
Public Verifiability in the Covert Model (Almost) for Free

Vladimir Kolesnikov
Bell Labs

kolesnikov@research.bell-labs.com

Alex J. Malozemoff∗
University of Maryland

amaloz@cs.umd.edu

Abstract

The covert security model (Aumann and Lindell, TCC 2007) offers an important security/-
efficiency trade-off: a covert player may arbitrarily cheat, but is caught with a certain fixed
probability. This permits more efficient protocols than the malicious setting while still giving
meaningful security guarantees. However, one drawback is that cheating cannot be proven to
a third party, which prevents the use of covert protocols in many practical settings. Recently,
Asharov and Orlandi (ASIACRYPT 2012) enhanced the covert model by allowing the honest
player to generate a proof of cheating, checkable by any third party. Their model, which we call
the PVC (publicly verifiable covert) model, offers a very compelling trade-off.

Asharov and Orlandi (AO) propose a practical protocol in the PVC model, which, however,
relies on a specific expensive oblivious transfer (OT) protocol incompatible with OT extension.
In this work, we improve the performance of the PVC model by constructing a PVC-compatible
OT extension as well as making several practical improvements to the AO protocol. As com-
pared to the state-of-the-art OT extension-based two-party covert protocol, our PVC protocol
adds relatively little: four signatures and an ≈ 67% wider OT extension matrix. This is a
significant improvement over the AO protocol, which requires public-key-based OTs per input
bit. We present detailed estimates showing (up to orders of magnitude) concrete performance
improvements over the AO protocol and a recent malicious protocol.

Keywords: secure computation · publicly verifiable covert security

1 Introduction

Two-party secure computation addresses the problem where two parties need to evaluate a common
function f on their inputs while keeping the inputs private. Several security models for secure
computation have been proposed. The most basic is the semi-honest model, where the parties are
expected to follow the protocol description but must not be able to learn anything about the other
party’s input from the protocol transcript. A much stronger guarantee is provided by the malicious
model, where parties may deviate arbitrarily from the protocol description. This additional security
comes at a cost. Recent garbled circuit-based protocols [AMPR14, Lin13] have an overhead of at
least 40× that of their semi-honest counterparts, and are considerably more complex.

Aumann and Lindell [AL10] introduced a very practical compromise between these two models,
that of covert security. In the covert security model, a party can deviate arbitrarily from the
protocol description but is caught with a fixed probability ε, called the deterrence factor. In many
practical scenarios, this guaranteed risk of being caught (likely resulting in loss of business and/or
∗Work partially done while the author was at Bell Labs.

1

embarrassment) is sufficient to deter would-be cheaters. Importantly, covert protocols are much
more efficient and simpler than their malicious counterparts.
Motivating the publicly verifiable covert (PVC) model. At the same time, the cheating
deterrent introduced by the covert model is relatively weak. Indeed, a party catching a cheater
certainly knows what happened and can respond accordingly, e.g., by taking their business else-
where. However, the impact is largely limited to this, since the honest player cannot credibly accuse
the cheater publicly. If, however, credible public accusation were possible, the deterrent for the
cheater would be immeasurably greater: suddenly, all the cheater’s customers would be aware of
the cheating and thus any cheating may affect the cheater’s global customer base.

The addition of credible accusation greatly improves the covert model even in scenarios with
a small number of players, such as those involving the government. Consider, for example, the
setting where two agencies are engaged in secure computation on their respective classified data.
The covert model may often be insufficient here. Indeed, consider the case where one of the two
players deviates from the protocol, perhaps due to an insider attack. The honest player detects
this, but we are now faced with the problem of identifying the culprit across two domains, where
the communication is greatly restricted due to trust, policy, data privacy legislation, or all of
the above. On the other hand, credible accusation immediately provides the ability to exclude the
honest player from the suspect list, and focus on tracking the problem within one organization/trust
domain, which is dramatically simpler.
PVC definition and protocol. Asharov and Orlandi [AO12] proposed a security model, covert
with public verifiability, and an associated protocol, addressing these concerns. At a high level,
they proposed that when cheating is detected, the honest player is able to publish a “certificate
of cheating” which can be checked by any third party. In this work, we abbreviate their model as
PVC: publicly verifiable covert. Their proposed protocol (which we call the “AO protocol”) has per-
formance similar to the original covert protocol of Aumann and Lindell [AL10], with the exception
of requiring signed-OT, a special form of oblivious transfer (OT). Their signed-OT construction
is based on the OT of Peikert et al. [PVW08], and thus requires several expensive public-key
operations.

In this work, we propose several critical performance improvements to the AO protocol. Our
most technically involved contribution is a novel signed-OT extension protocol which eliminates
per-instance public-key operations. Before discussing our contributions and technical approach in
Section 1.1, we review the AO protocol.
The Asharov-Orlandi (AO) PVC protocol [AO12]. The AO protocol is based on the covert
construction of Aumann and Lindell [AL10]. Let P1 be the circuit generator, P2 be the evaluator,
and f(·, ·) be the function to be computed. Recall the standard garbled circuit (GC) construction
in the semi-honest model: P1 constructs a garbling of f and sends it to P2 along with the wire labels
associated with its input. The parties then run OT, with P1 acting as the sender and inputting
the wire labels associated with P2’s input, and P2 acting as the receiver and inputting as its choice
bits the associated bits of its input.

We now adapt this protocol to the PVC setting. Recall the “selective failure” attack on P2’s
input wires, where P1 can send P2 via OT an invalid wire label for one P2’s two inputs and learn
one of P2’s input bits based on whether P2 aborts. To protect against this attack, the parties
construct f ′(x1,x1

2, . . . ,xν2) = f(x1,
⊕
i∈[ν] xi2), where ν is the XOR-tree replication factor, and

compute f ′ instead of f . Party P1 then constructs λ (the GC replication factor) garblings of f ′ and
P2 checks that λ− 1 of the GCs are correctly constructed, evaluating the remaining GC to derive

2

the output. The main difficulty of satisfying the PVC model is ensuring that neither party can
improve its odds by aborting (e.g., based on the other party’s challenge). For example, if P1 could
abort whenever P2’s challenge would reveal P1’s cheating, this would enable P1 to cheat without
the risk of generating a proof of cheating. Thus, P1 sends the GCs to P2 through a 1-out-of-λ OT;
namely, in the ith input to the OT P1 provides openings for all the GCs but the ith, as well as the
input wire labels needed to evaluate GCi. Party P2 inputs a random γ, checks that all GCs besides
GCγ are constructed correctly, and if so, evaluates GCγ .

Finally, it is necessary for P1 to operate in a verifiable manner, so that an honest P2 has proof
if P1 tries to cheat and gets caught. (Note that GCs guarantee that P2 cannot cheat in the GC
evaluation at all, so we only worry about catching P1.) The AO protocol addresses this by having
P1 sign all its messages and the parties using signed-OT in place of all standard OTs (including
wire label transfers and GC openings). Informally, the signed-OT functionality proceeds as follows:
rather than the receiver R getting message mb from the sender S for choice bit b, R receives
((b,mb), σ), where σ is S’s signature of (b,mb). This guarantees that if R detects any cheating by
S, it has S’s signature on an inconsistent set of messages, which can be used as proof of this cheating.
Asharov and Orlandi show that this construction is ε-PVC-secure for ε = (1− 1/λ)(1− 2−ν+1).

1.1 Our Contribution

Our main contribution is a signed-OT extension protocol built on the recent malicious OT extension
of Asharov et al. [ALSZ15]. Informally, signed-OT extension ensures that (1) a cheating sender S is
held accountable in the form of a “certificate of cheating” that the honest receiver R can generate,
and (2) a malicious R cannot defame an honest S by presenting a false “certificate of cheating”.
Achieving the first goal is fairly straightforward by having S simply sign all its messages. The
challenge is in simultaneously protecting against a malicious R. In particular, we need to commit
R to its particular choices throughout the OT extension protocol to prevent it from defaming an
honest S, while maintaining that those commitments do not leak any information about R’s choices.

Recall that in the standard OT extension protocol of Ishai et al. [IKNP03] (cf. Figure 3), R
constructs a random matrix M , and S obtains a matrix M ′ derived from M , S’s random string s
and R’s vector of OT inputs r. The key challenge of adapting this protocol to the signed variant
is to efficiently prevent R from submitting a malleated M as part of the proof without it ever
explicitly revealing M to S (as this would leak R’s choice bits). We achieve this by observing that
S does in fact learn some of M , as in the OT extension construction some of the columns of M
and M ′ are the same (i.e., those corresponding to zero bits of S’s string s). We prevent R from
cheating by having S include in its signature carefully selected information from the columns in M
which S sees. Finally, we require that R generates each row of M from a seed, and that R’s proof
of cheating includes this seed such that the row rebuilt from the seed is consistent with the columns
included in S’s signature. We show that this makes it infeasible for R to successfully present an
invalid row in the proof of cheating. We describe this approach in greater detail in Section 3.1

As another contribution, we present a new more communication efficient PVC protocol, building
off of the AO protocol; see Section 4. Our main (simple) trick there is a careful amendment allowing
us to send GC hashes instead of GCs; this is based on an idea from Goyal et al. [GMS08].

1Our construction is also interesting from a theoretical perspective in that we construct signed-OT from any
maliciously secure OT protocol, whereas Asharov and Orlandi [AO12] build a specific construction based on the
Decisional Diffie-Hellman problem.

3

Security κ FCC ECC

Short 80 1024 160
Long 128 3072 256

Figure 1: Settings for (computational) security parameter κ and field size τ for various security settings as recom-
mended by NIST [BBB+12]. FCC denotes the setting of τ when using finite field cryptography and ECC denotes the
setting of τ when using elliptic curve cryptography.

We work in the random oracle model, a slight strengthening of the assumptions needed for
standard OT extension and free-XOR, two standard secure computation tools.
Comparison with existing approaches. The cost of our protocol is almost the same as that
of the covert protocol of Goyal et al. [GMS08]; the only extra cost is essentially a ≈ 67% wider
OT extension matrix and four signatures. This often negligible additional overhead (versus covert
protocols) provides us with dramatically stronger (than covert) deterrent. We believe that our
PVC protocol could be used in many applications where covert security is insufficient at the order-
of-magnitude cost advantage over previously-needed malicious protocols or the PVC protocol of
Asharov and Orlandi [AO12]. See Section 5 for more details.
Related work. The only directly related work is that of Asharov and Orlandi [AO12], already
discussed at length. We also note a recent line of work on secure computation with cheaters
(including fairness violators) punished by an external entity, such as the Bitcoin network [ADMM14,
BK14, KB14]. Similarly to the PVC model and our protocols, this line of work relies on generating
proofs of misbehavior which could be accepted by a third-party authority. However, these works
address a different setting and use different techniques; in particular, they build on maliciously-
secure computation and require the Bitcoin framework.

2 Preliminaries

Let κ denote the (computational) security parameter, let ρ denote the statistical security parameter,
and let τ denote the field size. When considering concrete costs, we utilize the security parameter
and field size settings for key lengths recommended by NIST [BBB+12]; see Figure 1. We use ppt
to denote “probabilistic polynomial time” and let negl(·) denote a negligible function in its input.
We consider two-party protocols between parties P1 and P2, and when we use subscript i ∈ {1, 2}
to denote a party we let subscript -i = 3− i denote the other party. We use i∗ ∈ {1, 2} to denote a
malicious party and -i∗ = 3− i∗ to denote the associated honest party.

We use bold lowercase letters (e.g., x) to denote bitstrings and use the notation x[i] to denote
the ith bit in bitstring x. Likewise, we use bold uppercase letters (e.g., T) to denote matrices
over bits. We use [n] to denote {1, . . . , n}. Let “a ← f(x1, x2, . . .)” denote setting a to be the
deterministic output of f on inputs x1, x2, . . . ; the notation “a←$ f(x1, x2, . . .)” is the same except
that f here is randomized. We abuse notation and let a←$S denote selecting a uniformly at
random from set S.

Our constructions are in the FPKI model, where each party Pi can register a verification key,
and other parties can retrieve Pi’s verification key by querying FPKI on idi. We use the notation
SignPi(·) to denote a signature signed by Pi’s secret key, and we assume that this signature can be
verified by any third party. We often leave off the subscript if the identity of the signing party is
clear.

4

2.1 Publicly Verifiable Covert Security

We assume the reader is familiar with the covert security model; however, we review the less familiar
publicly verifiable covert (PVC) security model of Asharov and Orlandi [AO12] below. When we
say a protocol is “secure in the covert model,” we assume it is secure under the strong explicit cheat
formulation with ε-deterrent [AL10, §3.4], for some value of ε.

Let π be a two-party protocol between parties P1 and P2 implementing function f . Follow-
ing Aumann and Lindell [AL10], we call π non-halting if for honest Pi and fail-stop adversary2

P-i, the probability that Pi outputs corrupted-i is negligible. Consider the triple of algorithms
(π′,Blame, Judgment) defined as follows:

• Protocol π′ is the same as π except that if an honest party P-i∗ outputs corruptedi∗ when
executing π, it computes Cert ← Blame(idi∗ , key,View-i∗), where key denotes the type of
cheating detected, and sends Cert to Pi∗ .

• Algorithm Blame is a deterministic algorithm which takes as input a cheating identity id, a
cheating type key, and a view View of a protocol execution, and outputs a certificate Cert.

• Algorithm Judgment is a deterministic algorithm which takes as input a certificate Cert and
outputs either an identity id or ⊥.

Before proceeding to the definition, we first introduce some notation. Let Execπ,A(z)(x1, x2; 1κ)
denote the transcript (i.e., messages and output) produced by P1 with input x1 and P2 with input x2
running protocol π, where adversary A with auxiliary input z can corrupt parties before execution
begins. Let OutputPi(Execπ,A(z)(x1, x2; 1κ)) denote the output of Pi on the input transcript.

Definition 2.1 We say that (π′,Blame, Judgment) securely computes f in the presence of a publicly
verifiable covert adversary with ε-deterrent (or, is ε-PVC-secure) if the following conditions hold:

1. The protocol π′ is a non-halting and secure realization of f in the covert model with ε-deterrent.

2. (Accountability) For every ppt adversary A corrupting party Pi∗, there exists a negligible
function negl(·) such that if OutputP-i∗

(Execπ,A(z)(x1, x2; 1κ)) = corruptedi∗ then

Pr [Judgment(Cert) = idi∗] > 1− negl(κ),

where Cert← Blame(idi∗ , key,View-i∗) and the probability is over the randomness used in the
protocol execution.

3. (Defamation-free) For every ppt adversary A corrupting party Pi∗ and outputting a certificate
Cert, there exists a negligible function negl(·) such that Pr [Judgment(Cert) = id-i∗] < negl(κ),
where the probability is over the randomness used by A.

Note that, in particular, the PVC definition implicitly disallows Blame to reveal P-i∗ ’s input. This
is because π′ specifies that Cert is sent to Pi∗ .

2A fail-stop adversary is one which acts semi-honestly but may halt at any time.

5

2.2 Signed Oblivious Transfer

A central functionality for constructing PVC protocols is signed oblivious transfer (signed-OT).
Introduced by Asharov and Orlandi [AO12], we can define the basic signed-OT functionality F as

(⊥, (mb,Signsk(b,mb)))←$F((m0,m1, sk), (b, vk)),

where the signature scheme is assumed to be existentially unforgeable under adaptive chosen mes-
sage attack (EU-CMA). Namely, the sender S inputs two messages m0 and m1 along with a signing
key sk; the receiver R inputs a choice bit b and a verification key vk; S receives no output whereas
R receives mb alongside a signature on (b,mb).

However, as in prior work [AO12], this definition is too strong for our signed-OT extension
construction to satisfy. We introduce a relaxed signed-OT variant (slightly different from Asharov
and Orlandi’s variant [AO12]) which is tailored for OT extension and is sufficient for obtaining
PVC-security. Essentially, we need a signature scheme that satisfies a weaker notion than EU-
CMA in which the signing algorithm takes randomness, a portion of which can be controlled by
the adversary.3 This is because in our signed-OT extension construction, a malicious party can
influence the randomness used in the signing algorithm. In addition, we introduce an associated data
parameter to the signing algorithm which allows the signer to specify some additional information
unrelated to the message being signed but used in the signature. In our construction, we use the
associated data to tie the signature to a specific counter (such as a session ID or message ID),
preventing a malicious receiver from “mixing” properly signed values to defame an honest sender.

Let Π = (Gen, Sign,Verify) be a tuple of ppt algorithms over message spaceM, associated data
space D, and randomness spaces R1 and R2, defined as follows:

1. Gen(1κ): On input security parameter 1κ, output key pair (vk, sk).

2. Signsk(m, a; (r1, r2)): On input secret key sk, message m ∈ M, associated data a ∈ D, and
randomness r1 ∈ R1 and r2 ∈ R2, output signature σ = (a, σ′).

3. Verifyvk(m,σ): On input verification key vk, message m ∈M, and signature σ, output 1 if σ
is a valid signature for m and 0 otherwise.

For security, we need the condition that unforgeability remains even if the adversary inputs some
arbitrary r1 or r2. However, the adversary is prevented from inputting values for both r1 and r2.
This reflects the fact that in our signed-OT extension construction, a malicious sender can control
only r1 and a malicious receiver can control only r2. We place a further restriction that the choice
of r1 must be consistent; namely, all queries to Sign must use the same value for r1. Looking ahead,
this property exactly captures the condition we need (r1 corresponds to the zero bits in the sender’s
column selection string in the OT extension), where the choice of r1 is made once and then fixed
throughout the protocol execution.

Towards our definition, we define an oracle Osk(·, ·, ·, ·) as follows. Let ⊥ be a special symbol.
On input (m, a, r1, r2), proceed as follows. If neither r1 nor r2 equal ⊥, output ⊥. Otherwise,
proceed as follows. If r1 = ⊥ and r′1 has not been set, set r′1 uniformly at random; if r1 6= ⊥ and r′1

3Our notion is similar to the ρ-EU-CMRA notion introduced by Asharov and Orlandi [AO12]. It differs in that we
allow different portions of the randomness to be corrupted, but not both portions at once. Looking forward, this is
needed because the sender in our signed-OT functionality is only allowed to control some of the randomness.

6

Functionality FΠ
signedOT

The functionality is parameterized by an EU-CMPRA signature scheme Π = (Gen,Sign,Verify).

Input: The sender inputs messages m0 and m1 such that |m0| = |m1|, secret key sk, associated data a,
randomness r∗1 , and signatures σ∗0 and σ∗1 . The receiver inputs choice bit b, verification key vk, and randomness
r∗2 . If the sender (resp., the receiver) is honest, then r∗1 = σ∗0 = σ∗1 = ⊥ (resp., r∗2 = ⊥).

Output: The functionality computes σb = Signsk((b,mb), a; (r∗1 , r∗2)) for b ∈ {0, 1}. The sender receives no
output. The receiver receives the following output based on if the sender is corrupt or not:
• If either σ∗0 6= ⊥ or σ∗1 6= ⊥, the functionality outputs ((b,mb), σ∗b) if and only if Verifyvk((0,m0), σ∗0) =

Verifyvk((1,m1), σ∗1) = 1, where σ∗b ← σb if σ∗b = ⊥; otherwise it outputs abort.
• If σ∗0 = σ∗1 = ⊥, the functionality outputs ((b,mb), σb).

Figure 2: Signed oblivious transfer functionality.

has not been set, set r′1 = r1; if r2 = ⊥, set r′2 uniformly at random; otherwise, set r′2 = r2. Finally,
output Signsk(m, a; (r′1, r′2)).

Now, consider the following game Sig-forgeCMPRA
A,Π (κ) for signature scheme Π between ppt ad-

versary A and ppt challenger C.

1. C runs (vk, sk)←$ Gen(1κ) and sends vk to A.

2. A, who has oracle access to Osk(·, ·, ·, ·), outputs a tuple (m, (a, σ′)). Let Q be the set of
messages and associated data pairs input to Osk(·, ·, ·, ·).

3. A succeeds if and only if (1) Verifyvk(m, (a, σ′)) = 1 and (2) (m, a) 6∈ Q.

Definition 2.2 Signature scheme Π = (Gen,Sign,Verify) is existentially unforgeable under adaptive
chosen message and partial randomness attack (EU-CMPRA) if for all ppt adversaries A there exists
a negligible function negl(·) such that Pr[Sig-forgeCMPRA

A,Π (κ)] < negl(κ).

Signed-OT functionality. We are now ready to introduce our relaxed signed-OT functionality.
As is our EU-CMPRA signature, it is tailored for OT extension, and is sufficient for building PVC
protocols. This functionality, denoted by FΠ

signedOT, is parameterized by an EU-CMPRA signature
scheme Π and is defined in Figure 2. As in standard OT, the sender inputs two messages (of equal
length) and the receiver inputs a choice bit. However, in this formulation we allow a malicious
sender to specify some random value r∗1 as well as signatures σ∗0 and σ∗1. Likewise, a malicious
receiver can specify some random value r∗2. (Honest players input ⊥ for these values.) If both
players are honest, the functionality computes σ ← Sign((b,mb); (r1, r2)) with uniformly random
values r1 and r2 and outputs ((b,mb), σ) to the receiver. However, if either party is malicious and
specifies some random value, this is fed into the Sign algorithm. Likewise, if the sender is malicious
and specifies some signature σ∗b 6= ⊥, this value is used as the signature sent to the receiver.

Note that FΠ
signedOT is nearly identical to the signed-OT functionality presented by Asharov

and Orlandi [AO12, Functionality 2]; it differs in the use of EU-CMPRA signature schemes instead
of ρ-EU-CMRA schemes. We also note that it is straightforward to adapt FΠ

signedOT to realize OTs
with more than two inputs from the sender. We let

(λ
1
)
-FΠ

signedOT denote a 1-out-of-λ variant of
FΠ

signedOT.

7

A compatible commitment scheme. Our construction of an EU-CMPRA signature scheme
(cf. Section 3.3) uses a non-interactive commitment scheme, which we define here. Our defini-
tion follows the standard commitment definition, except we tweak the Com algorithm to take an
additional associated data value.

Let ΠCom = (ComGen,Com) be a tuple of ppt algorithms over message spaceM and associated
data space D, defined as follows:

1. ComGen(1κ): On input security parameter 1κ, compute parameters params.

2. Com(m, a; r): On input message m ∈ M, associated data a ∈ D, and randomness r, output
commitment com.

A commitment can be opened by revealing the randomness r used to construct that commitment.
We now define security for our commitment scheme. We only consider the binding property;

namely, the inability for a ppt adversary to open a commitment to some other value than that
committed to. Security is the same as for standard commitment schemes, except we allow the
adversary to control the randomness used in ComGen.

Consider the game Com-bindA,ΠCom(κ) for commitment scheme ΠCom between a ppt adversary
A and a ppt challenger C, defined as follows.

1. A sends randomness r to C.

2. C computes params← ComGen(1κ; r) and sends params to A.

3. A outputs (com,m1, a1, r1,m2, a2, r2) and wins if and only if (1) m1 6= m2, and (2) com =
Com(params,m1, a1; r1) = Com(params,m2, a2; r2).

Definition 2.3 A commitment scheme ΠCom = (ComGen,Com) is (computationally) binding if for
all ppt adversaries A, there exists a negligible function negl(·) such that Pr[Com-bindA,ΠCom(κ)] <
negl(κ).

3 Signed Oblivious Transfer Extension

We now present our main contribution: an efficient instantiation of signed oblivious transfer (signed-
OT) extension. We begin in Section 3.1 by describing in detail the logic of the construction,
iteratively building it up from the passively secure protocol of Ishai et al. [IKNP03]. We motivate
the need for EU-CMPRA signature schemes in Section 3.2 and present a compatible such scheme in
Section 3.3. In Section 3.4 we present the proof of security.

3.1 Intuition for the Construction

Consider the OT extension protocol of Ishai et al. [IKNP03] in Figure 3, run between sender S
and receiver R. This protocol is secure against a semi-honest R and malicious S. We show how
to convert this protocol into one which satisfies the FΠ

signedOT functionality defined in Figure 2.
For clarity of presentation, we build on the protocol of Figure 3 and later discuss how to support
a malicious R as well, based on the malicious OT extension protocol of Asharov et al. [ALSZ15].

As a first attempt, suppose S simply signs all its messages in Step 3. Recall that we will use
this construction to have P1 send the appropriate input wire labels to P2; namely, P1 acts as S

8

S’s inputs: Message pairs {(x0
j ,x1

j)}j∈[m], where each x0
j ,x1

j ∈ {0, 1}n.
R’s inputs: Selection bits r = (r1, . . . , rm).
Common inputs: Security parameter κ; number of base OTs ` (= κ); hash function H : N×{0, 1}` → {0, 1}n;
ideal functionality FOT.

1. Initial OT Phase:

S computes s←$ {0, 1}`.
R generates a random m× ` matrix T, where the jth row is tj and the ith column is ti. Likewise,
R generates a random m× ` matrix V, where the jth row is vj and the ith column is vi.
S and R run FOT ` times in parallel, where S acts as the receiver with input si in the ith OT and
R acts as the sender with input (ti,vi) in the ith OT.

2. OT Extension Phase (Part I):

For i ∈ [m], R sets ui ← ti ⊕ vi ⊕ r, and sends ui to S.

3. OT Extension Phase (Part II):

Let Q be the m × ` matrix where each column qi = (si · (ui ⊕ vi)) ⊕ ((1 − si) · ti). Note that
qi = (si · r)⊕ ti and qj = (rj · s)⊕ tj .
For j ∈ [m], S computes y0

j ← x0
j ⊕H(j,qj) and yij ← xij ⊕H(j,qj ⊕ s), and sends y0

j and y1
j to R.

For j ∈ [m], R computes xj ← yrjj ⊕H(j, tj).

4. Output:

S outputs ⊥ and R outputs {xj}j∈[m].

Figure 3: Protocol implementing passively secure OT extension [ALSZ13, IKNP03].

in the OT extension and inputs the wire labels for P2’s input wires whereas P2 acts as R and
inputs its input bits. Thus, our first step is to enhance the protocol in Figure 3 to have S send
σ′←$ Sign((j,y0

j)) and σ′′←$ Sign((j,y1
j)) in Step 3.

Now, if P2 gets an invalid (with respect to a signed GC sent in the PVC protocol of Section 4)
wire label xj , it can easily construct a certificate Cert which demonstrates P1’s cheating. Namely, it
outputs as its certificate the tuple

(
b, j,y0

j ,y1
j , σ
′, σ′′, tj

)
along with the (signed by P1 and opened)

GC containing the invalid wire label. A third party can (1) check that σ′ and σ′′ are valid signatures
and (2) compute xbj ← H(j, tj)⊕ ybj and check that xbj is indeed an invalid wire label for the given
garbled circuit.

This works for protecting against a malicious P1; however, note that P2 can easily defame an
honest P1 by outputting t∗j 6= tj as part of its certificate (in which case xbj ← H(j, t∗j) ⊕ ybj will
very likely be an invalid wire label). Thus, the main difficulty in constructing signed-OT extension
is tying P2 to its choice of the matrix T generated in Step 1 of the protocol so it cannot blame an
honest P1 by using invalid rows t∗j in its certificate.

Towards this end, consider the following modification. In Step 1, R now additionally sends
commitments to each tj to S, and S signs these and sends them as part of its messages in Step 3.
This prevents R from later changing tj to blame S. This does not quite work, however, as R could
simply commit to an incorrect t∗j in the first place! Clearly, R cannot send T to S, as this would
leak R’s selection bits, yet we still need R to somehow be committed to its choice of the matrix T.
The key insight is noting that S does in fact know some of the bits of T; namely, it knows those
columns at which si = 0 (as it learns ti in the base OT). We can use this information to tie R to
its choice of T such that it cannot later construct some matrix T∗ 6= T to defame S.

We do this by enhancing Step 3 as follows. Let I0 be the set of indices i such that si = 0 (recall

9

that s is the random selection bits of S input to the base OTs in Step 1). Let tj,i denote the ith
bit in row tj . Note that S knows the values of tj,i for i ∈ I0, and could thus compute {(i, tj,i)}i∈I0

as a “binding” of R’s choice of tj . By including this information in its signature, S enforces that
any t∗j that R tries to use to blame S must match in the given positions. This brings us closer to
our goal; however, there are still two issues that we need to resolve:

1. Sending {(i, tj,i)}i∈I to R leaks s, which allows R to learn both of S’s inputs. We address this
by increasing the number of base OTs in Step 1 and having S only send some subset I ⊆ I0

such that |I| = κ. Thus, while R learns that si = 0 for i ∈ I, by increasing the number of
base OTs enough, R does not have enough information to recover s.

2. R can still flip one bit in tj and pass the check with high probability. We fix this by having
each tj be generated by a seed kj . Namely, R computes tj ← G(kj) in Step 1, where G
is a random oracle4. Then, when blaming S, R must reveal kj instead of tj . Thus, with
high probability a malicious polytime R cannot find some k∗j 6= kj such that the Hamming
distance between G(k∗j) and G(kj) is small enough that the above check succeeds.

Finally, note that we have thus far considered the passively secure OT extension protocol, which
is insecure against a malicious R. We thus utilize the maliciously secure OT extension protocol of
Asharov et al. [ALSZ15]. The only way R can cheat in passively secure OT extension is by using
different r values in Step 2. Asharov et al. add a “consistency check” phase between Steps 2 and 3
to enforce that r is consistent. This does not affect our construction, and thus we can include this
step to complete the protocol.5 We refer the reader to Asharov et al. [ALSZ15] for the justification
and intuition of this step; as far as this work is concerned we can treat this consistency check as a
“black box”.

Observation 1 (OT extension matrix size) We set `, the number of base OTs, so that leaking
κ bits to R does not allow it to recover s and thus both messages. We do this as follows. Let `′
be the number of base OTs required in malicious OT extension [ALSZ15]. We set ` = `′ + κ and
require that when S chooses s, it first fixes κ randomly selected bits to zero before randomly setting
the rest of the bits. Now, when S reveals I to R, the number of unknown bits in s is equal to `′

and thus the security of the Asharov et al. scheme carries over to our setting. Asharov et al. set
`′ ≈ 1.6κ, and thus us using κ extra columns results in an ≈ 67% matrix size increase.

Observation 2 (Batching signatures) The main computational cost of our protocol is the sig-
natures sent by S in Step 4. This cost can easily be brought to negligible, as follows. Recall that
when using our protocol for transferring the input wire labels of a GC using free-XOR we can op-
timize the communication slightly by setting x0

j ← H(j,qj) and y1
j ← x0

j ⊕∆⊕H(j,qj ⊕ s), where
∆ is the free-XOR global offset. Thus, S only needs to send (and sign) y1

j .
The most important idea, however, is to batch messages across OT executions and have S

sign (and send) only one signature which includes all the necessary information across many OTs.
Namely, using the free-XOR optimization above, S signs and sends the tuple (I, {y1

j , {tj,i}i∈I}j∈[m])
to R. We note that the j values need not be sent as they are implied by the protocol execution.

4Note that G cannot be a pseudorandom generator because the input to G is not necessarily uniform as the inputs
may be adversarially chosen by R.

5The reason this does not affect our construction is because the consistency check phase only involves R sending
messages to S. A malicious R cannot defame S because we are only enforcing that R’s value r is consistent.

10

S’s inputs: Messages {(x0
j ,x1

j)}j∈[m] where x0
j ,x1

j ∈ {0, 1}n; signing key sk.
R’s inputs: Selection bits r = (r1, . . . , rm); verification key vk.
Common inputs: Security parameter κ; statistical security parameter ρ; number of base OTs `; number of
check functions µ; random oracle G : {0, 1}κ → {0, 1}`; random oracle H : N×{0, 1}` → {0, 1}n; random oracle
H ′ : {0, 1}m → {0, 1}κ; EU-CMA signature scheme Π = (KeyGen′, Sign′,Verify′); ideal functionality FOT.

1. Initial OT Phase:

S computes s ∈ {0, 1}` as follows. Let I be a set of indices, where |I| = κ. For i ∈ I, S sets si = 0.
Then, S fills the remaining bits at random.
For j ∈ [m], R computes kj←$ {0, 1}κ and sets tj ← G(kj).
Let T be an m × ` matrix, where the jth row is tj and the ith column is ti. Let V be an m × `
matrix, where the jth row is vj and the ith column is vi. S and R run FOT ` times in parallel, where
S acts as the receiver with input si and R acts as the sender with input (ti,vi).

2. OT Extension Phase (Part I):

For i ∈ [`], R sets ui ← ti ⊕ vi ⊕ r, and sends ui to S.

3. Consistency check of r:

For i ∈ [µ], S chooses function φi : [`]→ [`] uniformly at random, and sends φi to R.
For α ∈ [`], i ∈ [µ], let β ← φi(α). R computes hb,b

′

α,β ← H ′(wα
b ⊕ wβ

b′) for b ∈ {0, 1}, b′ ∈ {0, 1},
where wα

0 = tα and wα
1 = vα. R sends {hb,b

′

α,β}b∈{0,1},b′∈{0,1}
to S.

For α ∈ [`], i ∈ [µ], S defines β ← φi(α) and checks that hsα,sβα,β = H ′(wα
sα ⊕ wβ

sβ), hs̄α,s̄βα,β =
H ′(wα

sα ⊕wβ
sβ ⊕ uα ⊕ uβ), and uα 6= uβ . If any check fails, S outputs abort.

4. OT Extension Phase (Part II):

Let Q be the m × ` matrix where each column qi = (si · (ui ⊕ vi)) ⊕ ((1 − si) · ti). Note that
qi = (si · r)⊕ ti and qj = (rj · s)⊕ tj .
Let I be the set defined in Step 1, and let tj,i denote the ith bit in row tj . S sends I to R, who
checks that |I| = κ and otherwise aborts.
For j ∈ [m], S computes y0

j ← x0
j ⊕ H(j,qj) and y1

j ← x1
j ⊕ H(j,qj ⊕ s) and sig-

natures σ′j ← Sign′sk
(
(I, j,y0

j , {tj,i}i∈I)
)
, and σ′′j ← Sign′sk

(
(I, j,y1

j , {tj,i}i∈I)
)
, and sends(

j,y0
j ,y1

j , {tj,i}i∈I , σ
′
j , σ
′′
j

)
to R.

For j ∈ [m], R computes xj ← yrjj ⊕H(j, tj).

5. Output:

S outputs ⊥; R outputs
{

xj ,
(
j, rj ,kj , I,y0

j ,y1
j , {tj,i}i∈I , σ

′
j , σ
′′
j

)}
j∈[m]

.

Figure 4: Signed-OT extension, based on the OT extension protocol of Asharov et al. [ALSZ15].

Figure 4 gives the full protocol for signed-OT extension. For clarity of presentation, this de-
scription, and the following proof of security, does not take into account the optimizations described
in Observation 2.

3.2 Towards a Proof of Security

Before presenting the security proof, we first motivate the need for EU-CMPRA signature schemes.
As mentioned in Section 3.1, ideally we could just have S sign everything using an EU-CMA signature
scheme; however, this presents opportunities for R to defame S. Thus, we need to enforce that
R cannot output an xbj value different from the one sent by S. We do so by using a binding
commitment scheme ΠCom = (ComGen,Com), and show that the messages sent by S in Step 4 are

11

essentially binding commitments to the underlying xbj values.
We define ΠCom as follows, where G : {0, 1}κ → {0, 1}` and H : N × {0, 1}` → {0, 1}κ are

random oracles, and ` ≥ κ.

1. ComGen(1κ): choose set I ⊆ [`] uniformly at random subject to |I| = κ; output params← I.

2. Com(params,m, j; r): On input parameters I ← params, message m, counter j, and random-
ness r ∈ {0, 1}κ, proceed as follows. Compute t← G(r), set com← (j,m⊕H(j, t), I, {ti}i∈I),
and output com.

We make the assumption that given I, one can derive the randomness input to ComGen. (We
use this when defining our EU-CMPRA signature scheme below, which uses a generic binding com-
mitment scheme). We can satisfy this by simply letting the randomness input to ComGen be the
set I.

In our signed-OT extension protocol, the set I chosen by S is used as params and the kj values
chosen by R are used as the randomness to Com. The commitment value com is exactly the message
signed and sent by S in Step 4. Thus, ignoring the signatures for now, we have an OT extension
protocol that binds S to its xbj values, and thus prevents a malicious R from defaming an honest S.
Adding in the signatures (cf. Section 3.3) gives us an EU-CMPRA signature scheme. Namely, S
is tied to its messages due to the signatures and R is prevented from “changing” the messages to
defame S due to the binding property of the commitment scheme.

We now prove that the commitment scheme described above is binding. We actually prove
something stronger than what is required in our protocol. Namely, we prove that an adversary who
can control both random values still cannot win, whereas when we use this commitment scheme in
our signed-OT extension protocol, only one of the two random values can be controlled by any one
party.

Theorem 3.1 Protocol ΠCom is binding according to Definition 2.3.

Proof. Adversary A needs to come up with choices of I, m, m′, j, j′, r, and r′ such that
(j,m⊕H(j, t), I, {ti}i∈I) = (j′,m′⊕H(j′, t′), I, {t′i}i∈I′), where t← G(r) and t′ ← G(r′). Clearly,
j = j′. Thus, A must find t and t′ such that ti = t′i for all i ∈ I. However, by the property that G
is a random oracle, the values t and t′ are distributed uniformly at random in {0, 1}`. Thus, the
probability that A finds two bitstrings t and t′ that match in κ bits is negligible, regardless of the
choice of I. �

3.3 An EU-CMPRA Signature Scheme

We now show that the messages sent by S in Step 4 form an EU-CMPRA signature scheme. Let Π′ =
(Gen′,Sign′,Verify′) be an EU-CMA signature scheme and ΠCom = (ComGen,Com) be a commitment
scheme satisfying Definition 2.3 (e.g., the scheme presented in Section 3.2). Consider the scheme
Π = (Gen,Sign,Verify) defined as follows.

1. Gen(1κ): On input 1κ, run (vk, sk)←$ Gen′(1κ) and output (vk, sk).

2. Signsk(m, j; (r∗1, r∗2)): On input message m ∈ {0, 1}κ, counter j ∈ N, and randomness r∗1 and
r∗2, proceed as follows. Compute params← ComGen(1κ; r∗1) and com← Com(params,m, j; r∗2).

12

Next, choose m′←$ {0, 1}κ and compute com′ ← Com(params,m′, j; r∗2).6 Output σ ←
(j, params, r∗2, com, com′,Sign′sk((params, com)),Sign′sk((params, com′))).

3. Verifypk(m, σ): On input message m and signature σ, parse σ as (j, params, r, com′, com′′, σ′,
σ′′), and output 1 if and only if (1) Com(params,m; r) = com′, (2) Verify′vk((params, com′), σ′) =
1, and (3) Verify′vk((params, com′′), σ′′) = 1; otherwise output 0.

As explained in Section 3.2, this signature scheme exactly captures the behavior of S in our signed-
OT extension protocol. We now prove that this is indeed an EU-CMPRA signature scheme.

Theorem 3.2 Given an EU-CMA signature scheme Π′ = (Gen′,Sign′,Verify′) and a commitment
scheme ΠCom = (ComGen,Com) secure according to Definition 2.3, then Π = (Gen,Sign,Verify)
described above is an EU-CMPRA signature scheme.

Proof. Let A be a ppt adversary attacking Π. We construct an adversary B attacking Π′. Adver-
sary B receives vk from the challenger and initializes A with vk as input. Let (m, j, r∗1, r∗2) be the
input of A to its signing oracle. Adversary B emulates the execution of A’s signing oracle as follows:
it computes params ← ComGen(1κ; r∗1) and com ← Com(params,m, j; r∗2), chooses m′ uniformly
at random and computes com′ ← Com(params,m′, j; r∗2), constructs σ ← (j, params, r∗2, com, com′,
Sign′sk((params, com)), Sign′sk((params, com′))), and sends σ to A. After each of A’s queries, B stores
(m, j) in set QA and stores all the messages it sent to its signing oracle in set QB.

Eventually, A outputs (m, (j, σ′)) as its forgery. Adversary B checks that Verifyvk(m, (j, σ′)) = 1
and that (m, j) 6∈ QA . If not, B outputs 0. Otherwise, B parses σ′ as (params, r, com′, com′′, σ′, σ′′)
and checks that com′ 6∈ QB. If so, it outputs (com′, σ′); otherwise it outputs 0.

Note that Sig-forgeCMPRA
A,Π (κ) = 1 and Sig-forgeCMA

B,Π′ (κ) = 0 if and only if Verifyvk(m, (j, params, r,
com′, com′′, σ′, σ′′)) = 1 and (m, j) 6∈ QA but com′ ∈ QB. Fix some (m, (j, params, r, com1, com1′ , σ1,
σ1′)) such that this is the case. Thus it holds that com1 ∈ QB. This implies that B queried Sign′ on
com1, which means that A queried its signing oracle on some (m′, j′, r∗1, r∗2), where m′ 6= m, and
received back (j′, params, r′, com1, com2′ , σ1′′ , σ2′). However, this implies that Com(params, com1;
r) = m and Com(params, com1; r′) = m′. Thus, Pr[Sig-forgeCMPRA

A,Π (κ)] = Pr[Sig-forgeCMA
B,Π (κ)] +

Pr[Com-bindB′,ΠCom
(κ)] for some ppt adversary B′. We now bound Pr[Com-bindB′,ΠCom

(κ)].
Adversary B′ runs almost exactly like B. On the first query (m, j, r∗1, r2) by A, it sets r = r∗1 if

r∗1 6= ⊥ and otherwise it sets r uniformly at random; B′ then sends r to C, receiving back params.
Let (m1, j1, r∗1, r∗2) and (m2, j2, r∗1, r∗

′
2) be the two queries made byA resulting in a common com-

mitment value, and let (j1, params, r1, com1, com′1, σ1, σ1′) and (j2, params, r2, com1, com′2, σ1′′ , σ2′)
be the respective signatures resulting from A’s queries. Then B′ sends (com1,m1, j1, r∗2,m2, j2, r∗

′
2)

to its challenger and wins with probability one, contradicting the security of the commitment
scheme. Thus, we have that Pr[Com-bindB′,ΠCom

(κ)] < negl(κ), completing the proof. �

3.4 Proof of Security

We are now ready to prove the security of our signed-OT extension protocol. Most of the proof
complexity is hidden in the proofs of the associated EU-CMPRA signature scheme and commitment
scheme. Thus, the signed-OT extension simulator is relatively straightforward, and mostly involves
parsing the output of FΠ

signedOT and passing the correct values to the adversary. The analysis
follows almost exactly that of Asharov et al. [ALSZ15] and thus we elide most of the details.

6This extra commitment on a random message is needed for our signed-OT extension proof.

13

Theorem 3.3 Let Π = (Gen, Sign,Verify) be the EU-CMPRA signature scheme in Section 3.3. Then
the protocol in Figure 4 is a secure realization of FΠ

signedOT in the FOT-hybrid model.

Proof. We separately consider the case where S is malicious and R is malicious. The case where
the parties are either both honest or both malicious is straightforward.
Malicious S. Let A be a ppt adversary corrupting S. We construct a simulator S as follows.

1. The simulator S acts as an honest R would in Step 1, extracting s from A’s input to FOT.

2. The simulator S acts as an honest R would in Steps 2 and 3.

3. Let I and
(
j,y0

j ,y1
j , {tj,i}i∈I , σ

′
j,0, σ

′
j,1

)
, for j ∈ [m], be the messages sent by A in Step 4. If

any of these are invalid, S sends abort to FΠ
signedOT and simulates R aborting, outputting

whatever A outputs.

4. For j ∈ [m], proceed as follows. The simulator S extracts x0
j ← y0

j ⊕H(j,qj) and x1
j ← y1

j ⊕
H(j,qj ⊕ s), constructs σ∗j,b ← (j, I,kj , (I, (j,ybj , I, {tj,i}i∈I)), (I, (j,y

1−b
j , I, {tj,i}i∈I)), σ

′
j,b,

σ′j,1−b) for b ∈ {0, 1}, and sends x0
j , x1

j , σ∗j,0, and σ∗j,1 to FΠ
signedOT, receiving back either

((b,mb), σj,b) or abort.

5. If S received abort in any of the above iterations, it simulates R aborting, outputting what-
ever A outputs. Otherwise, for j ∈ [m], S parses σj,b as (j, I,kj , (I, (j,ybj , I, {tj,i}i∈I)),
(I, (j,y1−b

j , I, {tj,i}i∈I)), σ
′
j,b, σ

′
j,1−b), constructs message σj ← (j,y0

j ,y1
j , {tj,i}i∈I , σ

′
j,0, σ

′
j,1),

and acts as an honest R would when receiving messages I and {σj}j∈[m].

6. The simulator S outputs whatever A outputs.

It is easy to see that this protocol perfectly simulates a malicious sender since S acts exactly as an
honest R would (beyond feeding the appropriate messages to FΠ

signedOT).
Malicious R. Let A be a ppt adversary corrupting R. We construct a simulator S as follows.

1. The simulator S acts as an honest S would in Step 1, extracting matrices T and V through
S’s FOT inputs, and thus the values {kj}j∈[m].

2. The simulator S uses the values extracted above to extract selection bits r after receiving the
ui values from A in Step 2.

3. The simulator S acts as an honest S would in Step 3.

4. Let I0 be the indices at which s (generated in Step 1) is zero, and let I ⊆ I0 be a set of size
κ. For j ∈ [m], S sends rj , vk, and I to FΠ

signedOT, receiving back ((rj ,x
rj
j), σj,rj); S parses

σj,rj as (j, I, r, (I, (j, crj , I, {tj,i}i∈I)), (I, (j, c1−rj , I, {tj,i}i∈I)), σ
′
j,rj
, σ′j,1−rj).

5. In Step 4, S sends I and (j, c0, c1, {tj,i′}i′∈I′ , σ
′
j,0, σ

′
j,1), for j ∈ [m], to A.

6. The simulator S outputs whatever A outputs.

14

The analysis is almost exactly that of the malicious receiver proof in the construction of Asharov
et al. [ALSZ15]; we thus give an informal security argument here and refer the reader to the
aforementioned work for the full details.

A malicious R has two main attacks: using inconsistent choices of its selection bits r and trying
to cheat in the signature creation in Step 4. This latter attack is prevented by the security of our
EU-CMPRA signature scheme. The former is prevented by the consistency check in Step 3. Namely,
Asharov et al. show that the consistency check guarantees that: (1) most inputs are consistent with
some string r, and (2) the number of inconsistent inputs is small and thus allow R to only learn a
small number of bits of s. Thus, for specific choices of ` and µ, the probability of a malicious R
cheating is negligible. Asharov et al. provide concrete parameters for various settings of the security
parameter [ALSZ15, §3.2]; let `′ denote the number of base OTs used in their protocol. Now, in
our protocol we set ` = `′ + κ; S leaks κ bits of s when revealing the set I in Step 4, and so is left
with `′ unknown bits of s. Thus, the security argument presented by Asharov et al. carries over
into our setting. �

4 Our Complete PVC Protocol

As noted above, the main technical challenge of the PVC model is in the signed-OT construction and
model definitions. The AO protocol in the FΠ

signedOT-hybrid model is relatively straightforward:
the natural (but careful) combination of taking a non-halting covert protocol, having the GC
generator P1 sign appropriate messages, and replacing OTs with signed-OTs works. In particular,
our signed-OT extension can be naturally modified and used in place of the signed-OT primitive
in the AO protocol.

In this section we present a new PVC protocol based on signed-OT extension. Our protocol is
similar to the AO protocol in the FΠ

signedOT-hybrid model, but with applying several simple yet
very effective optimizations, resulting in a much lower communication cost.

We present our protocol by starting off with the AO protocol and pointing out the differences.
We presented the AO protocol intuition in the Introduction; see Figure 5 for its formal description.
In presenting our changes, we sketch the improvement each of them brings. Thus, we start by
reviewing the communication cost of the AO protocol.
Communication cost of the AO protocol. Using state-of-the-art optimizations [KS08, PSSW09,
ZRE15], the size of each GC sent in Step 5 is 2κ|GC |, where |GC | is the number of non-XOR gates
in circuit C (note that |GC | = |GC′ | for circuit C ′ generated in Step 1 since the XOR-tree only adds
XOR gates to the circuit, which are “free” [KS08]). Let τ be the field size (in bits), ν the XOR-tree
replication factor, λ the GC replication factor, and n the length of the inputs, and assume that
each signature is of length τ and the commitment and decommitment values are of length κ. Using
the signed-OT instantiations of Asharov and Orlandi [AO12, Protocols 1 and 2], we get a total
communication cost of

τ(7νn+ 11) + 2λκνn (Step 4)
+ `(2κ|GC |+ τ) (Step 5)
+ 2nλ(κ+ τ) (Step 6)
+ τ(3 + 2λ+ 11(λ− 1)) + λκ(2(n+ νn)(λ− 1) + 2n(λ− 1) + n). (Step 7)

As an example, consider the secure computation of AES(m,k), where P1 inputs message m ∈
{0, 1}128 and P2 inputs key k ∈ {0, 1}128, and suppose we set both the GC replication factor λ and

15

Private inputs: P1 has input x1 ∈ {0, 1}n and P2 has input x2 ∈ {0, 1}n.
Common inputs: Security parameter κ; XOR-tree replication factor ν; garbled circuit replication factor λ;
circuit C(·, ·); commitment scheme ΠCom = (Com,Open); ideal functionalities FΠ

signedOT and
(
λ
1

)
-FΠ

signedOT for
EU-CMPRA signature scheme Π.

1. P1 and P2 define a new circuit C′(x1,x1
2, . . . ,xν2) = C(x1,

⊕
i∈[ν] xi2). Let w1, . . . , wn denote the input

wires of x1 and let wn+(i−1)ν , . . . , wn+iν denote the input wires of xi2.
2. For i ∈ [ν − 1], P2 chooses xi2←$ {0, 1}n. P2 sets xν2 ← (

⊕
i∈[ν−1] xi2)⊕ x2.

3. For j ∈ [λ], i ∈ [n+ νn], and b ∈ {0, 1}, P1 chooses kjwn+i,b
←$ {0, 1}κ.

4. P1 and P2 run νn instantiations of FΠ
signedOT, where in the ith execution P1 acts as the sender with input

(k1
wn+i,0‖ . . . ‖k

λ
wn+i,0,k

1
wn+i,1‖ . . . ‖k

λ
wn+i,1) and P2 acts as the receiver with input xdi/ne2 [i mod ν]. If

P2’s output is abort1, it outputs abort1.
5. For j ∈ [λ], P1 constructs garbled circuit GCj of circuit C′, where for i ∈ [n+ νn] the keys for input wire

wi are kjwi,0 and kjwi,1. P1 sends (GCj , Sign(GCj)) to P2, who checks that the signature is valid; if not,
P2 outputs abort1.

6. For i ∈ [n] and j ∈ [λ], P1 chooses b←$ {0, 1}, computes commitments (cjwi,0,o
j
wi,0)←$ Com(kjwi,0) and

(cjwi,1,o
j
wi,0)←$ Com(kjwi,1), and sends (cwi,b, Sign(cwi,b)) and (cwi,b̄,Sign(cwi,b̄)) to P2, who checks that

the signatures are valid; if not, P2 outputs abort1.
7. P1 and P2 run

(
λ
1

)
-FΠ

signedOT with P1 as the sender inputting
({kiwp,b}i∈[λ]\{j},p∈[n+νn],b∈{0,1}

, {oiwp,b}i∈[λ]\{j},p∈[n],b∈{0,1}
, {kj

wi,x1[i]}i∈[n]
) as its jth input and

P2 as the receiver inputting γ←$ [λ] as its input; if P2’s output is abort1, it outputs abort1.
8. P2 does the following:

For j ∈ [λ]\{γ}, i ∈ [n], and b ∈ {0, 1}, P2 checks that Open(cjwi,b,o
j
wi,b

) = kjwi,b. If not, P2 sets
key← InvalidDecommitment and moves to Step 9.
For j ∈ [λ]\{γ}, P2 uses the input wire keys received from the signed-OT in Step 7 to check that
GCj is a correctly garbled circuit. If not, P2 sets key← InvalidCircuit and moves to Step 9.
For j ∈ [λ]\{γ}, P2 checks that the keys received in the signed-OT in Step 4 match the keys sent by
P1 in Step 7. If not, P2 sets key← SelectiveOTAttack and moves to Step 9.

9. If any of the above checks fail, P2 computes Cert ← Blame(id1, key,View2), publishes Cert, and outputs
corrupted1. Otherwise, P2 uses the keys to compute C′(x1,x1

2, . . . ,xν2) and outputs the result.

Figure 5: The AO PVC protocol [AO12, Protocol 3].

the XOR-tree replication factor ν to 3, giving a cheating probability of ε = 1/2. Letting κ = 128
and τ = 256, we have a total communication cost of 9.3 Mbit (where we assume that the AES
circuit has 9,100 non-XOR gates [KsS12]).
Our modifications. We make the following modifications to the AO protocol:

• In Step 6, instead of using a commitment scheme we can use a hash function. This saves
on communication in Step 7 as P1 no longer needs to send the openings {oiwp,b} to the
commitments in the signed-OT, and is secure when treating H as a random oracle since the
keys are generated uniformly at random and thus it is infeasible for P2 to guess the committed
values. The total savings are 2n(λ− 1)κλ bits; in our example, this saves us 196 kbit.

• In Step 3, we use a random seed to generate the input wire keys. Namely, for all j ∈ [λ]
we compute sj←$ {0, 1}κ, and compute the input wire keys for circuit j as kjw1,0‖k

j
w1,1‖ · · ·

‖kjwn+νn,0‖k
j
wn+νn,1 ← G(sj), where G is a pseudorandom generator. Now, in the 1-out-of-λ

signed-OT in Step 7 we can just send the seeds to the input wire keys rather than the input

16

wire keys themselves. The total savings are 2(n + νn)(λ − 1)λκ − n(λ − 1)λκ bits; in our
example, this saves us 688 kbit.

• In Step 5, P1 generates each GCj from a seed sjGC. (This idea was first put forward by Goyal
et al. [GMS08].) That is, sjGC specifies the randomness used to construct all wire keys except
for the input wire keys which were set in Step 3. Instead of P1 sending each GC to P2 in
Step 5, P1 instead sends a commitment cjGC ← H(GCj). Now, in Step 7, P1 can send the
appropriate seeds {sjGC}j∈[λ]\{j} in the jth input of the 1-out-of-λ signed-OT to allow P2
to check the correctness of the check GCs. We then add an additional step where, if the
checks pass, P1 sends GCγ (along with a signature on GCγ) to P2, who can check whether
H(GCγ) = cγGC. Note that this does not violate the security conditions required by the PVC
model because P2 catches any cheating of P1 before the evaluation circuit is sent. If P1 tries
to cheat here, P2 already has a commitment to the circuit so can detect any cheating. The
total savings are (λ− 1)2κ|GC | − λτ − λκ(λ− 1) bits; in our example, this saves us 4.6 Mbit.

Our PVC protocol and its cost. Figure 6 presents our optimized protocol. For simplicity, we
sign each message in Steps 5 and 6 separately; however, we note that we can group all the messages
in a given step into a single signature (cf. Observation 2). The Blame and Judgment algorithms
are straightforward and similar to the AO protocol (Blame outputs the relevant parts of the view,
including the cheater’s signatures, and Judgment checks the signatures). We prove the following
theorem in Appendix A.

Theorem 4.1 Let λ < p(κ) and ν < p(κ), for some polynomial p(·), be parameters to the protocol,
and set ε = (1−1/λ)(1−2−ν+1). Let f be a ppt function, let H be a random oracle, let FΠ

signedOT
and

(λ
1
)
-FΠ

signedOT be the
(2
1
)
-signed-OT and

(λ
1
)
-signed-OT ideal functionalities, respectively, where

Π is an EU-CMPRA signature scheme. Then the protocol in Figure 6 securely computes f in the
presence of (1) an ε-PVC adversary corrupting P1 and (2) a malicious adversary corrupting P2.

The total communication cost is

Cost(signed-OT/signed-OT extension) (Step 4)
+ λκ+ τ (Step 5)
+ 2nλκ+ τ (Step 6)
+ τ(3 + 2λ+ 11(λ− 1)) + λ(2κ(λ− 1) + nκ) (Step 7)
+ log(λ) + τ (Step 9)
+ 2κ|GC |+ τ. (Step 10)

Using our AES circuit example, we find that the total communication cost is now 2.5 Mbit, plus the
cost of signed-OT/signed-OT extension. In this particular example, signed-OT requires around 1
Mbit and signed-OT extension requires around 1.4 Mbit. However, as we show below, as the number
of OTs required grows, signed-OT extension quickly outperforms signed-OT, both in communication
and computation.

5 Comparison with Prior Work

We now compare our signed-OT extension construction (including optimizations, and in partic-
ular, the signature batching of Observation 2) with the signed-OT protocol of Asharov and Or-

17

Private inputs: P1 has input x1 ∈ {0, 1}n; P2 has input x2 ∈ {0, 1}n.
Common inputs: Security parameter κ; XOR-tree replication factor ν; garbled circuit replication factor λ;
circuit C(·, ·); hash function H : {0, 1}∗ → {0, 1}κ; pseudorandom generator G : {0, 1}κ → {0, 1}2(n+νn)κ; ideal
functionalities FΠ

signedOT and
(
λ
1

)
-FΠ

signedOT for EU-CMPRA signature scheme Π.

1. P1 and P2 define a new circuit C′(x1,x1
2, . . . ,xν2) = C(x1,

⊕
i∈[ν] xi2). Let w1, . . . , wn denote the input

wires of x1 and let wn+(i−1)ν , . . . , wn+iν denote the input wires of xi2.
2. For i ∈ [ν − 1], P2 chooses xi2←$ {0, 1}n and sets xν2 ← (

⊕
i∈[ν−1] xi2)⊕ x2.

3. For j ∈ [λ], P1 chooses sj←$ {0, 1}κ and computes kjw1,0‖k
j
w1,1‖ · · · ‖k

j
wn+νn,0‖k

j
wn+νn,1 ← G(sj).

4. P1 and P2 run νn instantiations of FΠ
signedOT, where in the ith execution P1 acts as the sender with input

(k1
wn+i,0‖ · · · ‖k

λ
wn+i,0,k

1
wn+i,1‖ · · · ‖k

λ
wn+i,1) and P2 acts as the receiver with input xdi/ne2 [i mod ν]. If

Pi’s output is aborti, it outputs aborti.
5. For j ∈ [λ], P1 computes sjGC←$ {0, 1}κ and uses sjGC as the randomness used to generate garbled circuit

GCj , where for i ∈ [n+ νn] the keys for input wire wi are kjwi,0 and kjwi,1. P1 computes cjGC ← H(GCj)
and sends (cjGC, Sign(cjGC)) to P2, who checks that the signature is valid; if not, P2 outputs abort1.

6. For i ∈ [n] and j ∈ [λ], P1 computes cjwi,0 ← H(kjwi,0) and cjwi,1 ← H(kjwi,1), and sends
(cwi,b, Sign(cwi,b)), (cwi,b̄, Sign(cwi,b̄)) to P2, where b←$ {0, 1}. P2 checks that the signatures are valid;
if not, P2 outputs abort1.

7. P1 and P2 run
(
λ
1

)
-FΠ

signedOT with P1 as the sender and P2 as the receiver. P2 uses γ←$ [λ] as its input
and P1 uses ({si, siGC}i∈[λ]\{j}, {kjwi,x1[i]}i∈[n]) as its jth input. If Pi’s output is aborti, it outputs aborti.

8. P2 does the following:
For j ∈ [λ]\{γ}, i ∈ [n], and b ∈ {0, 1}, P2 checks that H(kjwi,b) = cjwi,b. If not, P2 sets key ←
InvalidDecommitment and moves to Step 12.
For j ∈ [λ]\{γ}, P2 uses sj and sjGC received from

(
λ
1

)
-FΠ

signedOT to check that GCj is a correctly
garbled circuit and that H(GCj) = cjGC. If not, P2 sets key← InvalidCircuit and moves to Step 12.
For j ∈ [λ]\{γ}, P2 checks that the keys received in FΠ

signedOT match the keys generated by sj
received in Step 7. If not, P2 sets key← SelectiveOTAttack and moves to Step 12.

9. Let ((γ,mγ), σ) be P2’s output of
(
λ
1

)
-FΠ

signedOT. P2 sends (γ, σ) to P1, who checks that the signature is
valid and otherwise outputs abort2.

10. P1 sends (GCγ ,Sign(GCγ)) to P2, who checks that the signature is valid; if not, P2 outputs abort1.
11. P2 checks that H(GCγ) = cγGC. If not, P2 sets key← InvalidCircuitHash and moves to Step 12.
12. If any of the above checks fail, P2 computes Cert ← Blame(id1, key,View2), publishes Cert, and outputs

corrupted1. Otherwise, P2 uses the keys to compute C′(x1,x1
2, . . . ,xν2) and outputs the result.

Figure 6: Our PVC protocol.

landi [AO12], along with a comparison of existing covert and malicious protocols and our PVC
protocol using both signed-OT and signed-OT extension. All comparisons are done through cal-
culating the number of bits transferred and estimated running times based on the relative cost
of public key versus symmetric operations. We use a very conservative (low-end) estimate on the
public/symmetric speed ratio. We note that this ratio does vary greatly across platforms, being
much higher on low power mobile devices, which often employ a weak CPU but have hardware
AES support. For such platforms our numbers would be even better.7

Recall that τ is the field size (in bits), ν is the XOR-tree replication factor, λ is the GC
replication factor, n is the input length, and we assume that each signature is of length τ .

7The code for computing the numbers in the subsequent figures can be found at https://gist.github.com/
amaloz/82367afc83ff4c41d6df.

18

https://gist.github.com/amaloz/82367afc83ff4c41d6df
https://gist.github.com/amaloz/82367afc83ff4c41d6df

Input: Cheating identity id, error key key, and view View.
Output: A certificate of cheating Cert = (id, key,msg).

If key = InvalidDecommitment, let msg = (c,o,k, σ, σ′), where (c,o) is the invalid commitment-
decommitment pair of key k (i.e., k 6= Open(c,o)), σ is the signature of c obtained in Step 6, and σ′

is the signature obtained in the signed-OT in Step 7. Output (id, key,msg).
If key = InvalidCircuit, let msg = (GC, {k}, σ1, σ2), where GC is the invalid garbled circuit received in Step 5,
{k} are the keys received in Step 7, σ1 is the signature of the invalid garbled circuit received in Step 5, and
σ2 is the signature of the keys received in Step 7. Output (id, key,msg).
If key = SelectiveOTAttack, let msg = (m, {k}, σ1, {σ}), where m is the bitstring received in the signed-OT
in Step 4 and σ1 is the associated signature, and {k} and {σ} are the keys and associated signatures sent
in Step 7. Output (id, key,msg).
If key = InvalidCircuitHash, let msg = (cγGC,GCγ , σ, σ′), where (cγGC, σ) is the commitment to GCγ and
associated signature sent in Step 5, and (GCγ , σ′) is the circuit and signature sent in Step 10. Output
(id, key,msg).
Otherwise, output ⊥.

Figure 7: The Blame algorithm for the optimized Asharov-Orlandi protocol.

Input: A certificate of cheating Cert = (id, key,msg).
Output: The cheating identity id, or ⊥.

If key = InvalidDecommitment, parse msg as (c,o,k, σ, σ′), and check that k 6= Open(c,o), σ is a valid and
appropriate signature of c signed by id, and σ′ is a valid and appropriate signature containing o and signed
by id. If so, output id; otherwise output ⊥.
If key = InvalidCircuit, parse msg as (GC, {k}, σ1, σ2), and check that GC is indeed an invalid garbled circuit
using input wire keys {k}, and σ1, σ2 are valid and appropriate signatures signed by id. If so, output id;
otherwise output ⊥.
If key = SelectiveOTAttack, parse msg as (m, {k}, σ1, {σ}), check that the signatures are valid, and check
that there is indeed a mismatch between the keys in m and {k}. If so, output id; otherwise output ⊥.
If key = InvalidCircuitHash, parse msg as (c,GC, σ, σ′), check that the signatures are valid, and check that
H(GC) 6= c. If so, output id; otherwise output ⊥.
Otherwise, output ⊥.

Figure 8: The Judgment algorithm for the optimized Asharov-Orlandi protocol.

Communication cost. We first look at the communication cost of the two protocols. The signed-
OT protocol of Asharov and Orlandi [AO12] is based on the maliciously secure OT protocol of
Peikert et al. [PVW08], and inherits similar costs. Namely, the communication cost of executing `
OTs each of length n is (6`+ 11)τ if n ≤ τ , and (6`+ 11)τ + 2n` if n > τ . Signed-OT requires the
additional communication of a signature per OT, adding an additional τ` bits. In the underlying
secure computation protocol we have that n = λκ, where λ is the garbled circuit replication factor.
For simplicity, we set λ = 3 (which along with an XOR-tree replication factor of three equates to
a deterrence factor of ε = 1/2) and thus n = 3κ. Thus, the total communication cost of executing
t signed-OTs is τ (7t + 11) bits if 3κ ≤ τ and τ (7t + 11) + 6κt bits otherwise.

On the other hand, the cost of signed-OT extension for t OTs is

(6`+ 11)τ + 2`t (Step 1)
+ `t (Step 2)
+ µ` log `+ 4µ`κ (Step 3)
+ κ log `+ (n+ κ)t+ τ. (Step 4)

19

1,000 OTs 10,000 OTs

Security sOT sOT-ext Improvement sOT sOT-ext Improvement

Short (FFC) 7,179 2,539 2.8× 71,691 11,305 6.3×
Short (ECC) 1,602 1,398 1.1× 16,002 10,164 1.6×

Long (FFC) 21,538 7,694 2.8× 215,074 20,888 10.3×
Long (ECC) 2,563 2,288 1.1× 25,603 15,482 1.7×

Figure 9: Communication cost (in kbits) of transferring the input wire labels for P2 when using signed-OT (sOT)
versus signed-OT extension (sOT-ext) for 1,000 and 10,000 OTs.

Asharov et al. [ALSZ15, §3.2] present concrete choices of µ and ` for various security parameters.
However, in our setting we need to increase ` by κ bits. Thus, let `′ be the particular choice of
` specified by Asharov et al.; we set ` = `′ + κ. Thus, for the short security parameter we set
` = 133 + 80 = 213 and µ = 3, and for the long security parameter we set ` = 190 + 128 = 318
and µ = 2. Thus, the total communication cost of executing t signed-OTs when using signed-OT
extension is (6`+ 12)τ + (3`+ n + κ)t + µ`log`+ 4µ`κ+ κlog` bits.

Figure 9 presents a comparison of the communication cost of both approaches when executing
1,000 and 10,000 OTs, for various keylength settings and underlying public key cryptosystems. We
see improvements from 1.1–10.3×, depending on the number of OTs, the underlying public key
cryptosystem, and the size of the security parameter. Note that for a smaller number of OTs (such
as 100), signed-OT is more efficient, which makes sense due to the overhead of OT extension and
the need to compute the base OTs. However, as the number of OTs grows, we see that signed-OT
extension is superior across the board.
Computational cost. We now look at the computational cost of the two protocols. Let ξ denote
the cost of a public key operation (we assume exponentiations and signing take the same amount
of time), and let ζ denote the cost of a symmetric key operation (where we let ζ denote the cost
of operating over κ bits; e.g., hashing a 2κ-bit value costs 2ζ). We assume all other operations are
“free”. This is obviously a very coarse analysis; however, it gives a general idea of the performance
characteristics of the two approaches.

The cost of executing ` OTs on n-bit messages is (14`+12)ξ if n ≤ τ and (14`+12)ξ+2`nκζ if n >
τ . Signed-OT requires an additional 2`ξ operations (for signing and verifying). We again set n = 3κ,
and thus the cost of executing t signed-OTs is (16t + 12)ξ if 3κ ≤ τ and (16t + 12)ξ+ 6tζ
otherwise.

The cost of our signed-OT extension protocol for t OTs (where we assume t > κ and we hash
the input prior to signing in Step 4) is

`

κ
tζ + (14`+ 12)ξ + 2` t

κ
ζ (Step 1)

+ 6`µ t
κ
ζ (Step 3)

+ 2 log `ζ + 2t`+ n+ κ

κ
ζ + 2ξ. (Step 4)

As above, we set ` = 213 and µ = 3 for the short security parameter, ` = 318 and µ = 2 for the
long security parameter, and n = 3κ. Thus, the cost of executing t signed-OTs is (14`+ 14)ξ+
((5 + 6µ) `κ+8)tζ + 2log`ζ.

20

1,000 OTs 10,000 OTs

Security sOT sOT-ext Improvement sOT sOT-ext Improvement

Short (FFC) 16.0 3.1 5.1× 160.0 3.8 42.4×
Short (ECC) 5.3 1.1 4.9× 53.3 1.7 30.9×

Long (FFC) 144.1 40.2 3.6× 1440.1 40.7 35.4×
Long (ECC) 14.4 4.1 3.5× 144.1 4.5 31.9×

Figure 10: Computation cost (in millions of “time units”) of transferring the input wire labels for P2 when using
signed-OT (sOT) versus signed-OT extension (sOT-ext) for 1,000 and 10,000 OTs. We assume symmetric-key op-
erations take 1 “time unit”, FFC (resp., ECC) operations take 1000 (resp., 333) “time units” for the short security
parameter, and FFC (resp., ECC) operations take 9000 (resp., 900) “time units” for the long security parameter [NSA].

f # inputs # gates GMS
OurssOT-ext

OurssOT

OurssOT-ext
AMPR

OurssOT-ext

16384-bit Comp. 16,384 32,229 0.85–0.73 17.1–86.7 103.0–533.4
Hamming 16000 16,000 97,175 0.90–0.79 11.0–67.0 67.4–399.7
16×16 Matrix Mult. 8192 4,186,368 1.00–0.98 1.2–3.1 10.8–21.9
1024-bit Sum 1,024 2,977 0.71–0.61 6.7–10.2 41.0–61.5
1024-bit Mult. 1,024 6,371,746 1.00–0.99 1.0–1.2 9.7–10.5
1024-bit RSA 1,024 15,149,856,895 1.00–1.00 1.0–1.0 9.6–9.6

Figure 11: Ratio of computation cost of various secure computation protocols with our signed-OT extension con-
struction, using a deterrence factor of 1/2 for the covert and PVC protocols. GMS denotes the covert protocol of
Goyal et al. [GMS08], OurssOT denotes the optimized Asharov-Orlandi protocol run using signed-OT, OurssOT-ext

denotes the same protocol using signed-OT extension, and AMPR denotes the protocol of Afshar et al. [AMPR14].
We let f denote the function being computed, # inputs denote the number of input bits required as input by P2, and
gates denote the number of non-XOR gates in the resulting circuit. All circuit information is taken from the PCF
compiler [KMsB13, Table 5]. We report each ratio as a range; the first number uses ξ = 125 as the cost of public-key
operations and the second number uses ξ = 1250, where we assume a symmetric-key operation costs ζ = 1.

Figure 10 presents a comparison of the computational cost of both approaches when executing
1,000 and 10,000 OTs, for various keylength settings and underlying public key cryptosystems. Here
we see that regardless of the number of OTs and public key cryptosystem used, signed-OT extension
is (often much) more efficient, and as the number of OTs increases so does this improvement. For as
few as 1,000 OTs we already see a 3.5–5.1× improvement, and for 10,000 OTs we see a 30.9–42.4×
improvement.
Comparing covert, PVC, and malicious protocols. We now compare the computation cost
of our PVC protocol in Figure 6, using both signed-OT and signed-OT extension, with the covert
protocol of Goyal et al. [GMS08] and the malicious protocol of Afshar et al.8 [AMPR14], which are
the most efficient protocols for their respective security models that we are aware of.

Figure 11 presents a comparison of the computation cost of our protocol using both signed-
OT (OurssOT) and signed-OT extension (OurssOT-ext), as well as comparisons to the Goyal et al.
protocol (GMS) and Afshar et al. protocol (AMPR); see Appendix B for the detailed cost formulas.
We fix κ = 128, λ = ν = 3 (giving a deterrence factor of ε = 1/2), and assume the use of elliptic
curve cryptography (and thus τ = 256). We expect public key operations to take between 125–
1250×more than symmetric key operations, depending on implementation details, whether one uses

8In the proceedings version of this work we compare against Lindell’s protocol [Lin13]; however, Afshar et al.’s
protocol is more efficient and thus we compare against their protocol here.

21

AES-NI, etc. This range is a very conservative estimate using the Crypto++ benchmark [Cry],
experiments using OpenSSL, and estimated ratios of running times between finite field and elliptic
curve cryptography [NSA].

When comparing against GMS, we find that OurssOT-ext is slightly more expensive, due almost
entirely to the larger number of base OTs in the signed-OT extension. We note that in practice,
however, a deterrence factor of 1/2 may not be sufficient for a covert protocol but may indeed
be sufficient for a PVC protocol, due to the latter’s ability to “name-and-shame” the perpetrator.
When increasing the deterrence factor for the covert protocol to ε ≈ .9, the cost ratios favor
OurssOT-ext. For example, for 16×16 matrix multiplication, the ratio becomes 3.60–3.53× (versus
1.00–0.98×), depending on the cost of public key operations.

Comparing OurssOT-ext with OurssOT, we find that the former is 1.0–86.7× more efficient,
depending largely on the characteristics of the underlying circuit. For circuits with a large number
of inputs but a relatively small number of gates (e.g., 16384-bit Comp., Hamming 16000, and 1024-
bit Sum) this difference is greatest, which makes sense, as the cost of the OT operations dominates.
The circuits for which the ratio is around 1.0 (e.g., 1024-bit RSA) are those that have a huge
number of gates compared to the number of inputs, and thus the cost of processing the GC far
outweighs the cost of signed-OT/signed-OT extension.

Finally, comparing OurssOT-ext with AMPR, the former is 9.6–567.2× more efficient, again
depending in a large part on the characteristics of the circuit. For example, for the Hamming
16000 circuit, we get an improvement of 67.4–399.7×. These results demonstrate that for settings
where public shaming is enough of a deterrent from cheating, OurssOT-ext may present a better
security/efficiency trade-off than existing malicious protocols.

Acknowledgments. The authors thank Michael Zohner for a brief discussion on the relative
performance of public- and symmetric-key primitives, and the anonymous reviewers for helpful
suggestions.

The authors acknowledge the Office of Naval Research and its support of this work under con-
tract N00014-14-C-0113. Work of Alex J. Malozemoff was also supported by the Department of
Defense (DoD) through the National Defense Science & Engineering Graduate (NDSEG) Fellow-
ship.

References

[ADMM14] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz Mazurek.
Secure multiparty computations on bitcoin. In 2014 IEEE Symposium on Security and
Privacy, pages 443–458, Berkeley, California, USA, May 18–21, 2014. IEEE Computer
Society Press.

[AL10] Yonatan Aumann and Yehuda Lindell. Security against covert adversaries: Efficient
protocols for realistic adversaries. Journal of Cryptology, 23(2):281–343, April 2010.

[ALSZ13] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More effi-
cient oblivious transfer and extensions for faster secure computation. In Ahmad-Reza
Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 13: 20th Conference
on Computer and Communications Security, pages 535–548, Berlin, Germany, Novem-
ber 4–8, 2013. ACM Press.

22

[ALSZ15] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient
oblivious transfer extensions with security for malicious adversaries. In Elisabeth Os-
wald and Marc Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015, Part
I, volume 9056 of Lecture Notes in Computer Science, pages 673–701, Sofia, Bulgaria,
April 26–30, 2015. Springer, Berlin, Germany.

[AMPR14] Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. Non-interactive secure
computation based on cut-and-choose. In Phong Q. Nguyen and Elisabeth Oswald,
editors, Advances in Cryptology – EUROCRYPT 2014, volume 8441 of Lecture Notes in
Computer Science, pages 387–404, Copenhagen, Denmark, May 11–15, 2014. Springer,
Berlin, Germany.

[AO12] Gilad Asharov and Claudio Orlandi. Calling out cheaters: Covert security with public
verifiability. In Xiaoyun Wang and Kazue Sako, editors, Advances in Cryptology –
ASIACRYPT 2012, volume 7658 of Lecture Notes in Computer Science, pages 681–
698, Beijing, China, December 2–6, 2012. Springer, Berlin, Germany.

[BBB+12] Elaine Barker, William Barker, William Burr, William Polk, and Miles Smid. Rec-
ommendation for key management — Part 1: General (Revision 3). NIST Special
Publication 800-57, July 2012.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled
circuits. In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS
12: 19th Conference on Computer and Communications Security, pages 784–796,
Raleigh, NC, USA, October 16–18, 2012. ACM Press. Full version available at
https://eprint.iacr.org/2012/265.

[BK14] Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair proto-
cols. In Juan A. Garay and Rosario Gennaro, editors, Advances in Cryptology –
CRYPTO 2014, Part II, volume 8617 of Lecture Notes in Computer Science, pages
421–439, Santa Barbara, CA, USA, August 17–21, 2014. Springer, Berlin, Germany.

[Cry] Crypto++ 5.6.0 benchmarks. http://www.cryptopp.com/benchmarks.html.

[GMS08] Vipul Goyal, Payman Mohassel, and Adam Smith. Efficient two party and multi
party computation against covert adversaries. In Nigel P. Smart, editor, Advances in
Cryptology – EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science,
pages 289–306, Istanbul, Turkey, April 13–17, 2008. Springer, Berlin, Germany.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers
efficiently. In Dan Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume
2729 of Lecture Notes in Computer Science, pages 145–161, Santa Barbara, CA, USA,
August 17–21, 2003. Springer, Berlin, Germany.

[KB14] Ranjit Kumaresan and Iddo Bentov. How to use bitcoin to incentivize correct compu-
tations. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 14: 21st
Conference on Computer and Communications Security, pages 30–41, Scottsdale, AZ,
USA, November 3–7, 2014. ACM Press.

23

https://eprint.iacr.org/2012/265
http://www.cryptopp.com/benchmarks.html

[KMsB13] Ben Kreuter, Benjamin Mood, abhi shelat, and Kevin Butler. PCF: A portable circuit
format for scalable two-party secure computation. In 22nd USENIX Security Sympo-
sium, August 2013.

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates
and applications. In Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M.
Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP 2008: 35th
International Colloquium on Automata, Languages and Programming, Part II, volume
5126 of Lecture Notes in Computer Science, pages 486–498, Reykjavik, Iceland, July 7–
11, 2008. Springer, Berlin, Germany.

[KsS12] Benjamin Kreuter, abhi shelat, and Chih-Hao Shen. Towards billion-gate secure com-
putation with malicious adversaries. In 21st USENIX Security Symposium, August
2012.

[Lin13] Yehuda Lindell. Fast cut-and-choose based protocols for malicious and covert ad-
versaries. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology –
CRYPTO 2013, Part II, volume 8043 of Lecture Notes in Computer Science, pages
1–17, Santa Barbara, CA, USA, August 18–22, 2013. Springer, Berlin, Germany. Full
version available at https://eprint.iacr.org/2013/079.

[NSA] The case for elliptic curve cryptography. https://www.nsa.gov/business/programs/
elliptic_curve.shtml.

[PSSW09] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams. Secure
two-party computation is practical. In Mitsuru Matsui, editor, Advances in Cryptology
– ASIACRYPT 2009, volume 5912 of Lecture Notes in Computer Science, pages 250–
267, Tokyo, Japan, December 6–10, 2009. Springer, Berlin, Germany. Full version
available at https://eprint.iacr.org/2009/314.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient
and composable oblivious transfer. In David Wagner, editor, Advances in Cryptology
– CRYPTO 2008, volume 5157 of Lecture Notes in Computer Science, pages 554–571,
Santa Barbara, CA, USA, August 17–21, 2008. Springer, Berlin, Germany. Full version
available at https://eprint.iacr.org/2007/348.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing
data transfer in garbled circuits using half gates. In Elisabeth Oswald and Marc
Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015, Part II, volume 9057
of Lecture Notes in Computer Science, pages 220–250, Sofia, Bulgaria, April 26–30,
2015. Springer, Berlin, Germany.

A Proof of Security for Our PVC Protocol (Theorem 4.1)

We prove that the protocol described in Figure 6 is ε-PVC-secure. The proof closely follows that
of Aumann and Lindell [AL10, §6.2], and we assume some familiarity with that proof.

Let SGC(1κ,y,Φ(C)) be a garbled circuit simulator, which takes as input the security parame-
ter 1κ, an output bitstring y, and circuit leakage Φ(C), and outputs a garbled circuit GC which is

24

https://eprint.iacr.org/2013/079
https://www.nsa.gov/business/programs/elliptic_curve.shtml
https://www.nsa.gov/business/programs/elliptic_curve.shtml
https://eprint.iacr.org/2009/314
https://eprint.iacr.org/2007/348

indistinguishable from a correctly garbled circuit with output y [BHR12]. We use SGC in the proof
for a corrupted P2 below.
Proof (Sketch). Clearly, the protocol is non-halting by inspection: an honest party only outputs
corrupted if it detects deviation from the protocol by the other party; this only happens if the other
party is malicious.

The rest of the proof involves four steps. We first demonstrate a simulator for a corrupted P2
and prove that this simulator produces a transcript indistinguishable from an adversary running
the real protocol. We then proceed to show a simulator for a corrupted P1. We then prove the
accountability and defamation-free properties required by the PVC security model.
P2 is corrupted. Let A be a ppt malicious adversary corrupting P2. We construct a simulator S
as follows:

1. S acts like P1 up through Step 3.

2. In Step 4, S receives A’s inputs to FΠ
signedOT and proceeds as follows:

(a) If A’s input is abort2, then S sends abort2 to the trusted party and simulates P1 aborting,
outputting whatever A outputs.

(b) If the input is a bit b, then S sends A the appropriate keys generated in Step 3.

3. S constructs x2 based on A’s inputs to FΠ
signedOT extracted above and sends x2 to the trusted

party, receiving back output y2.

4. S chooses ρ←$ [λ]. For j ∈ [λ]\{ρ}, S acts like P1 in Step 5. For j = ρ, S computes
GCρ←$SGC(1κ,y2, φ(C)). It then computes c← H(GCρ) and sends (c, SignP1(c)) to A.

5. S acts as P1 in Step 6.

6. In Step 7, S receives A’s input to
(λ

1
)
-FΠ

signedOT and proceeds as follows:

• If A’s input is abort2, then S sends abort2 to the trusted party and simulates P1 aborting,
outputting whatever A outputs.
• If the input is a choice bit γ, S does the following. If γ 6= ρ, S rewinds to Step 4

above, unless S has rewound κλ times, it which case it halts. Otherwise, S inputs
({si, sjGC}i∈[λ]\{ρ}, {k

j
wi,r[i]}i∈[n]

) for some random bitstring r as the jth input to
(λ

1
)
-

FΠ
signedOT, and then proceeds as an honest P1 would.

7. S acts like P1 for the rest of the protocol, outputting whatever A outputs.

The proof that S correctly simulates a malicious P2 follows closely to the proof by Aumann and
Lindell [AL10] and thus we do not repeat it here.
P1 is corrupted. Let A be a ppt covert adversary corrupting P1. We construct a simulator S as
follows:

1. S acts as P2 up through Step 3.

2. In Step 4, S receives A’s inputs to FΠ
signedOT and proceeds as follows:

25

(a) If A inputs abort1 in any iteration, S sends abort1 to the trusted party and simulates P2
aborting, outputting whatever A outputs.

(b) Otherwise, S parses the inputs as mn tuples where the i tuple is

(k1
wn+i,0‖ · · · ‖k

λ
wn+i,0,k

1
wn+i,1‖ · · · ‖k

λ
wn+i,1).

3. S acts as P2 through Step 6.

4. In Step 7, S receives A’s input to
(λ

1
)
-FΠ

signedOT and proceeds as follows:

(a) If A inputs abort1, S sends abort1 to the trusted party and simulates P2 aborting,
outputting whatever A outputs.

(b) Otherwise, S parses the input as λ tuples, where the jth tuple is constructed as(
{si, sjGC}i∈[λ]\{j}, {k

j
wi,x1[i]}i∈[n]

)
.

5. For γ ∈ [λ], S sends γ to
(λ

1
)
-FΠ

signedOT, receiving back(
(γ, {si, sγGC}i∈[λ]\{γ}, {k

γ
wi,x1[i]}i∈[n]

), σ
)
.

If σ is not a valid signature, S aborts as an honest P2 would, outputting whatever A outputs.
Otherwise, S rewinds to before it sent γ to

(λ
1
)
-FΠ

signedOT.
At this stage, S has (possibly invalid) openings of all circuits as well as (possibly invalid) keys
associated withA’s input. There exist four cases to consider. We follow similar terminology as
that of Aumann and Lindell [AL10, §6.2]. We call a legitimate circuit one that can be correctly
opened; an illegitimate circuit is one that cannot be correctly opened. An inconsistent key
is one that differs from the key committed to by P1. An inconsistent wire is a wire such
that for some garbled circuit either the 0-key or the 1-key is inconsistent. Finally, a totally
inconsistent input is one where all of the wires associated with the share of that input are
inconsistent.

(a) There exists an illegitimate circuit. Let GCj0 be the first such circuit. S sends cheat1 to
the trusted party. There are two cases to consider.

i. S receives corrupted1 from the trusted party. Then it chooses γ 6= j0 uniformly at
random, and inputs γ to

(λ
1
)
-FΠ

signedOT, receiving back the appropriate output. S
then simulates P2 aborting due to the detected cheating, outputting whatever A
outputs.

ii. S receives undetected and P2’s input x2 from the trusted party. With probability
p = 1

λ(1−ε) , S chooses γ = j0 and with probability 1−p it chooses γ 6= j0 uniformly at
random, inputting γ to

(λ
1
)
-FΠ

signedOT and receiving back the appropriate output. S
then emulates an honest P2 with input x2 for the rest of the protocol execution. Let
y2 be the resulting output. S sends y2 to the trusted party and outputs whatever
A outputs.

26

(b) There exists a totally inconsistent input. Assume without loss of generality that the ith
input bit x2[i] is totally inconsistent and that all the inconsistent keys are 0-keys. S
sends cheat1 to the trusted party. There are two cases to consider.

i. S receives corrupted1 from the trusted party. S chooses bits for the wires wn+(i−1)ν+1,
. . . , wn+iν−1 uniformly at random subject to all wires not being one. Let wire wk be
the first zero wire and let GCj0 be the first garbled circuit with inconsistent keys for
wk. S chooses γ 6= j0 uniformly at random and inputs γ to

(λ
1
)
-FΠ

signedOT, receiving
back the appropriate output. S then emulates an honest P2 aborting and outputs
whatever A outputs.

ii. S receives undetected and P2’s input x2 from the trusted party. S sets the shares of
the ith input and the OT choice γ as follows:
• With probability p = 2−m+1/(1− ε), S sets the wires wn+(i−1)ν+1, . . . , wn+iν−1

to one and sets wn+iν ← x2[i]⊕
⊕
t∈[m−1]wn+(i−1)ν+t. S sets γ←$ {0, 1}λ.

• With probability 1−p, S sets the wires wn+(i−1)ν+1, . . . , wn+iν−1 to a uniformly
random value subject to all wires not being one, and sets wn+iν ← x2[i] ⊕⊕

t∈[m−1]wn+(i−1)ν+t. Let wk be the first wire that is set to zero, and let j0 be
the first circuit such that the key of wk is inconsistent. S sets γ ← j0.

S inputs γ to
(λ

1
)
-FΠ

signedOT, receiving back the appropriate output. S then continues
by emulating an honest P2 using the shares chosen above, and outputs whatever A
outputs.

(c) S reaches this case if all circuits are legitimate and there exist no totally inconsistent
inputs. However, there may still be inconsistent wires. S proceeds as follows. It chooses
a random value for each inconsistent wire and checks if the given value corresponds to
an inconsistent key. There are two cases to consider.

i. S chooses bits with inconsistent keys. Let wk be the first wire with an inconsistent
key, and let GCj0 be the first circuit with said inconsistent key. S sends cheat1 to
the trusted party. Again, we have two cases.
A. S receives corrupted1 from the trusted party. It chooses γ 6= j0 uniformly at

random and inputs γ to
(λ

1
)
-FΠ

signedOT, receiving back the appropriate output.
S then simulates P2 aborting, outputting whatever A outputs.

B. S receives undetected and x2 from the trusted party. S chooses bits for the con-
sistent wires at random subject to the shares equaling x2[i]. With probability
p = (1/λ)/(1 − ε) S sets γ ← j0 and with probability 1 − 0 S chooses γ 6= j0
uniformly at random. S inputs γ to

(λ
1
)
-FΠ

signedOT, receiving back the appro-
priate output, and continues by emulating an honest P2 using the shares chosen
above, and outputs whatever A outputs.

ii. S chooses bits with consistent keys. Thus, the circuits and keys S receives from
A are equivalent to those sent by an honest P1, and thus S proceeds as follows.
S chooses γ←$ [λ] and sends γ to

(λ
1
)
-FΠ

signedOT, receiving back the appropriate
output. If the signatures output by

(λ
1
)
-FΠ

signedOT are invalid, then S sends abort1
to the trusted party and simulates P2 aborting, outputting whatever A outputs.
Otherwise, if there is any other inconsistency, S sends corrupted1 to the trusted
party and simulates P2 aborting, outputting whatever A outputs.

27

6. S acts as P2 in Steps 9 through 11.

7. S uses the circuit openings retrieved during the rewinding to open the circuit GCγ and extract
A’s input x′1. S then sends x′1 to the trusted party, along with the continue message, and
outputs whatever A outputs.

The proof that S correctly simulates a covert P1 follows closely to the proof by Aumann and
Lindell [AL10], and thus we do not repeat it here.
Accountability. Let A be a ppt covert adversary corrupting party P1 and fix inputs x1,x2
such that Output(Execπ,A(z)(x1,x2; 1κ)) = corrupted1. The fact that Pr[Judgment(Cert) = id1] >
1−negl(κ) follows directly from the construction and the Blame and Judgment algorithms. Namely,
at any point that A is detected cheating, P2 has proof of such cheating by way of A’s signatures
on the messages it sent.
Defamation-free. Let A be a ppt adversary corrupting P2 (the case where A corrupts P1 is
similar). We show that Pr[Judgment(Cert) = id1 : Cert ← A] < negl(κ). This follows from the
security of the underlying EU-CMA signature scheme. Namely, if there exists an adversary that
succeeds with non-negligible probability, we can convert this directly into an adversary B which
breaks the signature scheme. We construct B as follows.

On input verification key vk, B proceeds by emulating A, playing the role of an honest P1 with
verification key vk and using the signing oracle to compute the required signatures. If A outputs
Cert such that Judgment(Cert) = id1, it must have constructed a signature on some message not
queried by P1. Thus, B outputs this message and the associated signature, succeeding with the
same probability as A.

B Detailed Comparison Costs

The cost of Goyal et al.’s protocol is λ10|GC |ζ+λ4(νn+n)ζ+λ(2νn+2n)ζ+(λ−1)10|GC |ζ+(λ−
1)4(νn+ n)ζ + (4|GC |+ n+ νn)ζ + Cost(OT extension), where we use the malicious OT extension
of Asharov et al. [ALSZ15].9

The cost of Afshar et al.’s protocol [AMPR14] is Cost(ρ OTs) + Cost(OT extension) + ξ+ 4nξ+
ρ(6nξ + 9nζ + 8|GC |ζ) + ρ/2(8|GC |ζ) + ρ/2(5nζ + 2nξ + 2|GC |ζ) + nξ.

The cost of our protocol (cf. Figure 6) is

2λ(νn+ n)ζ (Step 3)
+ Cost(λn signed-OTs on λκ-bit inputs) (Step 4)
+ 10λ|GC |ζ + 2(λζ + ξ) (Step 5)
+ 2λnζ + 2(2λnζ + ξ) (Step 6)
+ Cost(1-out-of-λ signed-OT on (2(λ− 1) + n)κ-bit inputs) (Step 7)
+ (λ− 1)(2n+ 10|GC |+ 2(νn+ n))ζ (Step 8)
+ 2|GC |ζ + 2ξ (Step 10)
+ 2|GC |ζ, (Step 12)

9While one can use the covert OT extension of Asharov et al. [ALSZ15], this decreases the deterrence factor and
thus the GC and/or XOR-tree replication factor must be increased to maintain a deterrence factor of ε = 1/2.

28

where we assume that all signed values are first hashed. Using the 1-out-of-λ signed-OT protocol
of Asharov and Orlandi [AO12, Protocol 2], we have a cost of 12(λ− 1)ξ+ 2ξ+ 4λξ+ 2((4λ+2)τ

κ ζ +
ξ) + 2(λ+ 1)(2(λ−1) +n)ζ+ 2ξ in Step 7. For the signed-OTs in Step 4 we use the costs computed
previously.

Changelog

• Version 1.0 (October 28, 2015): First release. This is the full version of the proceedings
version published at ASIACRYPT 2015.

29

	Introduction
	Our Contribution

	Preliminaries
	Publicly Verifiable Covert Security
	Signed Oblivious Transfer

	Signed Oblivious Transfer Extension
	Intuition for the Construction
	Towards a Proof of Security
	An EU-CMPRA Signature Scheme
	Proof of Security

	Our Complete PVC Protocol
	Comparison with Prior Work
	Proof of Security for Our PVC Protocol (Theorem 4.1)
	Detailed Comparison Costs

