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Abstract. We analyse the security regarding timing attacks of imple-
mentations of the decryption in McEliece PKC with binary Goppa codes.
First, we review and extend the existing attacks, both on the messages
and on the keys. We show that, until now, no satisfactory countermea-
sure could erase all the timing leakages in the Extended Euclidean Algo-
rithm (EEA) step. Then, we describe a version of the EEA never used
for McEliece so far. It uses a constant number of operations for given
public parameters. In particular, the operation flow does not depend on
the input of the decryption, and thus closes all previous timing attacks.
We end up with what should become a central tool toward a secure
implementation of McEliece decryption.

1 Introduction

Context of this work. Code-based cryptography relies on the hardness of de-
coding, that is recovering m and e when given only c = mG + e and G (for
m ∈ Fkq ,G ∈ Fk×nq and e ∈ Fnq ). Indeed, decoding was proved to be exponen-
tially difficult in the Hamming weight of e when no structure is known on G in
[2]. However, the error weight is critical for security for another reason: contrary
to the public parameters of the code which are fixed at set by an external entity,
the error may vary at each encryption, and may even be chosen by any public
user (in some situations).

Therefore, a problem arises in most of the implementations of McEliece pro-
posed (e.g. in [5,6,14,13]) because the operation flow of the decryption is strongly
influenced by the error vector, but no information is known about the error vec-
tor when starting decryption. From an attacker’s point of view, this is a favorable
situation. It means that the observed or manipulated device may leak informa-
tion before any detection of the attack. These security aspects were addressed
by various authors, who explained that a device implementing an unprotected
decryption is prone to attacks on the messages [12,1] and on the key [15,16].
Although countermeasures were proposed against some of the leakages, the situ-
ation is still unsatisfactory, as it is noticed in the conclusion of [16]. In particular,
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to the best of our knowledge, no decryption algorithm requiring a number of
steps independent of the error weight was described. The work of Bernstein et
al. in [4] claims to achieve this goal, but some steps of the decryption (including
the extended Euclidean algorithm (EEA) in the decoding) are skipped in the
description, and no implementation is publicly available.

Our contributions. First, we gather the different weaknesses revealed in [12,1,15,16].
In particular, we detail the attacks of Strenzke and show that they can be ex-
tended to bypass the countermeasure of [15]. All these attacks targeted only one
of the two known methods for decoding a binary Goppa code (namely Patter-
son algorithm). Along with our presentation, we evaluate how/if those threats
transpose to the other decoding method (ie the alternant decoder). Our central
contribution consists in describing an EEA tailored for the alternant decoder
which has a flow of operations independent of the error vectors (Alg. 10). It was
inspired by a work of Berlekamp [3]. We explain step-by-step the construction
of the algorithm, and provide completeness proofs (which we could not find in
the literature).

2 McEliece Public-Key Encryption

We recall in Alg. 1 the encryption and decryption in McElice PKC instantiated
with a binary Goppa code, that is q = 2. The public key is G a k×n matrix over
Fq whose rows generate a Goppa code described by the secret elements x ∈ Fnqm
and g(z) ∈ Fqm [z] of degree t.

Algorithm 1 McEliece Cryptosystem

Parameters : Field size q, code length n and dimension k, parameters m, t such that
n−mt 6 0. Plaintext space: Fkq . Ciphertext space: Fnq .
KeyGen : Pick a support x ∈ Fnqm , a polynomial g ∈ Fqm [x] of degree t, G a generator
matrix of G (x, g). Public key : Gpub = SGP, t the correction capacity of the code
G (x, g).
Private key : Tt a t-decoder for G (x, g) , S a random full rank (n − k) × (n − k)
matrix , P a random n× n permutation matrix.

Encrypt :

1: Input m ∈ Fkq .
2: Generate random e ∈ Fnq with
wH(e) = t.

3: Output c = mGpub + e.

Decrypt :

1: Input c ∈ Fnq .
2: Compute m̄ = Tt(cP

−1)).
3: If decoding succeeds, output S−1m̄, else

output ⊥.

Now we detail the possible decoders Tt for a binary Goppa code. Suppose
one wants to decode an encoded message m ∈ Fkq with errors e: c = mG + e,
where the Hamming weight of e (denoted in the rest of this article by wH(e))
satisfies wH(e) 6 t. We write e = (. . . , 0, ei1 , 0, . . . , 0, eiw , 0, . . . ). Two methods
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exist for decoding. The one uses the fact that Goppa codes belong to the larger
class of alternant codes, so we refer to this method as the Alternant Decoder.
The other one, called Patterson Algorithm, is specific to binary Goppa codes.
For both, the main steps are :

1. Compute the polynomial syndrome S(z), a univariate polynomial de-
duced from c, but depending only on e.

2. Solve the key equation, which is an equation whose unkowns are univariate
polynomials, using an EEA. The solutions give access to the error locator
polynomial σe(z), whose roots are related to the support elements xij in
the error positions ij . It also the yields the error evaluator polynomial
ωe(z) (helpful to find the values of the errors).

3. Find the roots of σe(z). Here e ∈ Fn2 , so eij 6= 0 implies that eij = 1.

The polynomial syndromes, key equations and their resolutions are specific
to each method. We briefly sum them up.

Polynomial syndrome Polynomial syndrome

SAlt,e(z) =
∑2t−1
`=0

(∑n−1
i=0 cig(xi)

−2x`i

)
z`. SGop,e(z) =

∑n−1
i=0

ci
z−xi

mod g(z).

Polynomials to be recovered Polynomials to be recovered

σinv,e(z) =
w∏
j=1

(1− zxij ), σe(z) =
w∏
j=1

(z − xij ),

ωinv,e(z) =
w∑
j=1

eijg(xij )−1
w∏
s=1
s6=j

(1− zxis). ωe(z) =
w∑
j=1

w∏
s=1
s 6=j

(z − xis).

Key equation Key equation
(σinv,e, ωinv,e) unique solution of (σ1, σ2) unique solution of{
ωinv,e(z) = σinv(z)SAlt,e(z) mod z2t,

deg(σinv) 6 bt/2c, deg(ωinv) < bt/2c.

{
τ(z)σ2(z) = σ1(z) mod g(z),

deg(σ1) 6 bt/2c,deg(σ2) < bt/2c,
τ(z) =

√
SGop,e(z)−1 + z mod g(z).

Resolution Resolution
EEA(z2t, SAlt,e, t) outputs 1.EEA(g(z), SGop,e(z), 0)
(µσinv, (−1)Nµωinv), µ ∈ F∗qm , N > 0. outputs (S−1Gop,e mod g),

2.EEA(g(z), τ, bt/2c)
outputs (σ1, σ2).

Error recovery Error recovery
σe(z) = zwσinv(1/z). σe(z) = σ1(z)2 + zσ2(z)2,
Find the roots of σe. ωe = σeSe mod g.

Find the roots of σe.

Fig. 1: Alternant Decoder Fig. 2: Patterson Algorithm
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Completeness proofs are classic coding theory literature. For details, see for
instance [7][Ch. 12 §9] for the Alternant Decoder and [18,9] for Patterson Algo-
rithm.

The extended Euclidean Algorithm which is used in all the available im-
plementations (see [5,6,14,13]) consists in successive Euclidean divisions as in
Alg. 2. Its complexity is in O(deg(a)2) field multiplications. It is to be noticed
that asymptotically better algorithms exist, generally referred to as Fast EEA or
HGCD (for Half-GCD), with complexity O(deg(a) log deg(a)). The reason not
to use them here is that constants are hidden in the O (see for details [19]).
Consequently, for the degrees at stake in McEliece decryption (6 200), those are
not more efficient than Alg. 2.

Algorithm 2 Extended Euclidean Algorithm (EEA)

Input: a(z), b(z), deg(a) > deg(b), dfin
Output: u(z), r(z) with b(z)u(z) = r(z) mod a(z) and deg(r) 6 d

1: r−1(z)← a(z), r0(z)← b(z),u−1(z)← 1, u0(z)← 0,
2: i← 0
3: while deg(ri(z)) > dfin do
4: i← i+ 1
5: qi ← ri−2(z)/ri−1(z) (quotient of the Euclidean division of ri−2(z) by ri−1(z))
6: ri ← ri−2(z)− qi(z)ri−1(z) (rest of the Euclidean division of ri−2(z) by ri−1(z))

7: ui ← ui−2(z)− qi(z)ui−1(z)
8: end while
9: N ← i

10: return uN (z), rN (z)

For the EEA executions solving the key equations (EEA in Alternant decoder,
second EEA in Patterson algorithm), the paragraph §5 of [18] gives refined com-
plexities of respectively 7.5twH(e) and 3.5twH(e). For the syndrome polynomial
inversion in the Patterson decoding (first EEA), a quick analysis shows that,
the number of field multiplications is bounded by 2t2. We obtain with an error
vector of weight t a cost in field multiplications of 7.5t2 for the Alternant decoder
and 5.5t2 for Patterson algorithm. This is why Patterson algorithm is generally
preferred.

3 Decryption oracle attacks

The attacker hass a ciphertext c. He also has access to a decryption oracle. He
can request decryption of any message c′ 6= c and observe the execution of the
decryption.
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3.1 Plaintext-recovery attacks

In [12,1,15], the authors described attacks using the same framework. They ex-
ploit a decryption oracle to recover the plaintext from an encrypted message c.
Those focus only on Patterson method for decoding (Fig. 2). Here, we apply the
different attacks proposed to both decoding algorithms in order to determine
which one is the most resistant.

Generic attack scenario. The common framework is summed up in Alg. 3.

Algorithm 3 Framework for message-recovery attacks on a decryption device.

Input: A valid ciphertext c = mGpub + e, a decryption device D.
Output: The error vector e and plaintext m.

1: for i = 0, . . . , n− 1 do
2: Modify c into c?i = c + (0, . . . , 0, 1︸︷︷︸

i−th bit

, 0, . . . ).

3: Request decryption D(c?i).
4: Deduce by timing analysis or power consumption of D whether ei = 0 or ei = 1.
5: end for
6: Solve the linear system with unknown m: mGpub = c + e.
7: return Plaintext m.

Alg. 3 describes an attack against a McEliece encryption scheme. The same
framework is applicable against Niederreiter encryption when a public encryption
key Hpub is known. It suffices to replace Step 2 by

2: Modify c into c?i = c + H
(i)
pub, where H

(i)
pub denotes the i-th row of Hpub.

In CCA2 conversions, a condition is imposed to the error. Ciphertext manip-
ulation is detected thanks to a test on the validity of the error and the algorithm
outputs a failure: the attacker only checking the output does not recover infor-
mation except that the ciphertext was not valid.

Historically, the first method was explained in [17] and refined in [1]. It dates
back to 2008 and focuses on the determination of the roots of the error loca-
tor polynomial σe(z) (Figure 2). The authors of [1] and [17] propose convicing
countermeasures against this weakness (see [1][Alg. 4]). Indeed, when starting
the root-finding step, errors of weight lower than t can be detected thanks to the
low degree of the error locator polynomial. This makes this step rather simple
to protect. Unfortunately, this is not sufficient to discard attacks following the
framework of Alg. 3. The reason is that, as first noticed in [12], the EEA deter-
mining σe also has an execution time depending on the error weight. Now we
will focus on the EEA step which is still problematic.
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Exploitation of EEA leakages The authors of [12] focused on Patterson
algorithm (Fig. 2). In the second EEA, implemented as in Alg. 2, the number of
iterations in the while loop depends on the weight of the error. To do so, they
show that the output σ1(z), σ2(z) satisfy the relations:

deg(σ2(z)) =

N∑
i=1

deg(qi)(1) deg(σ1(z)2 + zσ2(z)2) = wH(e)(2)

Thanks to relations (1) and (2), they deduce that, assuming that all the Eu-
clidean divisions in the second EEA have a quotient of degree one (which happens
with probability (1−2−m)N ), the number N of iterations in the while loop varies
as in Table 1. These variations of N can be detected either by measuring time
execution or counting the number of patterns on a power consumption trace.
Thus, they provide a successful tool to perform Alg. 3 and recover a plaintext.

Countermeasure. To protect against the previous attack, the authors of [12]
propose to check the degrees of the polynomials processed by the EEA during
its execution instead of checking only the output. We recall that, in Patterson’s
decoding, the error locator polynomial is split into even and odd part: σe(z) =
σ1(z)2 + zσ2(z)2. [12] gives a precise description of the degrees to be expected
for σ1(z) and σ2(z) according to the weight of the error, recalled in Table 1.

t = 2t′ t = 2t′ + 1
N deg(σ1) deg(σ2) N deg(σ1) deg(σ2)

wH(e) = t+ 1 6 t′ − 1 = t′ 6 t′ − 1 6 t′ 6 t′ = t′

wH(e) = t 6 t′ − 1 = t′ 6 t′ − 1 = t′ 6 t′ − 1 = t′

wH(e) = t− 1 = t′ − 1 6 t′ − 1 = t′ − 1 6 t′ − 1 = t′ − 1 6 t′ − 1

wH(e) = t− 2 6 t′ − 2 = t′ − 1 6 t′ − 2 = t′ − 1 6 t′ − 2 6 t′ − 1

Table 1: Degrees of the output polynomials of EEA(g(z), τ(z), bt/2c).

They deduce Alg. 4, a modified EEA which detects the ciphertext manip-
ulation and completes the computation to take same execution time both on
the ciphertext c and on the twisted c?i. With this version, the authors claim to
obtain a decryption time taking a constant number of clock cycles. This would
discard a timing attack. However, no power consumption trace is analyzed. It
remains unclear whether the extra manipulation in Step 9 of Alg. 4, whose execu-
tion implies that ei = 1, is undetectable. In particular, each while iteration will
not have the same execution time. Fakely executing those steps at each iteration
would have a serious impact on the performances.

EEA leakages in the Alternant Decoder. We adapt the framework of Alg. 3 to the
alternant decoder. The alternant decoder, as Patterson one, resorts to an EEA
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Algorithm 4 Protected EEA for Patterson decoding

Beginning as is Alg. 2.

7: ui ← ui−2(z)− qi(z)ui−1(z)

Case t = 2t′.

8: if deg(ri) < t′ then
9: Manipulate ri so that deg(ri) =

deg(ri−1)− 1.
10: end if

Case t = 2t′ +
1

8: if deg(ri) 6 t′ and deg(vi) < t′ then
9: Manipulate ri so that deg(ri) =

deg(ri−1)− 1.
10: end if

End as is Alg. 2.

(Fig. 1) prone to leak information when the error weight varies. The equivalent
of Relations (1) and (2) in this context is

deg(σinv(z)) =

N∑
i=1

deg(qi) =

{
wH(e) if 0 6∈ x

wH(e)− 1 if 0 ∈ x.
(3)

Looking at the degree of the output polynomial of the EEA in Alg. 1, we have
the following link with the weight of the error vector (α denotes the position
of the support such that xα = 0): The error locator polynomial is deduced

deg(σinv) if eα = 0 deg(σinv) if eα = 1

wH(e) = t t t− 1

wH(e) = t+ 1(ei = 0) t t− 1

wH(e) = t− 1(ei = 1) t− 1 t− 2

Table 2: Degrees of the output polynomials of EEA(zt, Se(z), bt/2c).

from σinv(z) when the weight of the error vector is known. Indeed, when 0
is a possible error position, one cannot determine with certainty the degree of
σe(z) from the degree of its reciprocal polynomial σinv(z). The reason is that for
any polynomial p(z) ∈ Fq[z], p(z) and zp(z) have same reciprocal polynomial.
After computing a polynomial σinv(z) of degree d, if 0 belongs to the support,
there are two possibilities, either the index α such that xα = 0 is not an error
position, σe is not divisible by z, then deg(σe) = deg(σinv) and σe(z) is equal to
zdeg(σinv)σinv(z

−1), or α is an error position, and σe(z) = zdeg(σinv)+1σinv(z
−1).

Therefore, in this case, looking at the degree of σinv does not distinguish
manipulated ciphertexts from correct ones, and the EEA cannot be correctly
protected by this method.

Countermeasure. Building up on the countermeasure for Patterson decoding
described in [12], we propose the following adaptation (Alg. 5) to the alternant
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decoder. It always detects ciphertext manipulation provided that 0 is not an
element of the support, and somehow restores a usual behavior of the EEA (that
is, that of a valid ciphertext). The final output will not be the correct plaintext,
but this is not a problem as long as the attacker cannot extract information from
this result. However, we note that this protection has the same drawbacks as its
Patterson equivalent: each while execution does not have same execution time.

Algorithm 5 Protected EEA for Alternant decoder

Beginning as is Alg. 2.

7: vi ← vi−2(z)− qi(z)vi−1(z)
8: if deg(ri) < t then
9: Manipulate ri so that deg(ri) = deg(ri−1)− 1

10: end if

End as is Alg. 2.

3.2 Secret decryption key recovery attacks

We address a different kind of physical attack initiated by Strenzke in [15,16]
against McEliece encryption using Patterson decoding. It aims at recovering the
secret key.

Generic attack scenario. The attack scenario is the following. The attacker has
acces to a decryption device D on which he can perform physical measurements.
He also knows a public encryption key, so that he can generate codewords with
errors of his choice. By observing the decryption phase (more precisely, the EEA
execution), Strenzke shows that one can deduce information on the support
elements corresponding to the error positions. Roughly, the reason is that when
a polynomial condition on those elements is satisfied, the number of iterations
of the while loop in Alg. 2 is reduced compared to the average number of
iterations necessary to perform the EEA for error vectors of same weight. The
attack consists in scanning a lot of error positions and collect sufficiently many
polynomial relations so that the algebraic system obtained can be solved.

We sum up in Alg. 6 the global attack framework arising from [16].

The polynomials Pw will be elementary symmetric polynomials of the form,
for an error e = (0, . . . , ei1 , . . . , eiw , . . . , 0) with wH(e) = w and j > 0:

ωj(e) =
∑

16`1<···<`j6w

xi`1 . . . xi`j .

That is, ωj(e) is the evaluation of the jth elementary symmetric polynomial in
w variables in (xi1 , . . . , xiw).



Toward Secure Implementation of McEliece Decryption 9

Algorithm 6 Framework for key-recovery attacks on a decryption device.

Input: A decryption device D, public encryption key Gpub.
Output: The secret support x.

1: for w well-chosen error weights do
2: for (i1, . . . , iw) subset of {0, . . . , n− 1} do
3: Pick a low-weight error vector e = (0, . . . , ei1 , . . . , eiw , . . . , 0) with wH(e) = w.

4: Request decryption D(e).
5: Perform timing or power consumption analysis of D(e).
6: if EEA execution is faster than average (more precise conditions in this Sec-

tion) then
7: Deduce a polynomial condition on xi1 , . . . , xiw (Pw is a polynomial depend-

ing only on w):
Pw(xi1 , . . . , xiw ) = 0 (4)

8: end if
9: end for

10: end for
11: Solve the non-linear system of all the collected equations (4).
12: return Secret support x = (x0, . . . , xn−1).

State-of-the-art. More precisely, Strenzke uses errors of weights w = 1, w = 4
and w = 6. For w = 6, errors such that Eq. (4) is satisfied are harder to find than
for w = 4. For this reason, his strategy consists in collecting as many Eq. (4)
with w = 1 and w = 4 as possible. He obtains a linear system of rank n−m (in
some cases n−m− 1) in the n elements of the support. Then, he selects subsets
of errors of weight w = 6 to look for Eq. (4). These subsets are chosen so as help
the polynomial system solving. According to Strenzke, for an encryption scheme
with parameters m = 10, n = 2m, t = 40, it takes about 15,000,000 decryption
queries to collect enough equations and 28 hours to solve the algebraic system.
Eventually, the full secret support x is recovered by the attacker, and then the
Goppa polynomial is easy to find. Indeed, it is well explained in [8][p. 125] how,
given the public key, it is possible to recover one from the other in polynomial
time.

First example of leakage exploitable by Framework 6. The first attack
resorting to the method of Alg. 6 was proposed by Strenzke in [15]. It focuses
on the second EEA of Patterson alg. with errors of weight w = 4. In this case,

Se(z) =
∑4
j=1

1
z−xij

= ωe(z)
σe(z)

, and

ωe(z) = (xi1 + xi2 + xi3 + xi4)︸ ︷︷ ︸
ω1(e)

z2+xi1xi2xi3 + xi1xi2xi4 + xi1xi3xi4 + xi2xi3xi4︸ ︷︷ ︸
ω3(e)

.



10 Mariya Georgieva and Frédéric de Portzamparc

If ω1(e) = 0, then Se(z) = ω3(e)
σe(z)

, and S−1e mod g = ω3(e)−1σe(z) therefore

τ(z) =
√
S−1e (z) + z mod g(z) =

√
ω3(e)−1σe(z) + z and τ(z) has degree lower

than bt/2c (for w = 4 we have deg(τ(z)) = 2). As a consequence, the while test
in EEA(g(z), τ(z), bt/2c) is never fulfilled and the number of iterations N is equal
to 0. When ω1(e) 6= 0, deg(τ(z)) > bt/2c with overwhelming probability (τ(z)
is a reduction modulo a polynomial of degree t), so that N > 0. This allows to
collect many equations of the form

xi1 + xi2 + xi3 + xi4 = 0.

As Strenzke explains, the final system’s rank never exceeds n−m. So it is not
sufficient in practice to recover the private key and one has to assume that some
other parts of private elements are required. Still, he proposes a counter-measure
to avoid this information leakage.

Countermeasure to protect Second EEA by Strenzke. Strenzke proposes to detect
the polynomials τ(z) leading to this leakage by checking if deg(τ(z)) < bt/2c.
This can be done just after the determination of τ(z). If so, manipulate τ(z) so
that is has degree t− 1.

Algorithm 7 Patterson decoding with Strenzke’s countermeasure against
weight 4 errors leakages

Input: n− k-bit syndrome s = HeT with wH(e) 6 btc, private key (x, g(z))
Output: The error vector e.

1: Polynomial Syndrome Determination: Idem Fig. 2.
Computation of τ(z):

2: Find f(z) such that f(z)Se(z) = 1 mod g(z) by · , f(z) = EEA(g(z), Se(z), 0)
3: Set τ(z) =

√
f(z) + z.

4: if deg(τ(z)) < bt/2c then
5: Manipulate τ(z) so that deg(τ(z)) = t− 1.
6: end if
7: Error Locator Polynomial Determination & Error Vector Determina-

tion
Idem Fig. 2.

This countermeasure avoids leaking information only in the second EEA,
only when decoding errors of weight 4. Exploitable leakages remain, as shown in
the next paragraph.

Leakage in the first EEA of Patterson Decoding. In order to complete
the attack initiated in [15], Strenzke proposed in [16] to apply Alg. 6 by focusing
on time leakages in both EEA’s of Patterson decoding. In [16][Corollary 1], he
gives the number of iterations of the while loop in the first EEA. We recall it
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here, and complete it with the analogous result for the second EEA (which we
could not find in [16]).

Lemma 1. Let C = G (x, g(z)) be a binary Goppa code and Se(z) the polynomial
syndrome associated to an error e with wH(e) 6 deg(g)/2 − 1. Write Se(z) =
ωe(z)
σe(z)

mod g(z). Let NI and NK be the number of iterations of the while loop

respectively in EEA(g(z), Se(z), 0) and EEA(g(z), τ(z), bt/2c). Then

NI 6 deg(ωe(z)) + deg(σe(z)) and NK 6 deg(ωe(z))/2. (5)

Proof. The result on NI is proved in [16][Corollary 1]. Regarding NK , observe
that v0 has degree 0 and vNK

= σ2(z) has degree deg(ωe)/2 (since by derivating
the relation σ = σ2

1 + zσ2
2 we obtain ωe = σ2

2). As the degrees are raised at least
by one at each iteration, we obtain NK 6 deg(ωe)/2.

Let’s apply this small weight error vectors. Note that, for any error e, deg(σe) =
wH(e).

For an error weight w = 4. Pick e = (0, . . . , ei1 , . . . , ei4 , . . . , 0). We know
that ωe(z) = ω1(e)z2 + ω3(e). Lemma 1 gives the number NI of iterations in
EEA(g(z), Se(z), 0) satisfies

xi1 + xi2 + xi3 + xi4 6= 0 =⇒ NI = 6,
xi1 + xi2 + xi3 + xi4 = 0 =⇒ NI = 4.

Therefore, even if the second EEA has been protected with Strenzke’s counter-
measure, errors of weight w = 4 leak the same information in the first EEA.
This does not give enough equations. To complete the algebraic system, the idea
is to use error weights w = 6.

For an error weight w = 6. For e = (0, . . . , ei1 , . . . , ei6 , . . . , 0), we develop
SGop,e(z) :

SGop,e(z) =
ω1(e)z4 + ω3(e)z2 + ω5(e)

σe(z)
.

Strenzke’s purpose is to detect for which e is holds that ω3(e) = ω1(e) = 0.
These cases are exactly those with Se(z)−1 = ω5(e)−1σe(z) and hence deg(τ(z)) <
bt/2c, so that the number of iterations in the second EEA is 0 provided that
Strenzke’s counter-measure is not applied. This is a somehow surprising
proposition, since this criterion can be rendered useless by a counter-measure
already proposed by the same author.

Combination of first and second EEA. When using error weights w > 6,
the attacker will encounter problems due to the fact that all the values given in
3 are only bounds (except in the cases N 6 0). Indeed, it may happen that one
of the Euclidean divisions entails a degree fall greater than 1 independantly of
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EEA(g, Se, 0) EEA(g, τ, bt/2c)

wH(e) = 4
ω1(e) 6= 0 NI 6 6 NK 6 1

ω1(e) = 0 NI 6 4* NK = 0+ CM deg(τ) < bt/2c+

wH(e) = 6
ω1(e) 6= 0,ω3(e) 6= 0 NI 6 10 NK 6 2
ω1(e) = 0,ω3(e) 6= 0 NI 6 8 NK 6 1

ω1(e) = 0,ω3(e) = 0 NI 6 6 NK = 0* CM deg(τ) < bt/2c

wH(e) = 2w′
ω1(e) 6= 0,ω3(e) 6= 0 NI 6 4w′ − 2 NK 6 w′ − 1
ω1(e) = 0,ω3(e) 6= 0 NI 6 4w′ − 4 NK 6 w′ − 2
ω1(e) = 0,ω3(e) = 0 NI 6 4w′ − 6 NK 6 w′ − 3

Table 3: Overview of small- error-weight message attacks. Cases marked with a
* or a + are proposed resp. in [15] and [16].

the degree of ωe. For example, with w = 6, the attacker may observe NK = 1
whereas ω1(e) is not zero. This remark leads Strenzke to discard those cases for
an attack as long as no way of distinguishing thoses cases is found. We propose
such distinguisher, by using NI to determine if ω1(e) is zero, as ω1(e) = 0 implies
NI 6 8. Indeed, an attacker observing the errors e with (NI , NK) = (10, 1) can
conclude that ω1(e) 6= 0 (cf Table 3). We may have (NI , NK) = (8, 1) when
ω1(e) 6= 0 if three cancellations occur in the 12 intermediate polynomials, which
has probability p3 =

(
12
3

)
2−3m(1 − 2−m)9 ≈ 2.10−7 for m = 10 (we model the

leading coefficients as random elements of F2m). When sampling x error vectors,
we expect to find p3x such misleading cases. With the numbers of samples from
[16][Table 2], the probability to find one is not negligible. If at least one wrong
equation is deduced, the system to solve has no solution and the attack fails. We
propose to avoid this problem by using errors with w > 8.

Example w = 8. We sampled randomly 10,000,000 errors e of weight 8 and
collected the couples (NI , NK) in Table 4. When wH(e) = 8, there are more
possibilities than with w = 6. Samples with (NI 6 12, NK 6 2) do not necessarily
have ω1(e) = 0: this happens with probability p′3 =

(
17
3

)
2−3m(1 − 2−m)14 ≈

6.10−7 for m = 10 (we found 3). In particular, the case marked with a ∗ in
Table 4 would make the attacker to think erroneously that the corresponding
error vector satisfies ω1(e) = 0. However, the number of parasitic cancellations
necessary to provide values (NI , NK) compatible with (ω1(e), ω3(e)) = (0, 0) is 6,
which happens with probability p′3 =

(
17
6

)
2−6m(1− 2−m)11 ≈ 10−14 for m = 10.

If ω1(e) = 0 but ω3(e) 6= 0, then a couple (10, 1) is found if 3 cancellations
occur. This has probability 2−mp′3 ≈ 6.10−10 (as ω1 takes all the values of F2m

with same probability). Therefore, we are able to say without ambiguity when
(ω1(e), ω3(e)) = (0, 0) on a considerable amount of samples. We deduce from our
samples 10 equations ω1(e) = 0 which are correct with proba. (1− 10−7) and 10
equations ω3(e) = 0 correct with proba. (1 − 10−3). To conclude, although our
method requires more samples than the previous one (around 109 to collect some
thousands equations with ω1, and dozens with ω3), we showed that it is possible
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No parasitic 1 parasitic 2 parasitic 3 parasitic
cancellation cancellation cancellations cancellations

ω1(e) 6= 0
ω3(e) 6= 0

(14,3): 9855087
(13,3): 115439
(14,2): 18916

(12,3): 614
(12,2): 1 ∗

(11,3): 2
(13,2): 248
(14,1): 8

ω1(e) = 0
(12,2): 9570

(11,2): 96 (10,2): 0
ω3(e) 6= 0 (12,1): 8 (11,1): 0

ω1(e) = 0
(10,1): 10 (9,1): 0 (8,1): 0

ω3(e) = 0

Table 4: Number of samples for each (NI , NK) for 10,000,000 error vectors with
w = 8. Code parameters: m = 10, n = 2m, t = 40. See text for explanation on ∗.

to recover information on the support even if the countermeasure deg(τ) < bt/2c
is implemented.

Small weight error messages in Alternant decoder We determine if an
attacker can retrieve any information by applying Alg. 6 if the Alternant decoder
is implemented. Lemma 2, which is analogous to Lemma 1, analyses the impact
of small weight error messages on the EEA.

Lemma 2. Let e be an error with wH(e) 6 t. Then SAlt,e(z) =
ωinv,e(z)
σinv,e(z)

mod z2t and the number of iterations N of the while loop of the Alternant
decoder in the EEA satisfies

N 6 Nmax = min(deg(σinv,e),deg(SAlt,e)− deg(ωinv)) (6)

Specific case of weight 1 errors. If w = 1, we always have deg(ωinv) = 0 and
deg(σinv) = 1 except if the error is positioned in the zero element of the support.
Indeed, in this case, the polynomial syndrome is a constant: Se(z) = 1

g(0)2 and

the while loop is never executed.

Error weights w > 1. We suppose that no error occurred in the zero element of
the support so that deg(σinv) = wH(e) always holds (the coefficient of zw in σinv
is xi1 . . . xiw). Therefore, faster decryptions indicate the cancellation of a leading
coefficient in the intermediate values, but in the alternant decoder we found no
way of determining which intermediate value was concerned. If by any chance
a power analysis can ensure that it is the first intermediate polynomial (that
is, the syndrome polynomial SAlt,e(z)) that has a degree smaller than expected,
then the information recovered would be:

w∑
j=1

g(xij )−2
w∑
j=1

x2t−1ij
= 0. (7)
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We observe that the equations written thanks to this method are more com-
plex than with Patterson algorithm, at least for two reasons. First, they are not
directly polynomial, and the degrees implied are much higher. Second, as both x
and g have to be unknown ([8][p. 125]), additive unknowns are necessary: either
t + 1 to describe the secret polynomial’s coefficients, or n if we introduce new
equations yi = g(xi)

−2. We conclude that the alternant decoder is intrinsically
more resistant to Strenzke’s attacks. However, the overall security is still not
clear due to the uncertainty on the countermeasure (described in Alg. 5) against
Alg. 3.

4 Extended euclidean Algorithm with constant flow

We expose a way of implementing the EEA algorithm unused so far for McEliece
decryption. It has the very interesting property of requiring a number of opera-
tions depending only on the Goppa polynomial degree t and not on the weight
of the error introduced in the ciphertext. Therefore, the attacks of 3.1 and 3.2
are not possible.

It is inspired by Berlekamp’s work in [3] (which as followed by other works of
optimization in the VLSI community, amongst many others [10,11]). We could
find no reference to it in any paper related to McEliece. On the contrary, de-
signing such an algorithm is desirable goal according to the conclusion of [16].
The reason may be that [3] has a very limited access, and we could find no com-
pleteness proofs of the algorithm proposed. Here, we transform smoothly the
original EEA (Alg. 2) into successive version gaining in regularity (Algorithms
8 and 9). We end up with Alg. 10, which is simpler and more regular than all
the previous ones. At each step, we give and prove (in Appendix) the form of
the outputs and intermediate values. Finally, each execution of Alg. 10 costs, in
field multiplications, exactly 16t2 (2t times a loop costing 4× 2t).

In the rest of this article we will set N be the number of Euclidean di-
visions performed during EEA(z2t, SAlt(z), t) in Alg. 2, di = deg(ri(z)), and
δi = deg(qi(z)) = deg(ri−2)− deg(ri−1).

For any polynomial P (z) ∈ Fqm [z], we denote its coefficients by Pj even for
j > deg(P ) (in which case Pj = 0), so that

P (z) =
+∞∑
j=0

Pjz
j = Pdeg(P )z

deg(P ) + · · ·+ P0.

Regarding the δi’s, we prove the following result which will be very useful to
design an algorithm with regular pattern:

Lemma 3. Let the δi’s be defined as previously during the execution of EEA(z2t, Se(z), t),
then it holds that

N∑
i=1

δi = deg(uN (z)) = deg(ωinv,e) = wH(e)− 1.

We propose several intermediate versions of algorithms computing σinv,e(z).
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Unrolling Euclidean divisions In Alg. 8, we decompose each Euclidean divi-
sion into a number of polynomial subtractions depending only on δi the degrees
of the quotients. We explicit the intermediate values of the Euclidean division

of Ri−2(z) by Ri−1(z), that we denote by R
(0)
i (z), . . . , R

(δi+1)
i (z). To do so, we

eliminate in each R
(j)
i (z) (for 0 6 j 6 δi + 1) the term zdi−2−j , whether the

associated coefficient is zero or not. This is why we perform the Euclidean divi-
sions in a way to avoid the divisions by a field elements (Steps 7 to 11 of Alg. 8).
Consequently, the outputs are multiple of the outputs of Alg. 2 with the same
inputs.

Proposition 1 (Comparison of Algorithms 2 and 8). Let a(z) and b(z)
be two polynomials with deg(a(z)) > deg(b(z)), and d a non-negative integer.
ui(z), vi(z), ri(z), qi(z) are the intermediate values in Alg. 2, and Ui(z), Vi(z), Ri(z)
are the intermediate values in Algorithm 8. It holds that, for all i = −1, . . . , N ,
there exists λi ∈ F∗qm such that:

Ri(z) = λiri(z),
Ui(z) = λiui(z).

As a consequence, ∆i = deg(Ri−2)−deg(Ri−1) = deg(ri−2)−deg(ri−1) = δi for
all i.

There are two problems with Alg. 8: the first one is that the inner for loop
((Steps 7 to 11) has a variable length, and contains a multiplication zδi−(j−1)Ri(z)
which depends on the iteration, which will produce a recognizable pattern and
the second problem is that the while loop leads to a variable number of op-
erations according to the input. Alg. 9 is a first step towards the resolution of
the second problem. It is not realistic (it requires that Alg. 8 has already been
executed and observed), but it eases the proofs of completeness of Alg. 10, which
solves both issues.

Regular polynomial shift pattern. In Alg. 9, we perform the Euclidean
division in such a way that we only multiply the operand by z at each for
iteration. This can be done by splitting in two phases each Euclidean divisions.
The first phase (Steps 4 to 7) ”re-aligns” the operands R̃i−2 and R̃i−1 so that
they both have same degree d = deg(R−1(z))(= 2t). Doing so, the second phase
(Steps 8 to 12) compute the polynomial subtractions (corresponding to Steps
9-10 of Alg. 8) and perform a shift ”re-aligning” the operands. A consequence is
that the polynomials R̃i(z) are of the form zkiRi(z) and the degrees di are lost.
This problem will be solved in Alg. 10.

Proposition 2 (Comparison of Algorithms 8 and 9). For each i = 1, . . . , N ,
after Step 13 of Alg. 9, it holds that

(R̃i−1(z), R̃i(z)) = (zd−di−1Ri−1(z), zd−di−1+1Ri(z)),

(Ũi−1(z), Ũi(z)) = (zd−di−1Ui−1(z), zd−di−1+1Ui(z)).
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Algorithm 8 EEA with unrolled Euclidean Division

Input: a(z) = z2t, b(z) = Se(z).
Output: U(z) = λNσe(z), R(z) = λNωe(z) (for some λN ∈ F∗qm).

1: R−1(z)← a(z), R0(z)← b(z),U−1(z)← 1, U0(z)← 0, i← 0.
2: while deg(Ri(z)) > t do
3: i← i+ 1
4: R

(0)
i−2(z)← Ri−2(z),U

(0)
i−2(z)← Ui−2(z)

5: ∆i ← deg(Ri−2)− deg(Ri−1)
6: βi ← LC(Ri−1(z)).
7: for j = 0, . . . ,∆i do
8: αi,j ← R

(j)
i,di−2−j ,

9: R
(j+1)
i−2 (z)← βiR

(j)
i−2(z)− αi,jz∆i−jRi−1(z)

10: U
(j+1)
i−2 (z)← βiU

(j)
i−2(z)− αi,jz∆i−jUi−1(z)

11: end for
12: Ri(z)← R

(∆i+1)
i−2 (z),Ui(z)← U

(∆i+1)
i−2 (z)

13: end while
14: N ← i.
15: return UN (z), RN (z)

Ri−2 = R
(0)
i−2

	 z∆iRi−1 Ri−1

R
(1)
i−2 = βiR

(0)
i−2 −αi,0z

∆iRi−1

	 z∆i−1Ri−1 Ri−1

R
(2)
i−2 = βiR

(1)
i−2 − αi,1z

∆i−1 Ri−1

	 z∆i−2Ri−1 Ri−1

R
(3)
i−2 = βiR

(2)
i−2 − αi,2z

∆i−1 Ri−1

(= βiR
(2)
i−2 here)

...

Ri

Fig. 3: Euclidean division of Ri−2 by Ri−1 in exactly ∆i+ 1 polynomial subtrac-
tions (with ∆i = deg(Ri−2)− deg(Ri−1)). In this example, αi,2 = 0
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Algorithm 9 Toy EEA with regular shift pattern

Input: a(z) = z2t, b(z) = Se(z), d = 2t
Output: ŨN (z) = zd−dN−1+1σe(z), R̃N (z) = zd−dN−1+1ωe(z).

1: R̃−1(z)← a(z), R̃0(z)← zb(z),Ũ−1(z)← 1, Ũ0(z)← 0.
2: for i = 1, . . . , N do
3: R̃

(0)
i−2(z)← R̃i−2(z),Ũ

(0)
i−2(z)← Ũi−2(z)

4: for j = 1, . . . ,∆i − 1 do
5: R̃i−1(z)← zR̃i−1(z)

 L1

6: Ũi−1(z)← zŨi−1(z)
7: end for
8: for j = 0, . . . ,∆i do
9: α̃i,j ← R̃

(j)
i,d , β̃i ← R̃i−1,d.

10: R̃
(j+1)
i−2 (z)← z

(
β̃iR̃

(j)
i−2(z)− α̃i,jR̃i−1(z)

)

L2

11: Ũ
(j+1)
i−2 (z)← z

(
β̃iŨ

(j)
i−2(z)− α̃i,jŨi−1(z)

)
12: end for
13: R̃i(z)← R̃

(∆i+1)
i−2 (z),Ũi(z)← Ũ

(∆i+1)
i−2 (z)

14: end for
15: return ŨN (z), R̃N (z)

zd−di−2Ri−2

zd−di−1Ri−1

R̃
(1)
i−2 = z(βiz

d−di−2Ri−2 −αi,0zd−di−1Ri−1)

zd−di−1Ri−1

R̃
(2)
i−2 = z(βiR̃

(1)
i−2− αi,1z

d−di−1Ri−1)

zd−di−1Ri−1

R̃
(3)
i−2 = z(βiR̃

(2)
i−2 −αi,2zd−di−1Ri−1)

(= zβiR̃
(2)
i−2 here)

...

zd−diRi zd−di−1+1RiL1

L2

Fig. 4: ”Re-aligned” Euclidean division of Ri−2 by Ri−1: inputs and outputs are
degree−d polynomials zd−di−2Ri−2 , zd−di−1Ri−1 , and zd−diRi.



18 Mariya Georgieva and Frédéric de Portzamparc

Complete Regular Flow EEA. To design a real constant flow algorithm,
we merge the loops L1 and L2 in a common pattern so as to be indistinguish-
able (Steps 5 to 7 of Alg.10). They differenciate by the assignements which are
performed in Steps 14- 15 and 18-19. To know when polynomials substractions
have to be stopped, we collect in a counter δ the number of shifts necessary to
re-align the operands. Finally, when the polynomials σinv and ωinv have been
computed, the extra executions of the main loop (Steps 4 to 22) consist in shift-
ing the operands. therefore, the number of iterations can be safely set to the
maximum value (ie 2t to decode the errors with wH(e) = t)), and the while
loop is replaced by for.

Proposition 3 (Comparison of Algorithms 8 and 10.). For each i =
1, . . . , N , after steps 21, it holds that:

R̂2(δ1+···+δi)(z) = zd−di−1+1Ri(z),

Û2(δ1+···+δi)(z) = zd−di−1+1Ui(z).

The outputs of Alg. 10 are, for some µ ∈ F∗qm :

R̂d(z) = zd−wH(e)+1RN (z) = µzd−wH(e)+1ωinv(z),

Ûd(z) = zd−wH(e)+1UN (z) = µzd−wH(e)+1σinv(z).

Therefore, provided 0 is not an element of x, Ûd(z) allows to recover the er-
ror positions without ambiguity. Transposing this result to Patterson decoding
requires to adapt both EEA’s. The adaptation of the second one is straightfor-
ward. For the first one (syndrome inversion), a problem arises: the analogous of
Proposition 3would yield ÛNI

(z) = µzki(S−1Gop,e mod g) for some ki > 0, and

we found no way of determining when z is a factor of S−1Gop,e mod g. However,
we can protect the second EEA to avoid the attack of 3.2.

5 Conclusion

We proposed an algorithm determining the error-locator polynomial costing al-
ways 16t2 field multiplications on any input. It contains a test depending on
secret data, followed by two balanced branches. The indistinguishability of those
branches by an attacker is crucial for the security of the decryption, and depends
on the architecture of the implementation.
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19: (Ûj(z), Ûj−1(z))← (tempU , Ûj−2(z))
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A Proofs of completeness

Proof of Proposition 1. We recall of the Ri(z)’s are computed: set R−1(z) =

r−1(z) = a(z) and R0(z) = r0(z) = b(z). Then, for 1 6 i 6 N , set R
(0)
i−2(z) =

Ri−2(z) and recursively

R
(j+1)
i−2 (z) = βiR

(j)
i−2(z)− αi,jzδi−jRi−1(z) (8)

with αi,j = R
(j)
i,di−2−j , βi = LC(Ri−1(z)). Ri(z) is defined by Ri(z) = R

(δi+1)
i−2 (z).
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In essence we have to prove that R
(δi+1)
i−2 (z) is the rest of the Euclidian division

of Ri−2(z) by Ri−1(z). First, we prove by induction on j that, for all 1 6 i 6 N
and 0 6 j 6 δi + 1, there exists a polynomial fi,j(z) ∈ Fqm [z] and a non-zero
scalar µi,j such that

R
(j)
i−2(z) = µi,jR

(0)
i−2(z)− fi,j(z)Ri−1(z) and deg(R

(j)
i−2(z)) 6 di−2 − j. (9)

For j = 0, pick fi,0(z) = 0, µi,0 = 1 and notice that deg(R
(0)
i−2) = di−2 . Now at

step j > 0, suppose R
(j)
i−2(z) = µi,jR

(0)
i−2(z)− fi,j(z)Ri−1(z), then

R
(j+1)
i−2 (z) = βiR

(j)
i−2(z)− αi,jzδi−jRi−1(z)

= µi,jβi︸ ︷︷ ︸
µi,j+1

R
(0)
i−2(z)− (fi,j(z) + αi,jz

δi−j)︸ ︷︷ ︸
fi,j+1(z)

Ri−1(z).

Regarding the degree, if deg(R
(j)
i−2) < di−2− j, then R

(j)
i−2,di−2−j = 0, so αi,j = 0

and deg(R
(j+1)
i−2 ) = deg(R

(j)
i−2) 6 di−2 − (j + 1). If deg(R

(j)
i−2) = di−2 − j, then

observe that LC(βiR
(j)
i−2) = LC(Ri−1(z))Ri,di−2−j and LC(αi,jz

δi−jRi−1(z)) =
Ri,di−2−jLC(Ri−1(z)), so that the leading monomials cancel, and therefore

deg(R
(j+1)
i−2 ) 6 di−2 − (j + 1).

Thanks to Eq. (9), we know that at step j = δi + 1 :

Ri−2(z) = fi,δi+1(z)Ri−1(z) + µi,δi+1R
(δi+1)
i−2 (z) and deg(R

(δi+1)
i−2 ) 6 di−1 − 1.

Thanks to the induction hypothesis Ri−2(z) = λi−2ri−2(z) and Ri−1(z) =
λi−1ri−1(z), so we have

ri−2(z) = λi−1λ
−1
i−2fi,δi+1(z)ri−1(z) + λ−1i−2µi,δi+1R

(δi+1)
i−2 (z).

By unicity in the Euclidean division, we set λi = λi−2µ
−1
i,δi+1 it follows that:

R
(δi+1)
i−2 (z) = λiri(z), λi−1λ

−1
i−2fi,di−2−di+1(z) = qi(z). (10)

For (U
(j)
i−2(z)), we would prove the same way that U

(j)
i−2(z) = µi,jU

(0)
i−2(z) −

fi,j(z)Ui−1(z) with the same µi,j and fi,j(z). Therefore, thanks to the induc-
tion hypothesis (Ui−2(z) = λi−2ui−2(z) and Ui−1(z) = λi−1ui−1(z)),

ui−2(z) = λi−1λ
−1
i−2fi,δi+1(z)︸ ︷︷ ︸
qi(z)(10)

ui−1(z) + λ−1i−2µi,δi+1︸ ︷︷ ︸
λ−1
i (10)

U
(δi+1)
i−2 (z).

With Eq. (10), we see that U
(δi+1)
i−2 (z) = λiui−2(z)− λiqi(z)ui−1(z) = λiui(z).

ut
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Proof of Proposition 2. The operands at entering the main for loop (Steps
2-14 of Alg. 9) are by induction hypothesis

(R̃i−2, R̃i−1) = zd−di−2Ri−2(z), zd−di−2+1Ri−1(z)),

(for i = 1, we have indeed (R̃−1, R̃0) = (R−1(z), zR0(z))).
The main loop is decomposed into two phases: L1 (Steps 4-7) and L2 (Steps

8-12). L1 consists in shifting zd−di−2+1Ri(z) up-wise until it has a non-zero d-th
coefficient (ie it has degree d), that is exactly ∆i− 1 = di−2− di−1− 1 times, so
that after Step 7 R̃i−1(z) = zd−di−1Ri−1(z).

L2 (Steps 8-12) performs a twisted Euclidean division of Ri−2(z) by Ri−1(z)
on the shifted values R̃i−2(z)zd−di−2Ri−2(z) and R̃i−1(z) = zd−di−1Ri−1(z). We

prove that, after Step 12, R̃
(δi+1)
i−2 (z) = zd−di−1+1Ri(z). To do so, we show the

following link between the intermediate results of Algorithms 8 (R
(j)
i−2(z)) and 9

(R̃
(j)
i−2(z)): for 0 6 j 6 ∆i + 1,

R̃
(j)
i−2(z) = zd−di−2+jR

(j)
i−2(z). (11)

This is done by induction on j. For j = 0, we have R̃
(0)
i−2(z) = zd−di−2Ri−2(z) =

zd−di−2R
(0)
i−2(z). Then, suppose R̃

(j)
i−2(z) = zd−di+jR

(j)
i−2(z). So, it holds that

R̃
(j)
i−2,d = R

(j)
i−2,d−di−2+j

, and LC(R̃i−1(z)) = LC(Ri−1(z)), so that α̃i,j = αi,j

and β̃i = βi. Now R̃
(j+1)
i−2 (z) is given by:

R̃
(j+1)
i−2 (z) = z

(
β̃iR̃

(j)
i−2(z)− α̃i,jR̃i−1(z)

)
= z

(
zd−di−2+jβiR

(j)
i−2(z)− αi,jzd−di−1Ri−1(z)

)
= zd−di−2+j

(
βiR

(j)
i−2(z)− αi,jzδi−(j)R̃i−1(z)

)
=

Eq (8)
zd−di−2+jR

(j)
i−2(z).

So (11) is proved by induction. With j = δi + 1, we obtain R̃
(δi+1)
i−2 (z) =

zd−di−1+1R
(δi+1)
i−2 (z) = zd−di−1+1Ri(z) (thanks to Eq. (10)): the announced re-

sult holds for R̃i(z). The proof is exactly the same for Ũi by substituting R by
U in the previous proof.

Proof of Proposition 3. By induction, we suppose that R̂2(δ1+···+δi−1)(z) =

zd−di−2+1Ri−1(z). As in the proof of Proposition 2, we distinguish several phases
when iterating the main for loop L (Steps 4-22). First, for j = 0, . . . , δi − 1,
R̂2(δ1+···+δi−1)+j = zd−di−2+1Ri−1(z) has degree lower than d and L consists in

shifting R̂ up-wise (up to a multiplicative constant) as L1 in Alg 9. In addition,
we update the counter δ to record the degree difference between Ri−2 and Ri−1.
Indeed, this phase stops when zd−di−2+1+jRi−1(z) reaches degree d, that is when
j = di−2 − di−1 − 1 = δi − 1. Second, for j = δi, . . . , 2δi − 1, L processes the
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Euclidean division of Ri−2(z) by Ri−1(z) as L2 in Alg 9. The intermediate results
are exactly those detailed in Proposition 2. The difference here is that, prior to
computing the last step of the division, δ is equal to −1, so that the intermediate
values are swapped, and the announced result for R̂2(δ1+···+δi)(z) holds.

We deduce that R̂2(δ1+···+δN )(z) = zd−dN−1+1RN (z) = λNz
d−dN−1+1σinv(z)

and the same proof shows that

Û2(δ1+···+δN )(z) = zd−dN−1+1UN (z) = λNz
d−dN−1+1ωinv(z).

The following iterations (j > 2wH(e)) consists only in shifts. Indeed, as

deg(zd−dN−1+1RN (z)) = wH(e) + 1 + deg(ωe(z)) 6 2wH(e),

and after 2t− 2wH(e) up-wise shifts the output still has degree 6 d = 2t. ut
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