
Dynamic Searchable Symmetric Encryption with Minimal
Leakage and Efficient Updates on Commodity Hardware

Attila A. Yavuz1 and Jorge Guajardo2

1 The School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR
97331

attila.yavuz@oregonstate.edu,
2 Robert Bosch Research and Technology Center, Pittsburgh PA, 15203

Jorge.GuajardoMerchan@us.bosch.com

Abstract. Dynamic Searchable Symmetric Encryption (DSSE) enables a client to perform
keyword queries and update operations on the encrypted file collections. DSSE has several
important applications such as privacy-preserving data outsourcing for computing clouds.
In this paper, we developed a new DSSE scheme that achieves the highest privacy among all
compared alternatives with low information leakage, non-interactive and efficient updates,
compact client storage, low server storage for large file-keyword pairs with an easy design
and implementation. Our scheme achieves these desirable properties with a very simple
data structure (i.e., a bit matrix supported with two static hash tables) that enables efficient
yet secure search/update operations on it. We prove that our scheme is secure (in random
oracle model) and demonstrated that it is practical with large number of file-keyword pairs
even with an implementation on simple hardware configurations.

1 Introduction

Searchable Symmetric Encryption (SSE) [9] enables a client to encrypt data in such a
way that she can later perform keyword searches on it via “search tokens” [27]. A promi-
nent application of SSE is to enable privacy-preserving keyword searches on cloud-
based systems (e.g., Amazon S3). A client can store a collection of encrypted files re-
motely at the cloud and yet perform keyword searches without revealing the file or
query contents [19]. Desirable properties of a practical SSE scheme are as follows:
• Dynamism: It should permit adding new files or deleting existing files from the

encrypted file collection securely after the system set-up.
• Computational Efficiency and Parallelization: It should offer fast search/updates

Moreover, which are parallelizable across multiple processors.
• Storage Efficiency: The SEE storage overhead of the server depends on the en-

crypted data structure (i.e., encrypted index) that enables keyword searches. The num-
ber of bits required to represent a file-keyword pair in the encrypted index should be
small. The size of encrypted index should not grow with the number of update oper-
ations (eventually results in re-encrypting the entire index). The persistent storage at
the client should be minimum.
• Communication Efficiency: Non-interactive update/search operations should be

possible to avoid the delays, with a minimum amount of data transmission.
• Security: The information leakage due to search/update operations must be pre-

cisely quantified based on formal SSE security notions (e.g., dynamic CKA2 [18]).

Our Contributions. The preliminary SSE constructions (e.g., [9, 25]) operate on only

2

static data, which strictly limits their applicability. Later, Dynamic Searchable Sym-
metric Encryption (DSSE) schemes (e.g., [3,19]), which can handle dynamic file collec-
tions, have been proposed (we discuss further related work in Section 2). To date, there
is no single DSSE scheme that outperforms all other alternatives for all metrics: pri-
vacy (e.g., information leak), performance (e.g., search, update execution and commu-
nication, storage) and functionality. Having this in mind, we develop a DSSE scheme
that achieves the highest privacy among all compared alternatives with low informa-
tion leakage, non-interactive and efficient updates (compared to [18]), compact client
storage (compared to [27]), low server storage for large file-keyword pairs (compared
to [3,18,27]) and conceptually simple and easy to implement (compared to [18,19,27]).
Table 1 compares our scheme with existing DSSE schemes for various metrics.

The intuition behind our scheme is to rely on a very simple data structure that en-
ables efficient yet secure search and update operations on it. Our data structure is a
bit matrix I that is augmented by two static hash tables Tw and Tf . If I[i, j] = 1 then
it means keyword wi is present in file fj , else wi is not in fj . The data structure con-
tains both the traditional index and the inverted index representations. We use static
hash tables Tw and Tf to uniquely associate a keyword w and a file f to a row index
i and a column index j, respectively. Both matrix and hash tables also maintain cer-
tain status bits and counters to ensure secure and correct encryption/decryption of
the data structure, which guarantees a high level of privacy (i.e., L1 as in Section B) with
dynamic CKA2-security [18]. Search and update operations are encryption/decryption
operations on rows and columns of I, respectively. They are simple, easy to implement,
non-interactive (for the main scheme) and practical with large number of file-keyword
pairs even with an implementation on simple hardware configurations (as opposed to
high-end servers). The advantages of our scheme are summarized below:

• High Security: Our scheme achieves a high-level of update security (i.e., Level-1),
forward-privacy, backward-privacy and size pattern privacy simultaneously (see Sec-
tion 3 for the details). We quantify the information leakage via leakage functions and
formally prove that our scheme is CKA2-secure in random oracle model [1].

•Compact Client Storage: Compared to some alternatives with secure updates (e.g., [27]),
our scheme achieves smaller client storage (e.g., 10-15 times with similar parameters).
This is an important advantage for lightweight clients such as mobile devices. The
schemes in [4,27] also require keeping state information at the client side or interaction
with re-encryption (as in our variant scheme). The schemes presented in [18,19,27] do
not keep state at the client but leak more information than ours.

• Compact Server Storage with Secure Updates: Our encrypted index size is smaller
than some alternatives with secure updates (i.e., [18, 27]). For instance, our scheme
achieves 4 · κ smaller storage overhead than that of the scheme in [18], which intro-
duces a significant difference in practice. Asymptotically, the scheme in [27] is more
server storage efficient for small/moderate number of file-keyword pairs. However, our
scheme requires only two bits per file-keyword pair with the maximum number of files
and keywords. Hence, it is more storage efficient for large number of file-keyword pairs
than [27] (e.g., requiring 1600 bits for per file-keyword pair).

• Constant Update Storage Overhead: The server storage of our scheme does not
grow with update operations, and therefore it does not require re-encrypting the whole

3

Table 1: Performance Comparison of DSSE schemes. The analysis is given for the worst-
case (asymptotic) complexity. All schemes leak search and access pattern.
Scheme/Property [19] Kamara 12’ [18] Kamara 13’ [27] Stefanov [3]

(∏dyn,ro
2lev

)
Cash This Work

Security Notion CKA2 CKA2 CKA2 CKA2 CKA2
Size Pattern Privacy No No No No Yes
Update Privacy L5 L4 L3 L2 L1
Forward Privacy No No Yes Yes Yes
Backward Privacy No No No No Yes
Random Oracles Yes Yes Yes Yes Yes
Dynamic Keyword No No Yes Yes Yes
Persistent Client Sto. 4κ 3κ κ log(N ′) κ · O(m′) κ · O(n+m)
Transient Client Sto. — — O(N ′α) — —
Index Size (Server) z · O(m+ n) 2 · O((κ+m) · n) 13κ · O(N ′) c′′/b · O(N ′) 2 · O(m · n)
Grow with Updates No No Yes Yes No

Rounds Search 2 2 2 2 2
Search Time O((r/p) · logn) O((r/p) · log3(N ′)) O((r + dw)/p) 1/b · O(r/p) O(m

p·b)

Rounds Update 1 3 3 1 1
Update Bandwidth z · O(m′′) 2z · κ · O(m logn) z · O(m′′ logN ′) z ·O(m logn+m′′) b · O(m)

Update Time O(m′′) O((m/p) logn) + t O((m′′/p) log2(N ′))+t O(m′′/p) + t b · O(m/p)
Parallelizable No Yes Yes Yes Yes

∗ Our persistent client storage is κ · O(m + n). This can become 4κ if we store this data structure on the server side.
This, however, comes at the cost of one additional round of interaction (See Section 6).
• Rounds refer to the number of messages exchanged between two communicating parties. A non-interactive search
and an interactive update operation require two and three messages to be exchange, respectively. Our main scheme, the
scheme in [19] and some variants in [3] also achieve non-interactive update with only single message (i.e., an update
token and an encrypted file to be added for the file addition) to be send from the client to the server.
• m and n are the maximum # of keywords and files, respectively. m′ and n′ are the current # of keywords and files,
respectively. We denote by N ′ = m′ · n′ the total number of keywords and file pairs currently stored in the database.
m′′ is the # unique keywords included in an updated file (add or delete). r is # of files that contain a specific keyword.
• κ is the security parameter. p is the # of parallel processors. b is the block size of symmetric encryption scheme. z is
the pointer size in bits. t is the network latency introduced due to the interactions. α is a parameter, 0 < α < 1.
• Update privacy levels L1,...,L5 are described in Section B. In comparison with Cash et al. [3], we took variant

∏dyn,ro
bas

as basis and estimated the most efficient variant
∏dyn,ro

2lev , where dw, aw , and c′′ denote the total number of deletion
operations, addition operations, the constant bit size required to store a single file-keyword pair, respectively (in the
client storage, the worst case of aw = m). To simplify notation, we assume that both pointers and identifiers are of size
c′′ and that one can fit b such identifiers/pointers per block of size b (also a simplification). Observe that the hidden
constants in the asymptotic complexity of the update operation is significant as the update operation of [3] requires at
least six PRF operations per file-keyword pair versus this work, which only requires one.

encrypted index due to frequent updates. This is more efficient than some alternatives
(e.g., [27]) whose server storage grows linearly with the number of file deletions.
•Dynamic Keyword Universe: Unlike some alternatives (e.g., [9,18,19]), our scheme

does not assume a fixed keyword universe, which permits the addition of new keywords
to the system after initialization. Hence, the file content is not restricted to a particular
pre-defined keyword but can be any token afterwards (encodings)3.
• Efficient and Non-interactive Updates: Our basic scheme achieves secure updates

non-interactively. Even with large file-keyword pairs (e.g.,N = 1012), it incurs low com-
munication overhead (e.g., 120 KB for m = 106 keywords and n = 106 files) by further
avoiding network latencies (e.g., 25-100 ms) that affect other interactive schemes (e.g.,
as considered in [3,18,22,27]). One of the variants that we explore requires three rounds
(as in other DSSE schemes), but it still requires low communication overhead (and less

3 Our scheme assumes the maximum number of keywords to be used in the system is predefined.

4

transmission than that of [18] and fewer rounds than [22]). Notice that the scheme
in [22] can only add or remove a file but cannot update the keywords of a file with-
out removing or adding it, while our scheme can achieve this functionality intrinsically
with a (standard) update or delete operation.
• Oblivious Updates: Our update operation takes always the same amount of time,

which does not leak timing information depending on the update.
• Parallelization: Our scheme is parallelizable for both update and search opera-

tions (unlike schemes that rely on linked-lists such as [19]).
• Forward Privacy: Our scheme can achieve forward privacy by retrieving not the

whole data structure (e.g., [27]) but only some part of it that has already been queried.

2 Related Work

SSE was introduced in [25] and it was followed by several SSE schemes (e.g., [5, 6, 9, 14,
21]). The scheme of Curtmola et al. in [9] achieves a sub-linear and optimal search time
as O(r), where r is the number of files that contain a particular keyword. It also intro-
duced the standard security notion for SSE, which is called as adaptive security against
chosen-keyword attacks (CKA2). However, the static nature of those schemes limited
their applicability to applications with dynamic file collections. Moreover, some of them
(e.g., [9]) were not parallelizable. Kamara et. al. developed a DSSE scheme in [19] that
could handle dynamic file collections via encrypted updates. However, it leaked signifi-
cant information for updates and was not parallelizable. Kamara et al. in [18] proposed
another DSSE scheme, which leaked less information than that of [19] and was paral-
lelizable. However, it requires interactive updates and impractical server storage.

Recently, a series of new DSSE schemes (i.e., [3, 22, 23, 27]) have been proposed by
achieving better performance and security results. While being asymptotically better,
those schemes also have drawbacks. The scheme in [27] requires high storage overhead
at the client side (e.g., 210 MB), where the client fetches non-negligible amount of data
from the server and performs an oblivious sort on it. It also requires significant amount
of data storage (e.g., 1600 bits) for per keyword-file pair at the server side. The scheme
in [3] extends the work in [4] that focuses on boolean queries. While showing asymp-
totically better performance, it leaks more information compared to [27] also incurring
in non-negligible server storage. The data structure in this work grows linearly with the
number of deletion operations, which requires re-encrypting the data structure even-
tually. The scheme in [22] uses a different approach from all the aforementioned alter-
natives, in which the server does not perform any processing, but just acts as a storage
and transmission entity. The scheme relies on a primitive called “blind-storage”. While
the scheme shows good performance, it requires higher interaction than its counter-
parts, which may introduce response delays for distributed client-server systems. The
scheme leaks less information than that of [3], but only support single keyword queries.
The scheme can add/remove a file but it cannot update the content of a file. Because
of all these significant differences, we have not included it in Table 1.

The Blind Seer [23] is a private Database Management System (DBMS), which sup-
ports queries such as arbitrary boolean formulas and range queries. It also offers pri-
vate policy enforcement on semi-honest clients, while a recent version [11] can also
handle malicious clients. Remark that Blind Seer focuses on a different scenario and

5

system model compared to traditional SSE schemes: “The SSE setting focuses on data
outsourcing rather than data sharing. That is, in SSE the data owner is the client, and
so no privacy against the client is required” [23]. Other differences are as follows: The
Blind Seer requires three parties (one of them acts as a semi-trusted party) instead
of two. The Blind Seer relies on sophisticated cryptographic tools to attain security
against semi-honest (or malicious as in [11]) client, while our schemes rely on only ba-
sic primitives (e.g., symmetric encryption, PRF) and are very simple, in which clients
are data owners (e.g., the client is by default not malicious). Our schemes focus on only
basic keyword queries but achieves the highest update privacy in the traditional SSE
setting. Note that the update functionality of Blind Seer is not oblivious (this is explic-
itly noted in [23] on page 8, footnote 2). The Blind Seer solves the leakage problem
due to non-oblivious updates by periodically reencrypting the entire index. Finally, the
overall execution times reported in [3,11,23] are difficult to compare to ours given that
they use high-end server hardware (e.g., 20-TB server with 96 GB RAM and X5650 Intel
Xeon processor in [11]) as opposed to our implementation on a commodity platform.

3 Preliminaries and Models

Operators || and |x| denote the concatenation and the bit length of variable x, respec-

tively. x $← S means variable x is randomly and uniformly selected from set S. For any

integer l, (x0, . . . , xl)
$← S means (x0

$← S, . . . , xl
$← S). |S| denotes the cardinality of

set S. {xi}li=0 denotes (x0, . . . , xl). We denote by {0, 1}∗ the set of binary strings of any
finite length. bxc denotes the floor of x and dxe denotes the ceiling of x. The set of items
qi for i = 1, . . . , n is denoted by 〈q1, . . . , qn〉. Integer κ denotes the security parameter.
log xmeans log2 x. I[∗, j] and I[i, ∗] mean accessing all elements in the j’th column and
the i’th row of a matrix I, respectively. I[i, ∗]T is the transpose of the i’th row of I.

An IND-CPA secure private key encryption scheme is a triplet E = (Gen,Enc,Dec)
of three algorithms as follows: k1 ← E .Gen(1κ) is a Probabilistic Polynomial Time (PPT)
algorithm that takes a security parameter κ and returns a secret key k1; c← E .Enck1(M)
takes secret key k1 and a message M , and returns a ciphertext c; M←E .Deck1(c) is a de-
terministic algorithm that takes k1 and c, and returns M if k1 was the key under which
c was produced. A Pseudo Random Function (PRF) is a polynomial-time computable
function, which is indistinguishable from a true random function by any PPT adver-
sary. The function F : {0, 1}κ×{0, 1}∗ → {0, 1}κ is a keyed PRF, denoted by τ ← Fk2 (x),

which takes as input a secret key k2
$← {0, 1}κ and a string x, and returns a token τ .

G : {0, 1}κ × {0, 1}∗ → {0, 1}κ is a keyed PRF denoted as r ← Gk3 (x), which takes as
input k3 ← {0, 1}κ and a string x and returns a key r. We denote byH : {0, 1}|x| → {0, 1}
a Random Oracle (RO) [1], which takes an input x and returns a bit as output.

We follow the definitions of [18, 19] with some modifications: fid and w denote a
file with unique identifier id and a unique (key)-word that exists in a file, respectively.
A keyword w is of length polynomial in κ, and a file fid may contain any such keyword
(i.e., our keyword universe is not fixed). For practical purposes, n and m denote the
maximum number of files and keywords to be processed by application, respectively.
f = (fid1 , . . . , fidn) and c = (cid1 , . . . , cidn) denote a collection of files (with unique iden-

6

tifiers id1, . . . , idn) and their corresponding ciphertext computed under k1 via Enc, re-
spectively. Data structures δ and γ denote the index and encrypted index, respectively.

Definition 1. A DSSE scheme is a tuple of nine polynomial-time algorithmsDSSE = (Gen,
Enc,Dec, SrchToken, Search,AddToken,Add,DeleteToken,Delete) such that:

1. K←Gen(1κ): It takes as input a security parameter κ and outputs a secret key K.
2. (γ, c)←EncK (δ, f): It takes as input a secret key K, an index δ and files f , from which
δ constructed. It outputs encrypted index γ and ciphertexts c.

3. fj ← DecK (cj): It takes as input secret key K and ciphertext cj and outputs a file fj .
4. τw←SrchToken(K,w): It takes as input a secret key K and a keyword w. It outputs a

search token τw.
5. idw ← Search(τw, γ): It takes as input a search token τw and an encrypted index γ. It

outputs identifiers idw ⊆ c.
6. τf ← AddToken(K, fid): It takes as input a secret keyK and a file fid with identifier id

to be added. It outputs an addition token τf .
7. (γ′, c′)← Add(γ, c, τf): It takes as input an encrypted index γ, ciphertexts c, an addi-

tion token τf . It outputs a new encrypted index γ′ and ciphertexts c′.
8. τ ′f←DeleteToken(K, f): It takes as input a secret key K and a file fid with identifier id

to be deleted. It outputs a deletion token τ ′f .
9. (γ′, c′)← Delete(γ, c, τ ′f): It takes as input an encrypted index γ, ciphertexts c, and a

deletion token τ ′f . It outputs a new encrypted index γ′ and new ciphertexts c′.

Definition 2. Let DSSE be a dynamic SSE scheme consisting of the tuple of nine algo-
rithm as given in Definition 1. A DSSE scheme is correct if for all κ, for all keys K gener-
ated by Gen(1κ), for all f, for all (γ, c) output by EncK (δ, f), and for all sequences of add,
delete or search operations on γ, search always returns the correct set of identifier idw.

Most known efficient SSE schemes (e.g., [3,4,14,18,19,22,27]) reveal the access and
search patterns that are defined below.

Definition 3. Search patternP(δ,Query, t) is defined as follows: Given search queryQuery =
w at time t, the search pattern is a binary vector of length t with a 1 at location i if the
search time i ≤ t was for w, 0 otherwise. The search pattern indicates whether the same
keyword has been searched in the past or not.

Definition 4. Access pattern ∆(δ, f, wi, t) is defined as follows: Given Query = w at time
t, the access pattern is identifiers idw of files f, in which w appears.

We consider the following leakage functions, in the line of [18] that captures dy-
namic file addition and deletion in its security model as we do, but we leak less infor-
mation compared to [18] as discussed in Section B.

Definition 5. Leakage functions (L1,L2) are defined as follows:

1. (m,n, idw, 〈|fid1 |, . . . , |fidn |〉) ← L1(δ, f): Given the index δ and the set of files f (in-
cluding their identifiers),L1 outputs the maximum number of keywordsm, the max-
imum number of files n, the identifiers idw = (id1, . . . , idn) of f and the size of each
file |fidj |, 1 ≤ j ≤ n (which also implies the size of its corresponding ciphertext |cidj |).

7

2. (P(δ,Query, t), ∆(δ, f, wi, t)) ← L2(δ, f, w, t): Given the index δ, the set of files f and a
keyword w for a search operation at time t, it outputs the search and access patterns.

Definition 6. Let DSSE be a DSSE scheme consisting of the tuple of nine algorithms as
defined in Definition 1. LetA be a stateful adversary and S be a stateful simulator. Con-
sider the following probabilistic experiments:

RealA(κ): The challenger executes K ← Gen(1κ). A produces (δ, f) and receives
(γ, c) ← EncK (δ, f) from the challenger. A makes a polynomial number of adaptive
queriesQuery ∈ (w, fid, fid′) to the challenger. IfQuery = w thenA receives a search token
τw ← SrchToken(K,w) from the challenger. If Query = fid is a file addition query then
A receives an addition token τf ← AddToken(K, fid) from the challenger. If Query = fid′

is a file deletion query then A receives a deletion token τ ′f ← DeleteToken(K, fid′) from
the challenger. Eventually,A returns a bit b that is output by the experiment.

IdealA,S(κ): A produces (δ, f). Given L1(δ, f), S generates and sends (γ, c) to A .
A makes a polynomial number of adaptive queries Query ∈ (w, fid, fid′) to S . For each
adaptive query, S is given L2(δ, f, w, t). If Query = w then S returns a simulated search
token τw. If Query = fid or Query = fid′ , S returns a simulated addition token τf or dele-
tion token τ ′f ,respectively. Eventually,A returns a bit b that is output by the experiment.

ADSSE is said (L1,L2)-secure against adaptive chosen-keyword attacks (CKA2-security)
if for all PPT adversariesA , there exists a PPT simulator S such that

|Pr[RealA(κ) = 1]− Pr[IdealA,S(κ) = 1]| ≤ neg(κ)

Remark 1. In Definition 6, we adapt the notion of dynamic CKA2-security from [18],
which captures the file addition and deletion operations by simulating corresponding
tokens τf and τ ′f , respectively (see Theorem 1 in Appendix A.2).

4 Our Scheme

We now introduce our main scheme (several variants of it are given in Section 6).
As in other index-based schemes, our DSSE scheme has an index δ represented by a

m×nmatrix, where δ[i, j] ∈ {0, 1} for i = 1, . . . ,m and j = 1, . . . , n. Initially, all elements
of δ are set to 0. I is a m × n matrix, where I[i, j] ∈ {0, 1}2. I[i, j].v stores δ[i, j] in en-
crypted form depending on state and counter information. I[i, j].st stores a bit indicat-
ing the state of I[i, j].v. Initially, all elements of I are set to 0. I[i, j].st is set to 1 whenever
its corresponding fj is updated, and it is set to 0 whenever its corresponding keyword
wi is searched. For the sake of brevity, we will often write I[i, j] to denote I[i, j].v. We
will always be explicit about the state bit I[i, j].st. The encrypted index γ corresponds
to the encrypted matrix I and a hash table. We also have client state information4 in the
form of two static hash tables (defined below). We map each file fid and keywordw pair
to a unique set of indices (i, j) in matrices (δ, I). We use static hash tables to uniquely

4 It is always possible to eliminate client state by encrypting and storing it on the server side. This comes at the cost
of additional iteration, as the client would need to retrieve the encrypted hash tables from the server and decrypt
them. Asymptotically, this does not change the complexity of the schemes proposed here.

8

associate each file and keyword to its corresponding row and column index, respec-
tively. Static hash tables also enable to access the index information in (average) O(1)
time. Tf is a static hash table whose key-value pair is {sfj , 〈j, stj〉}, where sfj ← Fk2(idj)
for file identifier idj corresponding to file fidj , index j ∈ {1, . . . , n} and st is a counter
value. We denote access operations by j ← Tf (sfj) and stj ← Tf [j].st. Tw is a static
hash table whose key-value pair is {swi , 〈i, sti〉}, where token swi ← Fk2(wi), index
i ∈ {1, . . . , n} and st is a counter value. We denote access operations by i ← Tw(swi)
and sti ← Tw[i].st. All counter values are initially set to 1.

We now describe our main scheme in detail.

K←Gen(1κ): The client generates k1←E .Gen(1κ), (k2, k3)
$← {0, 1}κ andK ← (k1, k2, k3).

(γ, c)←EncK (δ, f): The client generates (γ, c) as follows:
1. Extract all unique keywords (w1, . . . , wm′) from files f = (fid1 , . . . , fidn′), where
n′ ≤ n and m′ ≤ m. Initially, set all the elements of δ to 0.

2. Construct δ for j = 1, . . . , n′ and i = 1, . . . ,m′:
(a) swi ← Fk2 (wi), xi ← Tw(swi), sfj ← Fk2 (idj) and yj ← Tf (sfj).
(b) If wi appears in fj set δ[xi, yj]← 1.

3. Encrypt δ for j = 1, . . . , n and i = 1, . . . ,m:
(a) Tw[i].st← 1 and Tf [j].st← 1.
(b) ri ← Gk3 (i||sti), where sti ← Tw[i].st.
(c) I[i, j]← δ[i, j]⊕H(ri||j||stj), where stj ← Tf [j].st.
(d) I[i, j].st← 0.

4. cj ← E .Enck1(fidj) for j = 1, . . . , n′ and c← {〈c1, y1〉, . . . , 〈cn′ , yn′〉}.
5. Output (γ, c), where γ ← (I, Tf). The client gives (γ, c) to the server, and keeps

(K,Tw, Tf).

fj←DecK (cj): The client obtains the file as fj ← E .Deck1(cj).

τw←SrchToken(K,w): The client generates a search token τw for w as follows:
1. swi ← Fk2 (w), i← Tw(swi), sti ← Tw[i].st and ri ← Gk3 (i||sti).
2. If sti = 1 then τw ← (i, ri) . Else (if sti > 1), ri ← Gk3 (i||sti−1) and τw ← (i, ri, ri).
3. Tw[i].st← sti + 1.
4. Output τw. The client sends τw to the server.

idw←Search(τw, γ): The server finds indexes of ciphertexts for τw as follows:
1. If ((τw = (i, ri) ∨ I[i, j].st) = 1) hold then I ′[i, j] ← I[i, j] ⊕H(ri||j||stj), else set
I ′[i, j]← I[i, j]⊕H(ri||j||stj), where stj ← Tf [j].st for j = 1, . . . , n.

2. I[i, ∗].st← 0.
3. Set l′ ← 1 and for each j satisfies I ′[i, j] = 1, set yl′ ← j and l′ ← l′ + 1.
4. Output idw ← (y1, . . . ,yl). The server returns (cy1 , . . . , cyl) to the client, where
l← l′ − 1.

5. After the search is completed, the server re-encrypts row I ′[i, ∗]with ri as I[i, j]←
I ′[i, j]⊕H(ri||j||stj) for j = 1, . . . , n, where stj ← Tf [j].st and sets γ ← (I, Tw)

5.

5 This provides privacy if the server is compromised by an outsider after a search operation occurs (the server deletes
ri from the memory after the step 5 is completed). It also keeps I consistent for consecutive search operations
performed on the same keyword.

9

τf ← AddToken(K, fidj): The client generates τf for a file fidj as follows:

1. sfj ← Fk2 (idj), j ← Tf (sfj), Tf [j].st← Tf [j].st+ 1, stj ← Tf [j].st.
2. ri ← Gk3 (i||sti), where sti ← Tw[i].st for i = 1, . . . ,m.
3. Extract (w1, . . . , wt) from fidj and compute swi ← Fk2 (wi) and xi ← Tw(swi) for
i = 1, . . . , t.

4. Set I[xi]← 1 for i = 1, . . . , t and rest of the elements as {I[i]← 0}mi=1,i/∈{x1,...,xt}.

5. I ′[i]← I[i]⊕H(ri||j||stj) for i = 1, . . . ,m.
6. c← E .Enck1(fidj).
7. Output τf ← (I ′, j). The client sends (τf , c) to the server.

(γ′, c′)←Add(γ, c, τf): The server performs file addition as follows:

1. I[∗, j]← (I ′)T , I[∗, j].st← 1 and increment Tf [j].st← Tf [j].st+ 1.
2. Output (γ′, c′), where γ′ ← (I, Tf), c′ is obtained by adding (c, j) to c.

τ ′f←DeleteToken(K, f): The client generates τ ′f for f as follows:

1. Execute steps (1-2) of AddToken algorithm, which produce (j, ri, stj).
2. I ′[i]← H(ri||j|stj) for i = 1, . . . ,m 6.
3. Output τ ′f ← (I ′, j). The client sends τ ′f to the server.

(γ′, c′)←Delete(γ, c,τ ′f): The server performs file deletion as follows:

1. I[∗, j]← (I ′)T , I[∗, j].st← 1 and increment Tf [j].st← Tf [j].st+ 1.
2. Output (γ′, c′), where γ′ ← (I, Tf), c′ is obtained by removing (c, j) from c.

Keyword update for existing files: Some existing alternatives (e.g., Naveed et. al. [22])
only permit adding or deleting a file, but do not permit updating keywords in an exist-
ing file. Our scheme enables keyword update in an existing file. To update an existing
file f by adding new keywords or removing existing keywords, the client prepares a new
column I[i] ← bi, i = 1, . . . ,m, where bi = 1 if wi is added and bi = 0 otherwise (as in
AddToken, step 4). The rest of the algorithm is similar to AddToken algorithm.

Variants: Several variants of our main schemes are given in Section 6 and Appendix C.

5 Security Analysis

Theorem 1 If Enc is IND-CPA secure, (F,G) are PRFs and H is a RO then our DSSE
scheme is (L1,L2)-secure in ROM according to Definition 6.

Proof: We give the proof of correctness of our scheme in Appendix A.1. The security
proof and simulators are presented in Appendix A.2.

6 This step is only meant to keep data structure consistency during a search operation.

10

6 Evaluation and Discussion

We have implemented our scheme in a stand-alone environment using C/C++. By stand-
alone, we mean we run on a single machine, as we are only interested in the perfor-
mance of the operations and not the effects of latency, which will be present (but are
largely independent of the implementation7.) For cryptographic primitives, we chose
to use the libtomcrypt cryptographic toolkit version 1.17 [10] and as an API. We modi-
fied the low level routines to be able to call and take advantage of AES hardware accel-
eration instructions natively present in our hardware platform, using the correspond-
ing freely available Intel reference implementations [17]. We performed all our exper-
iments on an Intel dual core i5-3320M 64-bit CPU at 2.6 GHz running Ubuntu 3.11.0-
14 generic build with 4GB of RAM. We use 128-bit CCM and AES-128 CMAC for file
and data structure encryption, respectively. Key generation was implemented using the
expand-then-extract key generation paradigm analyzed in [20]. However, instead of us-
ing a standard hash function, we used AES-128 CMAC for performance reasons. Notice
that this key derivation function has been formally analyzed and is standardized. Our
use of CMAC as the PRF for the key derivation function is also standardized [7]. Our
random oracles were all implemented via 128-bit AES CMAC. For hash tables, we use
Google’s C++ sparse hash map implementation [16] but instead of using the standard
hash function implementation, we called our CMAC-based random oracles truncated
to 80 bits. Our implementation results are summarized in Table 2.

Performance Comparison. We performed our experiments on the Enron database of
emails as in [19]. Table 2 summarizes results for three types of experiments: (i) Large
number of files and large number of keywords, (ii) large number of files but compara-
tively small number of keywords and (iii) large number of keywords but small number
of files. In all cases, the combined number of keyword/file pairs is between 109 and
1010, which surpass the experiments in [19] by about two orders of magnitude and are
comparable to the experiments in [27]. One key observation is that in contrast to [27]
(and especially to [3] with very high-end servers), we do not use server-level hardware
but a rather standard commodity Intel platform with limited RAM memory. From our
results, it is clear that for large databases the process of generating the encrypted rep-
resentation is relatively expensive, however, this is a one-time only cost. The cost per
keyword search depends linearly as O(n)/128 on the number of files in the database
and it is not cost-prohibiting (even for the large test case of 1010 keyword/file pairs,
searching takes only a few msec). We observe that despite this linear cost, our search
operation is extremely fast comparable to the work in [19]. The costs for adding and
deleting files (updates) is similarly due to the obliviousness of these operations in our
case. Except for the cost of creating the index data structure, all performance data ex-
trapolates to any other type of data, as our data structure is not data dependant and it
is conceptually very simple. We observe that we still have room for improvement since
have not taken advantage of parallelization.

7 As it can be seen from Table 1, our scheme is optimal in terms of the number of rounds required to perform any
operation. Thus, latency will not affect the performance of the implementation anymore than any other competing
scheme. This replicates the methodology of Kamara et al. [19].

11

Table 2: Performance of our DSSE scheme operations. w.: # of words, f.: # of files
Operation Time (msec)

w. f. w. f. w. f.
2 · 105 5 · 104 2000 2 · 106 1 · 106 5000

Building searchable representation (offline, one-time cost at initialization)

Keyword-file mapping, extraction 6.03 sec 52 min. 352 msec
Encrypt searchable representation 493 msec 461 msec 823 msec

Search and Update Operations (online, after initialization)

Search for single key word 0.3 msec 10 msec 0.02 msec

Add file to database 472 msec 8.83 msec 2.77 sec

Delete file from database 329 msec 8.77 msec 2.36 sec

Functionality, Security, and Data Structure Comparison. Compared to Kamara et al.
in [19] scheme, which relies on an inverted index approach with multiple linked lists
and achieves optimal O(r) search time, our scheme has linear search time, uses an
inverted index approach with a simple matrix-based data structure (augmented with
hash tables for fast retrieval) but in contrast we achieve completely oblivious update
operations. Moreover, the [19] can not be parallelized, whereas our scheme can. Ka-
mara et al. [18] relies on red-black trees as the main data structure, achieves parallel
search and oblivious update operations. However, it requires interactive updates and
incurs in significant server storage overhead due to its very large encrypted index size.
The scheme of Stefanov et al. [27] requires high storage overhead at the client side (e.g.,
210 MB for moderate size file-keyword pairs), where the client fetches non-negligible
amount of data from the server and performs an oblivious sort on it. We only require
one hash table and four symmetric secret keys storage. [27] also requires significant
amount of data storage (e.g., 1600 bits) for per keyword-file pair at the server side ver-
sus 2 bits per file-keyword pair in our scheme (and a hash table8). The scheme in [3] it
leaks more information compared to [27] also incurring in non-negligible server stor-
age. The data structure in [3] grows linearly with the number of deletion operations,
which requires re-encrypting the data structure eventually. Our scheme does not re-
quire re-encryption (but we assume an upper bound on the maximum number of files),
and our storage is constant regardless of the number of additions, deletions, or up-
dates. The scheme in [22] requires higher interaction than its counterparts, which may
introduce response delays for distributed client-server architectures, it leaks less in-
formation than that of [3], but only support single keyword queries. The scheme can
add/remove a file but it cannot update the content of a file in contrast to our scheme.

We now discuss some variants and trade-offs in our scheme, which can result in
significant performance improvements.
Variant-I: Trade-off between computation and interaction overhead. In the main sc-
heme,H is invoked for each column of I once, which requiresO(n) invocations in total.
We propose a variant scheme that offers significant computational improvement at the
cost of a plausible communication overhead.

8 The size of the hash table depends on its occupancy factor, the number of entries and the size of each entry. Assum-
ing 80-bits per entry and a 50% occupancy factor, our scheme still requires about 2 × 80 + 2 = 162 bits per entry,
which is about a factor 10 better than [27]. Observe that for fixedm-words, we need a hash table with approximately
2m entries, even if each entry was represented by 80-bits.

12

We use counter (CTR) mode with a block size b for E . We interpret columns of I as
d =

⌈
n
b

⌉
blocks with size of b bits each, and encrypt each blockBl, l = 0, . . . , d−1, sepa-

rately with E by using a unique block counter stl. Each block counter stl is located at its
corresponding index al (block offset of Bl) in Tf , where al ← (l · b) + 1. The uniqueness
of each block counter is achieved with a global counter gc, which is initialized to 1 and
incremented by 1 for each update operation. A state bit Tf [al].b is stored to keep track
the update status of its corresponding block. The update status is maintained only for
each block but not for each bit of I[i, j]. Hence, I is a just binary matrix (unlike the
main scheme, in which I[i, j] ∈ {0, 1}2). AddToken and Add algorithms for the afore-
mentioned variant are as follows (DeleteToken and Delete follow the similar principles):

τf ← AddToken(K, fidj): The client generates τf for a file fidj as follows:

1. sfj ← Fk2 (fidj), j ← Tf (sfj), l←
⌊
j
b

⌋
, al ← (l · b) + 1 and stl ← Tf [al].st.

2. Extract (w1, . . . , wt) from fidj and compute swi ← Fk2 (wi) and xi ← Tw(swi) for
i = 1, . . . , t. For i = 1, . . . ,m:
(a) ri ← Gk3 (i||sti), where sti ← Tw[i].st

9.
(b) The client requests l’th block, which contains index j of fid from the server.

The server then returns the corresponding block (I[i, al], . . . , I[i, al+1 − 1]),
where al+1 ← b(l + 1) + 1.

(c) (I[i, al], . . . , I[i, al+1 − 1])← E .Decri(I[i, al], . . . , I[i, al+1 − 1], stl).
3. Set I[xi, j]← 1 for i = 1, . . . , t and {I[i, j]← 0}mi=1,i/∈{x1,...,xt}.
4. gc← gc+ 1, Tf [al].st← gc, stl ← Tf [al].st and Tf [al].b← 1.
5. (I ′[i, al], . . . , I

′[i, al+1−1])← E .Encri(I[i, al], . . . , I[i, al+1−1], stl) for i = 1, . . . ,m.
6. c← E .Enck1(fidj).
7. Output τf ← (I ′, j). The client sends (τf , c) to the server.

(γ′, c′)←Add(γ, c, τf): The server performs file addition as follows:
1. Replace (I[∗, al], . . . , I[∗, al+1 − 1]) with I ′.
2. gc← gc+ 1, Tf [al].st← gc and Tf [al].b← 1.
3. Output (γ′, c′), where γ′ ← (I, Tf), c′ is obtained by adding (c, j) to c.

Gen and Dec algorithms of the variant scheme are identical to that of main scheme.
The modifications of SrchToken and Search algorithms are straightforward (in the line of
AddToken and Add) and therefore will not be repeated. In this variant, the search opera-
tion requires the decryption of b-bit blocks for l = 0, . . . , d− 1. Hence, E is invoked only
O(n/b) times during the search operation (in contrast toO(n) invocation ofH as in our
main scheme). That is, the search operation becomes b times faster compared to our
main scheme. The block size b can be selected according to the application require-
ments (e.g., b = 64, b = 128 or b = 256 based on the preferred encryption function). For
instance, b = 128 yields highly efficient schemes if the underlying cipher is AES by tak-
ing advantage of AES specialized instructions in current PC platforms. Moreover, CTR
mode can be parallelizable and therefore the search time can be reduced toO(n/(b·p)),
where p is the number of processors in the system. This variant requires transmitting

9 In this variant, G should generate a cryptographic key suitable for the underlying encryption function E (e.g., the
output of KDF is b = 128 for AES with CTR mode).

13

2 · b ·O(m) bits for each update compared toO(m) non-interactive transmission in our
main scheme. However, one may notice that this approach offers a trade-off, which is
useful for some practical applications. That is, the search speed is increased by a factor
of b (e.g., b = 128) with the cost of transmitting just 2 · b ·m bits (e.g., less than 2MB for
b = 128,m = 105). However, a network delay t is introduced due to interaction.

Remark 2. The b-bit block is re-encrypted via an IND-CPA encryption scheme on the
client side at the cost of one round of interaction. Hence, encrypting multiple columns
does not leak additional information during updates over our main scheme.

We discuss three other variants of our main scheme in Appendix C. We prove secu-
rity of the main scheme and extend the proof to this variant in Appendix A.2.

References

1. M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm for designing efficient proto-
cols,” in Proceedings of the 1st ACM conference on Computer and Communications Security (CCS ’93).
NY, USA: ACM, 1993, pp. 62–73.

2. D. Boneh, A. Sahai, and B. Waters, “Functional encryption: Definitions and challenges,” in Proceedings
of the 8th Conference on Theory of Cryptography, ser. TCC’11. Berlin, Heidelberg: Springer-Verlag,
2011, pp. 253–273.

3. D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawcyk, M.-C. Rosu, and M. Steiner, “Dynamic searchable
encryption in very-large databases: Data structures and implementation,” in 21th Annual Network
and Distributed System Security Symposium — NDSS 2014. The Internet Society, February 23-26,
2014.

4. D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Rosu, and M. Steiner, “Highly-scalable searchable
symmetric encryption with support for boolean queries,” in Advances in Cryptology, CRYPTO 2013,
ser. Lecture Notes in Computer Science, vol. 8042. Springer Berlin Heidelberg, 2013, pp. 353–373.

5. Y.-C. Chang and M. Mitzenmacher, “Privacy preserving keyword searches on remote encrypted data,”
in Proceedings of the Third International Conference on Applied Cryptography and Network Security
(ACNS), ser. Lecture Notes in Computer Science, vol. 3531. Berlin, Heidelberg: Springer-Verlag, 2005,
pp. 442–455.

6. M. Chase and S. Kamara, “Structured encryption and controlled disclosure,” in Advances in Cryptol-
ogy - ASIACRYPT 2010, ser. Lecture Notes in Computer Science, vol. 6477, 2010, pp. 577–594.

7. L. Chen, “Nist special publicatin 800-108: Recomendation for key derivation using pseudorandom
functions (revised),” National Institute of Standards and Technology. Computer Security Division,
Tech. Rep. NIST-SP800-108, October 2009, available at http://csrc.nist.gov/publications/nistpubs/
800-108/sp800-108.pdf.

8. J.-S. Coron, A. Mandal, D. Naccache, and M. Tibouchi, “Fully homomorphic encryption over the in-
tegers with shorter public keys,” in Advances in Cryptology, CRYPTO 2011, ser. Lecture Notes in Com-
puter Science, vol. 6841. Springer Berlin Heidelberg, 2011, pp. 487–504.

9. R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable symmetric encryption: improved def-
initions and efficient constructions,” in Proceedings of the 13th ACM conference on Computer and
communications security, ser. CCS ’06. New York, NY, USA: ACM, 2006, pp. 79–88.

10. T. S. Denis, “LibTomCrypt library,” Available at http://libtom.org/?page=features&newsitems=
5&whatfile=crypt, Released May 12th, 2007.

11. B. Fisch, B. Vo, F. Krell, A. Kumarasubramanian, V. Kolesnikov, T. Malkin, and S. M. Bellovin,
“Malicious-client security in blind seer: A scalable private DBMS,” May 18-20, 2015.

12. S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters, “Candidate indistinguishability
obfuscation and functional encryption for all circuits,” in Foundations of Computer Science (FOCS),
2013 IEEE 54th Annual Symposium on, Oct 2013, pp. 40–49.

13. C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proceedings of the 41st annual ACM
symposium on Theory of computing, ser. STOC ’09. New York, NY, USA: ACM, 2009, pp. 169–178.

14. E.-J. Goh, “Secure indexes,” Cryptology ePrint Archive, Report 2003/216, 2003, http://eprint.iacr.org/.

http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf
http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf
http://libtom.org/?page=features&newsitems=5&whatfile=crypt
http://libtom.org/?page=features&newsitems=5&whatfile=crypt
http://eprint.iacr.org/

14

15. O. Goldreich and R. Ostrovsky, “Software protection and simulation on oblivious rams,” J. ACM,
vol. 43, no. 3, pp. 431–473, 1996.

16. google sparsehash@googlegroups.com, “sparsehash: An extemely memory efficient hash map imple-
mentation,” Available at https://code.google.com/p/sparsehash/, February 2012.

17. S. Gueron, “White Paper: Intel Advanced Encryption Standard (AES) New Instructions Set,”
Available at https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.
pdf. Software Library available at https://software.intel.com/sites/default/files/article/181731/
intel-aesni-sample-library-v1.2.zip, Document Revision 3.01, September 2012.

18. S. Kamara and C. Papamanthou, “Parallel and dynamic searchable symmetric encryption,” in Finan-
cial Cryptography and Data Security (FC), ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2013, vol. 7859, pp. 258–274.

19. S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable symmetric encryption,” in Proceed-
ings of the 2012 ACM conference on Computer and communications security, ser. CCS ’12. New York,
NY, USA: ACM, 2012, pp. 965–976.

20. H. Krawczyk, “Cryptographic extraction and key derivation: The HKDF scheme,” in Advances in Cryp-
tology - CRYPTO 2010, ser. LNCS, T. Rabin, Ed., vol. 6223. Springer, August 15-19, 2010, pp. 631–648.

21. K. Kurosawa and Y. Ohtaki, “UC-secure searchable symmetric encryption,” in Financial Cryptography
and Data Security (FC), ser. Lecture Notes in Computer Science, vol. 7397. Springer Berlin Heidel-
berg, 2012, pp. 285–298.

22. M. Naveed, M. Prabhakaran, and C. A. Gunter, “Dynamic searchable encryption via blind storage,” in
35th IEEE Symposium on Security and Privacy, May 2014, pp. 48–62.

23. V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T. Malkin, S. G. Choi, W. George, A. D. Keromytis, and S. Bellovin,
“Blind seer: A scalable private DBMS,” in 2014 IEEE Symposium on Security and Privacy, SP 2014.
IEEE Computer Society, May 18-21, 2014, pp. 359–374.

24. N. P. Smart and F. Vercauteren, “Fully homomorphic simd operations,” Des. Codes Cryptography,
vol. 71, no. 1, pp. 57–81, 2014.

25. D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches on encrypted data,” in Pro-
ceedings of the 2000 IEEE Symposium on Security and Privacy, ser. SP ’00. Washington, DC, USA:
IEEE Computer Society, 2000, pp. 44–55.

26. E. Stefanov and E. Shi, “Oblivistore: High performance oblivious cloud storage,” in Security and Pri-
vacy (SP), 2013 IEEE Symposium on, May 2013, pp. 253–267.

27. E. Stefanov, C. Papamanthou, and E. Shi, “Practical dynamic searchable encryption with small leak-
age,” in 21st Annual Network and Distributed System Security Symposium — NDSS 2014. The Internet
Society, February 23-26, 2014.

28. M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully homomorphic encryption over the
integers,” in Proceedings of the 29th Annual International Conference on Theory and Applications of
Cryptographic Techniques, ser. EUROCRYPT’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 24–43.

A Proofs

We first provide the correctness argument for our main scheme followed by several
variants of it. We then provide the formal proof of our main scheme.

A.1 Proof of Correctness of the DSSE Scheme

The correctness argument for our main scheme is as follows:

Lemma 1. (Correctness) The DSSE scheme presented above is correct according to Defi-
nition 2.

Proof: The correctness and consistency of the above scheme is guaranteed via state bits
I[i, j].st, and counters Tw[i].st of row i and counters Tf [j].st of column j, each main-
tained with hash tables Tw and Tf , respectively.

https://code.google.com/p/sparsehash/
https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf
https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf
https://software.intel.com/sites/default/files/article/181731/intel-aesni-sample-library-v1.2.zip
https://software.intel.com/sites/default/files/article/181731/intel-aesni-sample-library-v1.2.zip

15

The algorithms SrchToken and AddToken increase the counters Tw[i].st for keyword
w and Tf [j].st for file fj , after each search and update operations, respectively. These
counters allow the derivation of a new bit, which is used to encrypt the corresponding
cell I[i, j]. This is done by the invocation of random oracle as H(ri||j||stj) with row key
ri, column position j and the counter of column j. Note that the row key ri used in
H(.) is re-derived based on the value of row counter sti as ri ← Gk3 (i||sti), which is in-
creased after each search operation. Hence, if a search operation is followed by an up-
date operation, algorithm AddToken derives a fresh key ri ← Gk3 (i||sti), which was not
released during the previous search as a token. This ensures that AddToken algorithm
securely and correctly encrypts the new column of added/deleted file. Algorithm Add
then replaces new column j with the old one, increments column counter and sets all
state bits I[∗, j] to 1 (indicating cells are updated) for the consistency.

The rest is to show that algorithms SrchToken and Search produce correct search
results. If keyword w is searched for the first time, the algorithm SrchToken derives only
ri, since there were no past search increasing the counter value. Otherwise, it derives ri
with the current counter value sti and ri with the previous counter value sti − 1, which
will be used to decrypt recently updated and non-updated (after the last search) cells of
I[i, ∗], respectively (i.e., step 3). That is, given search token τw, the algorithm Search step
1 checks if τw includes only one key (i.e., the first search) or corresponding cell value
I[i, j] was updated (i.e., I[i, j].st = 1). If one of these conditions holds, the algorithm
Search decrypts I[i, j] with bit H(ri||j||stj) that was used for encryption by algorithm
Enc (i.e., the first search) or AddToken (i.e., update). Otherwise, it decrypts I[i, j] with bit
H(ri||j||stj). Hence, the algorithm Search produces the correct search result by properly
decrypting row i. The algorithm Search also ensures the consistency by setting all state
bits I[i, ∗].st to zero (i.e., indicating cells are searched) and re-encrypting I[i, ∗] by using
the last row key ri (i.e., step 5). �

A.2 Proof of Security

We prove that our main scheme achieves adaptive security against chosen-keyword at-
tacks (CKA2) (with secure update operations as defined in Definition 6) as below. Re-
mark that it is straightforward to extend the proof for our variant schemes. Further note
that our scheme is secure in the Random Oracle Model (ROM) [1]. That is, A is given
access to a random oracle RO(.) from which she can request the hash of any message
of her choice. In our proof, cryptographic function H used in our scheme is modeled
as a random oracle via function RO(.).

Theorem 1. If Enc is IND-CPA secure, (F,G) are PRFs and H is a RO then our DSSE
scheme is (L1,L2)-secure in ROM according to Definition 6 (CKA-2 security with update
operations).

Proof. We construct a simulator S that interacts with an adversary A in an execution
of an IdealA,S(κ) experiment as described in Definition 6.

In this experiment,S maintains listsLR,LK andLH to keep track the query results,
states and history information, initially all lists empty.LR is a list of key-value pairs and
is used to keep track RO(.) queries. We denote value ← LR(key) and ⊥ ← LR(key) if
key does not exist in LR. LK is used to keep track random values generated during the

16

simulation and it follows the same notation that ofLR.LH is used to keep track search
and update queries, S ’s replies to those queries and their leakage output from (L1,L2).
S executes the simulation as follows:

I. Handle RO(.) Queries: Function b← RO (x) takes an input x and returns a bit b as

output. Given input x, if⊥ = LR(x) then set b $← {0, 1}, insert (x, b) into LR and return
b as the output. Else, return b← LR(x) as the output.

II. Simulate (γ, c): Given (m,n, 〈id1, . . . , idn′〉, 〈|cid1 |, . . . , |cidn′ |〉) ← L1(δ, f), S simu-
lates (γ, c) as follows:

1. sfj
$← {0, 1}κ, yj ← Tf (sfj) and insert (idj , sfj , yj) into LH, for j = 1, . . . , n′.

2. cyj ← E .Enck({0}
|cidj |), where k $← {0, 1}κ for j = 1, . . . , n′.

3. For j = 1, . . . , n and i = 1, . . . ,m
(a) Tw[i].st← 1 and Tf [j].st← 1.

(b) zi,j
$← {0, 1}2κ, I[i, j]← RO (zi,j) and I[i, j].st← 0.

4. Output (γ, c), where γ ← (I, Tf) and c← {〈c1, y1〉, . . . , 〈cn′ , yn′〉}.

Correctness and Indistinguishability of the Simulation: c has the correct size and dis-
tribution, sinceL1 leaks 〈|cid1 |, . . . , |cidn′ |〉 and Enc is a IND-CPA secure scheme, respec-
tively. I and Tf have the correct size since L1 leaks (m,n). Each I[i, j] for j = 1, . . . , n
and i = 1, . . . ,m has random uniform distribution as required, since RO(.) is invoked
with a separate random number zi,j . Tf has the correct distribution, since each sfj has
random uniform distribution, for j = 1, . . . , n′. Hence, A does not abort due to A ’s
simulation of (γ, c). The probability thatA queries RO(.) on any zi,j before S provides
I toA is negligible (i.e., 1

22κ
). Hence, S also does not abort.

III. Simulate τw: Assume that simulator S receives a search query w on time t. S is
given (P(δ,Query, t), ∆(δ, f, wi, t)) ← L2(δ, f, w, t). S adds these information to LH.
S then simulates τw and updates lists (LR,LK) as follows:

1. If w in list LH then fetch corresponding swi . Else, swi
$← {0, 1}κ, i ← Tw(swi), sti ←

Tw[i].st and insert (w,L1(δ, f), swi) into LH.
2. If⊥ = LK(i, sti) then ri ← {0, 1}κ and insert (ri, i, sti) into LK. Else, ri ← LK(i, sti).
3. If sti > 1 then ri ← LK(i||sti − 1) and τw ← (i, ri, ri). Else, τw ← (i, ri).
4. Tw[i].st← sti + 1.
5. Given L2(δ, f, w, t), S knows identifiers idw = (y1, . . . , yl). Set I ′[i, yj] ← 1, j =

1, . . . , l, and rest of the elements as {I ′[i, j]← 0}j=1,j /∈{y1,...,yl}.
6. If ((τw = (i, ri) ∨ I[i, j].st) = 1) then V [i, j] ← I[i, j]′ ⊕ I[i, j] and insert tuple

(ri||j||stj , V [i, j]) into LR for j = 1, . . . , n, where stj ← Tf [j].st.
7. I[i, ∗].st← 0.
8. I[i, j]← I ′[i, j]⊕ RO (ri||j||stj), where stj ← Tf [j].st for j = 1, . . . , n.
9. Output τw and insert (w, τw) into LH.

Correctness and Indistinguishability of the Simulation: Given any∆(δ, f, wi, t),S sim-
ulates the output of RO(.) such that τw always produces the correct search result for
idw ← Search(τw, γ). S needs to simulate the output of RO(.) for two conditions (as
in III-Step 6): (i) The first search of wi (i.e., τw = (i, ri)), since S did not know δ during

17

the simulation of (γ, c). (ii) If any file fidj containing wi has been updated after the last
search onwi (i.e., I[i, j].st = 1), since S does not know the content of update. S sets the
output of RO(.) for those cases by inserting tuple (ri||j||stj , V [i, j]) into LR (as in III-
Step 6). In other cases, S just invokes RO(.) with (ri||j||stj), which consistently returns
previously inserted bit from LR (as in III-Step 8).

During the first search on wi, each RO(.) output V [i, j] = RO (ri||j|stj) has the cor-
rect distribution, since I[i, ∗] of γ has random uniform distribution (see II-Correctness
and Indistinguishability argument). Let J = (j1, . . . , jl) be the indexes of files con-
taining wi, which are updated after the last search on wi. If wi is searched then each
RO(.) output V [i, j] = RO (ri||j|stj) has the correct distribution, since τf ← (I ′, j) for
indexes j ∈ J has random uniform distribution (see IV-Correctness and Indistinguisha-
bility argument). Given thatS ’s τw always produces correct idw for given∆(δ, f, wi, t), and
relevant values and RO(.) outputs have the correct distribution as shown, A does not
abort during the simulation due to S ’s search token. The probability that A queries
RO(.) on any (ri||j|stj) before him queries S on τw is negligible (i.e., 1

2κ), and therefore
S does not abort due toA ’s search query.

IV. Simulate (τf ,τ ′f): Assume thatS receives an update requestQuery = (〈Add, |cidj |〉,
Delete) at time t. S simulates update tokens (τf , τ ′f) as follows:

1. If idj in LH then fetch its corresponding (sfj , j) from LH, else set sfj
$← {0, 1}κ,

j ← Tf (sfj) and insert (sfj , j, fidj) into LH.
2. Tf [j].st← Tf [j].st+ 1, stj ← Tf [j].st.
3. If⊥ = LK(i, sti) then ri ← {0, 1}κ and insert (ri, i, sti) into LK, where sti ← Tw[i].st

for i = 1, . . . ,m.

4. I ′[i]← RO (zi), where zi
$← {0, 1}2κ for i = 1, . . . ,m.

5. I[∗, j]← (I ′)T and I[∗, j].st← 1.
6. If Query = 〈Add, |cidj |〉, simulate cj ← E .Enck({0}|cid|), add cj into c, set τf ← (I ′, j)

output (τf , j). Else set τ ′f ← (I ′, j), remove cj from c and output τ ′f .

Correctness and Indistinguishability of the Simulation: Given any access pattern
(τf , τ

′
f) for a file fidj , A checks the correctness of update by searching all keywords

W = (wi1 , . . . , wil) included fidj . Since S is given access pattern∆(δ, f, wi, t) for a search
query (which captures the last update before the search), the search operation always
produces a correct result after an update (see III-Correctness and Indistinguishability
argument). Hence, S ’s update tokens are correct and consistent.

It remains to show that (τf , τ ′f) have the correct probability distribution. In real al-
gorithm, stj of file fidj is increased for each update as simulated in IV-Step 2. If fidj is
updated afterwi is searched, a new ri is generated forwi as simulated in IV-Step 3 (ri re-
mains the same for consecutive updates but stj is increased). Hence, the real algorithm
invokes H(.) with a different input (ri||j||stj) for i = 1, . . . ,m. S simulates this step by
invoking RO(.) with zi and I ′[i] ← RO (zi), for i = 1, . . . ,m. (τf , τ ′f) have random uni-
form distribution, since I ′ has random uniform distribution and update operations are
correct and consistent as shown. cj has the correct distribution, since Enc is an IND-
CPA cipher. Hence, A does not abort during the simulation due to S ’s update tokens.
The probability thatA queries RO(.) on any zi before him queries S on (τf , τ

′
f) is neg-

ligible (i.e., 1
22·κ), and therefore S also does not abort due toA ’s update query.

18

V. Final Indistinguishability Argument: (swi , sfj , ri) for i = 1, . . . ,m and j = 1, . . . , n
are indistinguishable from real tokens and keys, since they are generated by PRFs that
are indistinguishable from random functions. Enc is a IND-CPA scheme, the answers
returned by S toA for RO(.) queries are consistent and appropriately distributed, and
all query replies of S to A during the simulation are correct and indistinguishable as
discussed in I-IV Correctness and Indistinguishability arguments. Hence, for all PPT ad-
versaries, the outputs of RealA(κ) and that of an IdealA,S(κ) experiment are negligibly
close:

|Pr[RealA(κ) = 1]− Pr[IdealA,S(κ) = 1]| ≤ neg(κ)

�

Remark 3. Extending the proof to Variant-I presented in Section 6 is straightforward10.
In particular, (i) interaction is required because even if we need to update a single entry
(column) corresponding to a single file, the client needs to re-encrypt the whole b-bit
block in which the column resides to keep consistency. This, however, is achieved by
retrieving the encrypted b-bit block from the server, decrypting on the client side and
re-encrypting using AES-CTR mode. Given that we use ROs and a IND-CPA encryp-
tion scheme (AES in CTR mode) the security of the DSSE scheme is not affected in our
model, and, in particular, there is no additional leakage. (ii) The price that is paid for
this performance improvement is that we need interaction in the new variant. Since the
messages (the columns/rows of our matrix) exchanged between client and server are
encrypted with an IND-CPA encryption scheme there is no additional leakage either
due to this operation.

B Discussion on Privacy Levels

The leakage definition and formal security model described in Section 3 imply various
levels of privacy for different DSSE schemes. We summarize some important privacy
notions (based on the various leakage characteristics discussed in [3, 18, 22, 27]) with
different levels of privacy as follows:
• Size pattern: It refers to the current number of file-keyword pairs stored in the

system.
• Forward privacy: It refers that a search on a keywordw does not leak the identifiers

of files matching this keyword for (pre-defined) future files.
• Backward privacy: It refers that a search on a keyword w does not leak the iden-

tifiers of files matching this keywords that were previously added but then deleted
(leaked though additional information kept for deletion operations).
• Update privacy: Update operation may leak different levels of information de-

pending on the construction:

– Level-1 (L1) leaks only the time t of the update operation and an index number.
L1 does not leak the type of update due to the type operations performed on en-
crypted index γ. Hence, it is possible to hide the type of update via batch/fake file

10 This variant encrypts/decrypts b-bit blocks instead of single bits and it requires interaction for add/delete/update
operations.

19

addition/deletion11. However, if the update is addition and added file is sent to the
server along with the update information on γ, then the type of update and the size
of added file are leaked.

– Level-2 (L2) leaks L1 plus the identifier of the file being updated and the number of
keywords in the updated file (e.g., as in [27]).

– Level-3 (L3) leaks L2 plus when/if that identifier has had the same keywords added
or deleted before, and also when/if the same keyword have been searched before
(e.g., as in [3]12).

– Level-4 (L4) leaks L3 plus the information whether the same keyword added or
deleted from two files (e.g., as in [18]).

– Level-5 (L5) leaks significant information such as the pattern of all intersections
of everything is added or deleted, whether or not the keywords were search-ed for
(e.g., as in [19]).

The work of Naveed et al. [22] leaks the number of keywords that are common to all the
files in a given subset. The search reveals “removed” versions of the files in the search
results. However, it does not reveal actual file identifier during the search. Observe that,
in addition to achieving CKA2-security (defined below), our construction achieves the
highest level of L1 update privacy, forward-privacy, backward-privacy and size pattern
privacy. Hence, it achieves the highest level of privacy among its counterparts.

C Additional Variants of the Main Scheme

We discuss further variants of our main scheme as below.

Variant-II: Trade-off between storage and communication overhead. The storage over-
head of Tw and Tf are practically small, and therefore in our main scheme, we assume
that the client stores them to maximize the update and search efficiency for an ex-
change of a small storage overhead. For instance, (N = 1011,m = 105, n = 106), the
approximate storage overhead is around 10MB with truncation 13.

It is easy to avoid storing Tf at the client, which requires three message exchanges,
only for update operations, with a very small communication overhead: In AddToken,
given sfj , the server returns (j, stj) to the client and the client follows the AddToken al-
gorithm as described in the main scheme. This twist requires transmitting log2(n)+|stj |
bits (e.g., approximately 52 bits forn = 106 and 32-bit counter) from server to the client,
but reduces the client storage up to only 1MB (which is the overhead of Tw form = 105).
Notice that this storage requirement is plausible even for resource-constrained devices
such as mobile phones14. It is also possible to avoid storing Tw at the client by accept-
ing further communication overhead. That is, the client encrypts Tw and stores it at

11 In our scheme, the client may delete file fidj from γ but still may send a fake file f ′idj to the server as a fake file

addition operation.
12 Remark that despite the scheme in [3] leaks more information than that of ours and [27] as discussed, it does not

leak the (pseudonymous) index of file to be updated.
13 The client can truncate sfj and swi (e.g., 40 bits) to further reduce the storage overhead (but with a security trade-

off).
14 The client may synchronize the encrypted version of Tw with the server from time to time to ensure that it is backed

up regularly (this can be done rarely so that its communication overhead will be negligible). In any case, the client
can always recover Tw from I(which is always stored at the server), since the client knows the private key.

20

the server. Whenever a search or update is required, the client retrieve Tw, decrypts it
and then follows the main scheme.

Variant-III: Alternative Deletion Algorithm. File deletion can be simplified by adding
just another bit to each element of Tf , which is denoted as Tf [j].d, j = 1, . . . , n. Assume
that file fid with corresponding index j is needed to be deleted. The client sets Tf [j].d←
0 and then sends index j to the server. The server also sets Tf [j].d← 0. During a search
operation, the server simply omits the column values whose deletion bits are zero. If
file fid is added in the future, we follow Add and AddToken algorithms by also setting
Tf [j].d ← 1. Notice that in this variant, the update operations directly leak the type of
update operation (see Section 3).

Variant-IV: Reducing Row Encryption Cost. In all variants, the last step of Search al-
gorithm re-encrypts row i, which was decrypted during the search operation. As dis-
cussed, this step protects I against server breaches (e.g., if the server is compromised at
time t, the attacker cannot learn past search results conducted before t)15. It is possible
to reduce the computational overhead of re-encryption: Given row i, only the matrix
cells that were encrypted with row key ri are re-encrypted. Hence, the server can sim-
ply keep a copy of row i before the decryption operation and re-use matrix cells that
are encrypted with row key ri (and delete the copy).

Support for Parallelization: The main scheme and all its variants can be easily paral-
lelized, since both search and update operations involve bit operations between inde-
pendent vector positions. That is, (F,G,H) and⊕ operations can be paralelly executed
by p different processors.

Limitations: The search time of our scheme is O(mp·b) and is practical as shown by the
estimated execution times even for very large N (e.g., N = 1011 for m = 105, n = 106).
However, it is asymptotically less efficient than that of [3,18,27] schemes. Observe that
we gain the highest level of privacy, low client storage, dynamic keyword universe with
secure updates and bandwidth efficiency in exchange. Observe that our scheme pre-
serves its practicality in terms of search execution time as discussed (being comparably
efficient to [3, 18, 19, 27]), while gaining all these advantages. Another limitation is that
our scheme assumes a conservative upper bound on the maximum number of key-
words and files to be used in the system (as in [18] but unlike [3, 27]). However, we
gain low server storage overhead for large number of file-keyword pairs (i.e., two-bits
storage overhead for per file-keyword pair) in exchange. Moreover, our scheme focuses
on single keyword search as in [18, 19, 22, 27] (but unlike [3] for boolean queries, with
an exchange of more information leak). In practice the requirement of having to spec-
ify the upper bound in the number of files can be work around in several ways. The
most straightforward way is to define a second index data structure once the upper
limit is reached in the first one. This would not be unlike requesting an additional xGB
of storage in quota-based systems. An alternative is to simply retrieve the index data
structure stored in the server and re-encrypt it. This would have the added advantage
15 The overhead of re-encryption has not been included in the performance comparison, since all the compared

schemes need to re-encrypt their data structures against such server breaches.

21

of “erasing” the server history and any leakage associated with it. This approach is used
in ORAM [26] to make the system oblivious and it has been proposed in other DSSE
schemes as a way to reduce leakage or to re-claim storage space [3].

D Alternative Approaches to DSSE

Information processing on encrypted data can be achieved via general purpose so-
lutions such as Fully-Homomorphic Encryption (FHE) [13]. However, despite several
improvements (e.g., [8, 24, 28]), FHE remains extremely computational and storage
costly, and therefore it is considered impractical today. Another general purpose so-
lution is Oblivious RAM (ORAM) [15], which can be used as a black-box to achieve a
strong level of security for encrypted searches (the server learns nothing apart from
the size of the file collection). Recent work (e.g., [26]) significantly improved the per-
formance of ORAM. However, ORAM solutions are still communication and/or storage
intensive [27]. Introduced in [2], Functional Encryption (FE) supports restricted secret
keys that enable a key holder to learn a specific function of encrypted data, but learn
nothing else. Some FE schemes such as [12] offer a variety of functionalities including
search but with a linear overhead.

	Dynamic Searchable Symmetric Encryption with Minimal Leakage and Efficient Updates on Commodity Hardware

