Also denote by dB =(dmA+1,...,dm) the decoding
information received from A.

3. Apply ExC to the communication ofA in Gbπ to extract ê and d̂. Then parse ê as
(
êA

1 ,...,ê
A
nA
,êB

1 ,...,ê
B
nB

)
and d̂

as
(
d̂A

1 ,...,d̂
A
mA
,d̂B

1 ,...,d̂
B
mB

)
. For b∈{0,1} we denote X̂b

i =Enπ(eA
i ,b) for i∈ [nA] and Ŷ bi =Enπ(eB

i ,b) for i∈ [nB].
4. Let (X1,...,XnA) be the value sent by A in Input A. We call an index i bad if Xi 6∈

{
X̂0
i ,X̂

1
i

}
or X̂0

i =X̂1
i .

If there is a bad index, then let x=0nA . Otherwise, let each xi be the unique bit such that Xi=X̂xi
i , and

set x=(x1,...,xnA). Notice that (X1,...,XnA)=(X̂x1
1 ,...,X̂

xnA
nA ) if there are no bad indices.

5. In Input B, II, inspect the OTs to learn the messages
(
Y 0
i ,Y

1
i

)
input to F iDOT by A. We call (i,b) a faulty

position if Y bi 6= Ŷ bi . We call an index i double faulty if (i,0) and (i,1) are both faulty. We call an index i correct
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if neither (i,0) nor (i,1) is faulty. We call an index i single faulty if it is not double faulty nor correct. If there
is a double faulty index i, then abort A (i.e., input abort to FfSFE on behalf of the corrupted A) and terminate
the simulated protocol. Otherwise, let I be the set of indices that are single faulty, and for each i∈ I let
γi be the unique bit for which (i,γi) is not faulty. If |I|>0, then input {(i,γi)}i∈I to FfSFE. If the output
is abort, then terminate the simulated protocol. Otherwise, define a dummy input y′ for B by letting y′i=γi
for i∈ I and y′i=0 for i 6∈ I. Then let X=(X1,...,XnA ,Y

y′1
1 ,...,Y

y′nB
nB ). If Veπ(vi,Y

y′i
i ,y′i)=⊥ for any i∈ [nB],

then abort A (i.e., input abort to FfSFE on behalf of the corrupted A) and terminate the simulated protocol.
6. Compute Z←Evπ(F,X) and z′B,j←Deπ(d̂B

j ,ZmA+j) for j∈ [mB]. If Z=⊥, z′B,j =⊥ or Veπ
(
vnB+j ,ZmA+j ,

z′B,j
)

=⊥ for any j∈ [mB], then abort A. Otherwise, input x to FfSFE on behalf of the corrupted A and receive
back zA←fA(x,y). Let Z ′A,j←De−1

π (d̂j ,zA,j) for j∈ [mA] and send Z ′A =(Z ′A,1,...,Z ′A,mA
) to A as if coming

from B.

We show that the simulation and the protocol are indistinguishable to A using a hybrid argument. Define
a first hybrid where we replace Step 5 by this:

51. In Input B, II, inspect the OTs to learn the messages
(
Y 0
i ,Y

1
i

)
input to F iDOT by A. Then cheat and

inspect FfSFE to get the real value y of the input of B, as given by the environment. Define y′ by letting
y′=y. Then run as in the simulation, but with input y′ for B, i.e., let X=(X1,...,XnA ,Y

y′1
1 ,...,Y

y′nB
nB ), and

if Evπ(F,X)→Z 6=⊥ and Veπ(vi,Y
y′i
i ,y′i) =⊥ for any i∈ [nB] then abort A and terminate the simulated

protocol. If any (i,y′i) is faulty, then send “hybrid!” to the adversary if this was not already done.

The simulation and the hybrid are indistinguishable to the adversary. As a stepping stone towards showing this we
show that if some (i,y′i) is faulty in the hybrid, it will abort except with negligible probability. To see this, notice
that if (i,y′i) is faulty, then Y

y′i
i 6= Ŷ

y′i
i . IfEvπ(F,X)→Z=⊥ orVeπ(vi,Y

y′i
i ,y′i)=⊥ for any i∈ [nB] the hybrid clearly

aborts. Therefore, assume that (i,y′i) is faulty and that the algorithms do not output ⊥. Then a simple reduction
to the property unqie shows that Y y

′
i

i ∈
{
Ŷ 0
i ,Ŷ

1
i

}
, as else En−1

π (êB
i ,Y

y′i
i )=⊥ and this break unqie. Furthermore a

reduction to the property tok.com shows that Y y
′
i

i 6= Ŷ
1−y′i
i , since if this was not the case then Veπ(vi,Y

y′i
i ,1−y′i)=

>. Hence Y y
′
i

i = Ŷ y
′
i

i , contradicting that (i,y′i) is faulty. Then observe that there are only four changes between the
simulation and the hybrid. First of all, in the simulation we explicitly abort if there is a double faulty index. This
we no longer do in the hybrid. This makes no difference, however, by the above fact. Second, in the simulation we
abort if γi 6=yi. It follows from the above fact that we do the same in the hybrid, as (i,1−γi) is a faulty position.
Third, in the hybrid we use a different y′. This is indistinguishable, as the view of the adversary does not depend
on y′ at all when the protocol aborts, as argued above, and when the protocol does not abort, then the reply in
both distributions is (Z ′A,1,...,Z ′A,mA

) where Z ′A,j←De−1
π (d̂j ,zA,j) for j∈ [mA] which is identically distributed in

the simulation and the hybrid. Finally we send the string “hybrid!” to the adversary at the end if any (i,y′i) is faulty,
but by the above fact we have already aborted at this point if any (i,y′i) is faulty, so this change is indistinguishable.

Then make the following change to Step 5:

52. Run as Step 51, but with this addition at the end: if the protocol did not abort and En−1
π (êA

l ,Xl) 6=xl for any
l∈ [nA] or En−1

π (êB
i ,Yi) 6=y′i for any i∈ [nB], then send “hybrid!” to the adversary if this was not already done.

Clearly if the above change makes a difference it must be the case that “hybrid!” has not previously been sent
to the adversary. We will show by a simple case analysis that the probability with which “hybrid!” is sent to
the adversary in 52 is negligible as Gπ has the unqie property. Assume first that there is a bad index l. Then
Enπ(êA

l ,xl) 6=Xl by definition of Enπ being the projective encoding algorithm. So, since Enπ(êA,⊥)=⊥ and by
construction En−1

π (êA
l ,Xl) =⊥, it follows that Enπ(êA

l ,En−1
π (êA

l ,Xl)) =⊥ 6=Xl if l is a bad index. Notice that
at the point where the addition is made we have Evπ(F,X) 6=⊥, since the protocol did not abort. By a simple
reduction to unqie it follows that “hybrid!” is sent with negligible probability if there is a bad index l. Assume
then that there is no bad index. If we send “hybrid!” in Step 52, then there are no faulty positions (i,y′i) either,
as we would have sent “hybrid!” already in Step 51. When there are no bad indicis and no faulty positions (i,y′i),
then (X1,...,XnA)=(X̂x1

1 ,...,X̂
xnA
nA ) and all Y y

′
i

i = Ŷ
y′i
i . This contradicts that En−1

π (êA
l ,Xl) 6=xl for any l∈ [nA]

or En−1
π (êB

i ,Yi) 6=y′i for any i∈ [nB]. We therefore conclude that the hybrids are indistinguishable.
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Then define the next hybrid where we replace Step 4 with this:

41. Let (X1,...,XnA) be the value sent by A in Input A. We call an index i bad if Xi 6∈
{
X̂0
i ,X̂

1
i

}
or X̂0

i =X̂1
i .

If there is a bad index and Evπ(F,X) = ⊥, then abort A. If there is a bad index and Evπ(F,X) 6= ⊥,
then let x= 0nA . Otherwise, let each xi be the unique bit such that Xi = X̂xi

i , and set x=x1‖···‖xnA . If
(X1,...,XnA) 6=(X̂x1

1 ,...,X̂
xnA
nA ), then send “hybrid!” to the adversary, if this was not already done.

As for the change If there is a bad index and Evπ(F,X) = ⊥, then abort A, notice that we would abort in
Step 6 anyway when Evπ(F,X) =⊥, so this changes nothing in the view of the adversary. For the change If
(X1,...,XnA) 6=(X̂x1

1 ,...,X̂
xnA
nA ), then send “hybrid!” if not already done notice that (X1,...,XnA)=(X̂x1

1 ,...,X̂
xnA
nA )

if there is no bad index, so if we send “hybrid!” there is a bad index. Furthermore, if there is a bad index and
Evπ(F,X)=⊥, then we aborted. So, if we send “hybrid!”, then there is a bad index and Evπ(F,X) 6=⊥. When
there is a bad index, say l, then En−1

π (êA
l ,Xl)=⊥6=xl and so since Evπ(F,X) 6=⊥, we would have sent “hybrid!”

in Step 52 anyway, so this changes nothing.
Then define the next hybrid where we replace Step 6 with this:

61. Compute Z←Evπ(F,X) and zB,j←Deπ(dB,j ,ZmA+j) for j∈ [mB]. If Z=⊥, zB,j=⊥ or Veπ
(
vnB+j ,ZmA+j ,

zB,j
)

=⊥ for any j∈ [mB], then abort A. If Deπ(d̂B
j ,ZmA+j) 6=zB,j for any j∈ [mB], then send “hybrid!” to A,

if not already done. Otherwise, input x to FfSFE on behalf of the corrupted A and receive back zA←fA(x,y).
Let Z ′A,j←De−1

π (d̂j ,zA,j) for j∈ [mA] and send Z ′A =(Z ′A,1,...,Z ′A,mA
) to A as if coming from B.

It is clear that if we do not send the string “hybrid!” in the above step then the change is indistinguish-
able from Step 6. We therefore argue that “hybrid!” is sent with negligible probability. Assume “hybrid!” is
sent to A, then clearly A was not aborted and therefore Evπ(F,X)→ Z 6= ⊥, Deπ(dB,j ,ZmA+j)→ zB,j 6= ⊥
and Veπ (vnB+j ,ZmA+j ,zB,j) = > for all j ∈ [mB]. As “hybrid!” is sent there is also a j ∈ [mB] such that
Deπ(d̂B

j ,ZmA+j) 6= zB,j , but by a reduction to tok.com this only occurs with negligible probability. We thus
conclude that the hybrids are indistinguishable.

Then define the next hybrid where we replace Step 6 with this:

62. Compute Z←Evπ(F,X) and zB,j←Deπ(dB,j ,ZmA+j) for j∈ [mB]. If Z=⊥, zB,j=⊥ or Veπ
(
vnB+j ,ZmA+j ,

zB,j
)

=⊥ for any j ∈ [mB], then abort A. If Deπ(d̂B
j ,ZmA+j) 6= zB,j for any j ∈ [mB], then send “hybrid!”

to A, if not already done. Otherwise, input x to FfSFE on behalf of the corrupted A and receive back
zA←fA(x,y). If Deπ(d̂A

j ,Zj) 6=zA,j for any j∈ [mA], then send “hybrid!” to A, if not already done. Finally
let Z ′A,j←De−1

π (d̂j ,zA,j) for j∈ [mA] and send Z ′A =
(
Z ′A,1,...,Z

′
A,mA

)
to A as if coming from B.

If we send the string “hybrid!”, then it was not sent by the previous changes and hence Xl = Enπ(êA
l ,xl) for

l∈ [nA] and Y yii = Enπ(êB
i ,yi) for i∈ [nB]. At the point when we send “hybrid!” we know that Evπ(F,X) 6=⊥

and zA← fA(x,y) and yet there exists a j ∈ [mA] such that Deπ(d̂A
j ,Zj) 6= zA,j . A simple reduction to rob.con

therefore shows that the hybrids are indistinguishable.
Then define a new hybrid where we replace Step 6 with this:

63. Compute Z←Evπ(F,X) and zB,j←Deπ(dB,j ,ZmA+j) for j∈ [mB]. If Z=⊥, zB,j=⊥ or Veπ
(
vnB+j ,ZmA+j ,

zB,j
)

=⊥ for any j∈ [mB], then abort A. If Deπ(d̂B
j ,ZmA+j) 6=zB,j for any j∈ [mB], then send “hybrid!” to A,

if not already done. Otherwise, input x to FfSFE on behalf of the corrupted A and receive back zA←fA(x,y). If
Deπ(d̂A

j ,Zj) 6=zA,j for any j∈ [mA], then send “hybrid!” toA, if not already done. Finally let ZA =(Z1,...,ZmA)
and send ZA to A as if coming from B.

We argue that the new hybrid is no easier to distinguish from the simulation than the previous hybrid. Note first
that the changemakes a difference only ifZA 6=Z ′A. Note then that if there is a j∈ [mA] such thatDeπ(d̂A

j ,Zj) 6=zA,j ,
then in both the new hybrid and the previous hybrid we send “hybrid!” to A, which allows A to perfectly
distinguish from the simulation, where no such strings are sent, so sending ZA 6=Z ′A will not make it easier to
distinguish from the simulation. Hence, the difference makes the new hybrid easier to distinguish from the
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simulation only if there exists a j∈ [mA] such that both Deπ(d̂A
j ,Zj)=zA,j and De−1

π (d̂A
j ,zA,j) 6=Zj . Putting these

two together we get that De−1
π (d̂,Deπ(d̂,Zj)) 6=Zj . The claim therefore follows from a trivial reduction to unqoe.

Now consider a hybrid, where we do not send the strings “hybrid!” at any of the places where we do so in
the previous hybrid. Since the previous hybrid is indistinguishable from the simulation where we do not send
such strings, we conclude that it is sent with negligible probability. Hence not sending it is indistinguishable.
Putting the current changes together and dropping all code only needed for sending the string “hybrid!” we
see that the new hybrid looks as follows:

1. InGarbling, simulate an honest E in the execution of Gbπ withA unless another behavior is specified below.
2. If an honest E would abort in the execution of Gbπ, then abort A (i.e., input abort to the ideal functionality

on behalf ofA). Otherwise, let (F,v) denote the output to B. Also denote by dB =(dmA+1,...,dm) the decoding
information received from A.

3. Apply ExC to the communication ofA in Gbπ to extract ê and d̂. Then parse ê as
(
êA

1 ,...,ê
A
nA
,êB

1 ,...,ê
B
nB

)
and d̂

as
(
d̂A

1 ,...,d̂
A
mA
,d̂B

1 ,...,d̂
B
mB

)
. For b∈{0,1} we denote X̂b

i =Enπ(eA
i ,b) for i∈ [nA] and Ŷ bi =Enπ(eB

i ,b) for i∈ [nB].
42. Let (X1,...,XnA) be the value sent by A in Input A. We call an index i bad if Xi 6∈

{
X̂0
i ,X̂

1
i

}
or X̂0

i =X̂1
i .

If there is a bad index and Evπ(F,X)=⊥, then abort A. If there is a bad index and Evπ(F,X) 6=⊥, then
let x=0nA . Otherwise, let each xi be the unique bit such that Xi=X̂xi

i , and set x=x1‖···‖xnA .
53. In Input B, II, inspect the OTs to learn the messages

(
Y 0
i ,Y

1
i

)
input to F iDOT byA. Then cheat and inspect

FfSFE to get the real value y of the input ofB, as given by the environment. Define y′ by letting y′=y. Then run
as in the simulation, but with input y′ for B, i.e., letX=(X1,...,XnA ,Y

y′1
1 ,...,Y

y′nB
nB ), and if Evπ(F,X)→Z 6=⊥

and Veπ(vi,Y
y′i
i ,y′i)=⊥ for any i∈ [nB] then abort A and terminate the simulated protocol.

64. Compute Z←Evπ(F,X) and zB,j←Deπ(dB,j ,ZmA+j) for j∈ [mB]. If Z=⊥, zB,j=⊥ or Veπ
(
vnB+j ,ZmA+j ,

zB,j
)

=⊥ for any j∈ [mB], then abort A. Otherwise, input x to FfSFE on behalf of the corrupted A and receive
back zA←fA(x,y). Finally let ZA =(Z1,...,ZmA) and send ZA to A as if coming from B.

In Step 64 we can drop the code Otherwise, input x to FfSFE on behalf of the corrupted A and receive back
zA←fA(x,y) as it has no effect at this point. In Step 42 we can also drop the code If there is a bad index and
Evπ(F,X)=⊥, then abort A as we would abort in Step 6 anyway when Evπ(F,X)=⊥. After that all the code
of Step 42 used to define x can be dropped, as x is not used later on anymore. Due to this we can also drop
Step 3 as ê and d̂ are no longer used. In Step 53 we have that y′=y, so we can replace y′ by y in all places. With
these changes we arrive at this hybrid.

1. InGarbling, simulate an honest E in the execution of Gbπ withA unless another behavior is specified below.
2. If an honest E would abort in the execution of Gbπ, then abort A (i.e., input abort to the ideal functionality

on behalf ofA). Otherwise, let (F,v) denote the output to B. Also denote by dB =(dmA+1,...,dm) the decoding
information received from A.

31.
43. Let (X1,...,XnA) be the value sent by A in Input A.
54. In Input B, II, inspect the OTs to learn the messages

(
Y 0
i ,Y

1
i

)
input to F iDOT by A. Then cheat

and inspect FfSFE to get the real value y of the input of B, as given by the environment. Then let
X = (X1, ... ,XnA , Y

y1
1 , ... , Y

ynB
nB ), and if Evπ(F,X) → Z 6= ⊥ and Veπ(vi, Y yii , yi) = ⊥ for any i ∈ [nB]

then abort A and terminate the simulated protocol.
65. Compute Z←Evπ(F,X) and zB,j←Deπ(dB,j ,ZmA+j) for j∈ [mB]. If Z=⊥, zB,j=⊥ or Veπ

(
vnB+j ,ZmA+j ,

zB,j
)

=⊥ for any j∈ [mB], then abort A. Finally let ZA =(Z1,...,ZmA) and send ZA to A as if coming from B.

It can be seen that by now all the values received by A are distributed exactly as in the protocol. This concludes
the proof.

5 Building Blocks

Now thatwe’ve seen that an interactive garbling scheme (as defined in Section 3) is sufficient forUC-secure 2PCwe
turn our attention to instantiating such a scheme. In this section we will introduce the building blocks we will use
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to accomplish this.We start by introducing the abstract notion of aKey-Size Preserving Free-XOR Gate Garbling
Scheme with projective coding and show how this supports soldering of gates. Next we use a correlation robust
and collision resistant hash function to construct a gadget we call a wire authenticator. Together the garbled gates
and the wire authenticators will be used to build the final garbled circuit. As in the previous LEGO protocol, in
order to glue these objects together we also require commitments that allow for XOR-homomorphic operations.

Free-XOR Gate Garbling. We will take our departure in any projective coding garbling scheme which obeys
some further constraints. We capture these constrains in the following definition.

Definition 1 (Key-Size Preserving Free-XOR Gate Garbling Scheme). We say that a projective cod-
ing garbling scheme G is aKey-SizePreservingFree-XORGateGarbling Scheme if for all f→(nA,nB,mA,mB,q,lp,
rp) with k∈N where (F,e,d)←Gb

(
1k,f

)
it is possible to efficiently and uniquely parse F→

(
γ,δn+1,δn+2,...,δw

)
.

Furthermore the following must hold:

1. There exists an efficient procedure GEv
(
δg,X

a
l ,X

b
r ,γg

)
→ Xa∧b

g for g ∈ Gates and a, b ∈ {0, 1} where
X0
l =

⊕
i∈lp(g)X

0
i , X0

r =
⊕

i∈rp(g)X
0
i and (X0

1 ,X
1
1 ,...,X

0
n,X

1
n)← e. Finally we require that for all wires

j∈Wires of the garbled gates it holds that X0
j ⊕X1

j =∆ where ∆ must be a single bitstring uniquely defined
from an execution of Gb

(
1k,f

)
.

2. For j∈ [m] and b∈{0,1} we have Zbj =Xb
w−m+j.

3. We have that |Xa
g |= |Xb

g+1|=κ for a,b∈{0,1} and g∈ [w−1].

On an intuitive level the above definition states three specific requirements of our underlying garbling scheme:

Gate Garbling: Each AND gate given by the topology of the plain function description, f , will have a
one-to-one correspondence to garbled gate δg in the garbled circuit, F . In a similar manner there will be a
one-to-one correspondence between each 0- respectively 1-bit on each wire in the plain function description
f and a key in the garbled circuit.

Key-Size Preservation: All of the keys associated with the garbled circuit will have equal size. That is,
there will be two equally sized tokens associated with each wire defined by the topology of f . Furthermore,
this size will be constant over all wires.

Free-XOR Garbling: Computation of XOR gates is defined implicitly by the left, respectively right parent
functions from f , and are handled without the need of storing specific data since the keys given by computing
an arbitrary fan-in XOR gate are defined by simply XOR’ing the input keys together. In effect of this we
need that for any pair of wire keys, X0

j ,X
1
j , for j∈Wires it must hold that X0

j ⊕X1
j =∆.

We note that the above definition only makes sense if both the topology and which gates compute XOR
are leaked (as in any gate garbling scheme). For convenience we define Φxor to be the leakage function leaking
the topology and positions of XOR gates of the circuit. That is, letting f→ (nA,nB,mA,mB,q,lp,rp) we have
Φxor(f)=(nA,nB,mA,mB,q,lp,rp). For technical reasons we also require that lsb(∆)=1, for example, as done
in garbling schemes using permutation bits [Rog91, NPS99].

Soldering. As in [NO09,FJN+13], our scheme requires the ability to solderwires together, a conceptmade possible
due to the free-XOR optimization. More specifically what we mean when we say that we solder two wires together
is that we release an auxiliary value, called the soldering, that can transform the key representing bit b on one wire
into the key representing bit b on another. More concretely, assume we wish to solder the output wire of gate δg to
the left input wire of gate δg+1. To do so we release the value SLg+1 =X0

g⊕Xl
0
g+1. When gate δg outputs the key

representing the bit b then it is easy to learn the left b-key for gate δg+1. Specifically it can be computed as follows:

Xb
g⊕SLg+1 =

(
X0
g⊕(b·∆)

)
⊕X0

g⊕Xl
0
g+1 =Xl

0
g+1⊕(b·∆) .

This obviously generalizes when one wishes to solder together several different wires, e.g., if we wish to solder
the output wire of gate δg to the left input wire of gate δg+1, δg+2 and δg+3, it is enough to release the values:

SLg+1 =X0
g⊕Xl

0
g+1, SLg+2 =X0

g⊕Xl
0
g+2, SLg+3 =X0

g⊕Xl
0
g+3 .
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It is also easy to “inject” XOR gates into the soldering: Say we wish to compute the XOR of the output of gate δg
and δg+1 and solder the result to the left wire of gate δg+2 we simply release the valueSLg+2 =

(
X0
g⊕X0

g+1
)
⊕Xl

0
g+2.

In general we let the soldering be the XOR of the 0-keys of the wires we wish to XOR together and the 0-key
of the wire we wish to solder onto. In Fig. 6 we sum up how to augment any Key-Size Preserving Free-XOR
Gate Garbling Scheme to support solderings.

SGb
(
γ̄g,S̄

L
g ,S̄

R
g ,S̄

O
g

)
→ γ̃g:

1. Parse
(
γg,S

L
g ,S

R
g ,S

O
g

)
← γ̄g.

2. Set γ̃g←
(
γg,S̄

L
g ⊕SLg ,S̄Rg ⊕SRg ,S̄Og ⊕SOg

)
and output γ̃g.

SEv
(
δg,X

a
l ,X

b
r ,γ̃g

)
→Xa∧b

g :
1. Parse

(
γg,S

L
g ,S

R
g ,S

O
g

)
← γ̃g.

2. Xa∧b
g ←GEv

(
δg,X

a
l ⊕SLg ,Xb

r⊕SRg ,γg
)
.

3. Output Xa∧b
g ⊕SOg .

Fig. 6. The interface provided by a Key-Size Preserving Free-XOR Gate Garbling Scheme augmented with support for
solderings. The remaining algorithms are the same as for the standard notion of a projective garbling scheme.

Wire Authenticators. To increase performance we suggest a refinement in the way buckets of garbled gates
are created. The idea is to solder together roughly half the number of gates that MiniLEGO required, while also
soldering onto the buckets a number of authenticated wires. We also use the wire authenticators to guarantee
validity of the keys B receives from A before evaluating the circuit. The mentioned performance gain comes
from the fact that wire authenticators are less costly to produce and send than garbled gates are.

A wire authenticator is a gadget that takes as input a value and outputs accept if this value is either a 0- or
a 1-key associated with the authenticator, otherwise it outputs reject. This means that once a key is floating on
the wire an authenticator associated with this wire will either accept or reject this key. We instantiate our wire
authenticators by adding the hash digests of both the 0- and 1-key for each wire, in random order. The crux
is then that these are constructed in the beginning of the protocol, before any cut-and-choose steps or bucketing
occurs, and thus enables B to notice (with high probability) if a given key is a mismatch for the current wire.
This idea was independently used in [KMRR15] for a different context to reduce the potential leakage using
the dual-execution protocol of [MF06].

As mentioned in Section 1 the wire authenticators are very similar to the “key check gadgets” used in the
first LEGO protocol [NO09] where gates and key check gadgets make up a bucket. However that construction
requires at least one correct gate and a majority of correct key check gadgets, thus the size of a bucket is
l|gs|+(2l+1)∗ |ks| for some l where gs and ks are the size of a gate and key check gadget, respectively. In
MiniLEGO, buckets only consist of gates and a majority of correct gates is therefore required, thus the bucket
size is (2l+1)∗|gs|. In this work we require the joint event of one correct gate and a combined majority of correct
gates and wire authenticators, thus the bucket size is 2l+1 as in MiniLEGO, but we can fill some of the slots
with cheaper components (wire authenticators).3 As the comparison shows in Section 7 this optimization can
achieve almost a factor 2 saving in communication.

We show how to implement a wire authenticator using a correlation robust and collision resistant hash
function in Fig. 7. For convenience we also introduce methods for authentication, soldering and verifying values in
this figure. In short, the Aut method constructs a piece of informationHj , which can be used by Ver to verify that
a candidateXj is one of two values. More specifically this reflects that the first method in the figure constructs an
authenticator on the two possible keys on a given wire. The second method in the figure is used as short-hand for
soldering authenticated wires onto regular ones. Finally the third method in the figure uses the authenticators to
verify that a candidate key is in fact one of the keys authenticated to, but does not leak whether it is the 0- or 1-key.

Implementation wise, the method Aut(X0
j ,X

1
j ) constructs hash digests of two keys and lets the largest (when

viewing the bits of the digest as the binary representation of an integer) of the two resulting bit strings be
3 This is different from [NO09] that do not consider a combined majority of gates and key check gadgets.
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Let H(·,·) denote a correlation-robust and collision-resistant hash function with k′-bit output length.

Aut
(
X0
j ,X

1
j

)
→Hj :

1. Compute
H0
j ←H

(
X0
j

)
, H1

j ←H
(
X1
j

)
.

2. ViewH0
j andH1

j as binary strings and outputHj =
(
H0
j ,H

1
j ,0κ

)
ifH0

j ≤H1
j , otherwise outputHj =

(
H1
j ,H

0
j ,0κ

)
.

SAut
(
Hj ,S̄j

)
→H̃j :

1. Parse
(
Ha
j ,H

b
j ,Sj

)
←Hj and output H̃j←

(
Ha
j ,H

b
j ,S̄j⊕Sj

)
.

Ver
(
H̃j ,Xj

)
→>/⊥:

1. Parse
(
Ha
j ,H

b
j ,Sj

)
←H̃j .

2. If H(Xj⊕Sj)∈
{
Ha
j ,H

b
j

}
output >, otherwise output ⊥.

Fig. 7. Constructing Authenticated Wires using a correlation-robust and collision-resistant hash function.

the first authenticated value. The two digests are then stored in Hj . In the same manner as the garbled gates
supporting solderings we use the method SAut to solder wire authenticators onto other wires of the circuit.
Finally the method Ver(H̃j ,Xj) constructs a hash digest of Xj and then verifies that it matches either the first
entry or second entry of H̃j . Because the output of the hash function is pseudorandom and the digests are always
sorted this does not leak whetherXj =X0

j orXj =X1
j . Using the wire authenticators as described above enables

B to check if a given key is valid for a given wire, but cannot be used to verify if a key represents a specific value.

XOR-Homomorphic Commitments. Our final building block is a UC-secure commitment scheme that allows for
XOR-homomorphic operations on committed values. The requirement for a XOR-homomorphic commitment
scheme is tied to the concept of solderings which our protocol makes heavy use of. Therefore besides the standard
operations such as commit and open, we require that it is also possible to open to the XOR of committed values.
As we will commit to all wires of the garbled circuit, the scheme must also support commitments to values of
the same domain as the keys used by the garbling scheme. The ideal functionality FHCOM in Fig. 8 describes
in detail what is needed for our construction. We will often abuse notation and commit to multiple messages
in one go using the notation (commit,sid,(cid1,m1),(cid2,m2),...,(cidl,ml)) to mean committing to l messages
individually. In addition we also require a traditional non-homomorphic commitment scheme as part of our
protocol, which is captured by the ideal functionality FCOM. We do not give a box for this functionality as it
is identical to FHCOM, except that it does not allow for homomorphic operations on committed values. It is for
sake of flexibility that we separate the two requirements as this might lead to more efficient realizations of our
interactive garbling scheme. There is however nothing that prevents using the same scheme to implement both
functionalities. In Section 7 we go into detail on how the functionality FHCOM can be efficiently instantiated.

Init: Upon receiving a message (init,sid,len) from both parties A and B, store the message length len.
Commit: Upon receiving a message (commit,sid,cid,m) from A where m∈{0,1}len, store the tuple (sid,cid,mcid).

Then send (committed,sid,cid) to A and (receipt,sid,cid) to B.
Open: Upon receiving a message

(
open,sid,{c}c∈C

)
from A, if for all c ∈ C, a tuple (sid,c,mc) was previously

recorded, send
(
opened,sid,{c}c∈C ,

⊕
c∈Cmc

)
to B. Otherwise, ignore.

Fig. 8. Ideal Functionality FHCOM.

6 Instantiation of an Interactive Garbling Scheme

In this section we present our implementation of an interactive garbling scheme. We start from any projective
coding, key-size preserving free-xor gate garbling scheme G=(Gb,En,De,Ev,ev), and lift this up to the interactive
setting. We recall that the goal of such a protocol is for the participants C and E to mutually agree on a garbled
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circuit. In the end of the protocol it must be the case that C outputs (F,e,d) while E outputs (F,v). We denote
our realization of an interactive garbling scheme IGarb=(IGb,IEn,IDe,IEv,Iev,IVe). IGb is the garbling protocol
and it is described in the (FHCOM-,FCOM)-hybrid model. The remaining five algorithms are based more or less
directly on the underlying algorithms of G.

In a nutshell, our protocol consists of doing cut-and-choose of independently garbled gates and wire
authenticators, which are then soldered together into fault tolerant buckets, which are again soldered together into
a fault tolerant circuit. Robustness is guaranteed by ensuring a combinedmajority of correct gates and correct wire
authenticators for eachbucket. In otherwords, if the gates of anybucket disagree on the output key (after soldering)
then the attached wire authenticators are invoked and the key which is output/accepted by a majority of both
gates andwires will be chosen as output key. Aswire authenticators are lighter than gates, in terms of computation
and communication, we get a significant increase in performance over MiniLEGO where buckets only consisted
of gates. We start by giving an informal description of the elements of our garbling scheme, while in Section 6.1
we show the full details of our scheme and prove that it meets the requirements of an interactive garbling scheme.

Setup B starts by committing, using the commitment scheme FCOM, to his challenges for the cut-and-choose
phase, and a specification of how the gates and authenticators are to be soldered together into buckets.

Garbling Next, using Gb and H, A produces sufficiently many garble gates and wire authenticators and
sends these to B. Next A commits to all the 0-keys of the garbled gates and wire authenticators, including
the global difference ∆, using FHCOM. She also commits to 2s additional random values which will be
used for leaking the least significant bits associated to B’s designated input and output wires. After this,
B opens his cut-and-choose challenges for both the gates and authenticators: the gates (authenticators)
selected for checking are called the check gates (authenticators) and the remaining are called the evaluation
gates (authenticators). Furthermore, the challenges also include a choice of input bits which the gates
(authenticators) should be evaluated on.4 A opens to the chosen values and B evaluates the gates and
authenticators. If any discrepancy is found he aborts the protocol.

Soldering Next B opens to his chosen bucketing functions and thus which evaluation gates and authenticators
should be soldered together into buckets and how these buckets should be soldered together into a complete
circuit. More specifically, one gate in a bucket is selected as the head gate, then the soldering consists of
the following three types:
Bucket Soldering For each bucket,A solders the left-, right- and output-wire of the head gate onto the left-,
right-, and output-wire of each other gate in a bucket. Furthermore, A solders the required authenticators
onto the output wire of the head gate.
Topological Soldering For each bucket, the left and right parents’ output keys are soldered onto the left,
respectively right input wire of the head of the bucket. Remember that when a gate’s input wire has more
than one parent, the input is defined to be an XOR gate applied to the output of all the parents.
Input Soldering For each input wire of the circuit, A solders onto these a number of wire authenticators.
These authenticators ensure that the input keys B receives are in fact valid, since otherwise these authentica-
tors will reject them. In addition, for each input wire we also solder onto these a number of AND gates that
take the given input wire as both left and right input. We call these gadgets input buckets. Notice that these
behave as simple identity gates for the given input wire. The output of these buckets is not soldered onto any
other wire in the circuit and the only purpose these gadgets serve is to enable B to extract the actual input
x of all keys if cheating is observed. He can then easily compute f(x,y) in plain and use this information
to deduce the correct output keys of the garbled circuit. How this is done is explained in more detail in
the following section. Also see Fig. 9 for a pictorial description of a fault tolerant circuit after bucketing.

Input/Output Verification Finally A uses FHCOM and the 2s extra commitments to efficiently and securely
leak the least significant bits of the 0-key of each of B’s input and output wires. This is done by A simply
sending the bits, and then B challenging her to open to linear combinations of these. The 2s commitments
are used as blinding values and are thus “sacrificed” in this process.

Output All the data is put together to form a tuple in correspondence with the definition of an interactive
garbling scheme.

4 Checking all possible input combinations would reveal ∆ to B and thus break the privacy of the protocol. This is
so since if B learns both X0

j and X1
j for any wire j, he also learns ∆=X0

j ⊕X1
j . He could then use this knowledge

to evaluate gates on multiple inputs, and hence learn e.g. A’s input.
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Structure of a fault tolerent garbled circuit
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Fig. 9. Illustration of the wirings of a fault tolerent garbled circuit. The middle the image shows a garbled circuit
consisting of 5 garbled AND buckets where one bucket has its left input being the XOR of the output of two earlier
buckets. The left hand side shows an AND bucket with 3 garbled gates and 2 authenticators. On the right hand side we
see how the input authenticators and buckets are connected to the input wires of the circuit. Furthermore a possible
enumeration of the wires is shown. Notice that a small black-filled circle is used to illustrate solderings of wires.

The algorithms for encoding and decoding wire keys follow directly from G. The verification algorithm uses
the previously mentioned least significant bits of the 0-keys to determine if a key corresponds to a specific bit.
This enables B to verify his received input and decode his designated output. Finally the evaluation is carried
out by evaluating the buckets in topological order. If the gates of a bucket do not agree on a distinct output key,
then the authenticators of the bucket are also evaluated on each of the potential output keys. The key which
is output and accepted by the most gates and authenticators of the bucket is defined as the output key.

6.1 Protocol Details

In this section we present in detail our interactive garbling scheme IGarb = (IGb, IEn, IDe, IEv, Iev, IVe). The
dominant work of the scheme is performed in the garbling protocol IGb which is presented in its entirety in
Fig. 10, Fig. 11, and Fig. 12. In Fig. 13 the remaining algorithms are presented.

Parameters and Replication. In the following A will play the role of C and B will play the role of E. We will
let `g= 1

1−pg−εg be the replication factor of gates, where pg is the expected fraction of gates we sacrifice in the
cut-and-choose step and εg is the fraction of extra gates we garble to ensure the actual number of remaining
gates is not lower than expected. Therefore if one wishes to end up with T garbled gates after the cut-and-choose
step, one needs to garbled T`g in total. In addition we also need to consider the bucket size for each AND gate
of f which we denote by β. Also for each input wire we need a special bucket consisting of λg gates. Therefore
for a circuit f=(nA,nB,mA,mB,q,lp,rp) A needs to garble Q=(qβ+nλg)`g AND gates in total.

Each of theseQ gates require three wires each. This is because we garble all AND gates individually, meaning
they all have a left, right, and output wire. In addition to these gate wires, we also need to produce the required
wire authenticators. We denote by α the number of wire authenticators used for each bucket of the circuit and by
λa the number of wire authenticators used for each input wire. We ensure the quality of these authenticators by
performing a cut-and-choose test in a similar manner as we do for the gates. Therefore we let `a= 1

1−pa−εa be the
replication factor of the wire authenticators, where pa is the expected fraction we check and εa is the fraction of
extra wires we produce to ensure the number of non-checked wire authenticators is not lower than expected. Thus
we need to produce A=(qα+nλa)`a wire authenticators. Recall that in the protocol, A will leak to B the least
significant bits of each 0-key associated to his input and output wires. In order to verify the validity of these leaked
bits, B will challenge A with a consistency check that ensures she sent the correct bits. This check requires sacri-
ficing 2s commitments to guarantee that no more than the least significant bits are leaked. In summary we need
to produce commitments toW =3Q+A+1+2s wires as we also need a commitment to the global difference ∆.
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Setup(pp):
1. On input (f=(nA,nB,mA,mB,q,lp,rp),k,s,pg,pa,β,α,λa,λg) ← pp, let Q = (qβ + nλg) 1

1−pg−εg ,
A=(qα+nλa) 1

1−pa−εa . For all g∈ [Q],j∈ [A] and l∈ [2s] denote by lg,rg,og,aj ,bl and τ unique identifiers that
both parties agree on. A and B also initialize the functionality FHCOM by sending (init,sid,A,B,κ) to it, where
κ is the token length of G. In future interaction with FHCOM we omit the party identifiers for ease of notation.

2. B samples Cg⊂ [Q] and Ca⊂ [A] where each element is included with probability pg and pa, respectively. Let
Eg=[Q]\Cg and Ea=[A]\Ca. If |Eg|<qβ+nλg or |Ea|<qα+nλa, B outputs ⊥ and aborts.

3. Next, B samples Bof∈RB(Eg) and AWof∈RW(Ea) and for each g∈Cg and j∈Ca, he samples ηg,ρg,σj ∈R {0,1}.
He then sends

(
commit,sid,1,(ηg,ρg,og)g∈Cg ,(σj ,aj)j∈Ca

)
and (commit,sid,2,(Bof,AWof)) to FCOM.

Garble:
1. A lets f ′ denote a function description for a circuit with Q parallel AND gates in a single input layer. She then

runs (F ′,e′,d′)←Gb
(
1k,f ′

)
. Parse

(
γ,δ2Q+1,δ2Q+2,...,δ3Q

)
←F . For all g∈ [Q] we associate to gate δ2Q+g the

identifier og and to the left and right input wire lg and rg, respectively. Also we associate the identifier τ with the
global difference ∆. For convenience we write

(
L0
g,R

0
g,O

0
g

)
to denote the left, right and output 0-key of gate δog .

2. For all j ∈ [A] and l∈ [2s], A samples random values Aj ,Bl ∈R {0,1}κ and we again associate to these values
the identifiers aj and bl, respectively. For all g∈ [Q],j∈ [A] and l∈ [2s] she then sends(

commit,sid,
(
lg,L

0
g

)
,
(
rg,R

0
g

)
,
(
og,O

0
g

)
,
(
aj ,Aj

)
,(bl,Bl),(τ,∆)

)
to FHCOM which sends a receipt of this to B.

3. For all j ∈ [A], A computes Haj←Aut(Aj ,Aj⊕∆). Then for all g∈ [Q] and all j ∈ [A], A sends (δog ,γog ) and
Haj to B.

4. After receiving the garbled gates and wire authenticators, B sends (open,sid,1) to FCOM, which sends(
opened,sid,1,(ηg,ρg,og)g∈Cg ,(σj ,aj)j∈Ca

)
to A. For all g∈Cg and j∈Ca, she sends

(open,sid,({lg}∪ηg ·{τ}),({rg}∪ρg ·{τ}),({og}∪(ηg∧ρg)·{τ}),({aj}∪σj ·{τ}))a

to FHCOM which in turn sends Lηgg ,Rρgg ,Oηg∧ρgg and Aσjj to B.
5. For all g∈Cg and j∈Ca, B checks that GEv(δog ,L

ηg
g ,R

ρg
g ,γog )=O

ηg∧ρg
g and Ver(Haj ,A

σj
j )=>. If any of the

checks fail he outputs ⊥ and aborts.
a Here the value of e.g. ηg decides if the index τ is included in the opening or not.

Fig. 10. Interactive garbling protocol IGb in the (FHCOM,FCOM)-hybrid model – part 1.

For all g∈ [Q],j∈ [A] and l∈ [2s] we associate the unique identifiers lg,rg,og,aj ,bl and τ that both parties agree
on. For a gate δog we associate lg,rg,og to be the indices of the left, right and output 0-keys. aj is the indices of the
authenticated wires, bl is the indices of the 2s previously mentioned random commitments and τ is the index of∆.
In the protocol,Bwill sample a subsetCg⊂ [Q] where each of the gates in [Q] is includedwith probability pg. These
gates will be the ones sacrificed during the cut-and-choose step and we let Eg=[Q]\Cg. To illustrate why the
extra fraction εg is needed lets assume that we did not include it and letQ′=(qβ+nλg) 1

1−pg . Then we letG be the
amount of gates not chosen for checking and we see that E[G]=Q′(1−pg)=(qβ+nλg) 1

1−pg (1−pg)=(qβ+nλg)
which is exactlywhat is needed to create q buckets of sizeβ andn input buckets of sizeλg. However, it is clear that if
we check even a single gatemore than expected (which is quite likely) thenwe do not have enough gates to build the
required buckets. This is the reason for us including the extra “slack” fraction εg, which means we produce a little
more, to ensure that at least qβ+nλg gates are left after the cut-and-choose step except with negligible probability.
We handle this slack explicitly in Lemma 3. Therefore after the cut-and choose phase there will be enough gates
left for creating the required buckets. In an analogous manner B will also sample Ca⊂ [A] where each wire is
included inCa with probability pa and we letEa=[A]\Ca. For the exact same reason as above we produce a little
extra, decided by εa, to ensure we have at least qα+nλa wire authenticators left after the cut-and-choose step.

As already mentioned, since we check gates (wires) independently at random we need to guarantee that
after the cut-and-choose phase enough gates and wires remain to successfully build the fault tolerant garbled
circuit. We therefore introduced the variables εg and εa which represents the additional fraction of gates (wires)
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Solder:
1. B sends (open,sid,2) to FCOM which in turn sends (open,sid,2,(Bof,AWof)) to A which means for all g∈Gates

she learns Bug and thus also the set HeadGates, and for all j∈Wires she also learns Auj .
2. For all h∈HeadGates, both parties let ht=Bof(h) denote the “topological” index of h and store this information

as T ={(h,ht)}h∈HeadGates. Also for convenience we define

OUT={h∈HeadGates |ht∈Outputs}
LINP={h∈HeadGates | lp(ht)∈ Inputs}, RINP={h∈HeadGates | rp(ht)∈ Inputs}

3. Bucket Soldering: For all h ∈ HeadGates, all g ∈ Buht where g 6= h and all j ∈ Auht , A sends
(open,sid,({lg,lh}),({rg,rh}),({og,oh}),({aj ,oh})) to FHCOM.

4. Topological Soldering: For all h∈HeadGates, let

LPh=
{
h∈HeadGates |ht∈ lp(ht)

}
, RPh=

{
h∈HeadGates |ht∈ rp(ht)

}
.

Let L={lh}∪{ol}l∈LPh and R={rh}∪{or}r∈RPh . If 1∈ lp(ht) let L :=L∪{τ} and if 1∈ rp(ht) let R :=R∪{τ}.
A then sends (open,sid,L,R) to FHCOM.

5. Input Soldering: For all hi ∈HeadGates where hit ∈ Inputs, all hl ∈LINP, all hr ∈RINP, all al ∈Aulp(hl
t
) and

all ar∈Aurp(hr
t

), A sends (open,sid,({lhi ,lhl}),({lhi ,rhr}),({lhi ,rhi}),({al,lhl}),({ar,rhr})) to FHCOM.a

6. B lets S̃Lg ,S̃Rg ,S̃Og and S̃haj be the received bucket solderings, S̃Lh and S̃Rh be the received topological solderings,
S̃ILh , S̃IRh and S̃Ih be the received input bucket solderings and S̃hal and S̃

h
ar be the received input authentication

solderings from FHCOM.
7. For all h∈HeadGates, hi∈HeadGates where hit∈ Inputs, all g∈Buht where g 6=h, all j∈Auht , all hl∈LINP, all

hr∈RINP, all al∈Aulp(hl) and all ar∈Aurp(hr), B computes

γ̃og←SGb
(
γog ,S̃

L
g ,S̃

R
g ,S̃

O
g

)
γ̃oh←SGb

(
γoh ,S̃

L
h ,S̃

R
h ,0κ

)
, γ̃o

hi
←SGb

(
γo
hi
,S̃ILh ⊕S̃

IR
h ,S̃ILh ⊕S̃

IR
h ⊕S̃

I
hi ,0

κ
)

H̃aj←SAut
(
Haj ,S̃

h
aj

)
, H̃al←SAut

(
Hal ,S̃

h
al

)
, H̃ar←SAut

(
Har ,S̃

h
ar

)
a As input-wires are only allowed fan-out 1 either {lhi ,lhl} or {lhi ,rhr} is empty. We can assume for simplicity
that the empty set will make FHCOM open to 0κ.

Fig. 11. Interactive garbling protocol IGb in the (FHCOM,FCOM)-hybrid model – part 2.

we need to produce for this situation not to occur except with negligible probability. The approach to calculate
the value of εg and εa is captured in Lemma 3.

Lemma 3 (Tail Bounds). Let Rg= |Eg| and Ra= |Ea| denote the random variables representing the number
of remaining gates and wire authenticators after the cut-and-choose steps of IGb. Then

Pr[Rg≤qβ] ≤ e−2ε2
gQ and

Pr[Ra≤qα+nλa] ≤ e−2ε2
aA

where Q=(qβ+nλg)· 1
1−pg−εg and A=(qα+nλa)· 1

1−pa−εa .

Proof. We look at the two statements individually. Since a gate is selected for checking with probability pg
in the protocol, we keep a gate for evaluation with probability 1−pg. We now observe that Rg is in fact a sum
of identically distributed independent Bernoulli trials with success probability 1−pg. We can thus apply the
Hoeffding bound [Hoe63] yielding

Pr[Rg≤qβ] = Pr[Rg≤((1−pg)−εg)·Q]
≤ e−2ε2

gQ

22



VerLeak:
1. Let BLEAK={nA+1,nA+2,...,n}∪{w−mB+1,w−mB+2,...,w}. Recall that T ={(h,ht)}h∈HeadGates determined

which topological gate (of f) h is the head gate of. Then define the sets

O={h∈OUT |ht∈BLEAK}
L={h∈LINP | lp(ht)∈BLEAK}, R={h∈RINP | rp(ht)∈BLEAK} .

For all v ∈ [s] and all hl ∈ L, hr ∈ R and ho ∈ O, A sends
(
pbv ,pbs+v ,plhl ,prhr ,poho

)
=(

lsb(Bv),lsb(Bs+v),lsb(L0
hl

),lsb(R0
hr ),lsb(O0

ho)
)
to B where bl are the identifiers defined in Garble for l∈ [2s].

2. After receiving the above bits, B samples four uniformly random binary matrices, V b∈R {0,1}(s+1)×s,V L∈R
{0,1}|L|×s,V R∈R {0,1}|R|×s,V O∈R {0,1}|O|×s and sends these to A.

3. Recall that τ is the identifier defined for the global difference ∆. Then for all v∈ [s] Alice lets

D0
v =

⋃
u∈[s]

(
V b
u,v ·{bu}

)
∪V b

s+1,v ·{τ}∪{bs+v}

D1
v =

⋃
l∈[|L|],r∈[|R|],o∈[|O|]

(
V L
l,v ·{lhl}∪V R

r,v ·{rhr}∪V O
o,v ·{oho}

)
∪{bv}

and sends
(
open,sid,D0

v,D
1
v

)
to FHCOM.

4. Upon receiving the values S̃D0
v
and S̃D1

v
from FHCOM, B lets pτ =1 and for all v∈ [s] verifies that

lsb(S̃D0
v
)=
⊕
j∈D0

v

pj , lsb(S̃D1
v
)=
⊕
i∈D1

v

pi .

If any of the s checks fail, B outputs ⊥ and aborts. Else B defines v=
(
plhl ,prhr ,poho

)
hl∈L,hr∈R,ho∈O

sorted
in ascending typological order.

Output:
1. Recall that for a gate h we let lh and rh denote the identifiers of the left and right input wire, respectively.

Then for all hl∈LINP, all hr ∈RINP and all i∈ Inputs, if lp(hlt)= i then A lets ei=e′l
hl

or if rp(hrt )= i she lets
ei=e′rhr .

a She then defines e=(e1,e2,...,en).
2. For all h∈OUT and all o∈ [m] where ht=o, A lets do=d′h. She then defines d=(d1,d2,...,dm).
3. A and B finally define

F =

(
f,T,HeadGates,

{{(
δog ,γ̃og

)}
g∈Buht

}
ht∈Wires

,

{{
H̃ai

}
i∈Auj

}
j∈Wires

)
to be the produced garbled circuit. A and B define their output to be (F,e,d) and (F,v), respectively.

a Recall that we only consider circuits f where input wires have fan-out 1. Hence these assignments are unique
and well defined.

Fig. 12. Interactive garbling protocol IGb in the FHCOM-hybrid model – part 3.

By the exact same reason we see that

Pr[Ra≤qα+nλa] = Pr[Ra≤((1−pa)−εa)·A]
≤ e−2ε2

aA

which proves the statement.

Bucketing mappings. In the protocol, individual garbled gates are combined together into buckets. We here
introduce some convenient notation that allows us to describe this precisely. For each gate in the circuit f , one
garbled gate is selected as representing this gate. We call this special garbled gate the head gate. A bucket is
then constructed by soldering the wires of β−1 randomly selected gates onto the wires of the head gate. For
the n input buckets, λg−1 random gates will be connected to the head input gate.
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Algorithms for the interactive garbling scheme IGarb

In the following let GateScore(O, L, R, G) be a function that returns the number of gates δi ∈ G where
SEv(δi,L,R,γ̃i)=O. Likewise let AuthScore(X,H) be a function that returns the number of authenticators Hi∈H
where Ver(Hi,X )=>.

IEv(F,X)→Z/⊥ :

1. Parse F as

(
f,T,HeadGates,

{{(
δog ,γ̃og

)}
g∈Buht

}
ht∈Wires

,

{{
H̃ai

}
i∈Auj

}
j∈Wires

)
.

2. Parse (X1,...,Xn)←X, (nA,nB,mA,mB,q,lp,rp)←f and set w=n+q.

3. For all i∈ [n], check that AuthScore
(
Xi,
{
H̃al

}
l∈Aui

)
>λa/2. If any of these checks fail output ⊥.

4. Parse {(h,ht)}h∈HeadGates←T .
For all ht∈Gates, let Lh=

⊕
l∈lp(ht)Xl and Rh=

⊕
r∈rp(ht)Xr and do:

(a) For all g∈Buht , compute Og←SEv(δog ,Lh,Rh,γ̃og ).
(b) Let Cand=

{
Og
}
g∈Buht

. If |Cand|=1, let Xht =Oh. Else let

MAJ=

{
Og∈Cand | GateScore

(
Og,Lh,Rh,

{(
δog ,γ̃og

)}
g∈Buht

)
+

AuthScore
(
Og,
{
H̃ai

}
i∈Auht

)
>(β+α)/2

}
.

(c) If |MAJ|=1 set Xht to be the singleton output key in MAJ.
(d) Else if |MAJ|=2, compute ∆′=

⊕
Og∈MAJOg and for all i∈ [n] do:

(i) For all g ∈ Bui, compute O0
g ← SEv(δog ,Xi ,Xi , γ̃og ) and O1

g ← SEv(δog ,Xi ,Xi ⊕∆
′, γ̃og ) and set

Cand0 =
{
O0
g

}
g∈Bui

and Cand1 =
{
O1
g

}
g∈Bui

.
(ii) Let

MAJ0 =

{
O0
g∈Cand0 | GateScore

(
O0
g ,Xi ,Xi ,

{(
δog ,γ̃og

)}
g∈Bui

)
>λg/2

}

MAJ1 =

{
O1
g∈Cand1 | GateScore

(
O0
g ,Xi ,Xi⊕∆′,

{(
δog ,γ̃og

)}
g∈Bui

)
>λg/2

}
.

(iii) If either
∣∣MAJ0

∣∣ 6= 1 or
∣∣MAJ1

∣∣ 6= 1 output ⊥. Else let O0
g and O1

g be the singleton keys in each set,
respectively. If O0

g=O1
g set xi=0 else set xi=1.

(e) Compute f(x)→z and store all intermediate values on the circuit wires as (x1,x2,x3,...,xw). Using values
xlp(ht) and xrp(ht) it can now be decided using the same procedure as in (i),(ii),(iii) which of the two keys
of MAJ in step (d) originated from a correct AND gate and this is then set as Xht .

5. Output Z=(Xw−m+1,Xw−m+2,...,Xw).
IEn(ei,xi)→Xi/⊥ :
1. Output En(ei,xi).

IDe(dj ,Zj)→zj/⊥ :
1. Output De(dj ,Zj).

IVe(vi,Xi,bi)→>/⊥ :
1. If lsb(Xi)=vi and bi=0 output >.
2. Else if lsb(Xi)=vi and bi=1 output >.
3. Else output ⊥.

Fig. 13. Algorithms for the interactive garbling scheme IGarb.

To be more precise, once B has decided on the set Eg he lets B(Eg) be the family of all surjective functions
from Eg to Wires. We require that for the images of the functions in Inputs the functions are λg-to-1 and for the

24



remaining images in Gates the functions are β-to-1.5 For any function Bof∈B(Eg) we let Eg⊆Eg denote the do-
main of the function, notice |Eg|=qβ+nλg. Then for all g∈Wires we define the set Bug=

{
g′∈Eg |Bof(g′)=g

}
and let the head gate of each bucket be the gate h such that for all g∈Bui :oh≤og′ , i.e., h is the gate with lowest
lexicographical index in Bui. For convenience we let HeadGates be the set of these head gate indices. Finally
we assume that given Bof, it is easy to identify the domain of the function, meaning that Eg is assumed to be
directly identified from the description of Bof.

Analogously we also need to specify how the wire authenticators are to be combined with the buckets. Again
whenBhas determinedEa he letsW(Ea) be the family of all surjective functions fromEa toWires.We furthermore
require that for the images of the functions in Inputs the functions areλa-to-1 and for the remaining images inGates
the functions are α-to-1. As in the above for a function AWof∈W(Ea) we let Ea⊆Ea denote the domain of the
function and notice |Ea|=qα+nλa. Again, the elements ofEa thatAWof is undefined for will simply be discarded.
For all j∈Wires we define the set Auj =

{
a∈Ea |AWof(a)=j

}
. This means that for all j∈ Inputs : |Auj |=λa and

for all j′∈Gates : |Auj′ |=α. Also in this case we assume that the domain Ea is efficiently determined from AWof.

Input buckets. As already hinted in our informal description of bucketing, the input buckets are used to allow the
evaluation to succeed even if A is cheating. We stress that if A behaves honestly the buckets are simply left unused
and does not give the evaluator any additional information. For each input wire i∈ Inputs we construct such an
input bucket consisting of λg AND gates that takes wire input i as both left and right input. Notice that this gate
now behaves as an identity gate due to the nature of AND. If cheating is detected during evaluation these buckets
are invoked to determine the actual input value of all input keys. We now explain how this is done. In our protocol
any bucket always outputs at most 2 keys during evaluation. It is guaranteed by our analysis that the correct key
Oa∧b is output on input La andRb, but it is also possible that the flipped keyO1−(a∧b) is accepted by a combined
majority of gates and authenticators. In this case however the evaluator can compute the global difference
∆=Oa∧b⊕O1−(a∧b). We now show how using ∆ and the input buckets, the evaluator can extract the input x
and thus compute f(x) in plain. As we show in our analysis in Section 6.2 we choose our bucketing parameters λg
and pg such that except with negligible probability, all input buckets consists of a majority of “correct” garbled
AND gates. So for i∈ Inputs, given the input key Xi the evaluator can evaluate the input bucket Bui on input
Xi as both left and right input and learn an output key Oi. He can then evaluate the bucket again, but this time
he uses Xi as the left input key and Xi⊕∆ as right input key. We let the output of the second evaluation be O′i.
Since we know that the bucket Bui implements a valid AND gate (except with negligible probability) then we can
conclude by the truth table of AND that if Oi=O′i the value carried byXi is 0 and if O1

i 6=O′i thenXi carries the
value 1. Given this the evaluator B can now compute f(x) in plain and thus he learns all intermediate values on
all wires of f(x). Going back to the bucket that initially outputOa∧b andO1−(a∧b) he can now identify which key
is coming from the correct AND gate. He can do this using the fact that he knows the value of a and b of the two
input keys La andRb and he knows the global difference∆. He can thus evaluate the garbled gates of the buckets
on all input keys (which he knows the value of) and verify which gate is implementing the AND functionality.

VerLeak. As previously mentioned πIGCO allows both parties to learn distinct outputs as part of the computation.
In our interactive garbling scheme this feature is achieved using the VerLeak procedure described in Fig. 12.
The outcome of this phase is that B learns the least significant bits (lsbs) of the 0-keys of the wires that he is
allowed to decode, i.e. his designated input and output wires. Using these bits he can later verify if a given
key is either a 0- or a 1-key for the wire in question. In addition he is also convinced that lsb(∆)=1, as then
the lsb of the 0-key is always different from the lsb of the 1-key. The technique for securely leaking the lsbs is
inspired by the consistency check of [FJNT15]. In essence the step proceeds by A first sending the lsbs directly
to B which afterwards challenges the validity of these proclaimed bits. This is done by challenging A to open
random linear combinations of the 0-keys in question using FHCOM while B checks that these match the same
linear combinations of the previously received lsbs. However as this would leak information about the entire
0-keys the linear combinations are blinded by a random value for which B only knows the lsb of.

In more detail, two things are verified as part of the phase VerLeak. Firstly the lsbs of the random values are
leaked to B. This check also guarantees that lsb(∆)=1 as ∆ is included in a linear combination with probability

5 With high probability Eg contains more elements than qβ+nλg so there may be some elements of Eg that the
functions are not defined for. These are simply left unused by our protocol.
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1/2. This is captured in the v’th linear combination D0
v of Fig. 12 where v∈ [s]. Second the lsbs of the 0-keys for

B’s input and output are checked in the v’th linear combination D1
v blinded by one of the previously mentioned

random values. Since B only knows the lsb of these random values it is guaranteed that he does not learn
anything besides the validity of the proclaimed lsbs. Following the analysis of [FJNT15] we have that the above
checks ensure that A sends the correct lsbs of the 0-keys and lsb(∆)=1 except with probability 2−s.

6.2 Proof that IGarb is an Interactive Garbling Scheme

We now show that our interactive garbling scheme IGarb satisfies the security properties defined in Fig. 2 and
Fig. 3 of Section 3.

For ease of presentation we show our scheme secure for a restricted set of parameters, namely the case where
α= β−1. We stress that our protocol can be shown secure for other combinations of α and β, but for sake
of concreteness we have singled out this case as we found it to perform well in terms of overall performance,
relative to the security it provided.6

Before we continue recall the definition of a (2-)correlation robust hash function. This definition is taken
almost verbatim from [IKNP03]:

Definition 2 (Correlation robustness). A hash functionH with κ-bit output is said to be correlation robust
(denoted by the property cor) if for probabilistic polynomial time bounded adversary (in κ) denoted by A it holds
that

|Pr[A(X1,...,Xm,H(X1⊕∆),...,H(Xm⊕∆))=1]−Pr[A(U1,...,U2m)=1]|≤negl(κ) ,

where, ∆,X1,...,Xm,U1,...,Um∈R {0,1}κ and Um+1,...,U2m∈R {0,1}k
′ .

Lemma 4 (corr). The scheme IGarb has the corr property.

Proof. Consider the game CorrAIGarb(1κ) where an adversary A inputs (f,x) to CorrIGarb. We assume that
x∈{0,1}f.n as else there is nothing to prove. It then runs C(1κ,f) and E(1κ,f) as specified by IGb.

Then by the correctness of the garbling scheme G, correctness of FHCOM, FCOM, and FOT and the fact that
Bof and AWof were chosen correctly the encoded output Z decodes to the correct output as well.

Lemma 5 (sec.ind.act). If G=(Gb,En,De,Ev,ev) is a Key-Size Preserving Free-XOR Gate Garbling Scheme
which is obl.ind and prv.ind secure and H is correlation robust then the scheme IGarb=(IGb,IEn,IDe,IEv,Iev,IVe)
is sec.ind.act-secure in the (FHCOM-FCOM)-hybrid model.

Proof. Let OblIndS,boG,Φxor
(1κ), respectively PrvIndS,bpG,Φxor

(1κ) denote the security games OblIndSG,Φxor
(1κ), re-

spectively PrvIndSG,Φxor
(1κ) when the bits sampled by the games are bo, respectively bp. Similarly we let

SecIndActB,bIGarb(1κ) denote the game SecIndActBIGarb(1κ) when the bit sampled by the game is b. Since we
assume that G is obl.ind- and prv.ind-secure it must hold that for any PPT S playing the games, we have
OblIndS,0G,Φxor

(1κ) c≈OblIndS,1G,Φxor
(1κ) and similarly PrvIndS,0G,Φxor

(1κ) c≈PrvIndS,1G,Φxor
(1κ). What we wish to prove

is therefore that SecIndActB,0IGarb(1κ) c≈SecIndActB,1IGarb(1κ) for any PPT B.
Consider the following simulator Sb participating in the PrvIndS

b,b
G,Φxor

(1κ) game while simulating towards
B the game SecIndActbIGarb. For ease of notation we let (f0,f1,x0,x1) denote the input B gives to Sb and let(
f̂S0 ,f̂

S
1 ,x̂
S
0 ,x̂
S
1

)
denote the input Sb will give to PrvIndS

b,b
G,Φxor

. First let Sb learn (f0,f1,x0,x1) from B at the
beginning of the game. If {x0,x1} 6⊆ {0,1}f0.n, Φxor(f0) 6= Φxor(f1) or x0,f0.nA+i 6= x1,f1.nA+i for i∈ [nB], then
output ⊥. Next compute z0←ev(f0,x0) and z1←ev(f1,x1). If z0,j 6=z1,j for any j∈ [mA+1;m] then output ⊥.

Now Sb runs the protocol IGb playing the role of an honest C, except it extracts the messages of all the
commitments B makes to FCOM. Thus after the Setup phase of IGb, Sb will know exactly what the cut-and-
choose challenges will be and which bits B will want to use to verify the garbled gates and wire authenticators
selected for checking, which is the set

{
{(ηg,ρg,g)}g∈Cg ,{(σj ,j)}j∈Ca ,Bof,AWof

}
. Now, instead of doing Step 1

6 However for some parameters this choice is not optimal, see Section 7.1 for details.
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of Garble Sb will use PrvIndS
b,b
G,Φxor

(1κ) to compute the garbled gates. It defines f̂S0 and f̂S1 as functions with only
a single layer of AND gates. Next Sb evaluates which bit will be on each of the wires in the circuit representing
f0, respectively f1 when evaluated on x0, respectively x1.

For each wire in f0 that is an input wire to an AND gate or a circuit input wire find the indices of the garbled
gates in the bucket representing this gate that has this wire as one of its inputs. There will be β such gates
for each of these wires. These gates are uniquely defined by Bof, which is known to the simulator at this point.
The simulator then sets the 2|Eg| bits of x̂S0 , respectively x̂S1 , in accordance with the values expected on each
wire when evaluating f0(x0), respectively f1(x1). However, for f̂S1 we make the change that when z0,j 6=z1,j
for j∈ [1;mA] we switch the AND gates in the bucket computing the j’th output bit with NAND gates. Notice
that this is clearly possible since we assume only the topology and XOR gates are leaked on fb. That is, we
transform a function fS1 with Φxor(fS1 )=Φxor(f1) to f̂S1 .

Next, for each g ∈ Cg the simulator sets x̂S0 [lg] = x̂S1 [lg] = ηg and x̂S0 [rg] = x̂S1 [rg] = ρg. Notice that
|x̂S0 |= |x̂S1 |=2Q since each gate has 2 bits input. For the rest of the entries in x̂S0 and x̂S1 it always chooses the
0-bit (these are the “slack” entries caused by the εg fraction and will just be discarded).

Then Sb sends (f̂S0 ,f̂S1 ,x̂S0 ,x̂S1 ) to PrvIndS
b,b
G,Φxor

and receives back (F̂Sb ,X̂Sb ,dSb ) where b is the challenge bit
picked by PrvIndS

b,b
G,Φxor

. Notice that PrvIndS
b,b
G,Φxor

does not output ⊥ since we have that f̂S0 (x̂S0 )= f̂S1 (x̂S1 ).
The simulator then runs Ev(F̂Sb ,X̂Sb ) and thus learns a key for each wire (which will be exactly the key for

each wire in correspondence to what B expects when it is put together to a fault tolerant garbled circuit with
respect to the Bof function). Now Sb runs the rest of IGb with B as an honest C would, simulating commitment
calls to FHCOM. Furthermore, in Garble, Step 3 and 4 are replaced with the following:

3. Sb “extracts” the garbled gates from F̂Sb . That is, it parses (γ,δ2Q+1,...,δ3Q)← F̂Sb . For g∈ [Q] it then defines
the gates

{
γ′g
}

=
{(
γg,0κ,0κ,0κ

)}
. For j ∈ [A], Sb picks two values uniformly at random Aj ,H

1
j ∈{0,1}κ

and computes H0
j ←H(Aj). It then defines Haj =(H0

j ,H
1
j ,0κ) if H0

j ≤H1
j and Haj =(H1

j ,H
0
j ,0κ) otherwise.

Then for g∈ [Q] and j∈ [A] the simulator sends (δog ,γog ) and Haj to B.
4. After B sends (open,sid,1) to FCOM, for all g∈Cg and j∈Ca, Sb simulates openings from FHCOM by sending
X
ηg
g ,X

ρg
g ,Aj to B. These are the keys the simulator received from the PrvIndS

B,b
G,Φxor

game, the computation
of Ev(F̂Sb ,X̂Sb ) and the random values Aj for j∈ [A] it picked in Step 3 for the wire authenticators.

Similarly to Step 4 above, for the solderings Sb simulates the FHCOM functionality by using the values it
got from the PrvIndS

b,b
G,Φxor

game, the computation Ev(F̂Sb ,X̂Sb ) and the random values Aj for j∈ [A] it picked
in the new Garble Step 3 for the authenticators. That is, for any given gate wire g the simulator knows exactly
one key, either key 0 or key 1, depending on what B should learn during evaluation of fb(xb). If the keys of two
wires to be soldered together have semantic value 0, then this happens as in SecIndActB,bIGarb. If they instead have
semantic value 1, then it is also as in SecIndActB,bIGarb since the 1-key of a wire will be the 0-key XOR’ed with
∆. So even though the simulator does not know the ∆ used in the PrvIndS

b,b
G,Φxor

game the solderings will be done
correctly. Finally, notice that we will never have to solder together two gate wires where we know one 0-key
and one 1-key. For the authenticators we look at the wire it will be soldered to. For authenticator j soldered
to wire g we let the soldering be the key we know on wire g XOR’ed with Aj .

In VerLeak Step 1, for l∈ [2s] the simulator picks Bl∈R {0,1}κ. It then sends the least significant bit of
the keys it knows as it is supposed to in SecIndActB,bIGarb. However, if the key it knows carries the semantic value
1, the simulator flips the lsb bit before sending it to B.

In Step 3 the simulator emulates FHCOM by sending the values D0
v,D

1
v to B for v∈ [s]. Here D0

v and D1
v are

computed as defined by the matrices Vb,VL,VR,VO given by B using the single key per wire the simulator
knows (no matter if it is a 0- or a 1-key). However, if the index τ is included in a linear combination, the simulator
flips the least significant bit of the computed value before sending it to B. The rest of the protocol Sb carries
out like an honest C would.

We now show that anything sent in the simulation above is indistinguishable from what is sent in
SecIndActB,bIGarb and thus conclude that any advantage in winning the game SecIndActB,bIGarb translates directly
into an advantage in winning the underlaying PrvIndS

bp ,bp
G,Φxor

or OblIndS
bo ,bo
G,Φxor

game. We do this through a hybrid
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argument: First define the hybrids induced by PrvIndS
bp ,bp
G,Φxor

(1κ) in the simulation above as H1,bp(1κ). Now define
the pair of hybrids H2,bp(1κ) which are exactly like H1,bp(1κ), but where the simulator cheats and looks into
the game PrvIndbpG,Φxor

to learn ∆. It then sets H1
j =H(Aj⊕∆) for j∈ [A], which it uses in Garble Step 3 to

construct the authenticators exactly like in SecIndActB,bpIGarb. Furthermore, for the solderings of authenticator
j to wire g we let the soldering be the key we know on wire g XOR’ed with Aj if its semantic value is 0, and
XOR’ed with Aj⊕∆ otherwise.

We now argue that H2,bp(1κ) c≈H1,bp(1κ) for bp∈{0,1} by the assumption that H is correlation robust. We
notice that the only difference between hybrid H2,bp and H1,bp is the way we construct the authenticators. To see
that the hybrids are indistinguishable notice that in H1,bp all authenticators consists of the values H0

j =H(Aj)
and H1

j ∈R {0,1}k
′ where Aj ∈R {0,1}κ. In hybrid H2,bp on the other hand H0

j =H(Aj) and H1
j =H(Aj⊕∆)

where Aj ,∆∈R∈{0,1}κ. Thus, distinguishing between H1,bp and H2,bp implies the ability to distinguish between
the two cases in the correlation robustness definition. Finally see that there is one more difference between the
hybrids: The soldering of authentications onto circuit wires. In H1,bp it is always done onto Aj and thus might
contain ∆ as a term. In H2,bp it is done with Aj⊕∆ in case the semantic value of the key soldered with is 1 (in
this case these soldering are exactly like in the real protocol). However, since Aj is uniformly random sampled
then the soldering will also be uniformly random sampled, no matter if ∆ is a part term of it. We therefore
conclude that since H is correlation robust we have H2,bp(1κ) c≈H1,bp(1κ).

Next notice that H1,0(1κ) c
≈ H1,1(1κ) since the only variation is based on the bit picked in PrvIndG,Φxor .

However, we have assumed that G has the prv.ind property.
We now argue that SecIndActB,0IGarb(1κ) c≈H2,0(1κ):

1. InGarble inH2,0 notice thatS0 picks the garbled gates using thePrvInd0
G,Φxor

game,where the garbled circuit
is constructed exactly the same way as in the SecIndActB,0IGarb game, that is, using function f0 transformed into
f̂S0 , a circuit containing a single layer ofANDgates. Furthermore, the openings to the commitments are exactly
to values B would expect in accordance with the way they have been constructed in the SecIndActB,0IGarb game.

2. We already argued, during the description of the first hybrid, that the solderings sent for the garbled gates, in
Solder, will be exactly like in SecIndActB,0IGarb. Furthermore, this will also be the case for the authenticators
since we haveA′j =Aj⊕∆, whereAj is picked uniformly at random both in H2,0 and the SecIndActB,0IGarb game.

3. In VerLeak we first see that since in SecIndActB,0IGarb we have lsb(∆)=1 when we flip the bits of the keys in
Step 1 in H2,0 if they represent 1-keys, then these bits will be distributed like in the real SecIndActB,0IGarb game
because the keys are constructed from Gb in both cases. Now in Step 3 we notice that the check of the values
lsb(D0

v),lsb(D1
v) for v∈ [s] will also be distributed the same way since we flip the least significant bit of the

keys with semantic value 1 in H2,0 so they will match what they are supposed to for 0-keys in SecIndActB,0IGarb.
In regards to the other bits of D0

v and D1
v we notice that they will always be one-time padded with Bs+v,

respectively Bv which is uniformly random in both H2,0 and SecIndActB,0IGarb.

From the above discussion we conclude that SecIndActB,0IGarb(1κ) c≈H2,0(1κ).
Next notice that H2,0(1κ) c≈H2,1(1κ) since the only variation is based on the bit picked in PrvIndG,Φxor and

we have assumed that G has the prv.ind property.
Now to show that H2,1(1κ) c

≈ SecIndActB,1IGarb(1κ) we introduce a new hybrid H3,bo(1κ). The purpose of
this hybrid is to change the NAND gates in f̂S1 from H2,1 and H1,1 back to AND gates. We do this using the
OblIndG,Φxor game. Hybrid H3,bo basically works as H2,1(1κ). However, when reaching Step 1 in Garble define
f̂3

1 and x̂3
1 as f̂S1 and x̂S1 from H2,1, that is, based on f1. However, we also let f̂3

0 be based on f1 and compute
the “̂ ” version using the same method as in H2,0, thus without changing any AND gates to NAND gates. That
is, f̂3

0 is a function with only a single layer of AND gates. We evaluate f1(x1) to learn which bit will be on each
of the wires in the circuit representing f1 when evaluated x1. For each wire in f1 that is an input wire to an
AND gate we find the indices of the garbled gates in the bucket representing this gate that has this wire as
one of its inputs. The simulator then sets the 2|Eg| bits of x̂1 in accordance with the values expected on each
wire when evaluating f1(x1). It sets the rest of the bits of x̂3

0 like in H2,1. Then give (f̂3
0 ,f̂

3
1 ,x̂

3
0,x̂

3
1) as input

28



to the OblIndboG,Φxor
game. Notice that in H2,bp the input is (f̂S0 ,f̂S1 = f̂3

1 ,x̂
S
0 ,x̂
S
1 = x̂3

1) to the PrvIndbpG,Φxor
game.

Furthermore, cheat and extract d̂bo from OblIndG,Φxor . For the rest of the protocol it proceeds as hybrid H2,1.
Now notice that this means that setting Ẑbo ← IEv(F̂bo , X̂bo) in hybrid H3,bo we have that ẑbo,j ←

IDe(d̂bo,j , Ẑbo,j) for j ∈ [m]. Furthermore, by the way we construct f̂3
0 , f̂3

1 and x̂3
0, x̂3

1 in this hybrid we
have that ẑ0,j= ẑ1,j for j∈ [mA+1;m], however, it might be the case that ẑ0,j 6= ẑ1,j for j∈ [mA].

Now see that it is clearly the case that H3,0(1κ) c
≈H3,1(1κ) since we assume the obl.ind property and the

result of the OblIndG,Φxor gate is the only point of variability in the two hybrids.
We now argue that H3,1(1κ) c≈H2,1(1κ). This follows somewhat trivially since in both hybrids the garbled

circuits are constructed using Gb and evaluated on the same input. The rest of both the hybrids proceed similarly.
Finally we must argue that H3,0(1κ) c≈SecIndActB,1IGarb(1κ). First see that both H3,0 and SecIndActB,1IGarb are

based on the same function f1. Thus, hybrid H3,0 is in fact similar to hybrid H2,0 but where f̂S0 = f̂3
0 . This basically

means that hybrid H3,0 is the same as H2,0, only using a different input function, that is, f0 in H2,0 versus f1 in
H3,0. Thus H3,0(1κ) c≈SecIndActB,1IGarb(1κ) follows from the same argument that H2,0(1κ) c≈SecIndActB,0IGarb(1κ).

Now see that because efficient transformations maintain indistinguishability we get that SecIndActB,0IGarb(1κ) c≈
SecIndActB,1IGarb(1κ) from the following observation:

SecIndActB,0IGarb(1κ) c≈H2,0(1κ) c≈H1,0(1κ) c≈H1,1(1κ) c≈H2,1(1κ) c≈H3,1(1κ) c≈H3,0(1κ) c≈SecIndActB,1IGarb(1κ) .
(1)

Here H2,0(1κ) c≈H1,0(1κ) and H2,1(1κ) c≈H1,1(1κ) follows from cor, H1,0(1κ) c≈H1,1(1κ) follows from prv.ind,
H3,0(1κ) c

≈H3,1(1κ) follows from obl.ind, H2,1(1κ) c
≈H3,1(1κ) follows trivially by direct construction and the

bulk of the above proof consists of show that SecIndActB,0IGarb(1κ) c
≈ H2,0(1κ), and by similar construction

SecIndActB,1IGarb(1κ) c≈H3,0(1κ).

Lemma 6 (aut.act). If G = (Gb,En,De,Ev,ev) is a Key-Size Preserving Free-XOR Gate Garbling Scheme
which is aut secure andH is a correlation-robust hash function, then the scheme IGarb=(IGb,IEn,IDe,IEv,Iev,IVe)
is aut.act-secure in the (FHCOM-,FCOM)-hybrid model.

Proof. Considering the game AutActBIGarb(1κ) for the aut.act property we first argue that B cannot win the
game by being malicious in IGb such that z 6= Iev(f,x) where z=(z1,z2,...,zm) and zj← IDe(dj ,Zj) for j∈ [m].
We therefore conclude that he can only win the game by finding Z ′A such that there exists j ∈ [mA] where
IDe(dj ,Z ′A,j) 6=⊥ with Z ′A,j 6=Zj . We will then prove that if he can find such a Z ′A with non-negligible probability
in κ then we can use him to win the AutG,Φxor (1κ) game with non-negligible probability, under the assumption
that H is a correlation-robust hash function (in the following we assume Φxor to always be implied and omit
the subscript). In particular we will construct a simulator SB that plays the AutS

B

G (1κ) game in Fig. 1, to
construct the garbled gates used in IGb, then argue that whether or not a B playing the AutActBIGarb(1κ) game
is communicating with the simulator or the real game, what it learns will be computationally indistinguishable
under the assumption that H is a correlation-robust hash function. The simulator then uses the output of B
to win the AutS

B

G (1κ) game if B wins the AutActBIGarb(1κ) game.
To first show that IDe(dj ,Zj) 6=zj for (z1,...,zm)← Iev(f,x) with j∈ [m] is not possible, notice that the only

way B could cause this to happen is to act maliciously during the execution of IGb. However, see that B only
gets to give the following input to this protocol:

1. The commitments, and subsequently openings, to the cut-and-choose challenges
(
{(ηg,ρg,og)}g∈Cg ,

{(σj ,j)}j∈Ca
)
and the bucketing functions (Bof,AWof) in Setup.

2. The random matrices used for determining the consistency checks of the VerLeak step.

Notice all the elements are randomly sampled and made only to protect B against a malicious A. In particular
since the protocol does not abort then by the correctness of FCOM, it must mean that B committed (and later
opened) to valid messages. In the second and third case the values are simply used for random checks and A
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terminates the protocol if the choices are not sane. Also notice that all the possible random choices, as long as they
are well-formed, will not influence the correctness of the protocol. Thus it is clearly not possible for B to influence
the execution in such a way that the garbling is incorrect. In particular this means that for the output (F,e,d)
to C it will always be the case that z= Iev(f,x) where z=(z1,z2,...,zm) and zj← IDe(dj ,IEv(F,X)j) for j∈ [m].

We now turn to the construction of SB. Consider the simulator Sb for b ∈ {0,1} defined in the proof of
Lemma 5 which made use of the PrvIndS

b

G game to simulate an execution of IGb. Our simulator SB will follow
the same strategy, but instead of PrvIndG it interact with the game AutG . Since in the game AutActBIGarb the
adversary only provides a single function f we adapt the description of Sb to this setting and denote our modified
simulator SB. In short the simulator is simply adapted to the single case setting and constructs a single function
f̂S (for sending to the AutG game to get the garbled gates) and we construct it like Sb constructs f̂S0 .

In more detail SB defines f̂S as a function with only a single layer of AND gates. It then evaluates f(x) to learn
which bit is expected to flow on each wire of f . For each wire in f that is an input wire to an AND gate or a circuit
input wire find the indices of the garbled gates in the bucket representing this gate that has this wire as one of its
inputs. There will be β such gates for each of these wires. These gates are uniquely defined by Bof, which is known
to the simulator at this point. We denote by x̂S the input that is to be sent along with f̂S to AutG by SB. The
simulator sets the 2|Eg| bits of x̂S , in accordance with the values expected on each wire when evaluating f(x).

Next, for each g∈Cg the simulator sets x̂S [lg]=ηg and x̂S [rg]=ρg. For the rest of the entries in x̂S it always
chooses the 0-bit (these are the “slack” entries caused by the εg fraction and will just be discarded). Then S
sends (f̂S ,x̂S) to AutS

B

G and receives back (F̂S ,X̂S). The remaining steps are the same as in Sb, but adapted
to the setting of only one function.

We now define the hybrid G1(1κ) which is induced by AutS
B

G (1κ) as explained above. We then define a new
hybrid G2(1κ) to be exactly like G1(1κ), but where the simulator cheats and looks into the game AutSG,Φxor

(1κ)
to learn ∆. It then sets A′j=Aj⊕∆ for j∈ [A], which it uses in Garble Step 3 to construct the authenticators
exactly like in AutActBIGarb(1κ). By the same argument as in the proof of Lemma 5 we have that G1(1κ) c≈G2(1κ)
by correlation-robustness ofH. It is also the case that G2(1κ) c≈AutActBIGarb(1κ). This follows from the arguments
already given for SecIndActB,0IGarb(1κ) c≈H2,0(1κ). In particular we have that G1(1κ) c≈AutActBIGarb(1κ) as efficient
transformations maintain indistinguishability.

By the above it follows that B cannot tell whether it is playing G1(1κ) or the actual game AutActBIGarb(1κ).
This means if he can win in the actual game he can also win in the hybrid. We now show how winning in the
hybrid translates directly into winning the AutS

B

G (1κ) game.
When receiving Z ′A from B which wins in the hybrid G1(1κ), meaning there is a j∈ [mA] such that Zj 6=Z ′A,j

the simulator forwards Z ′A,j to AutS
B

G (1κ). It is now easy to see that if B can win the hybrid game GB(1κ) with
non-negligible probability then SB also wins the AutS

B

G (1κ) game with non-negligible probability since the keys
are constructed using AutS

B

G (1κ). As G is assumed aut-secure we therefore conclude that IGarb is aut.act-secure
as well.

Lemma 7 (knof). The scheme IGarb has the knof property.

Proof. In order to prove that our scheme satisfies the knof property we need to specify the ExE extractor. We
first assume that B is in a state where it first received an input 1κ, then output some function f and finally
ran an instance of IGb playing the role of E against an honest C. Also assume that the output of C is (F,e,d) 6=⊥
(else there is nothing to show). We now make the following observations:

1. As C did not output ⊥ during the execution of IGb, by the correctness of FCOM, it must mean that B
committed (and later opened to) valid cut-and-choose challenges (ηg,ρg,og)g∈Cg ,(σj ,aj)j∈Ca and bucket
mapping functions (Bof,AWof) and thus these are part of his view.

2. The next thing to note is that for all g∈ [Q] and all j∈ [A] we have that C sent (δog ,γog ) and Haj to B.
3. It is also clear that C sent all solderings specified by Bof and AWof to B, as it is honest.

30



It now follows by the above observations that all information for computing F̂ is in the view of B, when C does
not output ⊥. In particular, the garbled gates, the wire authenticators, the solderings, Bof and AWof completely

define
{{(

δog ,γ̃og

)}
g∈Buht

}
ht∈Wires

and
{{

H̃ai

}
i∈Auj

}
j∈Wires

.

ExE therefore simply extracts the above information from B’s view and lets its output be

F̂ =
(
f,T,HeadGates,

{{(
δog ,γ̃og

)}
g∈Buht

}
ht∈Wires

,

{{
H̃ai

}
i∈Auj

}
j∈Wires

)
.

By the above it is now clear to see that indeed F = F̂ if C does not output ⊥ in the execution of IGb. We thus
conclude that the scheme IGarb has the knof property.

The proofs of the remaining properties, tok.com, unqie, unqoe, and rob.con, require an extractor ExC, which
we will now define. We will also show that IGarb satisfies the projectiveness property. Also, the proof of rob.con
and unqie requires a helper lemma Lemma 13. We will prove this lemma in the end of this appendix. Before
continuing with the rest of the properties we describe the extractor ExC.

ExC(A). Let A be an adversary playing the role of C in an execution of IGb. Assume that it is in a state where
it first received an input 1κ, then output some function f and finally ran an instance of IGb playing against
an honest E. Also assume that the output of E is (F,v) 6=⊥. Since FHCOM is a UC-secure commitment scheme
there exists a simulator S that can extract all values committed to in the protocol, including all wires keys and
∆. As E chose Bof it also knows which wires correspond to the input and output wires of F .

Using the extracted wire keys and knowledge of Bof, ExC proceeds as follows. For all hl∈LINP, all hr∈RINP
and all i∈ Inputs, if lp(Bof(hl))= i let êi=

(
L0
hl
,L0
hl
⊕∆

)
or if rp(Bof(hr))= i let êi=

(
R0
hr
,R0
hr
⊕∆

)
. Then define

ê=(ê1,...,ên). Analogously for all h∈OUT and all o∈ [m] where Bof(h)=o, ExC lets d̂o=
(
O0
h,O

0
h⊕∆

)
. Then

define d̂=
(
d̂1,d̂2,...,d̂m

)
and output

(
ê,d̂
)
.7

Lemma 8 (proj). The scheme IGarb has the proj property.

Proof. It follows from the underlying garbling scheme G having projective coding that the produced e and d
of Gbπ are of the required form and that IEn and IDe work for individual elements as well. As the projective
de-encoder IEn−1 and IDe−1 have already been defined in Section 3 for schemes with projective coding we
conclude that the scheme IGarb has the proj property.

Before continuing with the proofs of the remaining properties we need to define what it means for a garbled
gate or a wire authenticator to be “corrupt”. We specify this in the following definition.

Definition 3 (Corrupt GGate/AWire). After an execution of Gbπ we have that:

– A garbled gate (δg,γg) with left and right input wire index lg,rg and output wire index og is corrupt if for
any a,b∈{0,1} we have GEv(δg,Lag ,Rbg,γg) 6=Oa∧bg . Here L0

g,R
0
g and O0

g are the values sent to FHCOM for
index lg,rg and og and L1

g=L0
g⊕∆,R1

g=R0
g⊕∆ and O1

g=O0
g⊕∆ where ∆ is the value sent for the index τ .

– A wire authenticator Haj is corrupt if for (H0
aj ,H

1
aj )←Haj we have {H0

aj ,H
1
aj} 6= {H(Aj),H(Aj⊕∆)}

where Aj is the value sent to FHCOM for index aj and ∆ is the value sent for the index τ .

We say a garbled gate or wire authenticator is correct if it is not corrupt. Furthermore we say a bucket is corrupt
if it consists of only corrupt gates or if a combined majority of its gates and wire authenticators is corrupt. Again
we say a bucket is correct if it is not corrupt.

Finally we say that an input bucket is corrupt if it does not contain a majority of correct gates. Likewise
we say an input bucket is correct if it does contain such a majority.

7 We here assume a concrete form of ê and d̂. This is not necessarily the same form as the one of e and d defined by
a concrete scheme G. However we assume that given the information included in ê and d̂ one can always convert
to the correct form if necessary when using En and De of G (which IEn and IDe does).
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The above definition loosely says that a garbled gate or wire authenticator is corrupt if it is not consistent
with the keys committed to using FHCOM. We now continue with the proofs of the remaining properties.

Lemma 9 (rob.con). If IGarb has the corr property, then it also has the rob.con property except with probability
at most

q ·

( 1∏
i=β

(
(1−pg)4i

pg(qβ+nλg)+(1−pg)4i

)
+

β∑
l=2

l∏
i=β

(
(1−pg)4i

pg(qβ+nλg)+(1−pg)4i

)
·
α+2−l∏
j=α

(
(1−pa)2j

pa(qα+nλa)+(1−pa)2j

))
+

n·
dλg2 e∑
l=1

l∏
i=λg

(
(1−pg)4i

pg(qβ+nλg)+(1−pg)4i

)
Proof. Run A to produce a f , then run IGb with A playing the role of C and denote the output of the evaluator
(F,v). Let ê=

(
X̂0

1 ,X̂
1
1 ,...,X̂

0
n,X̂

1
n

)
and d̂=

(
d̂1,d̂2,...,d̂m

)
be the output of ExC(A) and let x=(x1,...,xn) be the

output of A. Furthermore we parse
(
Ẑ0
j ,Ẑ

1
j

)
← d̂j for all j ∈ [m]. We see from inspection of RobConAIGarb(1κ)

in Fig. 3 that it is sufficient to prove that

IEv(F,(X̂x1
1 ,...,X̂xn

n ))=(Ẑz1
w−m+1,...,Ẑ

zm
w ) .

where z← Iev(f,x).
By Lemma 13 and the observation that the probabilities of corrupt gates and authenticators ending up in

the same bucket are independent, using a union bound we have that when evaluating F using IEv, all buckets
will always output the correct key except with probability at most

q ·

( 1∏
i=β

(
(1−pg)4i

pg(qβ+nλg)+(1−pg)4i

)
+

β∑
l=2

l∏
i=β

(
(1−pg)4i

pg(qβ+nλg)+(1−pg)4i

)
·
α+2−l∏
j=α

(
(1−pa)2j

pa(qα+nλa)+(1−pa)2j

))
.

Notice that we require that at least one gate be correct, since else we cannot guarantee that the correct key
is part of the candidate output keys. It is however possible that a correct bucket can accept two output keys.
However by Definition 3 then we are guaranteed that these are the 0 output key O0

g and the 1 output key O1
g and

hence ∆=O0
g⊕O1

g . From inspection of Fig. 13 we see that as long as each input bucket consists of a majority
of correct garbled gates then the evaluation algorithm IEv outputs the correct output keys. Again by Lemma 13
and the observation that the probabilities of garbled gates ending up in the same bucket are independent, using
a union bound we get that all input buckets contain a majority of correct garbled gates except with probability

n·
dλg2 e∑
l=1

l∏
i=λg

(
(1−pg)4i

pg(qβ+nλg)+(1−pg)4i

)
.

Since the scheme has the corr property it follows that indeed IEv(F,(X̂x1
1 ,...,X̂xn

n )) = (Ẑz1
w−m+1,...,Ẑ

zm
w )

except with at most the sum of the above two probabilities. This concludes the proof.

Lemma 10 (unqie). If H is a collision-resistant hash function, then IGarb has the property unqie except with
probability at most

n·
dλa2 e∑
v=1

v∏
l=λa

(
(1−pa)2l

pa(qα+nλa)+(1−pa)2l

)
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Proof. Run A to produce a f , then run IGb with A playing the role of C and denote the output of the evaluator
(F,v). Let ê=

(
X̂0

1 ,X̂
1
1 ,...,X̂

0
n,X̂

1
n

)
and d̂=

(
d̂1,d̂2,...,d̂m

)
be the output of ExC(A) and let X be the output of A.

We start by assuming IEn(êi,IEn−1(êi,Xi)) 6=Xi for at least one i∈ [n] as else there is nothing to prove. Notice that
this can only occur if X̂0

i 6=Xi 6=X̂0
i ⊕∆.We shown that in this case IEv(F,X)=⊥ exceptwith bounded probability

which for properly chosen λa and α will be negligible. As the protocol execution does not abort, we have for each
i∈ [n] that A correctly instructs FHCOM to open to solderings of λa wire authenticators onto X̂0

i . In order for
IEv(F,X) 6=⊥, then in Step 3 of IEvXi needs to be accepted by a majority of the input wire authenticators. As we
haveXi 6∈

{
X̂0
i ,X̂

0
i ⊕∆

}
this can only happen if at least amajority of the wire authenticators are corrupt. However

by Lemma 13, H being collision-resistant and the union bound, the probability of this occurring is at most

n·
dλa2 e∑
v=1

v∏
l=λa

(
(1−pa)2l

pa(qα+nλa)+(1−pa)2l

)
which concludes the proof.

Lemma 11 (unqoe). If IGarb has the unqie and rob.con properties, then the scheme has the unqoe property as
well.

Proof. Run A to produce a f , then run IGb with A playing the role of C and denote the output of the evaluator
(F,v). Let ê=

(
X̂0

1 ,X̂
1
1 ,...,X̂

0
n,X̂

1
n

)
and d̂=

(
d̂1,d̂2,...,d̂m

)
be the output of ExC(A) and let X be the output of

A. We start by assuming that IEv(F,X)→Z 6=⊥ as else there is nothing to prove. Thus, by a simple reduction
to the unqie property we have that IEn(êi,IEn−1(êi,Xi)) =Xi for all i∈ [n]. Then by a reduction to rob.con
we have that IDe(d̂j ,Zj)→zj 6=⊥ for all j∈ [m]. By definition of IDe−1 in Lemma 8 it now clearly follows that
IDe−1(d̂j ,IDe(d̂j ,Zj))= IDe−1(d̂j ,zj))=Zj for all j∈ [m] which concludes the proof.

Lemma 12. IGarb has property tok.com except with probability 2−s.

Proof. Run A to produce a f , then run IGb with A playing the role of C and denote the output of the evaluator
(F,v). Let ê=

(
X̂0

1 ,X̂
1
1 ,...,X̂

0
n,X̂

1
n

)
and d̂=

(
d̂1,d̂2,...,d̂m

)
be the output of ExC(A) and let X,x′,z′ be the output

of A. As the execution of IGb did not abort we know that A answered satisfactory in the VerLeak phase. This
can be seen as A successfully answering ŝ=s/log2(|{0,1}|)=s linear combinations and by the proof of Theorem
1 in [FJNT15], it now follows that the least significant bit of the committed global difference ∆ with index τ
is 1 and that v consists of least significant bits of the committed 0-keys corresponding to B’s input and output
wires except with probability 2−s.

Following the description of the game let Z ← IEv(F,X), zj ← IDe(d̂j ,Zj), and xi ← IEn−1(êi,Xi) for
i ∈ [n]. We assume none of these values equal ⊥ as else there is nothing to prove. Now assume that there
exists an i ∈ [nB] such that IVe(vi,XnA+i,x

′
nA+i) => and xnA+i 6= x′nA+i or there exists a j ∈ [mB] such that

IVe(vnB+j ,ZmA+j ,z
′
mA+j)=> where zmA+j 6=z′mA+j . From the description of IVe this can only happen if vi or

vnB+j is not the least significant bit of the corresponding 0-key. However by a similar analysis as in Theorem
1 of [FJNT15] this only occurs with probability at most 2−s.

We now state and prove the “bucketing” lemma used in the proofs of rob.con and unqie. Informally the
lemma provides bounds on the probability that any bucket is corrupt and on the probability that a majority
of the wire authenticators on any input wire is corrupt.

Lemma 13 (Probability of corrupt bucketing). For randomly generated F output by IGb where α=β−1,
any non-input bucket is correct except with probability at most

1∏
i=β

(
(1−pg)4i

pg(qβ+nλg)+(1−pg)4i

)
+

β∑
l=2

l∏
i=β

(
(1−pg)4i

pg(qβ+nλg)+(1−pg)4i

)
·
α+2−l∏
j=α

(
(1−pa)2j

pa(qα+nλa)+(1−pa)2j

)

33



Furthermore, for any input wire the probability that a majority of the λg gates constituting an input bucket ends
up being corrupt is at most

dλg2 e∑
l=1

l∏
i=λg

(
(1−pg)4i

pg(qβ+nλg)+(1−pg)4i

)

Finally, for any input wire, if H is a collision-resistant hash function then the probability that a majority
of the λa wire authenticators constituting an input authenticator end up being corrupt is at most

dλa2 e∑
v=1

v∏
l=λa

(
(1−pa)2l

pa(qα+nλa)+(1−pa)2l

)

Proof. First consider the following game against an adversary A:

– A is given two buttons he can press, one corrupt gate button and one corrupt authenticator button for an
arbitrary bucket as defined in IGb.

– The outcome of pressing either button will be either “success”, “failure” or “nothing” where “success” will
mean a gate (wire authenticator) of the bucket will be arbitrarily corrupted by A as long as it has the
correct form, “failure” will mean that she looses the game immediately and “nothing” will have no effect
whatsoever. We let A learn the outcome of pressing each button immediately after pressing.

– We say A wins the game if at any time after pushing the above buttons the bucket becomes corrupt.

It should be clear that the above game is sufficient to modelA’s ability to corrupt a bucket in an execution of
IGb. In fact it gives her strictly more power as in the above game she can adaptively change her strategy based on
the outcome of the current result of pressing a button. This means she has no additional risk of getting caught,
once she deems her corruption strategy has succeeded. This is in contrast to a real execution of IGb whereAmust
decide a priori which gates and wires to corrupt and after this she is committed to her choice (as she sends these
objects to B). The event of “failure” will model the probability thatA gets caught in either of the cut-and-choose
checks performed by B in IGb and “nothing” will model that a gate (authenticator) is corrupt, but is not selected
for checking and falls into another bucket than the one we look at, or that it is selected for checking, but passes
the check (discarded), or that it is not selected for checking, but is not used in any bucket (discarded).

We need to calculate the probability of the events success and failure when pressing the above buttons such
that they correctly model an execution of IGb. We first consider the gate button. Recall that a gate is chosen for
checking in the cut-and-choose step of IGb with probability pg. If a gate is corrupted and selected for checking
we see that it will get caught with probability at least 1

4 , since it is checked on one random input out of the four
possible. Thus the probability of catching a corrupt gate is at least pg · 14 . For the same reason a gate is not chosen
for check with probability (1−pg) and the probability a gate ends up in the bucket in question is therefore at
most (1−pg)· i

(qβ+nλg) where i is the number of non-corrupt gate slots left in the bucket.8 The decrease caused
by i needs to be taken into account because each time a corrupt gate ends up in the bucket it takes up a slot,
so there is less probability for corrupting the following gates as there are less free slots in the bucket.

As we only consider whether pressing the button results in success or failure we normalize these two outcomes
as complementary events. We see that pg · 1

4 = pg · (qβ+nλg)
4(qβ+nλg) and (1− pg) · i

(qβ+nλg) = (1− pg) · 4i
4(qβ+nλg) .

Multiplying both expressions by 4(qβ+nλg) and dividing the success probability with the sum of the success
and failure probability we see that the relative probability of success becomes

(1−pg)4i
pg(qβ+nλg)+(1−pg)4i

(2)

where i is the number of non-corrupt gate slots in the bucket.
8 This is an upper bound since there is a slight probability a corrupt gate (wire) will not be part of Eg (Ea), the
domains of Bof and AWof. Also we do not consider non-corrupt gates (wires) taking up any slots.
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In an analogously way we determine the relative success probability for the authenticator button. The only
difference is that here a corrupt authenticator is caught with probability at least 1

2 , because there are only
two possible values as opposed to four for the gates. This can be seen from a simple reduction to H being a
collision-resistant hash function, since ifA can successfully cheat in the cut-and-choose Ver check with noticeable
probability greater than 1

2 then she can find a collision for H with noticeable probability as well. By the same
procedure as above we therefore have that the relative probability of success becomes

(1−pa)2j
pa(qα+nλa)+(1−pa)2j (3)

where j is the number of non-corrupt authenticator slots for the bucket.

Before continuing recall thatwe are in a settingwhereα=β−1.Thereforewe letE1 be the event that allβ gates
of the bucket become corrupt, E2 the event that β−1 gates and 1 authenticators become corrupt, E3 the event
that β−2 gates and 2 authenticators become corrupt and so on until Eβ which denotes the event that 1 gate and
β−1 authenticators become corrupt. Thus Pr[corrupt non-input bucket]=Pr[E1∨E2∨···∨Eβ ]≤

∑β
b=1Pr[Eb]

by the union bound.

We now turn to the calculation of this probability. From (2) and (3), we conclude a bucket is left “uncorrupt”
after A has participated in the above mentioned experiment except with probability at most

β∑
b=1

Pr[Eb]=
1∏
i=β

(
(1−pg)4i

pg(qβ+nλg)+(1−pg)4i

)
+

2∏
i=β

(
(1−pg)4i

pg(qβ+nλg)+(1−pg)4i

)
·
α∏
j=α

(
(1−pa)2j

pa(qα+nλa)+(1−pa)2j

)
+

3∏
i=β

(
(1−pg)4i

pg(qβ+nλg)+(1−pg)4i

)
·
α−1∏
j=α

(
(1−pa)2j

pa(qα+nλa)+(1−pa)2j

)
+

...
β∏
i=β

(
(1−pg)4i

pg(qβ+nλg)+(1−pg)4i

)
·

1∏
j=α

(
(1−pa)2j

pa(qα+nλa)+(1−pa)2j

)

=
1∏
i=β

(
(1−pg)4i

pg(qβ+nλg)+(1−pg)4i

)
+

β∑
l=2

l∏
i=β

(
(1−pg)4i

pg(qβ+nλg)+(1−pg)4i

)
·
α+2−l∏
j=α

(
(1−pa)2j

pa(qα+nλa)+(1−pa)2j

)

We now look at the same type of experiment for an arbitrary input wire where A is given a corrupt gate
button only. Using the same reasoning as above we see that the probability of a majority of corrupt gates for
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any input wire is at most

1∏
i=λg

(
(1−pg)4i

pg(qβ+nλg)+(1−pg)4i

)
+

2∏
i=λg

(
(1−pg)4i

pg(qβ+nλg)+(1−pg)4i

)
+

...
dλg2 e∏
i=λg

(
(1−pg)4i

pg(qβ+nλg)+(1−pg)4i

)

=
dλg2 e∑
l=1

l∏
i=λg

(
(1−pg)4i

pg(qβ+nλg)+(1−pg)4i

)

Finally we consider the experiment for an arbitrary input wire where A is given a corrupt authenticator
button only. Using the same reasoning as in the two above cases we see that the probability of a majority of
corrupt authenticators for any input wire is at most

1∏
l=λa

(
(1−pa)2l

pa(qα+nλa)+(1−pa)2l

)
+

2∏
l=λa

(
(1−pa)2l

pa(qα+nλa)+(1−pa)2l

)
+

...
dλa2 e∏
l=λa

(
(1−pa)2l

pa(qα+nλa)+(1−pa)2l

)

=
dλa2 e∑
v=1

v∏
l=λa

(
(1−pa)2l

pa(qα+nλa)+(1−pa)2l

)

As we already argued, in the experiment A is given more power than in an execution of IGb so the statement
follows.

7 Performance Comparison

The communication complexity ofTinyLEGO(and other LEGO-based protocols [NO09,FJN+13]) isO(qks/logq).
This is asymptotically better than other recent maliciously secure two-party protocols based on garbled circuits
[Bra13, Lin13, HKE13, AMPR14, FJN14] which achieve at best O(qks). On the other hand TinyLEGO has
more overhead per gate due to bucketing, wire authenticators and solderings. The natural questions are therefore
(1) how do we perform compared to other LEGO-based protocols and (2) which concrete circuit sizes are
required for our protocol to outperform other 2PC protocols not based on LEGO.

We base our performance comparison on efficiency counts based on bits needed to be communicated. This
allows others to do the same and do reasonable comparison to our protocol. We have chosen this benchmark since
experience from implementations of protocols based onYao’s garbling [KSS12, FN13, FJN14] show that with real-
istic circuits the communication overhead in general becomes themajor bottleneck. Especially the communication
from the constructor (A) to the evaluator (B). So in our analysis we focus solely on this and ignore the overhead that
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does not depend on the circuit size. Comparing this way only makes sense for large circuits where the fraction of
input and output wires compared to the total number of wires is small. This is the case for many real world circuits.

With the recent advent of the half-gate garbling scheme [ZRE15] each garbled gate is represented using
as little as 2κ bits while still being compatible with the free-XOR technique [KS08]. With minor modification
this scheme also fulfills the requirements for a key-size preserving free-XOR garbling scheme. In this efficiency
count we will therefore instantiate our protocol using this garbling scheme together with the recent commitment
scheme of [FJNT15]. Using half gate garbling most of the values we need to commit to are simply random 0-keys
(and ∆), thus we can exploit that [FJNT15] is more efficient when committing to random values. In order to
do a fair comparison with MiniLEGO we consider this protocol instantiated with these primitives as well.

Prior to [Lin13, HKE13, Bra13] the most efficient non-LEGO protocols required sending 3.1s copies of
the garbled circuits [sS11], resulting in a total communication overhead of 6.2qκs bits. Recent protocols
[Lin13, HKE13, Bra13, AMPR14, FJN14] only require A to send down to s garbled circuits to B, yielding
instead a total of down to 2qκs bits.

In some cases such as [AMPR14, FJN14] the random seed checking optimization [GMS08] can be used to
make the communication overhead of check circuits independent of the circuit size, at the price of additional
computation. This means a communication overhead of c·2qκs for some fraction c<1. Standard values (avoiding
excessive local computation) is c=1/2 [LP11, Lin13, FJN14] or c=3/5 [sS11]. However the random seed checking
optimization is only known to work in the random oracle model. Hence, the smallest communication overhead
of non-LEGO protocols is 2qκs in the standard model and qκs (or even less) in the random oracle model.9

Table 1 shows the amount of data thatAmust send toB for various circuit sizes and security levels. In the table
qκs refers to the minimal communication overhead achieved by non-LEGO protocols in the random oracle model
so far, e.g., with a protocol such as [FJN14] using random seed checking. 2qκs reflects current best non-LEGO
protocols in the standard model, e.g., [Lin13]. Table 1 also shows communication overhead for MiniLEGO and
TinyLEGO. We fix the computational security parameter to k=127 and therefore have κ=128 due to the point-
and-permute optimization used. We also set the digest size of H used in TinyLEGO to k′=80. This is following
the reasoning in [Lin13] on how to choose the digest size for the encoded translation tables therein. For each value
of s and circuit size q, the parameters of MiniLEGO (β′) and TinyLEGO (β,α,pg,pa) have been chosen so as to
minimize the overall communication overhead while still guaranteeing security except with probability 2−s.10

s Protocol Circuit size q
103 104 105 5·105 106 5·106 107 108 109

40 2κs [Lin13] 10,240 10,240 10,240 10,240 10,240 10,240 10,240 10,240 10,240
40 κs [FJN14] 5,120 5,120 5,120 5,120 5,120 5,120 5,120 5,120 5,120
40 MiniLEGO 20,932 16,252 11,572 11,572 11,572 6,892 6,892 6,892 6,892
40 TinyLEGO 15,378 10,611 8,184 6,977 6,489 6,095 5,943 5,410 4,859

60 2κs [Lin13] 15,360 15,360 15,360 15,360 15,360 15,360 15,360 15,360 15,360
60 κs[FJN14] 7,680 7,680 7,680 7,680 7,680 7,680 7,680 7,680 7,680
60 MiniLEGO 42,442 31,090 25,414 19,738 19,738 14,062 14,062 14,062 14,062
60 TinyLEGO 26,334 17,644 13,326 11,667 10,933 9,593 9,407 7,864 7,211

80 2κs [Lin13] 20,480 20,480 20,480 20,480 20,480 20,480 20,480 20,480 20,480
80 κs [FJN14] 10,240 10,240 10,240 10,240 10,240 10,240 10,240 10,240 10,240
80 MiniLEGO 63,256 43,240 36,568 29,896 29,896 23,224 23,224 23,224 16,552
80 TinyLEGO 39,651 26,111 19,644 16,808 16,112 14,099 13,510 11,617 10,759

Table 1. Amount of bits A sends to B for each gate of the circuit with κ=128 (ignoring data independent of q).

9 Because all gates in TinyLEGO are garbled using the same global difference ∆, we cannot immediately use the
[GMS08] optimization.

10 This paper does not give a method for finding the provably optimal parameters. Instead, we searched for good
parameters using a script.
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As expected we outperform MiniLEGO on all circuit sizes. This is due to our optimizations of how buckets
are constructed and the flexible way of choosing the cut-and-choose check fraction. The circuit size where
TinyLEGO outperforms the non-LEGO protocols depends on whether or not random seed checking is used. If
not, this happens at some point between circuits of size 104 and 105 for s=40 and s=60. For s=80 it happens
for circuit sizes between 105 and 5·105. With random seed checking a circuit size of around one billion gates
is necessary before TinyLEGO is on par with non-LEGO protocols.

Once again we stress that this is only a rough indicator of performance. Many factors are not taken into
account here, including cases where local computation is the bottleneck and circuits where a considerable
fraction of the wires are input and output wires. In the latter case, however, we expect TinyLEGO to compare
well with existing protocols.

To give a more precise idea of when TinyLEGO performs better than recent protocols in the standard model
such as [Lin13] (without random seed checking) Table 2 shows, for κ=128, k′=80, different values of s and
some selected parameters α, β, pa, pg, the minimal circuit size q where our protocol outperforms [Lin13] with
respect to communication overhead. As before, the parameters α, β, pa, pg are simply the best that we were
able to find. Again we see that bigger circuits yield better relative performance of TinyLEGO.

s α β pa pg q [Lin13] TinyLEGO

40 3 4 0.05 0.05 2,515,625 10,240 6,137 (0.60)
40 3 4 0.10 0.10 928,883 10,240 6,489 (0.63)
40 3 4 0.15 0.15 501,271 10,240 6,883 (0.67)
40 3 4 0.30 0.25 195,597 10,240 7,952 (0.78)
40 4 5 0.15 0.20 27,335 10,240 9,250 (0.90)

60 4 5 0.05 0.05 5,289,299 15,360 9,474 (0.62)
60 4 5 0.10 0.10 2,078,540 15,360 10,012 (0.65)
60 4 5 0.20 0.25 593,941 15,360 11,887 (0.77)
60 5 4 0.25 0.10 157,297 15,360 12,751 (0.83)
60 7 6 0.05 0.20 53,728 15,360 14,333 (0.93)

80 5 6 0.10 0.05 6,603,497 20,480 13,684 (0.67)
80 7 6 0.02 0.10 2,120,537 20,480 15,211 (0.74)
80 6 7 0.10 0.15 324,250 20,480 17,584 (0.86)
80 7 8 0.10 0.10 109,900 20,480 19,366 (0.95)

Table 2. Bits sent from A to B for each gate of the circuit in [Lin13] compared to TinyLEGO for various parameters.
Data independent of circuit size is ignored. The numbers in parentheses are the relative communication overhead of
TinyLEGO compared to [Lin13]. The numbers of TinyLEGO have been computed using (4) in Section 7.1.

We conclude that TinyLEGO is indeed competitive for realistic circuit sizes. For instance, for 40-bit statistical
security our bandwidth becomes 10% better than [Lin13] at only 27,335 gates and at 928,883 gates our protocol
achieves a 37% improvement. For 80-bit security, we outperform [Lin13] slightly at 109,900 gates and at 6,6
million gates we achieve 33% less bandwidth.

Also our efficiency count shows that TinyLEGO is definitely an improvement in the family of LEGO protocols
[NO09, FJN+13]. In addition it is among the most efficient constant round 2PC protocols, depending on circuit
size and which optimizations can be applied.

7.1 Counting TinyLEGO communication

We here elaborate on how the numbers in Section 7 were computed. We ignore any terms that do not depend
on the circuit size. In Garble for each original gate of f , A must send β/(1−pg−εg) garbled gates and commit
to three values for each of these. In addition, for each gate A also needs to construct and send α/(1−pa−εa)
wire authenticators, where each authenticator involves sending 2k′-bits and committing to a random value.
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In the cut-and-choose step, we expect β
(1−pg−εg)pg gates to be checked and for each A opens to three commit-

ted values. Similarly, in the cut-and-choose of authenticators, we expect B to check α
(1−pa−εa)pa authenticators,

having A open one committed value. Finally, soldering requires A to open 3(β−1)+α+2 commitments for each
original gate. Summing up we see that A in total sends

β(g+3c)
(1−pg−εg)

+ α(2k′+c)
(1−pa−εa) + β3opg

(1−pg−εg)
+ αopa

(1−pa−εa) +3o(β−1)+oα+2o

= β(g+3c+3opg)
(1−pg−εg)

+α(2k′+c+opa)
(1−pa−εa) +o(3(β−1)+α+2) (4)

bits pr. original gate of f where g is the size of a garbled gate, c is the cost in bits of committing to a value and
o is the cost of opening a value in bits using FHCOM.

On the Instantiating Primitives. As already mentioned we use the half-gate garbling scheme of [ZRE15] and
the homomorphic commitment scheme of [FJNT15] to instantiate IGarb. Following this and relating to the
calculation above we therefore have g=2κ for the garbled gates. For the commitments c=Γ if the commitment is
a chosen value where Γ here is the length of the error correcting code used. However c=Γ−κ if the commitment
is a random value. As we are using half-gates we see that the two input 0-keys of a garbled gate are chosen
at random in our protocol, while the output 0-key is computed as a function of the input keys. Therefore we
conclude that A sends 2(Γ−k)+Γ bits to commit to the wires of each garbled gate. The length of the code
depends on the statistical security parameter used. We see that for statistical security s, we need a linear
code with minimum distance d≥ s. For κ= 128 and s= 40,60,80 one can use binary codes with parameters
[262,128,40], [345,128,60], and [428,128,81], respectively. The first two codes were found in the MinT database
[SS06, SS10] and the last one using the BCH encoder/decoder program available at the website of [MZ06].
Finally we note that all the openings of the homomorphic commitments in our protocol can be done using the
batch-opening technique of [FJNT15] and thus require κ bits of communication each.
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9 Overview of Variables and Parameters

A list of variable names and their meaning is given in Table 3.

Symbol Meaning
s Statistical security parameter.
k Computational security parameter.
k′ The number of output bits of the hash function H.
κ The bit-length of the keys of the garbling scheme G.
f The plain description of the Boolean circuit to compute.
x A bit string representing the constructor’s (A’s) input to the circuit.
y A bit string representing the evaluator’s (B’s) input to the circuit.
zA The circuit output destined for A.
zB The circuit output destined for B.
z The output of the circuit, defined as z=zA‖zB.
q Amount of AND gates in f .
nA Amount of input bits to the circuit from A, defined as nA = |x|.
nB Amount of input bits to the circuit from B, defined as nB = |y|.
n Total amount of input bits to the circuit, defined as n=nA+nB.
mA Amount of output bits of the circuit for A, defined as mA = |zA|.
mB Amount of output bits of the circuit for B, defined as mB = |zB|.
m Total amount of output bits from the circuit, defined as m=zA+zB.
w Amount of wires in f , defined as w=n+q.
pg Fraction of garbled gates that should be checked.
εg Fraction of garbled gates we need to get sufficient “slack”.
pa Fraction of authentication wires that should be checked.
εa Fraction of authentication wires we need to get sufficient “slack”.
β The amount of gates in each bucket.
α The amount of authenticators for each bucket.
λg The amount of gates in an input bucket.
λa The amount of authenticators used for each input wire.
`g The gate replication factor, defined as `g= 1

1−pg−εg .
`a The authentication wire replication factor, defined as `a= 1

1−pa−εa .
Q The total amount of garbled gates we need to construct, defined to be Q=(qβ+nλg)`g.
A The total amount of authenticators we need to construct, defined to be A=(qα+nλa)`a.
W The amount of wires considered in a protocol execution, defined to beW =3Q+A+1+2s.
∆ The global difference on all wires, has index τ .

Wires All the wires of the circuit f , in particular Wires={1,...,w}.
Inputs Subset of the wires of f , in particular Inputs={1,...,n}.
Gates Subset of the wires of f , in particular Gates={n+1,...,w}.

Outputs Subset of the wires of f , in particular Outputs={w−m+1,...,w}.
Bof A β-to-1 map from garbled gates to buckets which represent gates of f .
Bug The bucket corresponding to the circuit gate g∈Gates.

AWof A α-to-1 map from authenticators to buckets.
Auj The authenticators associated to the circuit wire j∈Wires.

HeadGates The set of head gates of the buckets defined by Bof. Thus |HeadGates|=q.
LINP The set of head gates which has as left input wire a circuit input wire.
RINP The set of head gates which has as right input wire a circuit input wire.

BLEAK The set of indices for which B is allowed to decode a corresponding key,
in particular BLEAK={nA+1,nA+2,...,n}∪{w−mB+1,w−mB+2,...,w}.

Table 3. Overview of variables along with their meaning.
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