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Abstract. Qin, Liu, Yuen, Deng, and Chen (PKC 2015) gave a new security notion of key-derivation function
(KDF), continuous non-malleability with respect to Φ-related-key attacks (Φ-CNM), and its application to
RKA-secure public-key cryptographic primitives. They constructed a KDF from cryptographic primitives and
showed that the obtained KDF is Φhoe&iocr-CNM, where Φhoe&iocr contains the identity function, the constant
functions, and functions that have high output-entropy (HOE) and input-output collision-resistance (IOCR)
simultaneously.
This short note disproves the security of their KDF by giving Φhoe&iocr-RKAs by exploiting the components of
their KDF. We note that their proof is still correct for Φ-CNM for a subset of Φhoe&iocr; for example the KDF
satisfiesΦpoly(d)-CNM, in which an adversary can tamper with a secret by using polynomials of degree at most
d.

1 Introduction

Security against related-key attacks (RKA-security) captures the security of cryptographic primitives
and protocols in situations in which keys are correlated with each other or are tampered with by an
adversary [Bih94, Knu93, BK03, BCM11]. Roughly speaking, we say that a primitive is RKA-secure
if no efficient adversary cannot win the original security game even if the adversary is additionally
allowed to access a system 〈G, s〉 by using input x and a function φ ∈ Φ and obtain G(φ(s), x) with
certain restrictions. The function φ is called as a related-key derivation (RKD) function. Apparently,
the broader Φ we allow, the stronger the security notion is. Unfortunately, we cannot achieve RKA
security with respect to a set of any efficient RKD functions; for example, we should avoid bit-fixing
functions φi that fix the i-th bit of input to 0 because they allow us to recover a secret by mounting a
“testing-for-malfunctioning” attack [GLM+04].

Therefore, the researchers broadened the class Φ of RKD functions while avoiding impossible RKD
functions: addition or multiplication [BC10,AHI11,BCM11,Wee12], Affine functions [BPT12,JLLM13,
JLLM14], and a subset of polynomials [GOR11,LMR14,ABPP14]. On public-key primitives, Bellare,
Paterson, and Thomson [BPT12] proposed RKA-secure primitives with respect to Φpoly(d)[Fq], a set
of polynomials over a field Fq of degree at most d, based on the d-extended DBDH assumption. The
important problem is how we can show Φ-RKA-security for beyond “algebraic” RKD functions. For
example, bit-flipping functions are not included in Φpoly(d)[Fq] when q is an odd prime.

Recently, several papers have addressed the problem and proposed cryptographic primitives that are
Φ-RKA secure beyond algebraic RKD functions: Jafargholi and Wichs [JW15],1 Qin, Liu, Yuen, Deng,
and Chen [QLY+15], Fujisaki and Xagawa [FX15], and Abdalla, Benhamouda, and Passelègue [ABP15].
We here focus on Qin et al.’s result.

Review of Qin et al.’s result. Qin et al. [QLY+15] considered Φhoe&iocr-RKA security, which is wider
than Φpoly(d) when we consider a field as a secret space. Roughly speaking, we say that φ satisfies high
output-entropy (HOE) if φ(s) has sufficiently high min-entropy when s is chosen uniformly at random
and φ satisfies input-output collision resistance (IOCR) if φ’s fixed points are sufficiently small.Φhoe&iocr

1 Employing non-persistent continuous non-malleable codes without self-destruction often provides RKA security, depending
on the definition of RKA security. See [JW15, Section 1.4].



consists of the identity function id, the constant functions, and RKD functions satisfying both HOE and
IOCR.

They define the continuous non-malleability (CNM) of the key-derivation function (KDF) by ex-
tending the non-malleability of KDFs [FMVW14,DFMV15]. Their definition of KDF is the public-key
version, in which a sampling algorithm Sample outputs a secret s ∈ S and a public information π ∈ Π
and a key-derivation algorithm Derive on inputs π and s outputs a derived key r . They constructed
their KDF scheme from one-time lossy filter [QL13], pair-wise independent hash functions, and one-
time signature. They showed that their KDF satisfies Φhoe&iocr-CNM; roughly speaking, any efficient
adversary cannot distinguish a real derived key from a random derived key even if it can access the
derivation oracle many times with queries φ ∈ Φhoe&iocr and π, which returns the special symbol same∗
if (φ(s∗), π) = (s∗, π∗) and Derive(π, φ(s∗)) otherwise (see formal definition in Section 2.3). Their
CNM-KDFs can be instantiated from the standard assumptions, say, the DDH assumption, the DCR
assumption, and the subgroup-decision assumptions, since a one-time lossy filter can be instantiated
from the standard assumptions (DDH, DCR, and SD) [QL13,QL14].

They also propose a conversion fromanordinal public-key cryptographic primitive to a (Φhoe&iocr[S]×
Φall[Π])-RKA-secure one by using the Φhoe&iocr[S]-CNM KDF, where Φall[Π] is a set of all efficient
functions over Π (see Section ??).

1.1 Our Contribution

We revisit the Φhoe&iocr-CNM security of KDFs and find a flaw in the proof of Qin et al. [QLY+15] by
giving a concreteΦhoe&iocr-RKA. Our attack is very simple; let φmap s to itself if Derive(π∗, s) = r∗ and
s + 1 otherwise. Given π∗ and r∗, which is a real derived-key Derive(π∗, s∗) or a random derived-key,
we query φ and π∗ to the oracle; if r∗ is a real derived-key, we have φ(s∗) = s∗ and receive the special
symbol same∗; otherwise, that is, if r∗ is a random derived-key, we have φ(s∗) , s∗ with a sufficiently
high probability and rarely receive same∗. Therefore, we can distinguish the real derived-key from the
random one. The remaining task is to show that φ is in Φhoe&iocr. This is easy because π∗ includes the
image of s∗ under an injective map, one-time lossy filter. The details are in Section 3. We additionally
give a key-recovery attack by modifying this φ slightly.

We note that their proof is correct with respect to Φ ⊆ Φhoe&iocr if any function φ ∈ Φ does not
change its action when we change the games in the proof. For example, their proof is correct with respect
to Φpoly(d)-RKA security, in which an adversary can tamper with a secret by polynomials of degree at
most d. Defining appropriate subclass Φ ⊂ Φhoe&iocr, we still recover the Φ-RKA security of their KDF
scheme against RKD functions “beyond polynomials.” Unfortunately, we do not know how we can define
a wide class of RKD functions whose actions do not change when we change the games in the proof of
Qin et al. We leave such a definition as an open problem. See Section 4 for discussion.

2 Preliminaries

We here briefly recall pairwise independent hash functions, RKD functions, one-time lossy filter, and
key-derivation function.

Let κ be the security parameter. We use the standard O-notations, O, Ω, Θ, o, and ω. For a positive
real x, lg(x) := log2(x) denotes the logarithm of x with base 2.

Pairwise independent hash functions.

Definition 2.1. A family of functionsHκ = {h | h : S → R} is said to be a family of pairwise independent
hash functions if, for all distinct pair s1 , s2 ∈ S and all a1, a2 ∈ R,

Pr
h←Hκ

[h(s1) = a1 ∧ h(s2) = a2] = (1/#R)2.
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RKD functions. We let S denote the key space, which is defined as the public parameters of the specific
scheme. We regard an RKD function φ ∈ Φ simply as an efficiently computable function from S to S,
depending on the specification of the cryptographic protocol and the public parameters. Φall[S] denotes
the set of all efficiently computable functions on S. We often write Φ[S] and Φ ⊆ Φall[S] when we want
to stress the secret space S.

Classes of RKD functions. We denote an identity function on S by id. We write Φconst[S] to denote all
constant functions, φa : s 7→ a. If S is a finite ring, Φpoly(d)[S] denotes all S-coefficient polynomials of
degree at most d, that is, { f : s 7→ f (s) | f (x) ∈ S[x], deg( f ) ≤ d}.

We recall the RKD function class which is the target of [QLY+15].

Definition 2.2 ( [QLY+15, Definition 1]). Let S be a set with size 2ω (lg(κ)). The RKD function class
Φhoe&iocr is called as high output-entropy and input-output collision resistance (HOE&IOCR) if it satisfies

– (HOE:) Φhoe&iocr \ Φconst ⊆
{
φ ∈ Φall[S] : maxy∈S Prx←S[φ(x) = y] = negl(κ)

}
,

– (IOCR:) Φhoe&iocr \ {id} ⊆
{
φ ∈ Φall[S] : Prx←S[φ(x) = x] ≤ negl(κ)

}
.

HOE implies that all functions except constant functions in the class have high output-entropy; IOCR
implies that all functions except the identical function in the class have few fixed points.

Remark 2.1. We say that an RKD function φ : S → S is HOE if it satisfies maxy∈S Prx←S[φ(x) = y] =
negl(κ). We also say that an RKD function φ : S → S is IOCR if it satisfies Prx←S[φ(x) = x] ≤ negl(κ).

2.1 One-Time Lossy Filter (OT-LF)

A one-time lossy filter is introduced by Qin and Liu [QL13] as a weakened primitive of a lossy algebraic
filter [Hof13] and lossy trapdoor functions [PW08].

Syntax: A OT-LF scheme LF consists of three algorithms:

– The setup algorithm Setup that, on input 1κ , outputs an evaluation key ek and a trapdoor td. The
evaluation key defines a tag space T = {0, 1}∗ × Tc that contains two disjoint subsets, that of lossy
tags Tloss and that of injective tags Tinj.

– The evaluation algorithm Eval that, on input ek, a tag t ∈ T , and a preimage s ∈ S, outputs an image
y ∈ Z. We denote y = LFek, t (s).

– The lossy-tag generation algorithm LTag that, on input td and ta ∈ {0, 1}∗, outputs tc ∈ Tc such that
t = (ta, tc ) ∈ Tloss.

Security:

Definition 2.3 ( [QLY+15, Section 4]). We call a parameter ` “residual leakage.” We say a OT-LF
scheme LF = (Setup,Eval, LTGen) is (S, `)-one-time lossy if it satisfies the following three properties:

– Lossiness: If t is injective, that is, t ∈ Tinj, LFek, t (·) is injective. If t is lossy, that is, t ∈ Tloss,
#LFek, t (S) ≤ 2`, that is, the number of possible values is at most 2`.

– Indistinguishability of tags: Any PPT adversary cannot distinguish a lossy tag from a random tag.
Formally, we require that, for any PPT adversary, its advantage defined by

AdvindA,LF(κ) =
�����
Pr [(ek, td) ← Setup(1κ ); (ta, st) ← A(ek); tc ← LTGen(td, ta ) : A(tc, st) = 1]

−Pr [(ek, td) ← Setup(1κ ); (ta, st) ← A(ek); tc ← Tc : A(tc, st) = 1]
�����

is negligible in κ.
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– Evasiveness: Any PPT adversary cannot produce a non-injective tag even if it sees a lossy tag.
Formally, we require that, for any PPT adversary, its advantage defined by

AdvevaA,LF(κ) = Pr
[

(ek, td) ← Setup(1κ ); (t ′a, st) ← A(ek); t ′c ← LTGen(td, t ′a ); (ta, tc ) ← A(t ′c, st) :
(t ′a, t

′
c ) , (ta, tc ) ∧ (t ′a, t

′
c ) ∈ T \ Tinj

]

is negligible in κ.

We note a simple lemma that if we choose tc uniformly at random, then the tag (ta, tc ) will be
injective with high probability.

Lemma 2.1. Suppose that LF = (Setup,Eval, LTGen) is (S, `)-one-time lossy. Then, for any ta ,

Pr[(ek, td) ← Setup(1κ ); tc ← Tc : (ta, tc ) ∈ Tinj] ≥ 1 − 1/κ.

Proof. If not, there exists t∗a such that randomly chosen tc results in (ta, tc ) < Tinj with probability at
least 1/κ. This breaks evasiveness of LF. ut

2.2 One-Time Signature

Syntax: Aone-time signature schemeOTS consists of four algorithms: the setup algorithm SetupOTS that,
on input 1κ , outputs public parameter ρ, the key-generation algorithm GenOTS that, on input ρ, outputs
a key pair (ovk, osk), the signing algorithm SignOTS that, on input ρ, osk, and a message m ∈ {0, 1}∗,
outputs a signature σ, the verification algorithm VrfyOTS that, on input ρ, ovk, m, and σ, outputs 1/0,
which indicates acceptance/rejection, respectively.

We sayOTS is correct if for any ρ and (ovk, osk) generated by SetupOTS andGenOTS, for any message
m ∈ {0, 1}∗, we have Pr[VrfyOTS(ρ, ovk,m, σ) = 1 : σ ← SignOTS(ρ, osk,m)] = 1.

Security:

Definition 2.4 (Strong EUF-CMA security). Let OTS = (SetupOTS,GenOTS,SignOTS,VrfyOTS) be a
one-time signature scheme. We say OTS is strongly EUF-CMA secure if for any PPT adversary, its
advantage defined by

Advseuf-cma
A,OTS (κ) = Pr



ρ← SetupOTS(1κ ); (ovk, osk) ← GenOTS(ρ); (m′, st) ← A(ρ, ovk);
σ′ ← SignOTS(ρ, osk,m); (m, σ) ← A(σ, st) :
(m′, σ′) , (m, σ) ∧ VrfyOTS(ρ, ovk,m, σ) = 1



is negligible in κ.

2.3 Key-Derivation Function (KDF)

The non-malleability of KDF is introduced by Faust et al. [FMVW14]. Qin et al. slightly modified the
syntax of the KDF and gave the security notion of the continuous non-malleability of KDF [QLY+15].
We here adopt the syntax and the security notion of Qin et al. because we will analyze their scheme.

Syntax: A key derivation function (KDF) scheme consists of three algorithms: the setup algorithm Setup
that, on input 1κ , outputs public parameter pp, the sampling algorithm Sample that, on input pp, outputs
a secret string s ∈ S and a public information π ∈ Π, and the derivation algorithm Derive that, on inputs
pp, π, and s, outputs a derived key r ∈ R or the special symbol ⊥.

Remark 2.2. In the definition of Faust et al. [FMVW14], the sampling algorithm outputs s only and the
derivation algorithm outputs r on inputs pp and s.
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Security:

Definition 2.5 (Continuous non-malleability [QLY+15, Section 4]). For KDF scheme KDF = (Setup,
Sample,Derive), a class of RKD functionsΦ, and a bit b ∈ {0, 1}, we define experiment ExptcnmA,KDF,Φ(κ, b)
between adversary A and a challenger as follows.

ExptcnmA,KDF,Φ(κ, b):
pp← Setup(1κ ), (s∗, π∗) ← Sample(pp)
r0 ← Derive(pp, π∗, s∗), r1 ← R,
r∗ ← rb
b′ ← ARK-Derive( ·, ·) (pp, π∗, r∗)
Return b′

RK-Derive(φ, π):
If φ < Φ, then return ⊥
If (φ(s∗), π) = (s∗, π∗),
then return a special symbol same∗
Else, return r ← Derive(pp, φ(s∗), π)

We define the advantage of A as

AdvcnmA,KDF,Φ(κ) = ���Pr
[
ExptcnmA,KDF,Φ(κ, 0) = 1

]
− Pr

[
ExptcnmA,KDF,Φ(κ, 1) = 1

] ��� .

We say that KDF is continuously non-malleable with respect to Φ (Φ-CNM in short) if, for any PPT
adversary A, its advantage is negligible in κ.

3 Related-Key Attacks against CNM-KDFs

We first show an impossibility result for Φall[S]-CNM KDF as a warm up, which is very similar to the
attacks to show impossibility results in [GLM+04,DFMV13]. We then exemplify a concrete Φhoe&iocr-
RKA against Qin et al.’s CNM-KDF by using the RKD functions used to show the general impossibility.

3.1 Impossibility of Φall[S]-CNM KDF.

Theorem 3.1. There is no Φall[S]-CNM KDF.

Proof. Suppose that S is an additive group with binary operation + (we can easily remove this assump-
tion). Let us fix a non-zero element in S and denote it by e. We define φ∗ : S → S by

φ∗(s) =



s if Derive(pp, π∗, s) = r∗,
s + e otherwise.

We show that φ∗ violates the Φall[S]-CNM security of KDFs.
Consider the adversary A:

1. A receives pp, π∗, and r∗ from its challenger,where (s∗, π∗) ← Sample(pp), r0 ← Derive(pp, π∗, s∗),
and r1 ← R, and r∗ ← rb .

2. A queries (φ∗, π∗) and receives ξ.
3. A returns b′ = 0 if ξ = same∗; otherwise, A returns b′ = 1.

We note that pp, π∗, and r∗ are hardwired to φ∗, and thus, φ∗ is efficiently computable. Notice
that the oracle RK-Derive on query (φ∗, π∗) returns same∗ if Derive(pp, π, s∗) = r∗ and returns r ′ ←
Derive(pp, π∗, s∗ + e) if Derive(pp, π, s∗) , r∗.

If r∗ = r0, the adversary always outputs 0 because Derive(pp, π∗, s∗) = r0 holds and the oracle returns
ξ = same∗.

Otherwise, that is, if r∗ = r1, the adversary outputs 1 unless Derive(pp, π∗, s∗) = r1. Let Bad be the
event that Derive(pp, π, s) = r1 holds, where r1 ← R; pp ← SetupKDF(1κ ); (π, s) ← Sample(pp). Since
r1 is chosen uniformly at random, we have Pr[Bad] ≤ 1/#R ≤ 1/2.
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Summarizing the above, the adversary’s advantage is

AdvcnmA,KDF,Φall[S](κ) = ���Pr
[
ExptcnmA,KDF,Φ(κ, 0) = 1

]
− Pr

[
ExptcnmA,KDF,Φ(κ, 1) = 1

] ���
= |0 − (1 − Pr[Bad]) | ≥ 1 − 1/2 ≥ 1/2,

which is apparently constant. Therefore, any KDF cannot satisfy Φall[S]-CNM. ut

Remark 3.1. We note that the RKD function φ∗ satisfies the HOE condition because any s ∈ S has at
most two preimages s and s − e. In addition, if the number of s that satisfies Derive(pp, π∗, s) = r∗ is
sufficiently small, φ∗ also satisfies the IOCR condition. In general, we cannot say the function is IOCR.
For example, consider the case that #R = 2.

3.2 Related-Key Attacks against Qin et al.’s CNM-KDF.

Let us review how Qin et al. constructed their KDF scheme from one-time lossy filter (Definition 2.1),
one-time signature, and pairwise-independent hash functions.

Definition 3.1 (KDFQLY+15 [QLY+15]). Let LF = (GenLF,Eval, LTag) be a one-time lossy filter scheme
whose domain is S, range isZ, residual leakage is `, and tag space is T = {0, 1}∗ × Tc . LetH = {Hκ }
be a family of pairwise independent hash functions whose domain is S and range is R = {0, 1}m . Let
OTS = (SetupOTS,GenOTS,SignOTS,VrfyOTS) be a one-time signature scheme whose signature space is
denoted by Σ.

– SetupKDF(1κ ): (ek, td) ← GenLF(1κ ); ρ← SetupOTS(1κ ); h ← Hκ; Output pp = (ek, ρ, h).
– Sample(pp): (ovk, osk) ← GenOTS(ρ); s ← S; tc ← Tc; compute

y ← Evalek, (ovk, tc ) (s) and σ ← SignOTS(osk, (tc, y)).

Output s and π = (t = (ovk, tc ), y, σ).
– Derive(pp, π, s): If Evalek, (ovk, tc ) (s) , y or VrfyOTS(ovk, (tc, y), σ) , 1, then return ⊥; otherwise,
output r ← h(s).

Qin et al. showed that the obtained KDF scheme is secure against Φpoly(d)[S]-RKAs:

Theorem 3.2 ( [QLY+15, Theorem 1]). Let d = poly(κ) be an integer. KDFQLY+15 is Φpoly(d)[S]-CNM
KDF if LF is (S, `)-lossy, OTS is strongly EUF-CMA secure, and lg #S ≥ ` + m + ω(lg κ).

Following the recommendation of reviewers of PKC 2015, Qin et al. insisted that the following theorem
is correct.

Theorem 3.3 (Incorret generalization of [QLY+15, Theorem 1]). KDFQLY+15 is Φhoe&iocr[S]-CNM
KDF if LF is (S, `)-lossy, OTS is strongly EUF-CMA secure, and lg #S ≥ ` + m + ω(lg κ).

In the following, we disprove this generalization.

Distinguishing attack. We propose a related-key attack against the CNM-KDF, KDFQLY+15. Our attack
exploits the fact that the function Evalek, (ovk∗, t∗c ) is injective if (ovk∗, t∗c ) is injective.

Theorem 3.4. KDFQLY+15 is not Φhoe&iocr-CNM KDF.

Proof. Let us apply our candidate φ∗ to the CNM-KDF. We define

φ∗(s) =



s if Evalek, (ovk∗, t∗c ) (s) = y∗, VrfyOTS(ovk, (t∗c, y∗), σ∗) = 1, and r∗ = h(s),
s + e otherwise,

which is efficiently computable function from S to S. We verify that φ∗ is HOE and IOCR with
overwhelming probability by the following claim.
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Claim. If the tag (ovk∗, t∗c ) is injective, φ∗ ∈ Φhoe&iocr.

Proof (Proof of claim). Evalek, (ovk∗, t∗c ) is injective since the tag (ovk∗, t∗c ) is injective by the
hypothesis. s∗ is a unique preimage of y∗ under the function Evalek, (ovk∗, t∗c ) and other elements
cannot satisfy Evalek, (ovk∗, t∗c ) (s) = y∗. Hence, the number of fixed points of φ∗ is at most 1. This
implies the IOCR property of φ∗.
In addition, the function φ∗ maps any s ∈ S \ {s∗} to s + e. Therefore, the output of φ∗ is almost
uniformly at random if s is chosen randomly. This shows the HOE property of φ∗. ut

Now, let us consider an adversary A that distinguishes a real game with a random game as follows.

1. A receives pp, π∗, and r∗ from its challenger,where (s∗, π∗) ← Sample(pp), r0 ← Derive(pp, π∗, s∗),
and r1 ← R, and r∗ ← rb .

2. A queries (φ∗, π∗) and receives ξ.
3. If A receives ξ = ⊥, then it outputs ⊥.
4. A returns b′ = 0 if ξ = same∗; otherwise, A returns b′ = 1.

Suppose that (ovk∗, t∗c ) is injective, which happens with probability at least 1−1/κ by Lemma 2.1. Let
us estimate the probabilities that φ∗(s∗) = s∗ in both games. In a real game, we always have φ∗(s∗) = s∗.
In a random game where r∗ ← R, h(s∗) = r∗ happens with probability 1/#R, because h is chosen from
a family of pairwise independent hash functions. Therefore, we have φ∗(s∗) = s∗ with a probability of at
most 1/#R.

We have

AdvcnmA,KDF,Φhoe&iocr
(κ) =

������

Pr
[
ExptcnmA,KDF,Φhoe&iocr

(κ, 0) = 1
]

−Pr
[
ExptcnmA,KDF,Φhoe&iocr

(κ, 1) = 1
]

������
= (1 − 1/κ)��0 − (1 − 1/#R)��
≥ (1 − 1/κ)(1 − 1/#R) ≥ 1/4.

which is apparently constant. ut

Key-recovery attack. The previous attack exemplifies that we can distinguish a real derived key r0 from
a random derived key r1 by utilizing φ∗ ∈ Φhoe&iocr. We additionally give a stronger attack; by using
variants of φ∗, we can retrieve s∗ by using the oracle RK-Derive when we are given (pp, π∗, r∗), where
r∗ ← Derive(pp, π∗, s∗),

Suppose thatS ⊆ {0, 1}n . We denote the i-th bits of s and s∗ for i = 1, . . . , n by si and s∗i , respectively.
Define, for i = 1, . . . , n and b ∈ {0, 1},

φ∗i,b (s) =




s if Evalek, (ovk∗, t∗c ) (s) = y∗, VrfyOTS(ovk, (t∗c, y∗), σ∗) = 1,
r∗ = h(s), and si = b,

s + e otherwise.

Claim. φ∗
i,b
∈ Φhoe&iocr if (ovk∗, t∗c ) is injective.

Proof. The proof is very similar to the claim on φ∗, so we omit it.

Claim. Suppose that (ovk∗, t∗c ) is injective. We have that s∗i = b if and only if φi,b (s∗) = s∗.

Proof. The proof is again very similar to the claim on φ∗, so we omit it.

Let us consider an adversary A defined as follows.
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1. A receives pp, π∗, and r∗ from its challenger, where (s∗, π∗) ← Sample(pp) and r∗ ←
Derive(pp, π∗, s∗).

2. For i = 1, . . . , n,
(a) A queries (φ∗

i,0, π
∗) and (φ∗

i,1, π
∗) to the oracle RK-Derive and receives ξ0 and ξ1, respectively.

(b) A sets si = b if ξb = same∗.
3. A outputs s = s1 . . . sN .

A obtains s∗ if (ovk∗, t∗c ) is injective, which happens with probability at least 1 − 1/κ.

3.3 Identifying a Pitfall

Let us review the proofs in [QLY+15] and discuss where a pitfall exists. If two games, Game and Game′,
are computationally indistinguishable, we write Game ≈c Game′.

Table 1 summarizes the games in their proofs, where Game0(b) = ExptcnmA,KDF,Φ(κ, b). To show
Game0(0) ≈c Game0(1), they show Gamei (b) ≈c Gamei+1(b) for i = 0, . . . , 4 and Game5(0) ≈c
Game5(1).

Games Tag Key Derivation Rules
Game0(b): Injective R0: If (φ(s∗), π) = (s∗, π∗), return same∗;

else if Evalek, (ovk, tc ) (φ(s∗)) = y and VrfyOTS(ovk, (tc, y), σ) = 1,
return Derive(pp, φ(s∗), π);
else return ⊥

Game1(b): Injective R1: If (φ, π) = (id, π∗), return same∗;
else if φ = φc ∈ Φconst, π = π∗, and y = Evalek, (ovk, tc ) (c),
return same∗;
else if φ = φc ∈ Φconst and π , π∗, return Derive(pp, π, c);
else if φ = φc ∈ Φconst and y , Evalek, (ovk, tc ) (c),
return Derive(pp, π, c);

R0
Game2(b): Injective R1

R2: If ovk = ovk∗, but ((tc, y), σ) , ((t∗c, y
∗), σ∗), return ⊥

R0
Game3(b): Injective R1

R2
R3: If π = π∗, but φ(s∗) , s∗, return ⊥
R0

Game4(b): Lossy R1
R2
R3
R0

Game5(b): Lossy R1
R2
R3’: Return ⊥
R0’: Return ⊥

Table 1. The games defined in [QLY+15, Section 4]. If b = 0, then r∗ = r0. Otherwise, r∗ is chosen uniformly at random.

We can verify that the proofs that show Game0(b) ≈c Game1(b) ≈c Game2(b) ≈c Game3(b) are
correct. We also verify that the proofs that show Game4(b) ≈c Game5(b) and Game5(0) ≈c Game5(1)
are correct.

The pitfall exists in the lemma showing Game3(b) ≈c Game4(b). We found that φ∗ becomes an
invalid RKD function when we go from Game3(b) to Game4(b). In Gamei (b) for i = 0, 1, 2, 3, the tag
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in π∗ is injective (with overwhelming probability). Therefore, φ∗ ∈ Φhoe&iocr as in Game0(b). However,
the tag in π∗ becomes lossy in Game4(b). This makes φ∗ non-IOCR; a number of s that satisfies
Evalek, (ovk∗, t∗c ) (s) = y∗ and h(s) = r∗ exceeds the threshold of IOCR.

Remark 3.2. Originally, Qin et al. considered Φpoly(d)-RKA security and generalized their proof to
Φhoe&iocr-RKA security by the recommendation of a reviewer [QLY+15, Acknowledgment]. We note
that Qin et al.’s proof is correct for Φpoly(d)-RKA security because any φ ∈ Φpoly(d) is valid in any
game. Moreover, their proof is correct for Φfixed ⊆ Φhoe&iocr if the function class is fixed a priori and
recognizable and does not change in all games. See Section 4 for discussion.

4 Discussion

4.1 Review of RKA security in the Ideal Cipher Model

We found similar attacks employing the same principle in the context of the RKA security of the ideal
cipher.

Let us look back over the history of this security. Bellare and Kohno [BK03] showed that the ideal
cipher is Φ-RKA secure if Φ is output-unpredictable and collision-resistant2. Let K and D denote the
key space and the domain of permutations. Let E,G : K × D → D be keyed permutations over D. We
say that the ideal cipher is Φ-RKA secure if any efficient adversary cannot distinguish the two oracles
Erka and Grka, which, on queries φ ∈ Φ and x ∈ D, return E(φ(K ), x) and G(φ(K ), x), respectively, even
if it can access E(·, ·) and E−1(·, ·), where K , E, and G are randomly chosen. Their theorem states that,
for any output-unpredictable and collision-resistant Φ, the ideal cipher is Φ-RKA secure.

As Albrecht, Farshim, Paterson, andWatson discussed in [AFPW11], theΦ-RKA security of the ideal
cipher holds if the ideal cipher E is chosen independently fromΦ. Otherwise, that is, ifΦ depends on E, an
attack due toBernstein (see [AFPW11]) exemplifies anRKAby exploiting the E-dependentRKD function
class. Consider a class ΦE that consists of two RKD functions, id : K 7→ K and φE : K 7→ E(K, 0). If E
is indistinguishable from random permutations, the class is output-unpredictable and collision-resistant.
However, these functions give a distinguishing attack. Harris [Har11] also gave a key-recovery RKA by
exploiting the E-dependent RKD functions. See the details of attacks and discussions in [AFPW11].

Albrecht, Farshim, Paterson, and Watson revisited the RKA security of the ideal cipher in which
RKD functions can access E and E−1. They defined the oracle-independent properties of a class of RKD
functions and showed that the ideal cipher is Φ-RKA secure if Φ satisfies such properties.

4.2 Discussion on the Class of RKD Functions

Our distinguishing and key-recovery attacks against the CNM-KDF in Section 3 also exploit the RKD
functions that strongly depend on the algorithms of the scheme. If the RKD functions never change their
behavior in the hopping of the games in Section 3.3, the proof in [QLY+15] is correct.

In the ideal ciphermodel,Albrecht et al. salvaged theRKAsecurity by defining the oracle-independent
properties of RKD functions. We note that we (and the challenger) can check if the RKD functions are
independent from E because E is oracle and an E-depending RKD function should have E-gates or
subroutines calling E explicitly.

In the CNM-KDF case, it seems hard to check if the RKD functions are independent from the
algorithms of the scheme because the algorithms are not oracle. The easiest way to patch the proof is
restricting the RKD functions more explicitly. For example, the class of polynomials is checked easily.

2 Roughly speaking, we say Φ is output-unpredictable if any adversary cannot predict φ(K ) and Φ is collision-resistant if any
adversary cannot output two distinct functions φ1, φ2 ∈ Φ satisfying φ1(K ) = φ2(K ) (formally, these definitions are given
in a concrete-security style).
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Another possible way is restricting the number of functions as in the definitions of (continuous) non-
malleable codes. Essentially speaking, the constraint on number will exclude our attacks depending on
public information.
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